
Multisensory learning cues using analytical collision
detection between a needle and a tube

F Wang1, T Poston3, C L Teo1, K M Lim 1,2 and E Burdet1,2

1Dept of Mechanical Engineering and2Division of Bioengineering, National University of Singapore
3Johns Hopkins Singapore

Email:g0202012@nus.edu.sg (Wang Fei), e.burdet@ieee.org http://guppy.mpe.nus.edu.sg/∼eburdet/

Abstract— We are developing a Virtual Reality based training
system for micromanipulation in collaboration with the National
University Hospital in Singapore. While conventional approaches
judge a virtual environment by its resemblance to the real
environment, we use simple environments with only selected
features of the real task, and develop fast algorithms to investigate
the learning of dexterity primitives using various multi-sensory
cues. For the needle maneuvering primitive, this paper introduces
a method using stereographic projection to compute the distance
between the curved needle and a curved tube, necessary to inves-
tigate multi-sensory cues systematically. This analytical algorithm
is shown to be faster by orders of magnitude than numerical ones.
The computation time barely increases with increasing precision,
a critical condition to simulate the microworld.

I. I NTRODUCTION

As autonomous robots can perform only highly stereotyped
manipulations, most manipulation tasks must be carried outby
humans. Micromanipulation is critical to many growing tech-
nologies, such as Microsurgery, Micro-electronics, MEMS,
Life Sciences, and Nanotechnology, with corresponding needs
for skilled manpower. Humans have excellent inference and
sensorimotor capabilities, are very versatile and cost less than
highly complex robotic systems. However, a human requires
significant learning to manipulate objects skillfully under a
microscope, for various reasons:

• The operator neither feels nor hears a tool interact with
its target, and must rely entirely on visual input and pro-
prioception to control motor activity. The force involved
is generally very small, so that haptic feedback is limited.

• The micro world requires greatly modifying visuomotor
coordination. The image from the microscope is not only
larger than the hands’ environment, but also differently
oriented, and has less depth of field than normal vision.

• The operator must operate indirectly, not with fingers but
via tools such as forceps, scalpel, laser, and micropipette.

• For accurate control, the trainee must develop new motor
strategies involving only the fine motion of the fingers.
Arm movements induce too much tremor.

Currently trainees typically learn micromanipulation di-
rectly on the task, or with real material. For example, micro-
surgery is learned on latex sheet and then on rats (Fig. 1, left).
One must simultaneously control tremor, find a new position
for the arms, adapt to the microscope image, recognize the
rat’s anatomy,etc. If the learning is inefficient it is hard for

   

Fig. 1. Microsurgery learning of rats (left) may be reduced byvirtual training
on a workstation (right).

the instructor to identify problems; for safety and cost reasons,
one cannot try all possible strategies.

To help training manipulation under optical microscope,
we are developing a Virtual Reality based training system
(Fig. 1, right) as a tool for hand microsurgeons at the National
University Hospital. We focus on suturing such as blood vessel
anastomosis, performed under 5 to 20 times magnification.
Although haptic feedback is negligible in real surgery, we are
investigating its potential as a hyper-real cue in learning. The
use of haptics implies a need for haptic speeds, so every part
of the application must be tuned to take the least time possible.

This paper first describes the learning approach we use,
based on representative tasks decomposed into simple dexter-
ity primitives learned using various multisensory cues. Itthen
details the implementation of one such dexterity primitive:
maneuvering a needle along a curved path, represented in our
learning environment by a curved tube the needle should stay
inside without touching. This is not a surgical subtask in itself,
just as repeatedly typingasdf is not a typist’s function. Exer-
cises are to train subskills. We present a very fast algorithm to
measure the distance and detect collisions between a needle
and a vessel. This algorithm and the program to learn this
dexterity skill will be demonstrated at the conference [xxxWF:
Still not sure if it could be done]. Another critical task of
microsurgery, knot tying, is described in [1].
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Fig. 2. Two typical tasks of microsurgery: maneuvering a needle accurately
with a remote grip (a), and knot tying (b).

II. L EARNING COMPLEX TASKS BY TRAINING SEPARATE

DEXTERITY SKILLS WITH MULTISENSORY CUES

A. Multisensory learning cues

Many Virtual Reality trainers aim at realistic emulation,e.g.,
laparoscopic surgery trainers that display the current position
of the tool and shape of the organ so that the apprentice
surgeon can operate virtually and feel somewhat realistic
interaction forces. The virtual environment corresponding to
real micromanipulation would be purely visual [9], [10], asthe
interaction forces are generally negligible with no ‘natural’
haptic or audio component. In virtual training, however, we
can create additional haptic or audio cues to help acquiring
a skill. These cues may be pseudo-realistic (the sound or the
force at a multi-point impact when the tool hits a narrow tube
around the intended path), or iconic (highlighting, the click of
a Geiger counter, etc.) [18], [23].

As the success of a manipulation task depends on neu-
romechanical control of the arm during the whole motion, we
propose using haptic cues in the form of movement conditions.
In particular, we have recently shown that motion and path
guidance can facilitate learning hand motion for Chinese
handwriting [3] and for object handling [5]. We have also
discovered [4] that humans respond to unstable dynamics with
neural strategies for improved accuracy (Fig. 4a). We will test
how these haptic cues, as well as amplified tremor, can help
micromanipulation learning. Audio signals related to trajectory
error relative to a desired movement will be used as audio cues.

The trainee learning a task acquires a memory or internal
model [15] of this task and the conditions under which it must
be performed. This internal model persists [6] even in the
absence of learning cues, enabling skill transfer to a real task.
This results in feedforward control, free from the long delay of
visual control [19], [20], similar to the mechanisms we studied
in [4]. Neuroscience studies suggest that learning this internal
model requires compensating for the delay of the motor-
sensory loop [16]. As the visual loop has a particularly long
delay of 200ms or more [24], we will investigate predictive
visual cues that compensate for this delay. In one such case,
we will extrapolate the error at the end of a movement from
the past and present states and signal it to the trainee, allowing
early correction. Could prediction made apparent by a visual
or acoustic signal be as efficient as haptic cues? As haptic
feedback is relatively costly to provide, such questions are

 

Fig. 3. Sliding an arc along a circular path is one of the dexterity primitives
we use to learn maneuvering a needle in microsurgery

critical to the design of micromanipulation trainers.

B. Dexterity primitives

We have studied typical tasks from microassembly [7] and
microsurgery and have selected representative micromanip-
ulation tasks, which require correct perception of position,
orientation and also of topology (inside, outside, loop,etc.) in
3D, and have both motor and cognitive aspects. Fig. 2 shows
two of these tasks typical of microsurgery. In suture needle
insertion a curved needle, suturing together two membrane
edges, must pass through at carefully planned places. Knot
tying is a bi-manual task requiring skillful control of the nylon
and knowledge of the correct topology.

From these complex tasks we have extracted simple dex-
terity primitives corresponding to basic movements they are
composed of. Studies suggest [14] that humans may form
internal models of these primitives which they can combine in
more complex tasks, so that when this task is decomposed and
learned in simple steps than all at once, learning a complex
task can be faster and performance better. This confirms prac-
tice in (for instance) typing courses, which address subtasks of
keyboard use before whole words are typed. We in particular
want to train motorics separately from cognition, and simple
motions one at a time. We will study the effect of multisensory
cues on the learning of these primitives and later on their
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Fig. 4. By training in unstable dynamics, we have found that humans adapt
the feedforward motor command to decrease motion deviation [4].Similarly,
we will train micromanipulation dexterity using a divergent force field along
the movement. Another haptic cue will be a convergent field guiding motion.



combinations, finally testing the whole learning process on
the selected representative tasks.

C. Maneuvering an arc along a tube

In the following we focus on the learning of needle ma-
neuvering, a task requiring very fine control. Both position
and orientation must change simultaneously, in six-degree-of-
freedom motion. One dexterity skill which will be used to
train this task consists of moving a curved needle precisely
along its own form, so that as it passes through tissue at
two points (Fig. 2a) it does not waver at these points and tear
it. This subskill is well represented by the non-surgical task
of moving a curved needle along a curved tube of the same
radius, without touching the wall (Fig. 3). This presents a more
complete test of the required motor skill than does a two-point
penetration. By testing the motion all along the length of the
needle, it adds situational hyper-reality to the learning of the
subtask.

This will be trained with multisensory cues. For example, if
the curved needle is going to touch the tube, an audio warning
cue may help the trainee correct the motion trajectory, with
volume or pitch rising as distance to the tube decreases. (Time
discrimination in hearing is acute, so that like haptics this
requires fast computation.) A needle that touches the virtual
tube causes an error signal. Other cues that will be investigated
include:

• visual cues: display of the path, or limits to motion,
display of deviation;

• audio cues: contact with virtual objects; error;
• haptic cues: motion guidance, path guidance, destabiliza-

tion from the intended path.
The implementation of all these cues requires computation

of the distance between the needle, modelled as an arc
circle, and the vessel, modelled as a portion of a torus. This
computation must be very fast, in order to save CPU cycles
for the implementation of the cues.

III. FAST ALGORITHM FOR TORUS-ARC DISTANCE

A. Methods to compute intersections

The problem of intersection computation between surfaces
and curves is fundamental in computer graphics and geometric
modelling. For low degree algebraic surfaces such as quadrics,
a number of applications and specialized algorithms have been
developed for intersection computations by analytic methods
[2], [12], [17], [21]. An arc-shaped needle touching a planeis
simple. More complex is touching or approaching a curved
surface.

If both needle and surface have complex shapes, the objects
can be decomposed into triangles and the distance can be
computed from all the distances between the triangles approxi-
mating these two objects (Fig. 5a). If the surface is describable
by an equationf (x,y,z) = c for a rapidly computablef such
as a polynomial, a trivial algorithm evaluatesf (·)− c for
regularly spaced points on the needle (Fig. 5b) and tests for
proximity to 0 (or for a change of sign, which implies crossing
0). Finally, if both surface and needle have tractable shapes,

Fig. 5. Three types of method to detect collision between a surface and
a needle. (a) distance computation to many surface points for each needle
point; (b) For an implicitly defined surface, the iteration can be reduced to
the one-dimensional needle; (c) For algebraically simple surface and needle,
the distance can be computed analytically.

the relative distance can be computed analytically (Fig. 5c).
This approach is the least general, depending on the specific
shapes involved, but (analogously to assembly programming
for critical tasks) allows the highest speeds. This section
develops such a method, and compares the three approaches.
By convention, the following developments use bold vectorv
and bold capital matricesM .

B. Principle of the algorithm

To train in maneuvering an arc needle along the circleC
it lies on, we surround the radius-R circle in the(x,y)-plane
by a piece of regular torus. (This will be rotated into various
world coordinates, varying the muscular patterns involvedin
the required hand motion.) There are various ways to describe
this by an implicit equation. A torus uniformlyr from the
circle is given by the fourth degree equation

g(x,y,z)=(x2+y2+R2+z2−r2)
2−4(x2+y2)R2=0 (1)

which leads to unhandy algebra: quartic equations do have
closed form solutions, but they are rarely used and involve



roots of various orders. To make the distance analytically
tractable, we use a stereographic projection and lift this torus
to S3, where it becomes a cone described by a single second
order equation. Solving a quadratic is a high school problem,
and requires only square roots, nowadays hardware optimized
to a single clock step.

Stereographic projection (SP) is a correspondence between
spherical and flat geometry, known to geographers since an-
cient Greek times and widely used in mathematics: a point on
a plane tangent to the sphere at its South Pole corresponds to
a point on the sphere if the line passes through the North Pole.
It has the useful property that circles in the sphere projectto
circles in the flat domain, andvice versa (except that circles
through the North Pole correspond to straight lines, ‘circles
through∞’) [11]. The same property follows for the projection
P one dimension higher, between the sphereS3 of quadruples
(l,m, p,q) with l2+m2+ p2+q2 = 1 to flat coordinates(x,y,z)
in flat three-dimensional spaceR3 — where our tube exists
— though the centers of the spherical circles donot map to
the centers of the circles inR3. Settingρ2 ≡ x2 + y2 + z2,

P(l,m, p,q) =

(
l

1−q
,

m
1−q

,
p

1−q

)
(2)

P−1 (x,y,z) =

(
2x

ρ2 +1
,

2y
ρ2 +1

,
2z

ρ2 +1
,

ρ2−1
ρ2 +1

)
. (3)

Define a toroidal tube inS3 by the quadratic equation

α2(
l2 +m2)−

(
p2 +q2) = 0 (4)

Setting α = 0 giving the degenerate case of the unit circle
in the (l,m)-plane, which projects to the unit circleU in the
(x,y)-plane:α > 0 thickens it. (See Appendix for details.) Tori
and their circular cross-sections go byP to tori and to circles
around (but not centred) onU. They are best parametrized in
§3 coordinates, setting

(l,m, p,q) = (cosφ ,sinφ ,α cosψ,α sinψ) . (5)

For drawing, a torus or piece of torus is easily triangulatedin
these coordinates, and the mesh projected byP to R

3.
To visualize this, consider the analogues in lower dimen-

sions. Fig. 6a shows stereographic projection from the circle
S1 to the line R

1. The restrictionl2 − q2 of the quadratic
(4) with α = 1 divides the circle into positive regions (blue)
and negative (red), vanishing on four boundary points, corre-
sponding to points (not wherel2−q2 = 0) also marked green
in R

1. Moving to projection from the sphereS2 to the line
R

2 (Fig. 6b) spins the first figure, with pairs of points where
l2−q2 = 0 becoming circles wherel2 + m2−q2 = 0. Going
to (4) spins the picture in the(p,q) plane, so that the pair of
circles becomes one torus: each pair of points with the same
(l,m) and oppositeq becomes a(p,q) circle with fixed(l,m).

A typical circle (brown in Fig. 6b) in the planeR
2 crosses

one of the green circles if and only if the corresponding circle
meetsl2 + m2−q2 = 0, which is a quadratic calculation also
usable for an arc, modelling a needle in the plane. Similar
principles apply inR

3, which enables computation of the
distance to the needle using the following steps:

• Lift the torus g = 0 to a setT in the unit sphereS3 =
{x ∈ R

4, |x| = 1} where it is the intersection ofS3 with a
quadratic coneG = 0, around the unit(l,m)-plane circle,
as was described above.

• The circleC lifts to a circleĈ in S3. Work in the plane
π containingĈ (§III-C).

• The torus equation restricts to an inhomogeneous
quadratic onπ, which vanishes on̂C whereĈ meetsT
(§III-D).

C. Lift the needle to S3

To detect intersections inR3, we lift a circle to the cor-
responding circle inS3, and look for intersections with (4).
Explicitly, a circle in S3 is the intersection of some planeπ
with S3, which we first find. Let the needle arc inR3 be given
in needle-model coordinates by(r coss,r sins,0) from s = 0
to s = S. Name the start pointg1 = (r,0,0), the end point
g2 = (r cosS,r sinS) and the mid-pointg3 =

(
r cosS

2,r sin S
2

)
.

Using homogeneous coordinates, the needle arc is mapped into
R

3 by a 4×4 position matrix

L =




l11 l12 l13 l14

l21 l22 l23 l24

l31 l32 l33 l34

0 0 0 1


 (6)

which takes the three points to

f1 = Lg1 =
[

l14+ rl11 l24+ rl21 l34+ rl31 1
]T

and similarly for f2 = Lg2 and f3 = Lg3. Write their co-
ordinates as(l1,m1, p1,q1), (l2,m2, p2,q2) and (l3,m3, p3,q3)
respectively by applyingP to f1, f2 and f3. These define the
hyperplane

[
h1 h2 h3 h4

]



l
m
p
q


 = 0, where

h1 =

∣∣∣∣∣∣

m1 m2 m3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣
, h2 = −

∣∣∣∣∣∣

l1 l2 l3
p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣
,

h3 =

∣∣∣∣∣∣

l1 l2 l3
m1 m2 m3

q1 q2 q3

∣∣∣∣∣∣
, h4 = −

∣∣∣∣∣∣

l1 l2 l3
m1 m2 m3

p1 p2 p3

∣∣∣∣∣∣
.

i.e., (h1,h2,h3,h4) is the triple cross-product of
(l1,m1, p1,q1) × (l2,m2, p2,q2) × (l3,m3, p3,q3). A vector
through the lifted circle’s centre is given by the triple
cross-product

k = (h1,h2,h3,h4)× (f2− f1)× (f3− f1). (7)

We adjust the length ofk to get the centre inR4 of the lifted
circle Ĉ

c = (c1,c2,c3,c4) =
k · (l1,m1, p1,q1)

k ·k k (8)
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Fig. 6. To detect the intersection of a torus with the needle (circle arc), we lift toS3 and consider the intersection between the (quadratic) conecorresponding
to the torus and the plane defined by the circle onS3 (§III-B). As it is difficult to represent this in 4 dimensions, this figure illustrates this algorithm in one
(a) and two (b,c) dimensions, with the stereographic projection is onto S2. The detail in (c) shows the correspondence between the intersectionk of an arc
(needle) with the projected quadric (torus), and the intersectionK of its lift with the quadric set inS3.

The squared radius of̂C is

R2 = ((l1,m1, p1,q1)−c) · ((l1,m1, p1,q1)−c) . (9)

In the plane ofĈ we choose a first unit basis vector

bx =
1
R

((l1,m1, p1,q1)−c) , (10)

with coordinates(bxl ,bxm,bxp,bxq). Orthogonal to this and in
the planeπ of Ĉ is the triple cross-product

b?
y = −bx ×c× (h1,h2,h3,h4) , (11)

giving us our second basis vector

(
byl ,bym,byp,byq

)
= by ≡

1√
b?

y ·b?
y
b?

y . (12)

A general point(x,y) in π is then

c+ xbx + yby = (c1 + xblx + ybly,c2 + xbmx + ybmy,

c3 + xbpx + ybpy,c4 + xbqx + ybqy) (13)

in R
4 coordinates. If we parametrize the lifted circle by

(Rcosθ ,Rsinθ) the lifted arc still starts (by construction) at
θ = 0, but the end angleθω needs not be equal toS. To find
it we need to use

θω = arctan2

(
(f2−c) ·by

R
,
(f2−c) ·bx

R

)
(14)

In the plane ofĈ, the torus (4) becomes

0 = ax2 +bxy+ cy2 +dx+ ey+ f (15)

with

a =α2(b2
lx+b2

mx)−b2
qx−b2

px

b =α2(2blxbly+2bmxbmy)−2bqxbqy−2bpxbpy

c =α2
(

b2
ly+b2

my

)
−b2

qy−b2
py

d =α2(2c1blx+2c2bmx)−2c4bqx−2c3bpx

e =α2(2c1bly+2c2bmy)−2c4bqy−2c3bpy

f =α2(c2
1+c2

2)−c2
4−c2

3



D. Computing a distance between the needle and the curved
tube

In the lifted circle plane coordinates above, common tan-
gents for contours of

T (x,y) = ax2 +bxy+ cy2 +dx+ ey+ f (16)

C(x,y) = x2 + y2

occur at the vanishing points

1
2

[
∂
∂x T (x,y)
∂
∂y T (x,y)

]
×

[
∂
∂xC(x,y)
∂
∂yC(x,y)

]
= 0

1
2

[
2ax+by+d
bx+2cy+ e

]
×

[
2x
2y

]
= 0

b
(
x2− y2)+2(c−a)xy+ ex−dy = 0 (17)

Look first at the homogeneous zeroes of

b
(
x2− y2)+(c−a)2xy = 0 (18)

Revolve this [xxx: R2: ”revolve this” is improper English] to
new (u,v) coordinates, abbreviating one coefficient toc−a =
g:

0 = b
(
x2− y2)+g(2xy) ,

x = ucosψ − vsinψ, (19)

y = usinψ + vcosψ

yields

(u2−v2)(bcos2ψ+gsin2ψ)+2vu(gcos2ψ−bsin2ψ)=0 (20)

If we set

0≡ bcos2ψ +gsin2ψ ,

ψ ≡ −1
2

arctan
b
d

, (21)

(20) becomes

2(d cos2ψ −bsin2ψ)uv = 0 (22)

and the inhomogeneous quadratic for the torus

ax2 +bxy+ cy2 +dx+ ey+ f = 0

becomes
βuv+ γu+δv = 0 (23)

where

β ≡ 2(gcos2ψ −bsin2ψ)

γ ≡ d cosψ + esinψ
δ ≡ ecosψ −d sinψ

This gives (unlessβ = δ = 0, which reduces (23) tou = 0 and
we’re done)

v(βu+δ )+ γu = 0 (24)
−γu

βu+δ
= v (25)

Fig. 7. The analytical algorithm enables fast computation ofthe separation
of needle and torus.

while x2 + y2 = R2 rotates tou2 + v2 = R2, so

R2 =u2+
(

−γu
βu+δ

)2

0 =u2(β 2u2+2βuδ+δ 2+γ2)−R2(βu+δ )2 (26)

0 =β 2u4+2βδu3+(γ2+δ 2−β 2R2)u2−2βδR2u−δ 2R2

Get the real roots between±R of (26) numerically or with
a standard routine [8], plug in to (25), putu and v into (19)
and we have the points at which (16) has its extrema1 on the
radius-R circle. We find theθ values of these points in the
standard parametrisation(Rcosθ ,Rsinθ) of the circle.

From this we can determine whether an arc fromθ1 to θ2

of the radius-R circle meets the set

ax2 +bxy+ cy2 +dx+ ey+ f = 0. (27)

Writing

φ(θ)=aR2(cθ)2+bR2(cθ)(sθ)+R2c(sθ)2+Rd(cθ)+Re(sθ)+ f (28)

with cθ ≡ cosθ , sθ ≡ sinθ , we findφ (0) andφ (θω). If there
is no maximum or minimum betweenθα and θω , we have
an intersection with (27) if and only if 0 is betweenφ (0) and
φ (θω). If the arc containsn extremaθ1, . . . ,θn (for 1< n≤ 4),
there is an intersection if 0 is betweenφ (0) and φ (θ1), or
betweenφ (θ1) andφ (θ2) or . . . or betweenφ (θn) andφ (θω).

Also, theθ of the smallest absolute value ofφ (θ) between
φ (0) and φ (θω) can be used to find the point of the needle
arc which is nearest (in the sense of lowestG) to the surface
of the curved tube inR3. Put (Rcosθ ,Rsinθ) to (13), we get
the coordinate of the nearest point inπ. Then use (3) to get the
coordinate inR3. Computing the distance between the nearest
point and the core curve of torus decides how far the arc and
tube are from collision and whether inside(G < R) or outside
(G > R). The distance can be used for warning signals such
as force, sounds or color gradients, useful in training.

The discussion above applies to the whole torus, to sim-
plify the first reading and checking. For a segment of
torus, contained between the planes{(x,y,z),x = 0} and
{(x,y,z),(cosΩ)x+(sinΩ)y = 0}, it is straightforward to find
the part of the needle arc that also lies between the two planes,

1Which are minima and which are maxima appears easily, by inspecting
the values. If there are two solutions, the greater and lesser are the unique
maximum and minimum. If there are four, both maxima are above both
minima. However, we do not need this information.



Fig. 8. Computation time for torus-needle separation for the analytic method
versus two numerical ones, comparing to the three approaches of (Fig. 5).

and test that rather than the whole arc for collision with the
torus.

IV. PERFORMANCE ANDCOMPARISON

We implemented theSP algorithm of section III (on a Dell
PC with 2.4GHz Pentium CPU, 256 MB) to detect collision
between a circular needle and a toroidal blood vessel (Fig. 7).
We measured the computation time as a function of the
accuracy, defined as the end criterion of the Newton algorithm
used to solve the fourth order equation (26). We see in Fig. 8
that the computation time is as low as 0.015ms and does not
increase with accuracy, an important property to simulate the
microworld.

The SP algorithm was first compared with a general detec-
tion algorithm, the RAPID interference detection system [22].
For a fair comparison we excluded the set-up time of this
algorithm, as well as the visualization effort which common
to all the algorithms. The precision of RAPID depends on
the diameter of the largest triangle. This is a slightly different
measure of precision than forSP, however the computation
time is order of magnitudes larger than withSP, so this differ-
ence is inessential. Similarly, the algorithm of discretizing the
needle and computing the distance to the torus for all these
discrete points (Fig. 5b) requires computation time growing
exponentially with the precision. In that case the precision
corresponds to the discretization step.

In conclusion, theSP algorithm is orders of magnitude faster
than numerical approaches at accuracies below 10−xxxm, and
can be used to implement all audio, visual and haptic cues of
section II-C.

V. D ISCUSSION

We are developing a Virtual Reality micromanipulation
learning system to train microsuturing, implemented on the

dedicated workstation [3], [13] with collocated visual and
haptic workspaces [25].

Conventional approaches judge a virtual environment by its
resemblance to the real environment, and often the ‘sense of
immersion’ or ‘presence’. In contrast, we are only concerned
with efficiency in learning, and immerse the hands rather
than the head[xxx what is better: head or brain?]. We train
simple dexterity primitives corresponding to selected features
of the complex task, and also investigate suitable multi-
sensory learning cues systematically. To this end we use simple
environments with only selected features of the complex tasks,
and develop fast algorithms to investigate the learning of these
dexterity primitives with various multi-sensory cues.

For the needle maneuvering skill, we introduced a method
using stereographic projection to compute the distance be-
tween the curved needle and a curved vessel. This analytical
algorithm was shown to be faster by orders of magnitude
than numerical ones. Furthermore the computation time barely
increases with increasing precision, a critical conditionto sim-
ulate the microworld. We used geometric properties specificto
the shapes involved, such as the circularity of the arc allowing
it to lift to a planar circle inS3, as an ellipse for instance
does not. This limits the generality of the specific algebra
used, but still shows that geometrically special coding can
be as powerful as rewriting an algorithm in system-specific
assembler for speedup. [xxx R2: The last two sentences have
awkward grammar]
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APPENDIX: RELATIONS BETWEENR, r AND α
To connect the torus form (1) with the projectedα version,

we substitute

l =
2x

x2 + y2 + z2 +1
m =

2y
x2 + y2 + z2 +1

p =
2z

x2 + y2 + z2 +1
q =

x2 + y2 + z2−1
x2 + y2 + z2 +1

from (3) into (4). We haveα2
(
l2 +m2

)
−

(
p2 +q2

)
= 0

exactly at the zeroes of
ε
(
x2 + y2 + z2 +1

)2(
α2

(
l2 +m2

)
−

(
p2 +q2

))
whereε is an

arbitrary constant. We want to chooseR and r such that

(ρ2−D2)
2−4(x2+y2)R2=C

(
(ρ2+1)

2
(α2(l2+m2)−(p2+q2))

)

whereρ2 = x2 + y2 + z2, D2 = R2− r2. But then

ρ4−2ρ2D2+D4−4(x2+y2)R2−C(α2(4x2+4y2)−4z2−(ρ2−1))

vanishes at infinitely many points, which is only true if the
coefficients ofxn, yn, zn vanish identically. Comparing the
coefficients ofρ4, we wantε = −1, i.e.,

(2D2−4R2+2+4α2)x2+(2D2−4R2+2+4α2)y2+(2D2−2)z2+D4−1=0



The vanishing of coefficients reduces to

D4−1 = 0 (29)

2D2−2 = 0

2D2−4R2 +2+4α2 = 0

We want a torus withR > r, so we choose

R2− r2 = 1. (30)

It then follows that

4R2−4α2 = 4 (31)

R2−α2 = 1

r = α

For small values ofα we get a thin torus containing the unit
circle x2 + y2 = 1 in the z = 0 plane but centred onx2 + y2 =
1+α2. For large values we get a fat torus, with az-axis hole
of throat radius

√
1+α2−α = α

(√
1+

1
α2 −1

)
(32)

= α
((

1+
1

2α2 + . . .

)
−1

)

≈ 1
2α

and outside radius approximatelyα.
Note that (30) forcesr =

√
R2−1, regardless ofα. To

get a general torus, with arbitrarỹR and r̃, define their ratio
β = r̃/R̃. We produce a torus with this ratio by setting

β 2 =
α2

1+α2 (33)

α2 =
β 2

1−β 2 ,

which gives R2 = 1/
(
1−β 2

)
. If this is not the valueR̃

needed, scale(x,y,z) by the factorR̃/
√

1−β 2 =
√

R̃2− r̃2.
For instance, ifR̃ = 5 and r̃ = 3, giving β = 3/5, we want
to draw theα2 = 9/16 torus (which unscaled would have
R =

√
1+9/16 = 5/4 and r =

√
9/16 = 3/4 ) enlarged by

the factor
√

52−32 = 4.
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