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Abstract— To solve complex navigation tasks, autonomous
agents such as rats or mobile robots often employ spatial
representations. These “maps” can be used for localisation
and navigation. We propose a model for spatial learning and
navigation based on reinforcement learning. The state space is
represented by a population of hippocampal place cells whereas a
large number of locomotor neurons in nucleus accumbens forms
the action space. Using overlapping receptive fields for both popu-
lations, state/action mappings rapidly generalise during learning.
The population vector allows a continuous interpretation of both
state and action spaces. An eligibility trace is used to propagate
reward information back in time. It enables the modification of
behaviours for recent states. We propose a biologically plausible
mechanism for this trace of events where spike timing dependent
plasticity triggers the storing of recent state/action pairs. These
pairs, however, are forgotten in the absence of a reward-related
signal such as dopamine. The model is validated on a simulated
robot platform.

I. INTRODUCTION

Animals show various behaviours when solving navigational
tasks. The selection of an appropriate strategy for a given task
depends on its complexity and on the available sensorial input.
A stimulus-response behaviour, for instance, is sufficient for a
rat to navigate to visibly marked food (taxon navigation [1]).
In tasks where the goal is hidden, however, a representation
of the environment is needed (locale navigation [2]).

The hippocampal formation of rats seems to contain a
spatial representation which is important for complex navi-
gation tasks. It receives highly processed multimodal sensory
information and is a likely neural basis for spatial coding [2]–
[4]. Hippocampal place cells (PCs) discharge selectively as a
function of the position of the rat in the environment. Lesion
studies show that the hippocampus is necessary for locale–but
not for taxon navigation [5].

Reinforcement learning (RL) [6] has previously been used
to solve navigation tasks for autonomous mobile agents [7]–
[10]. Some models operate in continuous state and/or action
spaces using function approximation [7], [10]–[12]. In most
RL-based models, an eligibility trace [6] is used to speed-up
learning artificially and no underlying biological mechanism
is proposed.

PCs as well as dopaminergic neurons project onto the
nucleus accumbens, an area which is related to motor control
[9], [13], [14]. The output of dopamine neurons has been
shown to code for errors in reward prediction. These errors
are closely related to reinforcement learning [15]–[18].

Here we describe a spatial learning system based on rein-
forcement learning. In particular, we focus on a mechanism

by which state – as well as action space become continuous.
Learning quickly generalises in both spaces. We also propose
a biologically plausible mechanism for eligibility traces which
allow rewarding events to generalise back in time.

II. MODEL

In our model, a spatial representation similar to [7] serves
as state space. It consists of a population of hippocampal place
cells (PCs) with highly overlapping receptive fields. Here we
focus on the use of this representation for navigation. PCs
project onto a population of action cells (ACs). A navigation
map is learnt using reinforcement learning and stored in
PC→AC synapses.

Reinforcement learning has been used for problems where a
small discrete set of actions is available to choose from at each
state. The number of states usually is discrete and finite. The
population vector of PCs, however, can be interpreted as the
continuous state variable which represents the agent’s location
~x ∈ R

2 in the environment. Similarly, the population vector of
ACs stands for a continuous action. Although the population
of ACs may be large, the learning speed is unaffected. The
model is tested on a simulated mobile agent. Fig. 1 shows the
architecture of the navigation system.
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Fig. 1. Architecture of our navigation system: A layer of hippocampal place
cells (PCs) represent the square environment. Each PC is active in a small
portion of the environment and their receptive fields overlap. In order to learn
to navigate to the goal, PCs are connected to action cells (ACs) which code
for the direction of the next move. The population vectors of both layers allow
a continuous interpretation of position (PCs) and direction of action (ACs).

The spatial representation is constructed in a separate ex-
ploration phase. The agent stores local views of each visited
location and establishes a purely visual spatial map. This
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visual place code projects to the PC layer shown in Fig. 1.
Additionally, an internal map using path integration also
converges onto PCs such as to reduce ambiguities in the visual
map. The result are nicely tuned place cells with overlapping
receptive fields. For details, see [7].

A. Action cells

A population of NAC action cells (ACs) code for the agent’s
motor-commands. Each AC i represents a particular direc-
tion φi, which are uniformly distributed between 0 and 2π.
The angle φAC of the AC population vector determines the
direction of the next movement. An action consists of moving
the agent in the desired direction for a fixed distance or until
a wall is blocking the way. With rAC

k being the firing rate of
action cell k, the population vector can be written as:

φAC = arctan

(∑

k rAC
k · sin(2πk/NAC)

∑

k rAC
k · cos(2πk/NAC)

)

The nucleus accumbens, situated in the ventral striatum,
seems to be involved in goal-oriented navigation. It receives
reward-related information from dopaminergic neurons of the
ventral tegmental area as well as spatial information from the
hippocampus. Its output is related to locomotion [9], [13], [14],
[18]. We therefore assume that the biological locus of our
modelled action cells may be the nucleus accumbens.

The activity of ACs can be divided in two phases which
are separated in time. In each phase, ACs code for a different
property:

Action-evaluation: First, ACs receive state information from
PCs and learn to attribute a value to each action. This
tells the agent which actions are good in the current
situation. The firing rate 1rAC

i represents the estimated
value Q(s, ai) for the current state s and action ai. In
contrast to most other models, we don’t use the max-
operator to determine the optimal action. Instead, we use
the direction of the AC population vector. It represents
the continuous action ao (direction φo) which maximises
the total future reward, given the current estimation of
Q-values.

1rAC
i =

∑

j

wij · r
PC
j

Generalisation: As soon as an action is selected, a Gaussian
AC activity profile with variance σ2

AC is enforced around
the selected action ax (direction φx). The firing rates
2rAC

i then represent the action which was selected for
execution. Biologically, this can be achieved using lateral
connections between action cells. It is this activity profile
which results in generalisation in action space. The width
of the profile has a fixed physical meaning (an angle) and
is independent of the number of ACs. If ∆φi stands for
the angular distance between φx and φi, the profile can
be expressed as:

2rAC
i = exp(−∆φ2

i /2σ
2

AC)

After learning, the AC population vector of the action-
evaluation phase points in the direction of the goal for all
locations in the environment and thus forms a navigational
map.

In addition to excitatory space-related input, the hippocam-
pus also receives rhythmic inhibitory input from the medial
septum. This theta-rhythm could provide a separation of
the two phases: First, low theta-activity would pass spatial
information from hippocampus to nucleus accumbens. Later,
when theta shuts-off place cell activity, lateral dynamics could
shape the activity profile on action cells.

B. Eligibility trace

Rats quickly learn to navigate to a rewarding location from
any place in the environment. If the reward is solely given
in the goal state, learning propagates only slowly backwards
to previously visited locations. Generalisation in state space,
as provided by the large overlap of hippocampal PCs, is one
improvement towards faster learning. It seems more natural,
however, to propagate information back in time such as to
optimise the behaviour in recent situations. An eligibility trace
serves exactly this purpose. It is a fading memory device which
stores past state/action pairs. In our model, the trace pij on
the synapse from PC j to AC i decays exponentially with α
in time. It is formally expressed as:

pij(t) = α · pij(t − 1) + 2rAC
i (t) · rPC

j (t)

In animals it is still unclear, however, how a reward can
influence learning in a synapse which was active in the past.
Sustained neuronal activity, as seen in in primate striatum, is
one possibility to implement a short term memory [19]. Other
candidates are based on intra-synaptic concentration of agents
related to plasticity which operate on a longer timescale than
electrical activity. Examples include calcium concentration
[20] or calmodulin-dependent protein kinase II [15], [21]. Yet
another possibility is that rewards enhance the storage of a
“replay”, instead of the original event.

We propose that eligibility traces are implemented us-
ing dopamine-modulated spike timing dependent plasticity
(STDP). Long term potentiation (LTP) on PC→AC synapses
is triggered by STDP for each state/action pair which was
tried during goal search [22]–[24]. We assume here that the
process of action-selection is quick, such that most of the
PC activity is paired with AC activity of the generalisation
phase (1rAC

i ), and not the action-evaluation phase (2rAC
i ).

However, LTP is modulated by a dopamine signal which codes
for the reward prediction error [15]–[18], [21], [25], [26]. A
decrease in dopamine due to punishment blocks LTP induction
whereas an unexpected reward increases dopamine release and
enhances LTP.

STDP triggers a complex chain of biochemical processes,
possibly at both pre-and postsynaptic sites. Two conditions
need to be fulfilled in order to make the synapse itself suitable
for an eligibility trace. First, the changes in concentration of
synaptic agents must be slow enough so that the memory



(a) Escape latency vs. number of trials: Escape latency is the number of
timesteps it takes the agent to find the goal. After about 10 trials, the task
has been learnt.

(b) Navigation map: At each sample location, the
line points in the direction of the optimal action.
The shaded area is the goal-location and the cross
marks the initial location of the last trial

Fig. 2. Results in a 80 × 80cm simulated robot environment

does not fade too quickly. Secondly, a reward signal such
as dopamine must be capable of changing the course of
plasticity after the induction of a change in synaptic strength.
However, it seems that dopamine needs to be present during
or even before [26], or at most hundreds of milliseconds
after induction [15] in order to modulate LTP. An alternative
explanation is that dopamine inhibits depotentiation after LTP
induction. Synapses are vulnerable to depotentiation after LTP
induction. Depotentiation has been found to occur when low-
frequency stimulation is applied after LTP induction. However,
if dopamine is present at the synapse, depotentiation is com-
pletely blocked [25]. This mechanism operates at a timescale
of seconds or even minutes after induction, which seems an
appropriate range for eligibility traces.

C. Learning algorithm

To build a navigation map, the synaptic strengths wij from
PCs j to ACs i need to be learnt. This section describes how
this is achieved.

At each timestep t, all action values Q(s(t), ai) are calcu-
lated. Next, a continuous action ax(t) is selected. Most of the
time, the optimal action ao(t) is chosen. In contrast to most
other models, we don’t use the max-operator to determine the
optimal action. Instead, we use the direction of AC population
vector of the action-evaluation phase 1φAC as the optimal
action. Sometimes, however, an ε-greedy mechanism selects
a non-optimal direction. This ensures sufficient exploration of
the action space [6]. Then, the AC activity profile 2rAC(t)
is enforced around the selected action and the eligibility
trace pij(t) updated. After taking action ax(t), the immediate

reward R(t+1) is inspected. Finally, the synaptic weights wij

are updated. The following list briefly illustrates these steps:

1) Calculate action values: Q(s(t), ai) = 1rAC
i (t).

2) Select action: ax(t) = ao(t) with probability 1 − ε (ex-
ploitation) or randomly select action with probability ε
(exploration).

3) Generalise in action space: Lateral connections impose
activity profile 2rAC

i (t) around the selected action ax(t).
4) Update eligibility trace pij(t).
5) Execute action ax(t) and advance time (t = t + 1).
6) Calculate reward prediction error:

δ(t) = R(t)+γ ·Q(s(t), ao(t))−Q(s(t−1), ax(t−1)).
Note that the PC and AC activities for the new location
have to be updated to calculate Q(s(t), ao(t)).

7) Update synaptic strengths (η is the learning rate):
∆wij(t) = η · δ(t) · pij(t − 1).

The reward prediction error δ(t) can be interpreted as the
output of dopaminergic neurons in the ventral tegmental area.
One problem which is not addressed here is how dopamin-
ergic neurons can process information coming from different
timesteps. We assume that dopamine neurons receive action
values via two separate pathways, one of which has a delay-
line [15].

As there is a discrete set of ACs coding for a continuous
direction φ ∈ [0..2π], action values need to be generalised.
For sake of simplicity, we use linear interpolation between the
Q-values of the two neighbouring ACs to calculate Q(s, ax)
and Q(s, ao).



III. RESULTS AND CONCLUSIONS

The model is tested with a simulated agent in a square
environment (80× 80cm). An ε-greedy policy with varying ε
is used to balance exploration vs. exploitation: In each trial,
the agent first tries to find the goal using its current knowledge
(exploitation, low ε). The probability for exploration increases
exponentially with the trial time, up to some fixed maximum.
The agent then mainly explores for a fixed period, before ε
is reset to its initial value and the cycle restarts. This ensures
that the agent uses its knowledge instantly at the beginning of
each trial, resorting to exploration only when the goal can’t
be found. Each time a wall is hit, a negative reward is given.
This results in an obstacle-avoidance behaviour. When the goal
is reached, a positive reward is given and the trial ends. The
agent is then put on a random location in the environment and
the next trial begins. Eligibility traces are cleared whenever a
direct reward is given.

Fig. 2(a) presents the mean number of timesteps to find the
goal vs. the number of learning trials. After about 10 trials,
the task is learnt. Fig. 2(b) shows the navigation map after
10 trials. At each sample location, the line points in the direc-
tion of the AC population vector. The shaded area represents
the goal. The agent has indeed learnt to navigate to the goal
from all locations in the environment.

By qualitative analysis, the navigation map and escape
latency are stable long before the Q-values have reached their
final values. Navigation maps after around 100 trials look
much the same than after 10 trials. Nevertheless, a systematic
study of the convergence properties in the case of overlapping
state and action values should be performed. Its dependence on
the policy might be very useful for designing optimal learning
strategies.

The problem of how time-constants of the order of seconds
are produced in the brain is still unsolved. For the eligibility
trace to be efficient, however, long time-constants are needed.
Most of the protocols to assess the influence of dopamine on
LTP neglect the importance of timing. However, it is crucial for
reinforcement learning systems that a reward can alter learning
after the induction of LTP.

Here we show that reinforcement learning in continuous
state and action spaces can be solved efficiently. The per-
formance of our learning mechanism does not depend on
the number of neurons because tuning-widths are attached
to physical units (positions for states and angles for actions).
Although we don’t model eligibility traces in detail, we show
how they could be implemented in the brain. We will explore
these models in future work.
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