
Continuations in the Java Virtual Machine

Iulian Drago³1, Antonio Cunei2, and Jan Vitek2

1 École Polytechnique Fédérale de Lausanne, Switzerland
2 Purdue University, USA

Abstract. Continuations have received considerable attention lately as
a possible solution to web application development. Other uses proposed
in the past, such as cooperative threading, coroutines or writing iterators,
made them an attractive feature of dynamically typed languages. We
present issues involved in adding continuations to a statically typed,
object-oriented language like Java, and its implementation in the Java
Virtual Machine. We propose three di�erent �avors of continuations,
and study their interactions with the base language, focusing on Java's
concurrency model. We describe our implementation in Ovm, a realtime
Java Virtual Machine, and discuss open issues.

1 Overview

Continuations are a way to represent the �rest of the computation� at a given
point in the program [1]. Most languages that have �rst-class continuations rep-
resent them as functions that, when called, cause the immediate transfer of
control from the caller to the point where it was captured. The computation will
resume in the same state as when it was captured. It has to be noted that, unlike
setjmp/longjmp in C, a continuation can be called at any point during program
execution, sometimes long after the activation frame where it was captured has
been left.

Continuations are used to encode coroutines, cooperative threading, to write
iterators (C# iterators or Python generators) and have been proposed as a
natural abstraction for interactive web applications [2, 3]. For instance, a tree
traversal iterator, which might be a non-trivial task to code in plain Java, can
be as simple as shown in Fig. 1. Yield suspends the current method and returns
a value to the caller. Subsequent calls to next resume the traversal immediately
after the previous call to yield. This method could not be coded in Java without
continuations. For brevity, we don't include the de�nition of this method.

Our goal when designing continuations for Java was to con�ne changes to the
virtual machine. Previous work has shown that continuations can be added in
languages that target uncooperative virtual machines like the JVM or the .NET
[4, 5]. However, implementing continuations in the virtual machine is likely to be
more e�cient and make them available to all languages targeting that platform.
Furthermore, we chose to expose them through library functions rather than
new opcodes, so that existing compilers need not be modi�ed to take advantage
of this new feature.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


public class System {
public static Object callcc(
Runnable1 r);

public static Object callccBounded(
ContinuationBound cb, Runnable1 r);

public static Object callccOneShot(
Runnable1 r);

//..
}

public interface Runnable1 {
public void run(Continuation k);

}

public final class Continuation {
public void call(Object v);

}

public Iterator getIterator() {
return new Generator() {
protected void generate() {
preorder(Tree.this);

}

private void preorder(Tree t) {
if (t.isLeaf())
yield(t.value);

else {
preorder(t.left);
preorder(t.right);

}
}};

}

(a) Additions to the java.lang package. (b) A tree iterator.

Fig. 1.

Continuations are exposed through the library function callcc3. This fol-
lows common practice in languages that have �rst-class continuations (Scheme,
Smalltalk, Ruby, ML, etc.). Fig. 2 shows an example of using callcc in our
system. The list of additions to the java.lang package is shown in Fig. 1 (a dif-
ferent class than System could have been used for adding callcc but we chose
to make it clear it is a VM service).

System.callcc(new Runnable1() {
public void run(Continuation k) {
k.call(new Integer(42));

}
});

Fig. 2. Using callcc

1.1 Call/cc and Call

We follow standard semantics for the call/cc mechanism. In the following text
the term �execution context� will refer to the call stack, local variables and
instruction pointer during the execution of a method. Global state and objects
on the heap are not saved/restored by continuations.

3 Call with current continuation



System.callcc This method captures a continuation k which represents the
current execution context, with the instruction pointer pointing immedi-
ately after this call. It then proceeds to call method Runnable1.run on its
parameter.
Return value: If the call to Runnable1.run �nishes without a call to k.call
being made, System.callcc returns null. Otherwise, it returns the value
passed as argument to k.call (see below).

Continuation.call A call to this method restores the execution context cap-
tured by the given continuation. The current execution context is dropped
and execution continues at the point where System.callcc was called, re-
turning the value passed as argument to call. This method never returns.

2 Continuations

There are several �avours of continuations presented in literature [6�8]. We have
chosen to implement three kinds of continuations: full continuations for their
expressivity, one�shot continuations because they are fast and serve a common
use�case, and delimited continuations as a good compromise between e�ciency
and expressivity.

First�class continuations This is the most general kind of continuations.
There are no limitations with regard to the number of times a continua-
tion can be called, or its lifetime. Since they need to copy the full execution
stack, they are more costly than the other kinds of continuations.

Delimited continuations The user �rst obtains a continuation bound which is
then used to obtain a delimited continuation. Such a continuation is valid for
as long as the execution stack does not exit its bound. An invalid continuation
throws an exception when called. Valid delimited continuations can still be
called any number of times. A delimited continuation costs less than a full
continuation, since they only need to copy a subsection of the execution
stack, given by the continuation bound and the point where callcc is called.

One�shot continuations A one shot continuation can be called a single time.
They are valid for as long as the execution does not leave the callcc frame4.
They are the �cheapest� continuations available, since the system only has
to save the instruction pointer.

The user has the choice of which kind of continuations to use by calling the
corresponding callcc method. Full continuations can be used when the whole
execution context needs to be saved and restored, for instance to code threads.
One�shot continuations can be used fast for non�local returns while delimited
continuations are a good choice when only a limited part of the execution context
should be saved/restored (for instance, to write coroutines).

4 This can be regarded as an implicit application of that continuation by callcc itself,
after the runnable that was passed as argument returns.



3 Interactions with the Base Language

Existing Java language features turn out to interact in unexpected ways with
continuations. Exceptions, language support for synchronization through moni-
tors, threads and the Java security model all present possible issues when con-
tinuations are added to the language. We will consider each one in turn and
present the problems we identi�ed and our solutions.

3.1 Exceptions

The try-catch-�nally statement raises issues in the presence of continuations:
�nally handlers are guaranteed to run, be it through normal or abrupt (exception
thrown) completion of its protected block. Consider the code shown in Fig. 3
(a).

Handle h = getNativeHandle();
try {
// use h in various ways
System.callcc(
new Runnable1() {
public void run(Continuation k) {
this.dangerousK = k;

}});
// use h again
} finally {
releaseNativeHandle(h);

}

System.callcc(new Runnable1() {
public void run(Continuation k) {
this.k1 = k;
try {
System.callcc(new Runnable1() {
public void run(Continuation k) {
this.k2 = k;
//..
k1.call();

}});
// k2 points here

} finally {
//..

}
}});

// k1 points here
(a) (b)

Fig. 3. Continuations and ��nally�

In usual Java, this code ensures the native handler is released under all
circumstances. It also saves a continuation which can later be called, and make
use of the handle after it has been released. Furthermore, it will reach the end
of the try��nally block and run the handler once more � releasing the native
handler a second time.

The problem comes from the fact that callcc breaks the assumption that a
�nally handler is run just once. The converse, calling a continuation while �nally
handlers are active has a similar problem: should they be run? The answer is
not easy, since it depends on the continuation: in Fig. 3 (b) calling k1 leaves the
�nally handler, while calling k2 does not.

Additionally, a VM-only solution cannot be adopted, since the Java VM [9]
has no notion of �nally handlers. It is the compiler's job to generate proper code



on all control �ow paths to invoke the �nally code. Thus, Java with continuations
has to either forbid such cases, or relax the guarantees of finally. To forbid
them, a simple extension to the type checker could ensure that all methods that
call callcc or Continuation.call are annotated with a special annotation,
and that no such methods are called from within blocks protected by a finally
handler. Relaxing the guarantees for finally is the road taken by Ruby and
Smalltalk, who will not honor their equivalent of finally when continuations
are involved.

An interesting alternative to try-�nally is Scheme's dynamic-wind [10], which
works like a try-�nally with a prelude: whenever control enters the block (either
normally or through a continuation), the prelude is run; the same goes for leaving
the block and the postlude. Such a method can be easily written when having
callcc [11].

The best way to deal with continuations in the presence of Java's try-�nally is
an interesting research question, and has to be dealt with by any implementation
that adds continuation to the language. However, our focus in this paper is the
VM side of things, so we will not explore further.

3.2 Synchronization

Capturing a continuation inside a synchronized block means that such a block
can be re-entered any number of times through that continuation. Code inside
that block assumes that a number of locks have been acquired and therefore,
whenever it executes, they have to actually be held.

Our solution is that Continuation.call fails (with an IllegalMonitorState
exception) if the current thread does not hold exactly the same monitors as the
one which captured the continuation. To see why, we need to notice that �nal-
izers and monitors are closely related. A synchronized block implicitly de�nes
a �nally handler which will release that monitor. It follows that we have the
following restrictions on callers of a continuation captured inside a synchronized
block:

Destination compatibility The caller must be able to release at least the
same monitors as the ones active at the point of capture. This is because it
will run the special �nally handlers.

Source compatibility The caller must not hold monitors other than the ones
active at the point of capture. This is because it will drop the current exe-
cution context, and its own �nally handlers will not be executed leading to
unreleased monitors.

It follows that the two sets of monitors have to be equal. Our implementa-
tion keeps track of the monitors acquired by a thread and makes the necessary
checks when a continuation si captured or applied. User code can test whether a
continuation is valid in the current context by calling Continuation.isValid.
This problem seems to have gone unnoticed by the creators of RiFE [5].



3.3 Threads

Continuations refer to the thread that created them. What happens if a thread
calls a continuation captured by another thread? Delimited and one�shot con-
tinuations fail at runtime. Since they carry only a part of the execution context,
they can't recreate it on the target thread. Full continuations could, in princi-
ple, be called in a di�erent thread than the one who captured them (our current
implementation does not allow this).

3.4 Java Security Model

The Java security model [12] uses a stack�walking algorithm for deciding whether
the access to some resource should be permitted or not. Access is granted if all
the code on the stack has the required permission (we ignore doPrivileged for
simplicity, as it does not a�ect this issue). Since continuations capture (portions
of) the stack, they carry around the security context of the code who captured
them, and makes it more di�cult to reason about security. Indeed, it's not only
control �ow (who calls whom), but also data �ow (what continuations can reach
a given call) that has to be taken into account. Imagine a continuation that
points to some security sensitive operation (like formatting the hard drive) that
reaches untrusted code (by careless programming). Untrusted code can call this
continuation and no one could stop disaster from happening. This problem is
similar to that of thread creation: a new thread has an empty stack, therefore
it could perform some sensitive actions which, later, could leak to the code that
created the thread. That code might not have had the necessary permissions to
carry on those operations itself. The security model handles this by making new
threads inherit the security context of their parent.

A similar solution for continuation would be to record for each thread the
security contexts at all points where a continuation was called, and modify the
algorithm to take them into account. However, this is not a satisfactory solution
since it implies an ever increasing chain of security contexts. Our implementation
does not address this issue, which should however be kept into consideration
when dealing with security-sensitive applications.

4 Implementation

We implemented continuations in Ovm [13], a framework for building virtual
machines, coming with several implementation of VM services (garbage collec-
tion, monitors, or execution engine) which can be combined to build a working
JVM. We used the j2c execution engine, which is an ahead-of-time compiler that
uses C++ as target.

4.1 Garbage Collection

We used a conservative, mostly copying garbage collector. Using C++ as a target
has the disadvantage that the garbage collector has to be able to deal with lack



of precision. While pointers from objects can be precisely identi�ed, pointers
from the stack have to be handled conservatively, and the pointed objects have
to be marked as not movable (pinned). Since continuations are not ordinary
objects, but carry stacks with them, they need to be visited before traversing
the reachability graph, and their �neighbours� pinned. This last requirement
comes from the fact that an object can be reached before its continuation is
visited, and therefore moved before it had the chance to be pinned. Note that
this issue does not appear in VMs that use heap�allocated activation frames,
such as [14], as they can be treated as ordinary objects.

We modi�ed the mostly copying GC to handle continuations correctly. We
keep around a list of live continuations which is updated each time a continua-
tion is captured (continuation capture, as well as continuation calls are atomic
operations). When the GC starts, it visits all live continuations and treats their
stacks and registers as conservative roots. A subtle problem arises: since Ovm
provides no weak references, and continuations are referenced from the GC itself,
they will never be collected. Our solution is to �manually� garbage collect the live
continuation list. We use a simple mark and sweep algorithm which marks con-
tinuations in the live list when they are visited during normal GC walk. At the
end of the GC the list is swept. This way we guarantee that dead continuations
will be collected in the second GC run after they are dead.

4.2 Monitors

In order to satisfy the monitor-a�nity property of continuations, we need to keep
track of the acquired locks. Each thread maintains a list of entered monitors,
which is updated on monitor enter and exit. When a continuation is captured,
the list of monitors is saved. When a continuation is called, we check that the
monitors entered by the current thread are the same as the ones saved in the
continuation. If this is not true, an IllegalMonitorState exception is thrown.
Continuations are invalidated eagerly, as soon as the most recently acquired
monitor has been released. This allows the programmer to test a continuation
before attempting to call it.

A current limitation is that thin locks [15] are not supported. Thin locks use
a partial word in objects to perform fast locking when there is no contention.

4.3 Performance

We present some preliminary performance results of our prototype. Figure 4
shows the cost of di�erent operations involving continuations. Our testing con-
�guration is real time Ovm with the j2c backend, and a mostly�copying garbage
collector. Each data point in the �gure is an average over ten measurements.

Continuation capture is the most expensive operation. Its cost increases lin-
eary with the stack depth, and up to depths of 50 activation frames it is lower
than the cost of creating a thread in our system. Its cost is roughly 8 times the
cost of a normal call. One�shot continuations show a constant cost relative to
stack depth, about the same as a normal method call. It is interesting to note



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  50  100  150  200

T
im

e 
(n

s)

Stack depth (frames)

Thread Creation

Full capture
One shot capture
Continuation call

Normal call

Fig. 4. Cost of continuation operations in di�erent settings. We used a dual�core, Intel
Xeon 3GHz machine with 2GB RAM, running Linux 2.6.15.

that the cost of a continuation call is almost constant relative to stack depth,
roughly 2 times more expensive than method calls. We believe the di�erence
between capture and call is due to memory allocation that takes place during
capture. The cost of continuation capture is an area where we expect our future
implementation to show signi�cant improvement. We didn't include measure-
ments for bounded continuations as their behavior relative to stack depth is
similar to that of full continuations.

5 Conclusions

We have presented a way to integrate �rst�class continuations in the Java lan-
guage. We studied the interactions between existing language features and con-
tinuations and suggested possible approaches to reconcile the existing semantics
of Java regarding exceptions, threads, monitors and the security model. We have
implemented continuations in a Java VM, we have a system that handles mon-
itors correctly, and we conducted preliminary performance measurements. We
showed how a conservative copying GC can be extended to deal with continua-
tions. As far as we know, this is the �rst implementation of continuations in a
Java VM.

6 Future Work

We are planning to conduct further work on the interaction between contin-
uations and the ��nally� exception mechanism, in order to obtain an e�cient
implementation that does not sacri�ce the expected exception semantics.



Continuation capture is eagarly copying the whole execution stack. We plan
to implement a more e�cient scheme using lazy copying [16].

References

1. John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computa-
tion, 6, 1993.

2. Paul Graunke, Shriram Krishnamurthi, Steve Van Der Hoeven, and Matthias
Felleisen. Programming the Web with high-level programming languages. Lec-
ture Notes in Computer Science, 2028:122, 2001.

3. Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside � a multiple
control �ow web application framework. ESUG International Smalltalk Conference,
September 2004.

4. Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and
Matthias Felleisen. Continuations from generalized stack inspection. In Inter-
national Conference on Functional Programming, 2005.

5. Rife continuations. http://rifers.org/wiki/display/RIFECNT/Home.
6. Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Beyond

continuations. Technical Report 216, Indiana University, 1987.
7. Carl Bruggeman, Oscal Waddell, and R. Kent. Dybvig. Representing control in

the presence of one-shot continuations. In Conference on Programming Language
Design and Implementation. ACM SIGPLAN, 1996.

8. Christian Queinnec. A library of high-level control operators. Lisp Pointers, ACM
SIGPLAN Special Interest Publ. on Lisp, 6(4):11�26, 1993.

9. Tim Lindholm and Frank Yellin. The Java(TM) Virtual Machine Speci�cation
(2nd Edition). Prentice Hall PTR, April 1999.

10. R. Kelsey, W. Clinger, and J. Rees. Revised5 Report on the Algorithmic Language
Scheme, chapter 6.4. 1998.

11. Dorai Sitaram. Unwind-protect in portable scheme. In Scheme Workshop 2003,
November 2003.

12. Li Gong. Java 2 security architecture. 1998.
13. The ovm project. http://ovmj.org.
14. John H. Reppy. A high-performance garbage collector for Standard ML. Technical

report, Murray Hill, NJ, 1993.
15. David F. Bacon, Ravi B. Konuru, Chet Murthy, and Mauricio J. Serrano. Thin

locks: Featherweight synchronization for java. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 258�268, 1998.

16. William D. Clinger. Implementation strategies for �rst�class continuations.
Higher�Order and Symbolic Computation, 12:7�45, 1999.


