
On the Correctness of Transactional Memory

Rachid Guerraoui Michał Kapałka
School of Computer and Communication Sciences, EPFL

{rachid.guerraoui, michal.kapalka}@epfl.ch

Abstract
Transactional memory (TM) is perceived as an appealing alterna-
tive to critical sections for general purpose concurrent program-
ming. Despite the large amount of recent work on TM implementa-
tions, however, very little effort has been devoted to precisely defin-
ing what guarantees these implementations should provide. A for-
mal description of such guarantees is necessary in order to check
the correctness of TM systems, as well as to establish TM optimal-
ity results and inherent trade-offs.

This paper presents opacity, a candidate correctness criterion
for TM implementations. We define opacity as a property of con-
current transaction histories and give its graph theoretical interpre-
tation. Opacity captures precisely the correctness requirements that
have been intuitively described by many TM designers. Most TM
systems we know of do ensure opacity.

At a very first approximation, opacity can be viewed as an
extension of the classical database serializability property with
the additional requirement that even non-committed transactions
are prevented from accessing inconsistent states. Capturing this
requirement precisely, in the context of general objects, and without
precluding pragmatic strategies that are often used by modern TM
implementations, such as versioning, invisible reads, lazy updates,
and open nesting, is not trivial.

As a use case of opacity, we prove the first lower bound on the
complexity of TM implementations. Basically, we show that every
single-version TM system that uses invisible reads and does not
abort non-conflicting transactions requires, in the worst case, Ω(k)
steps for an operation to terminate, where k is the total number
of objects shared by transactions. This (tight) bound precisely cap-
tures an inherent trade-off in the design of TM systems. The bound
also highlights a fundamental gap between systems in which trans-
actions can be fully isolated from the outside environment, e.g.,
databases or certain specialized transactional languages, and sys-
tems that lack such isolation capabilities, e.g., general TM frame-
works.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.4 [Software Engineering]:
Software/Program Verification; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems

General Terms Theory, Verification

Keywords Transactional memory, model, correctness, lower bound

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’08, February 20–23, 2008, Salt Lake City, Utah, USA.
Copyright c© 2008 ACM 978-1-59593-960-9/08/0002. . . $5.00

1. Introduction
Transactional memory (TM) [15, 28] is a programming paradigm in
which concurrent threads synchronize via in-memory transactions.
A transaction is an explicitly delimited sequence of operations
on shared objects. Transactions are atomic: programmers get the
illusion that every transaction is executed instantaneously, at some
single, unique point in time, and does not observe any concurrency
from other transactions. The changes performed by a transaction
on shared objects are immediately visible (to other transactions)
if the transaction commits, and are completely discarded if the
transaction aborts.

The TM paradigm has raised a lot of hope for mastering the
complexity of concurrent programming. The aim is to provide the
programmer with an abstraction, i.e., the transaction [8], that makes
concurrency as easy as with coarse-grained critical sections, while
exploiting the underlying multi-core architectures as well as hand-
crafted fine-grained locking, which is difficult and error-prone. It
is thus not surprising to see a large body of work directed at ex-
perimenting with various kinds of TM implementation strategies,
e.g. [15, 28, 14, 13, 18, 5, 19, 12, 29, 25]. What might be surprising
is the little formalization of the precise guarantees that TM imple-
mentations should provide. Without such formalization, it is impos-
sible to check the correctness of these implementations, establish
any optimality result, or determine whether TM design trade-offs
are indeed fundamental or simply artifacts of certain environments.

From a user’s perspective, a TM should provide the same se-
mantics as critical sections: transactions should appear as if they
were executed sequentially. However, a TM implementation would
be inefficient if it never allowed different transactions to run con-
currently. Reasoning about the correctness of a TM implementation
goes through defining a way to state precisely whether a given ex-
ecution in which a number of transactions execute steps in parallel
“looks like” an execution in which these transactions proceed one
after the other. The role of a correctness criterion in this context
is precisely to capture what the very notion of “looks like” really
means.

At first glance, it seems very likely that such a criterion would
correspond to one of the numerous ones defined in the literature,
e.g., linearizability [16], serializability [24, 2], rigorous schedul-
ing [4], etc. We argue, however, that none of these criteria, nor any
straightforward combination or extension thereof, is sufficient to
describe the semantics of TM with its subtleties. In particular, none
of them captures exactly the very requirement that every transac-
tion, including a live (i.e., not yet completed) one, accesses a con-
sistent state, i.e., a state produced by a sequence of previously com-
mitted transactions. While a live transaction that accesses an incon-
sistent state can be rendered harmless in database systems simply
by being aborted, such a transaction might create significant dan-
gers when executed within a general TM framework, as we illus-
trate later in this paper. It is thus not surprising that most TM im-
plementations employ mechanisms that disallow such situations,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147933011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sometimes at a big cost. At a very high level, disallowing transac-
tions to access inconsistent states resembles, in the database termi-
nology, preventing dirty reads or, more generally, the read skew
phenomenon [1], when generalized to all transactions (not only
committed ones as in [1]) and arbitrary objects.

In this paper, we present opacity, a correctness criterion aimed
at capturing the semantics of TM systems. The technical challenge
in specifying opacity is the ability to reason about states accessed
by live transactions, and to do so in a model (a) with arbitrary ob-
jects, beyond simple read/write variables, (b) possibly with multi-
ple versions of each object, and (c) without precluding various TM
strategies and optimization techniques, such as invisible reads, lazy
updates, caching, or open nesting.

Most transactional memory systems we know of ensure opac-
ity, including DSTM [14], ASTM [18], SXM [13], JVSTM [5],
TL2 [6], LSA-STM [25] and RSTM [19]. They do so by combin-
ing classical database concurrency and recovery control schemes
with additional validation strategies, which ensure that every re-
turn value of an operation executed by a transaction is consistent
with the return values of all previous operations of the very same
transaction. (This leads to aborting the transaction if there is any
risk of accessing an inconsistent state.) These strategies are usu-
ally implemented using the single-writer multiple-readers pattern,
with either explicit locks (e.g., TL2) or “virtual”, revocable ones
(e.g., obstruction-free TMs, such as DSTM, ASTM and SXM),
sometimes with a multi-versioning scheme (e.g., LSA-STM and
JVSTM) or specialized optimization strategies.

There are indeed TM implementations that do not ensure opac-
ity; these, however, explicitly trade safety guarantees, while recog-
nizing the resulting dangers, for improved performance. Examples
are: a version of SI-STM [26] and the TM described in [7]. We
believe that opacity can also be used as a reference point for ex-
pressing the semantics of such TM implementations and deriving
other, possibly weaker, correctness criteria. This would enable fair
comparison between TM algorithms and better recognition of their
safety-performance trade-offs.

Besides defining opacity, we also present its graph characteri-
zation. Basically, we show how to build a graph that visualizes de-
pendencies between transactions in a given execution, and how to
express opacity in terms of acyclicity of such a graph. This interpre-
tation helps proving correctness of TM implementations, highlight-
ing opacity of a given execution, or visualizing opacity violations.

As a use case for opacity, we establish the first complexity
bound for TM implementations. Roughly speaking, we prove that
TM implementations that ensure opacity while (1) using invisible
reads,1 (2) ensuring that no transaction is aborted unless it conflicts
with another live transaction, and (3) employing a single-version
scheme, require, in the worst case, Ω(k) steps for per-operation
validation, where k is the total number of objects shared by trans-
actions.

This lower bound is tight: DSTM and ASTM ensure opacity and
have the above three properties, and require, in the worst case, Θ(k)
steps to complete a single operation (or, in other words, Θ(k2) steps
to execute a transaction that accesses k objects). On the other hand,
TM implementations that use visible reads, e.g., SXM and RSTM,
or abort transactions more often, e.g., TL2, can have a constant
complexity.2

1 With invisible reads, no process knows about read operations issued by
transactions executed by other processes. Several TM implementations op-
timize their performance with invisible reads, e.g. DSTM, ASTM, and TL2.
2 For multi-version TM implementations, like LSA-STM or JVSTM, the
complexity is not constant. However, it can be bounded by a function
independent of k.

Indirectly, the lower bound also highlights a gap between
database transactions, or, more generally, systems that support full
isolation of transactional code from the outside environment, for
which serializability is sufficient, and memory transactions (in the
sense of most TM frameworks). Indeed, our bound does not hold
for serializability, even when considered in its strict form to account
for real-time order and combined with recoverability [11]. In this
sense, requiring opacity is a key to establish our lower bound and
hence capture the trade-off between implementations like DSTM
and ASTM on one hand, and implementations like SXM, RSTM
or TL2 on the other hand.

To summarize, this paper contributes to the study of transac-
tional memory systems: we present (a) a candidate correctness cri-
terion to measure the correctness of a TM implementation, together
with its graph characterization, and (b) the first lower bound on the
complexity of TM implementations.

The rest of the paper is organized as follows. We first give an
intuitive description of what is generally expected from a TM and
argue why a new correctness criterion is indeed necessary to cap-
ture this intuition. We then define our notion of opacity and describe
its graph characterization. Next, we establish our complexity lower
bound. We conclude by discussing complementary issues such as
how one can deal with mixing transactional and non-transactional
operations [3], encompass nested transactions [20, 22], or specify
progress properties [27].

Due to space limitations, we give here only an intuition behind
the lower bound result. A complete proof of the lower bound,
precise definitions of the terms used thereof, as well as a proof of
correctness of the graph characterization of opacity, can be found
in the full version of this paper [10].

2. Expectations
Nearly every paper about TM gives some intuition about what a
TM implementation should ensure. Clearly, committed transactions
should appear as if they executed instantaneously, at some unique
point in time, and aborted transactions, as if they did not execute at
all. Additionally, the following two guarantees (both provided by
critical sections) are considered (sometimes implicitly) as essential
aspects of TM semantics.

Preserving real-time order. It is generally required from a TM
that the point in time at which a transaction appears to occur lies
somewhere within the lifespan of the transaction. This means that
a transaction should not observe an outdated state of the system,
which can be the case if extensive caching of object states is used.
That is, if a transaction T1 modifies an object x and commits, and
then another transaction T2 starts and reads x, then T2 should read
the value written by T1 and not an older value. More generally,
if a transaction Ti commits before a transaction Tj starts, then Ti

should indeed appear as if it executed before Tj .
Violating real-time ordering may lead to counter-intuitive sit-

uations, as explained in [24], and mislead programmers typically
used to critical sections that naturally enforce real-time ordering.
Preserving real-time ordering is also particularly important when
transactions can read from (or write to) devices that are not con-
trolled by the TM, e.g., clocks or storage devices.

Precluding inconsistent views. A more subtle issue is related to
the state accessed by live transactions (i.e., transactions that did not
commit or abort yet). Because a live transaction can always be later
aborted, and its updates discarded, one might simply assume that
the remedy to a transaction that accesses an inconsistent state is to
abort it. This is the case for databases, in which transactions are ex-
ecuted in a fully controlled environment. However, memory trans-
actions are autonomous programs. As argued in [29], a transaction

that accesses an inconsistent state can cause various problems, even
if it is later aborted.

To illustrate this, consider two shared objects, x and y. A pro-
grammer may assume that y is always equal to x2, and x ≥ 2.
Clearly, the programmer will then take care that every transaction,
when executed as a whole, preserves the assumed invariants. As-
sume the initial value of x and y is 4 and 16, respectively, and let
T1 be a transaction that performs the following operations:

x := 2; y := 4; commit

Now, if another transaction T2 executes concurrently with T1 and
reads the old value of x (4) and the new value of y (also 4), the
following problems may occur, even if T2 is to be aborted later:
First, if T2 tries to compute the value of 1/(y − x), then a “divide
by zero” exception will be thrown, which can crash the process
executing the transaction or even the whole application. Second, if
T2 enters the following loop:

t := x
do array[t] := 0; t := t + 1
until t = y

then unexpected memory locations could be overwritten, not to
mention that the loop would need to span the entire value domain.3

Other examples [29] include situations where a transaction that
observes an inconsistent state performs direct (and unexpected) IO
operations, which are difficult to undo and thus usually forbidden
within transactions.

When programs are run in managed environments, these prob-
lems can be solved by carefully isolating transactions from the out-
side world (sandboxing), as in databases. However, it is commonly
argued that sandboxing is expensive and applicable only to specific
run-time environments [6].4

3. Why a New Correctness Criterion for TM?
Given the large body of literature on concurrency control, it seems a
priori very likely that the intuition behind TM semantics is already
captured by some existing consistency criterion. We argue below
that this is not the case.

3.1 Linearizability
Linearizability [16], a safety property devised to describe shared
objects, is sometimes used as a correctness criterion for TM. In
the TM terminology, linearizability means that, intuitively, every
transaction should appear as if it took place at some single, unique
point in time during its lifespan. Clearly, aborted transactions have
to be accounted for, e.g., through an extension of linearizability
described in [31].

Linearizability would be an appropriate correctness criterion for
TM if transactions were external to the application using them, i.e.,
if only the end result of a transaction counted. However, a TM
transaction is not a black box operation on some complex shared
object but an internal part of an application: the result of every op-
eration performed inside a transaction is important and accessible
to a user. As indicated in the original paper on linearizability [16],
serializability and its derivatives are more suitable a base to reason
about the correctness of transaction executions.

3 Note that this situation does not necessarily result in a “segmentation
fault” signal that is usually easy to catch. Basically, the loop may overwrite
memory locations of variables that belong to the application executing the
loop but are outside control of the TM implementation.
4 Sandboxing would for instance be difficult to achieve for applications
written in low-level languages (like C) and executed directly by an operating
system.

3.2 Serializability
Serializability [24] is one of the most commonly required prop-
erties of database transactions. Roughly speaking, a history H of
transactions (i.e., the sequence of operations performed by all trans-
actions in a given execution) is serializable if all committed trans-
actions in H issue the same operations and receive the same re-
sponses as in some sequential history S that consists only of the
transactions committed in H . (A sequential history is, intuitively,
one with no concurrency between transactions.)

Serializability, even considered in its strict form [24] to account
for real-time ordering, is not sufficient for modelling a TM for
various reasons: (a) it relies on the implicit assumption that a
read operation on a shared object x always returns the last value
previously written to x; (b) it is restricted only to read and write
operations, and (c) it does not say anything about the state accessed
by live (or aborted) transactions. As we discuss below, variants of
serializability tackle some of these issues but none of them, nor any
clear combination thereof, does the entire job.

3.3 1-Copy Serializability
Memory transactions may create local or shared copies of some
shared objects and use them temporarily for their operations. Thus,
a transaction Ti, when reading a shared object x, may be returned
one of the many versions of x that are globally or locally accessible
to Ti, not necessarily the most recent one.

1-copy serializability [2] is similar to serializability, but allows
for multiple versions of any shared object, while giving the user an
illusion that, at any given time, only one copy of each shared object
is accessible to transactions. Besides not requiring anything about
the state accessed by live transactions, a major limitation of 1-copy
serializability is the underlying model being restricted only to read
and write operations.

3.4 Global Atomicity
It is usually argued that providing shared objects with richer se-
mantics than simple read-write variables can decrease the proba-
bility of conflicts between transactions and thus increase through-
put [22, 23]. To illustrate this, consider several transactions concur-
rently increasing a counter x, without reading its value:

T1: T2: ... Tk:
x.inc() x.inc() x.inc()
commit commit commit

In a system that supports only read and write operations, each trans-
action has to first read x and then write a new value to x. Unfortu-
nately, among the transactions that read the same value from x, only
one can commit (otherwise, (1-copy) serializability is violated).
Clearly, when the system recognizes the semantics of the inc op-
eration, there is no reason why the transactions could not proceed
and commit concurrently. More generally, a TM implementation
may exploit the benefits of operations that are idempotent, commu-
tative, or write-only (see [22] for more elaborate examples).

Supporting arbitrary shared objects brings, however, additional
significant difficulties in reasoning about correctness. We can no
longer assume that each operation is either read-only or write-only,
and that each shared object is historyless, or even deterministic (in
the most general case). We need to consider a formal description
of the semantics of the implemented shared objects as an input
parameter to the TM correctness criterion, not as its integral part.
A further complication comes from the fact that certain operations
cannot be undone. Some TM implementations might allow such
operations to be executed by a transaction, e.g., by buffering them
until the transaction is guaranteed to commit and speculating on
return values. Thus, we cannot include roll-back operations in a
history to model aborted transactions.

T1

T2

T3

write(x, 1) commit

read(x)→ 1

write(x, 2) write(y, 2) commit

read(y)→ 2 abort

Figure 1. A history that satisfies global atomicity (with real-time ordering guarantees) and recoverability, but in which an aborted transaction
(T2) accesses an inconsistent state of the system (x and y are simple variables/objects that implement read and write operations)

Global atomicity [30] is a general form of serializability that ad-
dresses the above issue. It (a) is not restricted only to read-write ob-
jects, and (b) does not preclude several versions of the same shared
object. Nevertheless, global atomicity restricts only the execution
of committed transactions and does not require anything about the
state accessed by live (or aborted) transactions. Therefore, it needs
to be extended accordingly.

3.5 Recoverability
Recoverability [11] puts restrictions on the state accessed by ev-
ery transaction, including a live one. Intuitively, recoverability pre-
cludes certain undesirable effects, such as cascading aborts, which
may occur when a live transaction observes changes done by an-
other live transaction. In its strongest form, recoverability requires,
intuitively, that if a transaction Ti updates a shared object x, then
no other transaction can perform an operation on x until Ti com-
mits or aborts. It may seem at first that recoverability, combined
with global atomicity, and extended to account for real-time order-
ing of transactions, matches the TM requirements highlighted in
Section 2. Unfortunately, this is not the case, as illustrated by the
following example.

Consider a history H corresponding to the scenario depicted
in Figure 1. H satisfies global atomicity: transaction T2 aborts
and transactions T1 and T3 are sequential. Moreover, H satisfies
recoverability: T2 accesses x after T1 commits and before T3 starts,
whilst T2 accesses y after T3 commits. Nevertheless, T2 accesses
an inconsistent state: T2 could not have read x = 1 and y = 2 if
T2 was executed between T1 and T3, or after T3.

On the other hand, recoverability restricts TM implementations
too much in a general model with arbitrary shared objects. For in-
stance, consider the example from Section 3.4 in which many trans-
actions try to increment a shared counter. Recoverability does not
allow them to proceed concurrently, for each modifies the same
shared object. However, there is no reason why a TM implementa-
tion could not execute them in parallel: even if one of these trans-
actions aborts, it has no influence on the others (at least as long as
no transaction reads the value of the counter).

3.6 Rigorous Scheduling
At a high level, what seems to be required is a correctness crite-
rion precluding any two transactions from concurrently accessing
an object if one of them updates that object. Restricted to read-write
objects (registers), this resembles the notion of rigorous schedul-
ing [4] in database systems. As we argue through the following ex-
ample, however, this would be too strong and would preclude valid
TM implementations.

Consider the following situation in which several transactions
concurrently update overlapping sets of objects:

T1: T2: ... Tk:
x := 1 x := 2 x := k
y := 1 y := 2 y := k
z := 1 z := 2 z := k
commit commit commit

Rigorous scheduling requires that all but one of the transactions get
blocked or aborted. However, a user does not really care as long as
the end result is consistent (i.e., reading x, y and z always gives
x = y = z ∈ {1, . . . , k}). We can imagine a TM implementation
that executes the write operations in a “smart” way (e.g., making
sure that some transactions do not overwrite results of other ones)
and thus allows for more concurrency. Such an implementation
could be fine from a user’s perspective, and so should not be
considered incorrect.

3.7 Towards Extending Global Atomicity
In short, formalizing the TM semantics goes through finding a
way to extend global atomicity with the requirement that live (and
aborted) transactions always access consistent state, but without
limiting the generality of the model. This is not trivial, mostly for
the following two reasons. First, because we consider arbitrary ob-
jects’ operations, some of which cannot always be undone, we are
not able to model aborted transactions by simply inserting “virtual”
events that roll-back the changes done by these transactions.

Second, a user’s application commits a transaction by submit-
ting a commit request to a TM implementation and waiting for the
response. Thus, there is no single commit event, unlike in database
models: the transaction gets committed somewhere between the re-
quest and the response events. Even TM implementations do not
always commit transactions in a single step. While this looks like a
minor detail, it has important implications. Basically, a live trans-
action for which a commit request has been issued can appear as
committed or aborted depending on the context. Thus, expressing
the semantics of live transactions is a challenging problem.

4. Model of Transactional Memory
Before describing our new correctness criterion, we introduce here
a precise model of a TM as seen from a user’s perspective. The
formalism given here underlies our notion of opacity, but is general
enough to be a base for other, possibly weaker, correctness criteria
or alternative properties. In Section 6, we will extend the model
given here to include operations (e.g., hardware instructions) used
by software TM implementations.5

Our model is similar to the one in [30]. The main difference is
the way we treat the termination of transactions, which is crucial
in the TM context: We consider a pair of commit-try and commit
events instead of a single atomic commit step (cf. Section 3.7).
Besides, we define additional terms related to live transactions,
which are used for specifying opacity.

Transactions and shared objects. A TM allows for threads of an
application to communicate by executing transactions. A transac-
tion may perform operations on shared objects, as well as local
computations on objects inaccessible to other transactions. An op-
eration (on a shared object) may take some arguments and return
some value. We denote by Obj the set of objects shared by trans-
actions.

5 Software TM implementations provide TM semantics to a user’s applica-
tion in systems that do not support memory transactions in hardware.

Every shared object exports a certain set of operations. For
example, a register object (which is often used in the examples in
this paper) exports operations read and write. The read operation
takes no arguments (or an empty argument ⊥) and returns the
current state of the register. The write(v) operation sets the state of
the register to the value v given as an argument and always returns
ok. (Clearly, the domain of possible values of v will be restricted in
most cases.)

Every transaction has a unique identifier from a set Trans =
{T1, T2, . . .}. Every transaction is initially live and may eventually
become either committed or aborted, as explained in detail in the
following paragraphs. A transaction that is not live does no longer
perform any actions. Retrying an aborted transaction (i.e., the com-
putation the transaction intends to perform) is considered in our
model as a new transaction, with a different transaction identifier.

Transactional events. In order to execute an operation op on a
shared object ob, a transaction Ti (i.e., a transaction with iden-
tifier Ti) issues an operation invocation event invi(ob, op, args)
and expects a matching operation response event reti(ob, op, val),
where args are the arguments passed to the operation and val is
the value returned by the operation. A transaction is sequential, in
the sense that it does not invoke any operation until it receives a
response from the last operation it invoked. An operation invoca-
tion event and an operation response event match if they are issued
by/for the same transaction and refer to the same shared object and
operation.

A transaction Ti might also issue two special events: a commit-
try event tryCi or an abort-try event tryAi. After issuing tryCi or
tryAi, transaction Ti waits for a commit event Ci or an abort event
Ai. Intuitively, tryCi expresses the will of transaction Ti to commit.
In response, the transaction can get either committed (event Ci)
or aborted (event Ai). An event tryAi indicates that transaction Ti

wants to be aborted and always results in an abort event Ai for Ti.6

A commit-try/abort-try event and a commit/abort event match if
they are issued by/for the same transaction.

An abort event might also be received by a transaction instead of
an operation response event. This usually happens if the TM knows
that the transaction will not be able to commit later (because of
conflicts with other transactions), or if the TM cannot return an
operation response event with no risk of violating opacity.

We divide events into two categories. Operation invocation,
commit-try and abort-try events are called invocation events. Op-
eration response, commit and abort events are called response
events. Invocation events are initiated by transactions, and response
events—by a TM. As every transaction is an integral part of an ap-
plication, and is fully controlled by its application thread, a TM
does not know in advance which invocation events will be issued
by a transaction. That is, the TM does not know which operations
on which shared objects a transaction will perform, and whether
the transaction will request to be committed (commit-try event) or
aborted (abort-try event).

An operation execution is a pair of an operation invocation event
and a matching operation response event. That is, an operation ex-
ecution execi(ob, op, args, val) is a sequence 〈invi(ob, op, args),
reti(ob, op, val)〉.7 When there is no ambiguity, we will say opera-
tion and operation execution interchangeably.

When considering register objects, we use the following sim-
plified notation. We denote by readi(r, v) a read operation ex-
ecution on register r, by transaction Ti, returning value v, and

6 We could alternatively let a transaction issue an abort event directly, but
then it would be difficult to distinguish the case in which a transaction aborts
itself voluntarily from the case in which the transaction is aborted by the TM
implementation (e.g., upon an unresolvable conflict).
7 We denote by 〈e1, . . . , ek〉 the sequence of events e1, . . . , ek .

by writei(r, v) a write operation execution on register r, by Ti,
with value v given as an argument. More formally, readi(r, v) =
execi(r, read,⊥, v), and writei(r, v) = execi(r, write, v, ok).

Transaction histories. A (high-level) history is the sequence of
all invocation and response events that were issued and received
by transactions in a given execution.8 Thus, we assume that all
events of an execution can be totally ordered according to the time
at which they were issued. Simultaneous events (e.g., on multi-
processor systems) can be ordered arbitrarily.

We use the following notations. Consider any history H:

• H|Ti denotes the longest subsequence of history H that con-
tains only events executed by transaction Ti,
• H|ob denotes the longest subsequence of history H that con-

tains only operation invocation events and operation response
events on shared object ob, and
• H ·H ′ denotes the concatenation of histories H and H ′.

We say that a transaction Ti is in history H , and write Ti ∈ H ,
if H|Ti is a non-empty sequence, i.e., if there is at least one event
of Ti in H .

We assume that every history H is well-formed. Intuitively, this
means that the sequence of events at each individual transaction Ti

(i.e., the history H|Ti) is of the form: an invocation event, a match-
ing response event, an invocation event, and so on, where (1) no
event follows a commit or abort event, (2) only a commit or abort
event can follow a commit-try event, and (3) only an abort event
can follow an abort-try event. More formally, for every transaction
Ti ∈ Trans, history H|Ti is a prefix of a sequence O · F , where O
is a sequence of operation executions issued by transaction Ti, and
F is one of the following sequences: (1) 〈invi(ob, op, args), Ai〉
(for some shared object ob, an operation op of ob, and arguments
args of op), (2) 〈tryAi, Ai〉, (3) 〈tryCi, Ci〉, or (4) 〈tryCi, Ai〉.

Intuitively, we consider two histories to be equivalent, if they
contain the same transactions, and every transaction issues the
same invocation events and receives the same response events in
both histories. Thus, equivalent histories differ only in the relative
position of events of different transactions. More precisely, we say
that histories H and H ′ are equivalent, and write H ≡ H ′, if, for
every transaction Ti ∈ Trans, H|Ti = H ′|Ti.

We say that an invocation event e issued by a transaction Ti is
pending in a history H , if there is no response event matching e
and following e in history H|Ti.

For example, the following (well-formed) history H1 corre-
sponds to the execution depicted in Figure 1:

H1 = 〈write1(x, 1), tryC1, C1, read2(x, 1),
write3(x, 2), write3(y, 2), tryC3, C3,
read2(y, 2), tryC2, A2〉.

Clearly, there is no pending invocation event in H1. The following
history H2 is one of the histories that are equivalent to H1:

H2 = 〈write1(x, 1), tryC1, C1,
write3(x, 2), write3(y, 2), tryC3, C3,
read2(x, 1), read2(y, 2), tryC2, A2〉.

Status of transactions. If the last event of a transaction Ti in
a history H is Ci or Ai, then we say that Ti is, respectively,
committed or aborted in H . A transaction that is committed or
aborted is completed. A transaction that is not completed is called
live. An aborted transaction that did not issue an abort-try event is
said to be forcefully aborted. A live transaction that has issued a
commit-try event is said to be commit-pending.

8 Note that a history includes only transactional events, i.e., the events
described in the previous paragraphs of this section.

For example, in history H1 described before, all transactions
are completed. Transactions T1 and T3 are committed in H1, while
transaction T2 is forcefully aborted in H1.

Real-time order of transactions. There is a clear happen-before
relation between a completed transaction Ti and every transaction
that issues its first event after Ti becomes committed or aborted
(in a given history H). This happen-before relation in a history H ,
which we denote by≺H , defines what we call the real-time order of
transactions in H . More precisely, for every history H , relation≺H

is the partial order on the transactions in H , such that, for any two
transactions Ti, Tj ∈ H , if Ti is completed and the first event of
Tj follows the last event of Ti in H , then Ti ≺H Tj .

We say that transactions Ti, Tj ∈ H are concurrent in history
H if they are not ordered by the happen-before relation ≺H , i.e., if
Ti 6≺H Tj and Tj 6≺H Ti.

We say that a history H ′ preserves the real-time order of a
history H , if ≺H ⊆≺H′ . That is, if Ti ≺H Tj , then Ti ≺H′ Tj ,
for any two transactions Ti and Tj in H .

For example, consider history H1 described before. In H1,
transactions T2 and T3 are concurrent, T1 ≺H1 T2, and T1 ≺H1

T3. Any history H for which T1 ≺H T2 and T1 ≺H T3 (e.g.,
history H2) preserves the real time order of H1.

Sequential histories. A (well-formed) history H is sequential if
no two transactions in H are concurrent. Sequential histories are of
special interest, because their correctness is trivial to verify, given
a precise semantics of the shared objects and their operations.

For example, history H2 introduced before is sequential. On the
contrary, history H1 (equivalent to H2) is not sequential, because
transactions T2 and T3 are concurrent in H1.

Complete histories. We say that a history H is complete if H
does not contain any live transaction. For example, histories H1

and H2 used in the previous examples are both complete.
If a history H is not complete, then we can transform it to a

complete history H ′ by aborting or committing the live transac-
tions in H . More specifically, for every history H we define a set
of (well-formed) histories Complete(H). Intuitively, every history
H ′ in Complete(H) is obtained from history H by committing or
aborting every commit-pending transaction in H , and aborting ev-
ery other live transaction in H . More precisely, a history H ′ is in
Complete(H), if (1) H ′ is well-formed, (2) H ′ is obtained from H
by inserting a number of commit-try, commit and abort events for
transactions that are live in H , (3) every transaction that is live and
not commit-pending in H is aborted in H ′, and (4) every transac-
tion that is commit-pending in H is either committed or aborted
in H ′. Clearly, every history in a set Complete(H) is complete.

For example, consider the following history H3:

H3 = 〈write1(x, 1), tryC1, read2(x, 1)〉.
Then, in each history in set Complete(H3): (1) transaction T1

is either committed or aborted, and (2) transaction T2 is (force-
fully) aborted. The following histories are some of the elements of
Complete(H3):

H ′
3 = 〈write1(x, 1), tryC1, C2, read2(x, 1), tryC2, A2〉,

H ′′
3 = 〈write1(x, 1), tryC1, read2(x, 1), tryC2, A2, C1〉.

Sequential specification of a shared object. We use the concept
of a sequential specification to describe the semantics of shared
objects, as in [30, 16]. Intuitively, a sequential specification of a
shared object ob lists all sequences of operation executions on ob
that are considered correct when executed outside any transactional
context, e.g., in a standard, single-threaded application.9 For exam-

9 An operation execution specifies a transaction identifier, but the identifier
can be treated as a part of the arguments of the executed operation. In fact, in

ple, the sequential specification of a register x, denoted by Seq(x),
is the set of all sequences of read and write operation executions
on x, such that in each sequence that belongs to Seq(x), every read
(operation execution) returns the value given as an argument to the
latest preceding write (regardless transaction identifiers). (In fact,
Seq(x) also contains sequences that end with a pending invocation
of read or write, but this is a minor detail.) Such a set defines pre-
cisely the semantics of a read-write register in a single-threaded,
non-transactional system.

More formally, let an object-local history of a shared object ob
be any prefix S of a sequence of operation executions, such that
S|ob = S. Then, a sequential specification Seq(ob) of a shared
object ob may be any prefix-closed set of object-local histories of
that object. (A set Q of sequences is prefix-closed if, whenever a
sequence S is in Q, every prefix of S is also in Q.)

Legal histories and transactions. Let S be any sequential his-
tory, such that every transaction in S, except possibly the last one,
is committed. Intuitively, we will say that S is legal if S respects
the sequential specifications of all the shared objects, operations
on which are performed in S. Note that the meaning of the word
“respects” is clear here, because in S no two transactions are con-
current and no transaction comes after a live or aborted transaction.
More formally, a sequential history S is legal if, for every shared
object ob ∈ Obj , subsequence S|ob is in set Seq(ob).

Let S be any complete sequential history. In general, for such
a history the definition of a legal history does not necessarily ap-
ply, because there may be many aborted transactions in S. Thus,
we will instead consider each transaction Ti in S separately (Ti be-
ing committed or aborted), together with all the committed trans-
actions preceding Ti in S, and determine legality of so-constructed
sequential history. More precisely, we say that a transaction Ti ∈ S
is legal in S, if the largest subsequence S′ of S, such that, for every
transaction Tk ∈ S′, either (1) k = i, or (2) Tk is committed and
Tk ≺S Ti, history S′ is legal.

5. Opacity
Opacity is a safety property that captures the intuitive requirements
that (1) all operations performed by every committed transaction
appear as if they happened at some single, indivisible point dur-
ing the transaction lifetime, (2) no operation performed by any
aborted transaction is ever visible to other transactions (including
live ones), and (3) every transaction always observes a consistent
state of the system.

5.1 Intuition
The first requirement above is captured by the classical notion of
global atomicity [30]. This notion stipulates that after removing all
non-committed transactions from any history H , the resulting his-
tory H ′ is equivalent to some sequential history S that respects the
sequential specification of every shared object (i.e., is legal). Addi-
tionally, we also require that S preserves the real-time ordering of
transactions in H ′.

Global atomicity (even if combined with recoverability), how-
ever, does not guarantee the other two requirements, as explained in
Section 3. Intuitively, when a transaction Ti accesses some shared
object, Ti should observe the changes done to the shared object
by all transactions that committed before Ti started, but should not
see any modifications done by transactions that are still live (and
not commit-pending) or aborted. Moreover, no transaction should
observe the changes done by Ti until Ti commits, i.e., until some
unique point in time, between commit-try and commit events of

most cases, the semantics of an operation does not depend on the transaction
that issues this operation.

T1

T2

T3

read(x)→ 1 write(x, 5) read(y)→ 2 abort

write(x, 1) write(y, 2) commit

write(y, 3) read(x)→ 1 commit

Figure 2. An opaque history H5

Ti, at which all the changes done by Ti become instantaneously
visible.

To see how we capture the second and third requirement, con-
sider complete histories only. The key idea is to check, for every
such history H , that every (aborted or committed) transaction Tk

in H observes a state of the system produced by a sequence of all
committed transactions preceding Tk, and some committed trans-
actions concurrent with Tk. More precisely, we require that there
exists a sequential history S, such that (1) S is equivalent to H ,
(2) S preserves the real-time order of H , and (3) every transac-
tion in S is legal in S. The requirement (3) means that, for every
transaction Tk in S, the longest subsequence of S made of (1) all
committed transactions preceding Tk in S, and (2) transaction Tk

itself, is a legal history, i.e., a history that respects the semantics
of all operations on shared objects. In a sense, S corresponds to
the (total) order in which transactions appeared to happen (instan-
taneously) in history H . As we already mentioned, legality is trivial
to determine for complete sequential histories, in which no trans-
action (except possibly the last one) is aborted, given the semantics
(i.e., the sequential specifications) of all shared objects accessed by
transactions in S.

As for an incomplete history H , we transform it into a complete
history H ′ by committing or aborting every live transaction in H .
A transaction that is live and not commit-pending in H can only
be aborted in H ′: before a transaction Tk invokes a commit-try
event, the semantics of Tk is the same as of an aborted transaction,
i.e, no changes made by Tk to shared objects should be visible
to other transactions. A transaction that is commit-pending in H
can be either aborted or committed in H ′: all the changes made
by a transaction to shared objects become visible at some single
unique point in time between commit-try and commit events of the
transaction.

5.2 Definition
DEFINITION 1. A history H is opaque if there exists a sequential
history S equivalent to some history in set Complete(H), such that
(1) S preserves the real-time order of H , and (2) every transaction
Ti ∈ S is legal in S.

Two points of the definition contain subtleties that need further
explanation. Firstly, the step of transforming a given history H into
a complete history results in a set of histories Complete(H). The
reason why this set may contain many elements is the dual seman-
tic of commit-pending transactions that may be considered as either
committed or aborted. Basically, the exact point in time at which a
commit-pending transaction Ti begins to appear as committed to
other transactions is not visible to a user, and thus not expressed
as an event in a history. While in many TM implementations there
is a single instruction at which a commit-pending transaction com-
mits, the safety guarantees that a TM provides to a user should be
expressed only with the events that the user can observe. Thus, in
a sense, a TM should be treated as a black box the properties of
which are defined using its external interface.

There is, however, a subtlety in the way we treat commit-
pending transactions. Basically, if a transaction is commit-pending,
its changes to shared objects may be already visible to some trans-

actions and, at the same time, not yet visible to other ones. For
example, consider the following history H4 (x and y are registers
with initial value of 0):

H4 = 〈read1(x, 0), write2(x, 5), write2(y, 5), tryC2,
read3(y, 5), read1(y, 0)〉.

In H4, transaction T1 appears to happen before T2, because T1

reads the initial values of registers x and y that are modified by T2.
Transaction T3, on the other hand, appears to happen after T2,
because it reads the value of y written by T2. Because the three
transactions in H4 are pairwise concurrent, sequential history S =
H4|T1 · 〈tryC1, A1〉 ·H4|T2 · 〈C2〉 ·H4|T3 · 〈tryC3, A3〉, equivalent
to some history in Complete(H4), trivially preserves the real-time
order of H4. Because every transaction is legal in S, history H4

is opaque. However, at first, it may seem wrong that the read
operation of transaction T3 returns the value written to y by the
commit-pending transaction T2 while the following read operation,
by transaction T1, returns the old value of y. But if T1 read value 5
from y, then opacity would be violated, because T1 would observe
an inconsistent state of the system (x = 0 and y = 5). Thus,
letting T1 read 0 from y is the only way to prevent T1 from being
forcefully aborted without violating opacity. Multi-version TMs,
like JVSTM and LSA-STM, indeed use such optimizations to allow
long read-only transactions to commit despite concurrent updates
performed by other transactions. In general, it seems that forcing
the order between operation executions of different transactions
to be preserved, in addition to the real-time order of transactions
themselves, would be too strong a requirement.

The second subtlety in the definition of opacity is the fact that it
does not require every prefix of an opaque history to be also opaque.
Thus, the set of all opaque histories is not prefix-closed. However,
a history of a TM is generated progressively and at each time the
history of all events issued so far must be opaque. Hence, there is no
need to enforce prefix-closeness in the definition of opacity, which
should be as simple as possible.

5.3 Example
To illustrate our definition, consider the following history H5, of
three transactions accessing two registers (x and y), corresponding
to the execution depicted in Figure 2:

H5 = 〈write2(x, 1), write2(y, 2), tryC2,
inv1(x, read,⊥),
C2,
inv3(y, write, 3),
ret1(x, read, 1), inv1(x, write, 5),
ret3(y, write, ok),
ret1(x, write, ok), inv1(y, read,⊥),
inv3(x, read,⊥),
ret1(y, read, 2), tryC1,
ret3(x, read, 1), tryC3,
A1,
C3〉.

Clearly, Complete(H5) = {H5} and ≺H5 = {(T2, T3)}: there
is no live transaction in H5 and T1 is concurrent with T2 and T3

in H5. Therefore, we can find three sequential histories that are
equivalent to H5 and preserve the relation ≺H5 (thus satisfying
real-time order). However, T1 reads from x the value that has been
written by committed transaction T2. Thus, a sequential history in
which T1 precedes T2 is not legal. Similarly, T3 cannot precede T1:
T1 reads from y the value written by T2 and not the value written
by the committed transaction T3. Consider the following sequen-
tial history S = H5|T2 · H5|T1 · H5|T3. Clearly, S is equivalent
to H5 and preserves the real-time order of H5. Furthermore, ev-
ery transaction is legal in S, because sequential histories H5|T2,
H5|T2 ·H5|T1, and H5|T2 ·H5|T3 are legal. Therefore, history H5

is opaque.
However, complete history H1 depicted in Figure 1 is not

opaque for the following reason. Consider any sequential history S
equivalent to H1 ∈ Complete(H1) = {H1}. Because T1 ≺H1 T2

and T1 ≺H1 T3, history S may only be one of the following:
(1) H1|T1 ·H1|T2 ·H1|T3, or (2) H1|T1 ·H1|T3 ·H1|T2. However,
in both cases transaction T2 is not legal in S. That is because: (1) in
the first case, the second read of T2 returns 2 instead of 0 (assuming
the initial value of y is 0), and (2) in the second case, the first read
of T2 returns 1 instead of 2 (the value written by T3).

5.4 Graph Characterization
Representing transactions as graph nodes and the causal relation
between them as edges helps visualize a given history. Expressing
opacity in terms of the acyclicity of such a graph, on the other hand,
makes it easier to prove that the corresponding history is, or is not,
opaque (we use this in proving our complexity lower bound). In this
section, we present a framework, inspired by the works on 1-copy
serializability [2], that allows for such a graph-based interpretation
of opacity.

We focus here on histories in which every shared object used
by a transaction is a read-write register. To simplify the discussion
(but without loss in generality), we assume that (1) no two write
operations write the same value to the same object (say, some local
timestamp and a unique writer’s id is added to the value), and
(2) each history starts with an initializing, committed transaction
T0 that writes some values to every register.

Let H be a history and Ti be a transaction in H . A read
operation (execution) readi(r, v) ∈ H|Ti is local if it is pre-
ceded in H|Ti by a write operation writei(r, v

′). A write opera-
tion writei(r, v) is local if it is followed in H|Ti by a write oper-
ation writei(r, v

′). A history H ′ is the non-local subhistory of H ,
denoted nonlocal(H), if H ′ is the longest subsequence of H that
does not contain any local operation execution.

We say that Ti reads (value v from) register r in H , if H|Ti

contains readi(r, v). We say that Ti writes (value v to) register r
in H , if H|Ti contains invi(r, write, v). We say that a transaction
Tk reads (register r) from transaction Ti, if Ti writes a value v to r
and Tk reads value v from r.

A history H is locally-consistent if, for every transaction Ti

and every local operation readi(r, v) ∈ H|Ti, the latest write
operation in (H|Ti)|r that precedes readi(r, v) is writei(r, v). A
history H is consistent if (1) H is locally-consistent, and (2) for
every transaction Ti ∈ H , if Ti reads value v from register r in
history nonlocal(H), then some transaction Tk writes value v to r
in nonlocal(H).

Let H be a history, �—a total order on the set of transac-
tions in H , and V —a subset of the set of commit-pending trans-
actions in H . We call an opacity graph OPG(H,�, V) a directed,
labeled graph constructed as follows. Every transaction Ti in H
corresponds to a vertex in OPG(H,�, V), and the vertex is la-
belled Lvis if Ti is in set V or is committed, or Lloc otherwise. For
every two transactions Ti, Tk ∈ H , there is an edge (Ti, Tk) in
OPG(H,�, V) in any of the following cases:

1. If Ti ≺H Tk; then the edge is labelled Lrt;

2. If Tk reads from Ti; then the edge is labelled Lrf ;

3. If Ti � Tk and Ti reads some register r that is written by Tk;
then the edge is labelled Lrw;

4. If Ti ∈ V or Ti is committed, and there exists a transaction Tm

and a register r, such that Ti � Tm, Ti writes to r, and Tm

reads r from Tk; then the edge is labelled Lww.

We say that opacity graph OPG(H,�, V) is well-formed if the
following condition is satisfied: if Ti is a vertex of OPG(H,�, V)
labeled Lloc, then there is no edge (Ti, Tk) labelled Lrf , for any
vertex Tk of OPG(H,�, V).

The following theorem, proved in the extended version of this
paper [10], establishes a formal relationship between the opacity of
a given history H and the properties of the opacity graph of H .

THEOREM 2. A history H is opaque if, and only if, (1) H is consis-
tent, and (2) there exists a total order� on the set of transactions in
H and a subset V of the set of commit-pending transactions in H ,
such that OPG(nonlocal(H),�, V) is well-formed and acyclic.

6. A Complexity Lower Bound
A crucial choice in a TM implementation is that of visible vs.
invisible read strategy [19]. To illustrate this, consider a situation
in which a transaction Ti invokes a read-only operation op on
a shared object ob. The TM implementation that executes Ti, at
some process pk, and receives the invocation event of op, must
somehow get the current state of ob, apply op locally and return the
resulting value to Ti. Additionally, pk may also write somewhere in
base (hardware) shared objects the information that Ti is currently
accessing ob, in which case the operation op becomes visible
to other processes. If pk never modifies any base shared object
when processing op, then the operation is always invisible to other
processes.

A practical advantage of invisible reads is that pk, while exe-
cuting op, does not invalidate any processor cache lines. For read-
dominated applications, the traffic on the bus between processors
is thus greatly reduced, and so the overall throughput of operations
is potentially larger. The problem, however, is that while Ti reads
some shared objects, other transactions may at any time modify
these objects, because read-only operations of Ti are visible only
to pk. An additional cost of per-operation validation might thus be
required to guarantee that Ti always observes a consistent state.10

We make use of opacity to precisely determine when invisi-
ble reads indeed induce a high operation complexity. Basically, we
prove a lower bound of Ω(k) (where k = |Obj |) on the worst-
case operation complexity for every TM implementation that uses
invisible reads, (1) is single-version, and (2) does never abort a
transaction unless it conflicts with some other live transaction. If
any of the two conditions is not required, or if we allow visible
reads, one can devise a TM implementation with operation com-
plexity not bounded by Ω(k). That is, the lower bound does not
hold for TMs that use visible reads (e.g., RSTM), are multi-version
(e.g., JVSTM), or provide strictly weaker progress guarantees (e.g.,
TL2).

Opacity is crucial here. One can devise an algorithm that en-
sures a combination of global atomicity (with real-time ordering)
and strict recoverability instead of opacity, uses invisible reads and
satisfies properties (1) and (2) above, and that has constant op-
eration complexity (e.g., such algorithm is given in the extended
version of this paper [10]). In this sense, our bound highlights

10 The problem of visible vs. invisible reads is similar to the “readers must
write” issue in register implementations [17].

the complexity gap between systems that support full isolation of
transactional code from the outside environment, e.g., databases or
virtual machines for languages that can provide “sandboxing” of
code blocks, and those that do not. The former systems can ren-
der aborted transactions completely harmless and so a correctness
criterion weaker than opacity can be used.

Before giving the outline of the proof, we define certain ele-
ments that underly the very notion of a TM implementation, and
give an intuition behind the properties used in the proof. (For de-
tails of the proof, as well as precise definitions of the elements in-
troduced here, refer to [10].)

6.1 TM Implementations
A TM implementation is an algorithm that interprets the events is-
sued by transactions and generates matching responses. The algo-
rithm is executed by a number of processes that communicate by
issuing instructions on base shared objects. In a single step, a pro-
cess issues a single instruction on a single base shared object. We
consider that each transaction is executed by a single process, and
that each process executes transactions sequentially.

Roughly speaking, we also assume that every TM implemen-
tation satisfies the following conditions: it does not require infor-
mation about more than a constant number of shared objects to be
retrieved from a single base shared object (i.e., in a single step), and
it does not force a process to execute steps of the TM algorithm if
this process does not have any pending invocation event (i.e., it does
not use any specific background services). All TM implementations
we know of satisfy these properties.

Intuitively, we say that a TM implementation I:

1. Is progressive if I forcefully aborts a transaction Ti only when
there is a time t at which Ti conflicts with another, concurrent
transaction Tk that is not committed or aborted by time t (i.e.,
Tk is live at t);11 we say that two transactions conflict if they
access some common shared object.12

2. Is single-version if I stores only the latest committed state of
any given shared object in base shared objects (as opposed to
multi-version TM implementations, e.g., [5, 25]).

3. Uses invisible reads if no base shared object is modified when a
transaction performs a read-only operation on a shared object.

6.2 Complexity Result
Roughly speaking, the time complexity of a given TM implemen-
tation is the maximum possible number of steps that a process may
execute while processing a single operation issued by a transac-
tion, i.e., from the operation invocation event until the matching
response event. We prove the following result.

THEOREM 3. Every progressive, single-version TM implementa-
tion that ensures opacity and uses invisible reads has the time com-
plexity of Ω(k), where k = |Obj |.

Proof. (Intuition; the full proof is in [10]) Consider any progres-
sive, single-version TM implementation that ensures opacity and
uses invisible reads. Consider the following scenario: two transac-
tions, T1 and T2, executed by two different processes, p1 and p2,
respectively, are accessing only read/write objects. Transaction T1

reads some Θ(k) objects. Then, T2 writes some Θ(k) objects and
commits. Now, if T1 invokes a read operation on an object r that
has been modified by T2 (and that has not been read by T1 so far),
then T1 will be returned the value written to r by T2 (because the

11 The property resembles the concept of C-respecting in [27].
12 For simplicity, we do not distinguish between read-only and update
accesses here.

TM implementation is single-version). However, p1 needs to deter-
mine whether any other object read by T1 has been updated by T2.
If yes, T1 has to be aborted (instead of returning from the read oper-
ation): otherwise opacity would be violated. Indeed, then T1 would
read some values before T2 overwrote them with different ones,
and some values written by T2. If no, p1 has to let T1 eventually
commit; this is because the TM implementation is progressive (and
we assume that T1 does not invoke tryA1).

The key point is that because the TM implementation uses
invisible reads, p2 does not know which objects were read by T1.
Thus, p2 cannot help p1 detect a situation in which T2 has updated
an object that has just been read by T1 before. Now, because only
constant-size information can be obtained by p1 in each step, p1

needs to execute Ω(k) steps to be sure whether it has to abort T1

immediately or let T1 commit. �
Even from the intuition of the proof, it should be clear that all

the properties we require, i.e., invisible reads, progressiveness, and
the single-version scheme, as well as the assumptions we make,
are necessary for the lower bound to hold. This is confirmed by the
already mentioned counterexample TM implementations that have
the time complexity either constant or at least independent of k
(e.g., RSTM, JVSTM, TL2, etc.).

The lower bound is tight because DSTM and ASTM are pro-
gressive and single-version, ensure opacity and use invisible reads,
and have the time complexity of Θ(k) (with most contention man-
agers). It is worth noting that TL2 has a constant time complex-
ity, although it ensures opacity, uses invisible reads, and is single-
version. That is because TL2 is not progressive: it may forcefully
abort a transaction Ti that conflicts with a concurrent transaction
Tk, even if Ti invokes a conflicting operation after Tk commits.

7. Concluding Remarks
This paper presents opacity: a correctness criterion for TM sys-
tems. Opacity constitutes a first step towards a theory of transac-
tional memory. Such a theory is badly missing to reason about the
correctness of TM algorithms and establish underlying optimality
results and inherent trade-offs, as well as serve as a reference point
for weaker models that would be more efficient to implement (cf.
serializability vs. lower isolation levels in databases). Many related
issues were, however, not addressed in this paper.

In particular, we considered a concurrency scheme where all
accesses to shared objects are performed within transactions, and
we focused on a flat transaction model.

It is often argued that, in practice, transactions might be mixed
with non-transactional code [3], especially when coping with
legacy components. A model where transactions would observe
concurrent updates made by non-transactional code, and where
changes made by live transactions would be visible to operations
outside transactions is, clearly, imprecise. It is preferable to require
that every non-transactional operation has the semantics of a sin-
gle transaction. This preserves the illusion that transactions appear
as if they were executed instantaneously and disallows race con-
ditions between transactional and non-transactional code. We can
encompass such a model in our context by encapsulating every non-
transactional operation into a committed transaction.13 Clearly, an
actual transactional memory implementation may take advantage
of the fact that such a transaction contains only a single operation
and can thus be executed more efficiently (e.g., without logging
changes).

The model within which we express the notion of opacity can
also be extended to account for nested transactions (with either

13 The ability to integrate transactional and non-transactional code would
thus be expressed in our context in the form of a progress property stipulat-
ing that such single operation transactions are never forcefully aborted.

closed [21] or open [22] nesting semantics). Basically, we can
treat events of each committed nested transaction as if they were
executed directly by the parent transaction. Aborted and live nested
transactions can be accounted for in a similar way as we deal with
aborted and live (flat) transactions in the definition of opacity. The
main difference here is that a nested transaction should observe
the changes done by its parent transaction. We can capture this by
always considering operations of a nested transaction together with
all the preceding operations of its parent transaction.

Finally, it is also worthwhile noticing that opacity, by itself, does
not say when transactions should commit. Our work is in this sense
complementary to [9, 27] which define progress properties and
classify contention management strategies. It would be interesting
to see which combinations with opacity are possible and at what
cost.

Acknowledgments
We would like to thank Hagit Attiya, Pascal Felber, Christof Fetzer,
Seth Gilbert, Tim Harris, Eshcar Hilel, and Nir Shavit for interest-
ing discussions on the topic of this paper, as well as the anonymous
reviewers for their helpful comments.

References
[1] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and

P. O’Neil. A critique of ANSI SQL isolation levels. In Proceedings of
the 1995 ACM SIGMOD International Conference on Management of
Data (SIGMOD’95), pages 1–10, New York, NY, USA, 1995. ACM
Press.

[2] P. A. Bernstein and N. Goodman. Multiversion concurrency control—
theory and algorithms. ACM Transactions on Database Systems,
8(4):465–483, 1983.

[3] C. Blundell, E. Lewis, and M. M. K. Martin. Subtleties of transac-
tional memory atomicity semantics. IEEE Computer Architecture
Letters, 5(2), 2006.

[4] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz, and A. Silber-
schatz. On rigorous transaction scheduling. IEEE Transactions on
Software Engineering, 17(9):954–960, 1991.

[5] J. Cachopo and A. Rito-Silva. Versioned boxes as the basis
for memory transactions. In Proceedings of the Workshop on
Synchronization and Concurrency in Object-Oriented Languages
(SCOOL); in conjunction with the ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA’05), 2005.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In
Proceedings of the 20th International Symposium on Distributed
Computing (DISC’06), 2006.

[7] R. Ennals. Software transactional memory should not be obstruction-
free. Technical Report IRC-TR-06-052, Intel Research Cambridge
Tech Report, Jan 2006.

[8] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[9] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of
transactional contention managers. In Proceedings of the 24th
Annual ACM Symposium on Principles of Distributed Computing
(PODC’05), 2005.

[10] R. Guerraoui and M. Kapałka. Opacity: A correctness condition
for transactional memory. Technical Report LPD-REPORT-2007-
004, EPFL, May 2007. http://lpd.epfl.ch/kapalka/files/
opacity-techreport07.pdf.

[11] V. Hadzilacos. A theory of reliability in database systems. Journal of
the ACM, 35(1):121–145, 1988.

[12] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions. In Proceedings of ACM SIGPLAN 2006 Conference

on Programming Language Design and Implementation (PLDI’06),
2006.

[13] M. Herlihy. SXM software transactional memory package for C#.
http://www.cs.brown.edu/~mph.

[14] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.
Software transactional memory for dynamic-sized data structures.
In Proceedings of the 22th Annual ACM Symposium on Principles of
Distributed Computing (PODC’03), pages 92–101, 2003.

[15] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, pages
289–300. May 1993.

[16] M. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, June 1990.

[17] L. Lamport. On interprocess communication–part I: Basic formalism,
part II: Algorithms. Distributed Computing, 1(2):77–101, 1986.

[18] V. J. Maranthe, W. N. Scherer III, and M. L. Scott. Adaptive software
transactional memory. In Proceedings of the 19th International
Symposium on Distributed Computing (DISC’05), pages 354–368,
2005.

[19] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. N. Scherer III, and M. L. Scott. Lowering the overhead of software
transactional memory. In Proceedings of the 1st ACM SIGPLAN
Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing (TRANSACT’06), 2006.

[20] J. E. B. Moss. Nested transactions and reliable distributed computing.
In Second IEEE Symposium on Reliability in Distributed Software
and Database Systems, pages 33–39, 1982.

[21] J. E. B. Moss. Nested Transactions: An Approach to Reliable
Distributed Computing. MIT Press, 1985.

[22] J. E. B. Moss. Open nested transactions: Semantics and support.
In Poster presented at Workshop on Memory Performance Issues
(WMPI’06), Feb. 2006.

[23] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson,
J. E. B. Moss, B. Saha, and T. Shpeisman. Open nesting in software
transactional memory. In Proceedings of the ACM SIGPLAN 2007
Symposium on Principles and Practice of Parallel Programming
(PPoPP’07), pages 68–78, Mar. 2007.

[24] C. H. Papadimitriou. The serializability of concurrent database
updates. Journal of the ACM, 26(4):631–653, 1979.

[25] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with
eager validation. In Proceedings of the 20th International Symposium
on Distributed Computing (DISC’06), 2006.

[26] T. Riegel, P. Felber, and C. Fetzer. Snapshot isolation for software
transactional memory. In Proceedings of the First ACM SIGPLAN
Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing (TRANSACT’06), 2006.

[27] M. L. Scott. Sequential specification of transactional memory
semantics. In Proceedings of the First ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Transactional
Computing (TRANSACT’06), 2006.

[28] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on Principles
of Distributed Computing (PODC’95), pages 204–213. Aug 1995.

[29] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict
detection and validation strategies for software transactional memory.
In Proceedings of the 20th International Symposium on Distributed
Computing (DISC’06), 2006.

[30] W. E. Weihl. Local atomicity properties: Modular concurrency
control for abstract data types. ACM Transactions on Programming
Languages and Systems, 11(2):249–282, April 1989.

[31] A. Y. Zomaya, editor. Parallel and Distributed Computing Handbook.
McGraw-Hill, 1996.

