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1/ INTRODUCTION

Factor Analysis (FA), which includes Principal Component Analysis (PCA) and Partial
Least Squares (PLS), is more and more employed in academia and industry for various
purposes such as spectrometer calibration, process modeling, data mining, quality control,
etc. While software offering friendly interfaces have contributed to make this approach
extremely popular, FA remains far from being straightforward, and examples of
inappropriate use are not rare.

Why do we have more factors than compounds? Can Partial Least Squares deal with non-
linear responses? It is not that easy to find easy to understand answers to such questions in
chemometrics textbooks, which frequently give explanations through large doses of
mathematics. This paper therefore aims at providing non-experts in this field a practical
understanding of Factor Analysis using simple examples and with as few equations as
possible.

Nine different “virtual calibrations” were used to study how Factor Analysis can deal
with signal drift, random noise, interactions between compounds and non-linear responses.
The calibration models were developed for mixtures of three hypothetical compounds
characterized by artificially assumed IR spectra. The absorption spectrum of each
hypothetical calibration standard was calculated for a completely ideal case and for further
eight cases assuming the spectra are affected with one or several of the problems mentioned
above. All data were, therefore, simulated. The idea was to study the quality of the calibration
model in each case by calculating standard errors of calibration, percentage of explained
variance, and similar criteria. A 50-standard calibration set was used for all cases, which is
typical for qualification of spectroscopic instruments.

In order to facilitate the reading of this study, all the matrices used, with their size and a
brief explanation, were listed in a table of symbols that can be found at the end of the paper.

The main reference used is the recent textbook of Brereton (Brereton RG. 2007. Applied

chemometrics for scientists. Chichester (UK): John Wiley & Sons. 379 p.).
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2/ METHODOLOGY

Case study description

The absorbance spectra of three imaginary compounds were arbitrarily produced using
Gaussian-curve functions (Fig. 1). Peak heights, widths and locations were tuned to produce
large overlaps, which are representative of real spectroscopy applications. One hundred
imaginary wavelengths were used as the calculation range, which confers on the system a
redundancy level of 97 (because 100 - 3 = 97).

Each absorbance shown in Figure 1 was considered as a molar absorbance, i.e. the
absorbance of a 1 mol L solution of a single compound in water. The three spectra were

gathered in a matrix M (M stands for molar) of size 3 x 100.

0.4

Absorbance [-]

0 20 40 60 80 100
Wavelength [-]

Figure 1. Molar absorbance of the three compounds A B and C. All spectra are Gaussian curves.

Design of calibration set

A full experimental design for three compounds and seven levels would involve 73 = 343
standards. Although such a comprehensive calibration set implies an enormous amount of
work, it guarantees the absence of correlations between the three variables. Decreasing the
number of standards, while keeping the number of levels, generates ineluctably correlation
among the variables, which decreases the model robustness. Mathematically, this translates
into the matrix of correlation coefficients K. For a full experimental design, the matrix K is an
identity matrix, whereas for sub-sets the correlations among variables lead to non-zero

elements outside the diagonal.
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A 7-level calibration set adapted from the template proposed by Munoz and Brereton'
was used for all examples and is reported in appendix. Such a design is often use to calibrate
spectroscopic instruments; it aims at producing a large number of standards, typically 50, that
are as uncorrelated as possible and that span the entire experimental domain with several
concentration levels for each compound. It can theoretically be used for as many as 20 species,
since it features 20 columns that can be considered as orthogonal (the published 7-level
calibration design is therefore a matrix of size 50 x 20). The three first columns were used
were used to create the matrix of concentrations C. The concentration range was chosen
arbitrarily to be from 0 to 6 mol L for the purpose of readability.. The size of C was therefore
50 x 3. The correlations between the three compounds were all equal to 0.043, which can be
considered as not significant (the matrix K is reported in appendix). Such a calibration design,
even though realistic in terms of number of standards, is sufficiently close to ideality for the
current study. It could therefore be assumed that correlations within the calibration set did

not influence modeling results.

Singular Value Decomposition

Singular value decomposition (SVD) was used for pattern recognition. SVD is a
generalized approach of eigenvalue decomposition that can deal with non-square matrices,
and corresponding algorithms have been implemented in most mathematics software
(Matlab, Mathcad, Maple, etc.). Singular value decomposition can be, for each calibration
matrix of absorbance E, formulated as:

E=UxSx VT (1]
where U is 50 x 50 (i.e. the number of standards) and VT is the transpose of V and is 100 x 100
(i.e. the number of wavelengths). S is diagonal and of the same size as E, 50 by 100, namely
the number of standards by the number of wavelengths at which absorbance is measured.
The diagonal of S contains the singular values A, in decreasing order, whereas all other
elements are equal to zero. The relative importance of the singular values is used to
distinguish relevant from non-relevant information. A high singular value means that the
corresponding factor explains a large part of the variance observed in the calibration set,
while small singular values usually refers to noise, or negligible paramteres. In order to

facilitate the comparison between analyses, each singular value can be divided by the sum of

1 Munoz J.A., Brereton R.G. 1998. Partial factorial design for multivariate calibration: extension to seven levels and
comparison of strategy. Chemometrics and Intelligent Laboratory Systems 43:89-105.
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all of them, which gives relative singular values Al These relative values are sometimes
referred to as the fraction of variance explained by the factor.

The product of U x S is frequently designated as the scores matrix, T. In the current work,
the columns of T display the contribution of each factor in the absorbance spectrum of the
standards. Following this terminology, V is traditionally called the loadings matrix, and

contains the spectral features of each factor.

Principal Components Regression

Principal Components Regression (PCR) was used to assay quantitatively the quality of
modeling. The method consists in extracting the principal components, or factors, using SVD,
and in building a calibration model by regression on the relevant factors. In the current work,
the term “factor” was preferred to “components”, in order to avoid confusion with chemical
compounds. Whereas PCR extracts the factors from the matrix of experimental data only (i.e.
in the spectra), Partial Least Squares (PLS) searches them in both the matrix of experimental
data and the experimental design matrix (i.e. matrix of concentrations). In other words, PCR,
as opposed to PLS, implicitly assumes that there is no error in the experimental design
matrix, which would mean for real applications that the standards would have be prepared
with an infinite precision. To account for unavoidable errors in standard concentration, PLS
searches the principal factors in both the experimental design matrix and the experimental
data. PCR was chosen for the current work, in order to keep the case study as simple as
possible.

Once an “appropriate” number of factors f has been selected using SVD, the first f
columns of the score matrix T are extracted to produce a smaller matrix Ts, which should
contain only significant information. Similarly, the first f columns of V are taken to form Vs.
While the size of T was in the current work 50 x 100, Te was 50 x fand Vb was 100 x f, with f <
50.

The next step consists in the calculation of the regression matrix R, which can be
considered as the core of the model. R relates the concentration of the standards in C to the
main spectral features obtained using the loadings matrix Vu:

C=ExVsxR 2]
where Cis 50 x 3, E is 50 x 100, Vb is 100 x f and R is f x 3. It can clearly be seen here that the
size of the regression matrix depends on the number of factors used. Using equation 1,
equation 2 can be written in a simpler manner using the scores matrix:

C=TvxR 3]
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R is then calculated by least-squares regression:

R=Tp*x C=(TpT x To)? x TsTx C [4]
The superscript “+” refers to the pseudo-inverse of the matrix, which is explicitly developed
in the second part of the equation, and is a generalized form of matrix inversion for non-
square matrices. The prediction of unknown concentrations Cunk from a set of, for example, 10
measured spectra Eunk is obtained, similarly to Equation 2, by:

Cunk = Eunk x Vb x R [5]
where Cis 10 x 3, Eis 10 x 100, Vb is 100 x fand R is fx 3.

Traditional least squares regression (LS), which is sometimes referred to as Multiple
Linear Regression (MLR), was also used to allow for comparison with PCR modeling. In that
case, the matrix M (size 3 x 100) of the molar absorbance of A, B and C (Fig. 1) was used to
calculate the unknown concentration by finding a solution for the equation:

Eunk = Cunk x M [6]
which is explicitly given after rearrangement by:
Cunk = Eunk x M* (7]

The accuracy of PCR and LS modeling was determined by a leave-one out cross-
validation. An overall standard error of calibration (SEC), calculated for the three

compounds, was used to evaluate the quality of cross-validation (Equation 8).

DN

k=L x=4,8,C
— 8
3w (8]

SEC =

where yix is any concentration of a compound x and jix is the corresponding value predicted

by the model. m refers to the total number of standards, which was 50 in the current work.
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3/ VIRTUAL CALIBRATIONS

Linear, ideal case

For the first case studied, it was assumed that absorbance was linear with respect to
concentration (i.e. the Lambert-Beer law was followed) and that there was no interaction
between the three compounds. In addition, it was considered that no noise or drift interfered
with the absorbance signal. The calibration matrix of this ideal case Ei, of size 50 x 100, was
produced using the following equation:

E:=CxM [9]
where C and M are the matrices of concentrations (50 x 3) and molar absorbance (3 x 100)
respectively. As expected, a decomposition of the E1 into singular values gave three non-null
singular values, which were 55.0, 10.3 and 4.7. The meaning of these values, as well as the
significance of the corresponding loadings, is not obvious. A plot of the three loadings
multiplied by their respective singular values shows that they significantly differ from the
spectra of the three compounds A, B and C (Fig. 2). The absolute amplitude of the loadings

spectra is not relevant, since it depends on the concentration range used for calibration.

0.4

0.2 | _

0.0 ==

Absorbance [-]
-~
\

0 20 40 60 80 100
Wavelength [-]

Figure 2. Simulated molar absorbance of the three compounds of interest (A, B and C) and
loadings of the three non-null factors, Vi, V2 and Vs. Spectra shapes are very different, even

though no interaction, no noise and no drift were added to the linear model.

The relative values of the three singular values were 0.79, 0.15 and 0.07 (relative values
of singular values are summarized in Table 1), which corresponds to the relative size of the

areas under the curve Vi, V2 and Vs in Figure 2. To compare with, the relative size of the areas
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under the curve of the molar absorbance of the three compounds A, B, and C are much closer
to each other, precisely 0.46, 0.35 and 0.18. This highlights how the SVD algorithm works:
factor after factor, it tries to explain as much variance as possible, even if this implies the use
of negative spectra. As expected, the standard error of calibration found by leave-one out
cross-validation was equal to zero for the model involving three factors, meaning that the
prediction within the calibration set was infinitely accurate. The SEC value of the least
squares model was also equal to zero (all SEC values are summarized in Table 2).

Using PCR for such an ideal case is obviously not required. It would even make the
situation more complex, by involving scores and loadings that have no physical significance.
As a matter of fact, for this ideal situation, an accurate modeling can be performed with only
the measurements at three different wavelengths, by writing a system of three equations that

allows solving for the unknown concentrations of A, B and C

Table 1. Summary of the nine cases studied, with the corresponding explained variance (relative
singular values) of the first five factors. Y and N stand for Yes and No respectively. Linear means

that the Lambert-Beer law was followed. n refers to the level of noise added to the signal.

Case No Linear Interactions Noise Drift Explained variance by factor [%]

1 2 3 4 5
1 Y N N N 78.6 14.7 6.7 0.0 0.0
2 Y N N Y 74.8 14.3 71 3.8 0.0
3 Y N n= N 11.0 3.2 3.0 3.0 3.0
4 Y N n=1/3 N 25.4 5.0 2.9 2.5 24
5 Y N n=1/10 N 48.3 9.1 4.2 1.4 14
6 Y Y* N N 77.2 14.4 7.3 1.0 0.0
7 Y Y** N N 77.2 14.4 7.3 1.0 0.0
8 Y Y N N 72.6 14.0 8.5 2.5 0.0
9 N N N N 80.1 13.2 6.7 0.0 0.0

*) A and B form a complex that absorb; the molar absorbance of A and B are unaffected by this interaction

**) B binds to A, which results in peak shift of the molar absorbance peak of A proportional to the
concentration of B

***) B binds to A, which results in peak shift of the molar absorbance peak of A proportional to the square
root of the concentration of B

Signal drift

The second example is aimed at discussing the ability of Factor Analysis to deal with
signal drift, which is typically wavelength-dependent. Signal drift was assumed to have a
characteristic, constant shape (Fig. 3), which was given by a polynomial function with
additional sinus and exponential terms.

A random number  between -1 and 1 was used to vary the amplitude of the drift Z
from one standard to another. The calibration matrix E2 was therefore obtained using:

E2(i:)=E:i(i:)+B-Z [10]
The notation (i,:) is used to refer to the i-th row of a matrix, which corresponds to the

absorbance spectrum of the i-th standard.
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Figure 3. Simulated molar absorbance of the three compounds of interest (A, B and C) and
simulated drift (bold line). The drift spectrum is a polynomial function with additional sinus and

exponential terms.

SVD decomposition of the calibration matrix gave four non-null factors, which were on
a relative scale equal to 0.75, 0.14, 0.07 and 0.04. As compared to the previous case, one extra
factor was found by the algorithm in order to explain the variations induced by the drift.
Standard error of calibration was equal to zero for the model involving these 4 factors (SEC
was equal to 1.45 with 3 factors), whereas the least squares model led to a SEC value of 1.35.
This shows that factor analysis is much more reliable than traditional least squares when the
signal is subjected to a drift, which, even though wavelength-dependent, presents a

predictable pattern.

Influence of random noise

This third example is aimed at studying how factor analysis can handle random noise,
as opposed to a drift, which in the previous case was assumed to have a predictable
behaviour. For that purpose, white gaussian noise was added to the calibration matrix of the
ideal case Ei1 to produce the matrices Es, E4 and Es:

Ess (i) =Fa(i,)+n -N (11]
where N refers to a vector (size 1 x 100) of white gaussian noise, chosen with an arbitrary
amplitude and variance. A new N was generated for each row of the calibration matrix. The

term n is a noise level and was equal to 1, 1/3 and 1/10 for the matrices Es, E« and Es
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respectively. Among the three, the calibration matrix Es was thus the closest to the ideal,
noiseless case.

SVD decomposition gave for the three matrices 50 non-null singular values (Fig. 4, A).

20.0

- A-

15.0 |

10.0 |

Singular value [-]

0.0

Singular value number [-]

Absorbance [-]

0 20 40 60 80 100
Wavelength [-]

Figure 4. A) All 50 absolute singular values found in the calibration matrix for a linear case,
without drift and interactions, but with three different noise levels n. A high n value corresponds
to a noisy signal. The three first factors are on the left of the vertical dashed line. B) Absorbance of
the first calibration standard and associated noise for n = 1/10 (black circles) and n = 1/3 (open

squares).

For a low noise level (i.e. n = 1/10) , it is easily possible to distinguish the three relevant
factors that are associated to the compounds A, B and C from the noise-related factors: The

sharp decrease of singular values stopped with the fourth value and completely flattened out
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afterwards. While this elbow was still observable for n = 1/3, noise-related factors could not be
identified anymore for the highest noise level (n = 1). Figure 4, frame B, provides an order of
magnitude of the noise levels used for the current case, by plotting together a matrix N and
the absorbance spectrum of the first standard . It can be seen that n = 1/3 already corresponds
to a very noisy situation, which can be generally avoided by a limitation of environnmental
interferences.

For reasonably low noise levels, the PCR approach performs in a similar way to
traditional least squares (Fig. 5). Including a large number of factors in the PCR model
reduces only partially the SEC value. For n = 0.1 to n = 0.7, it can be observed that a model
with 10 factors is not significantly more accurate than a model using 3 parameters, these

being either factors (for PCR) or molar absobance spectra (for LS).

4.0

3.5 |

3.0 |

25 |

2.0

SEC []

15
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0.5 |

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11

Noise level n [-]

Figure 5. Standard error of calibration (SEC) as a function of the noise level n added to the signals.
SEC values were calculated for the least squares method (black circles), and for several PCR
models built with a number of factors f ranging from 1 to 40 (open circles). Including a large

number of factors to the model does not significantly improve the modeling.

While Factor Analysis is extremely efficient to tackle drifts of predictable pattern, it
seems not appropriate to deal with random noise in the signal. Even though certainly less
robust than PCR, the traditional least-squares method is, for such a case, much simpler and
leads to similar results. In addition, it has the advantage of avoiding virtual factors, which
allows a better qualitative interpretation of data. Filtering methods, as for instance a simple
moving average or a low-pass filter, could be implemented prior to LS modeling, in order to

enhance accuracy of modeling.
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Interactions between compounds

Different sorts of interaction between compounds A, B and C could be imagined. For
example, in a simple case, A and B can, without losing their IR activity, form a complex that
produces a new absorbance peak (Fig. 6). The amplitude of this peak would be proportional
to the concentration of A and B. For such a case, the calibration matrix can be expressed by:

Ees = Co x M [12]
where Ms is given by the molar spectra matrix M, with an additional, fourth row that
contains the interaction peak due to the complex A-B. The matrix Cs is created from the
concentration matrix C (i.e. the experimental design), by adding an additional, fourth column
that contains the concentration of A multiplied by the concentration of B and an interaction
factor, set to 0.05:

Cs(i,4) = 0.05 - Cs(i,1) - Ce(i,2) [13]

Applying the SVD algorithm to the calibration matrix Es gave four non-null factors,
which is analogue to what was observed previously with the drift case (Table 1). Similarly,
the standard error of calibration was equal to zero for the model that includes four factors.
The least squares approach led, however, to a non-null SEC value, precisely 0.88, which is
completely understandable, since the spectra library (i.e. M) did not contain the interaction

peak, and was unable to predict it.

0.4

Interaction peak
Aty

Absorbance [-]
o
N

0.0 o bbb bbbt bbb bbbt

Wavelength [-]

Figure 6. Molar absorbance of the three compounds A, B and C (plain lines) and interaction peak
(line with crosses). A and B form a complex A-B that shows an absorbance peak denominated
“interaction peak”. The complexation does not influence the molar absorbance of A and B

themselves.
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This shows that Factor Analysis is more suitable than traditional LS for the modeling of
such simple, linear interactions. It must be emphasized, however, that such a result can be
achieved with a much smaller set of standards. Seven standards, i.e. solutions of A, B, C, A
with B, B with C, A with C and the three together leads to exactly the same SEC values, with a
completely uncorrelated calibration design, since the interaction between A and B is linearly
dependent on the concentrations of A and B.

It could be argued that it is not fair to compare a PCR model, which includes the
interaction peak, and the least square method, which does not. However, this corresponds to
a situation that may arise in reality. In the absence of preliminary experiments dedicated to
the identification of the interaction peak, modeling would be performed using the molar
absorbance of the three known compounds.

Spectral distortion is a more complicated type of interaction. One could imagine that the
absorbance peak of A, under the influence of B, would be shifted to the left and significantly
narrowed. To represent such a case, it was assumed that the molar absorbance of A was equal
to the interaction peak shown in figure 6 when the concentration of the compound B was
equal to 10 mol L' or above. For any concentration of B between 0 and 10 mol L, the molar
absorbance of A is given by a linear combination of the interaction peak and the original
molar absorbance of A. The calibration matrix E7 was obtained using;:

Er(i,)) = C(i,:) x Mz, (14]
where My, is a matrix that is similar to M, but contains in the first row an apparent molar
concentration of A, which is a function of the concentration of B (i.e. C(i,2)) and is therefore
recalculated for each standard.

The SVD of Er gave exactly the same results as for Es, which is fairly logical since the
same four spectra were used to generate the calibration matrix. The leave-one out cross-
validation, using the four non-null factors, led to a SEC value of zero, meaning that the
interaction can be explained by the model. The least squares model, again, gave a large SEC
value of 0.62, for the same reason as discussed previously for the case Ee.

The ability of PCR to deal with interactions was further tested with a non-linear relation,
based on the previous example. The molar absorbance of compound A was no longer related
to the concentration of B (as for Ez), but was set proportional to the square root of this
concentration. A coefficient was used so that the function fulfills the same boundary criteria,
namely that at a concentration of B of 10 mol L-! the molar absorbance of A was equal to the
interaction peak. As an example, at a concentration of B of 5 mol L+, the molar absorbance of

A was given by a mix of 70.7% of the interaction peak and 29.3% of the original molar
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absorbance of A, whereas the fractions would have been 50/% and 50% for the previous case
Es. Surprisingly enough, the PCR model was able to predict correctly the concentration of
three compounds, since the SEC value was equal to zero when using the four non-null factors
found by the SVD decomposition. This shows that Factor Analysis can effectively predict
interactions between compounds, even non-linear ones, whereas traditional least-squares is

completely unefficient.

0.3
210 mol L™
o 02 | 8 mol L-1
(4]
(3]
% 6 I L1
P mol L-
[
o
[72]
< 4 I L-1
< o1} mol L-
2 mol L-1
0 mol L1
0.0

0 20 40 60 80 100
Wavelength [-]

Figure 7. Apparent molar absorbance of A for different concentrations of the compound B. B has a
tendency to bind to A, which results in distortions in the molar absorbance spectrum of A. This
latter is narrowed and shifted to the left under the influence of B. For any concentration of B
between 0 and 10 mol L+, the molar absorbance of A is given by a linear combination of the molar

absorbance at concentrations of B of 0 and 10 mol L.

Non-linear absorbance

The ninth example aimed at investigating whether Factor Analysis is a suitable approach
for calibration when the absorbance is not linear with respect to concentration, namely when
the Lambert-Beer law is not followed. For the three compounds A, B and C, a simple
polynomial function was used to relate the absorbance a at a concentration y to the molar

absorbance at the same wavenumber v:

a,(y) 1

- o -y +ap -y 4 ay - 9%9) [15]
a,(y=1) o +a,+a,

where the function parameters ai, a2 and as were chosen arbitrarily to produce different
absorbance profiles for the three compounds (Fig. 8). It must be emphasized here that, again,

such a case is a very particular, and other non-linear responses could be imagined.
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This function did not produce distortions in the spectra; it only multiplies the molar
absorbance spectrum by a factor that was not linearly related to the concentration. Taking as
an example all ai parameters to be one, it can be found that the spectra of a 2 and a 10 M
solutions are given by the molar absorbance spectrum multiplied by 2.1 and 14.9 respectively.
This means that even though the increase is not linear, the shape of the spectrum is
conserved. Such a response would be expected for compounds that strongly self-interact. The
absorbance profile used for compound C could be, for instance, explained by a tendency of

the molecules of C to form aggregates of lower IR absorbance.
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Figure 8. Ratio of absorbance as a function of concentration to the molar absorbance for the
compounds A, B and C. The same polynomial function was used for all wavenumbers, in order to

avoid the creation of distortion in the spectra.

These nonlinear responses for A, B and C translate into a biased experimental design Cs,
which was calculated from the calibration design used previously, C, by applying to each of
the concentrations of C the nonlinear function (Equation 15). It has been chosen to calculate
here apparent concentrations to express the non-linearity, but the same results could have
been obtained by using C and calculating apparent molar absorbance spectra. The function
parameters ai are compound-dependent, therefore one set of parameters was be used per
column of the matrix C. The calibration matrix Es was then given by the product of Cs and M,
in a similar manner to Equation 9:

Eo=Cox M [16]
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A decomposition of Es gave only three non-null singular values, the relative values being
equal to 0.80, 0.13 and 0.07. This result is very similar to what has been found for the ideal
linear case (E1), and although surprising at first glance, it turns out to be logical, since the
spectra shapes were conserved by the nonlinear function used. The leave-one cross-
validation, using the three factors in the PCR model, led to a SEC value of 0.93, which by itself
indicates a poor modeling. A comparison of the predicted concentrations and the real
concentrations highlights the low accuracy of calculated values (Fig. 9). The PCR model was
unable to match the nonlinear response; it simply found a linear regression that minimized
the sum of squared residues, which resulted in an underestimation of the low concentrations
and an overestimation of the high concentrations. Even though Factor Analysis has some
capabilities to deal with non-linear responses, it should be limited to linear cases. If the
Lambert-Beer law is not respected, the use of nonlinear modeling, as for instance Neural

Networks, should be considered.

8.0

3 8
c 6.0
)
""u‘ o
=
c
8
g 4.0 | A
o g
o )
e
3] 8
S 8
g 20 |
o o 8

! o

o
o
o
0.0
0.0 2.0 4.0 6.0 8.0

Real concentration level [M]
Figure 9. Predicted concentrations found by leave-one out cross-validation versus the real
concentration for compound B. The PCR approach is clearly not able to deal with a non-linear

response, as studied in the current case.

The least squares model was also not able to predict the deviation from Lambert-Beer’s
law. The SEC was even higher, with a value of 3.28, and the discrepancy at high concentration
much larger. The reason for that is that the least squares algorithm finds solutions by
extrapolating from the molar absorbances, which are on the edge of the experimental domain,

whereas PCR finds a linear solution including all data.
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The difference between the case Esand Es lies in the fact that for Es (Lambert-Beer law not
respected), the nonlinearity did not induce any change in the spectral shapes, whereas for Es
(interactions), the nonlinearity involved a new spectrum (i.e. the interaction peak). This new
spectrum brought supplementary information that allowed modeling the interaction between
the two compounds, which explains why in one case the SEC was equal to zero and in the

other not.

Overall diagnostics

The standard errors of calibration calculated for the least squares and PCR models, with a
number of factor ranging from 1 to 10, were summarized in Table 2. Results for the PCR
models including one or two factors were also included in the table, even though they were
not extensively discussed previously. Unsurprisingly, models with fewer factors than the

number of known compounds led to large SEC values.

Table 2. Standard error of calibration obtained by leave-one out cross-validation for the nine
examples studied. Calculations were performed for a number of factor f from 1 to 10, and also
using traditional least-squares (LS). Summary of the cases description are given below this table

but can also be found in Table 1.

S = E, Es Eq Es Ee Es Es Eq
1 2.90 2.96 2,97 2.91 2.89 2.89 2.92 2.92 2.98
2 2.1 2.30 2.53 217 2.1 2.1 2.14 2.15 2.16
3 0.00 1.45 2.38 1.20 0.37 0.35 0.40 0.59 0.93
4 0.00 0.00 2.36 117 0.37 0.00 0.00 0.00 0.93
5 0.00 0.00 2.28 1.16 0.36 0.00 0.00 0.00 0.93
6 0.00 0.00 2.22 1.14 0.36 0.00 0.00 0.00 0.93
7 0.00 0.00 2.20 1.13 0.36 0.00 0.00 0.00 0.93
8 0.00 0.00 2.08 1.12 0.35 0.00 0.00 0.00 0.93
9 0.00 0.00 2.08 1.10 0.35 0.00 0.00 0.00 0.93
10 0.00 0.00 2.05 1.08 0.34 0.00 0.00 0.00 0.93
LS 0.00 1.35 3.32 1.05 0.38 0.88 0.62 0.94 3.28

E1: Ideal case

E2: Drift case

E3: High level of noise E4: Medium level of noise ES5: Low level of noise
E6: Complex formation E7: Linear peak shift ES8: Nonlinear peak shift
EQ: Non-linear relationship between absorbance and concentration

For the simple, ideal E: case, both approaches led to a perfect modeling with three
variables, these being molar absorbance spectra or factors. The drift case (Ez) showed that
PCR, unlike LS, is able to detect and model a signal drift of predictable pattern, since the SEC
value was zero for the model with four factors. Both approaches were found to be very
similar regarding random noise (Es — Es; in decreasing noise level order). In order to reduce
the SEC value, a large number of factors have to be used in the PCR model, which has for
consequence to undermine its predictive ability and robustness. Similarly to the drift case,

cases Es to Es showed that factor analysis can deal with interactions. While traditional least

Page 17 of 23



Submitted Tutorial

squares is limited, for modeling, to the use of the three molar absorbance spectra, PCR can
integrate an additional factor that allows a perfect fitting of the interactions, even in case of
peak distortion. The last example studied (E9) showed that both algorithms have a poor
ability to deal with a nonlinear relationship between absorbance and concentration, even
though PCR, by finding the best linear fit within the calibration data, gave slightly lower SEC
values.

The nine examples developed in this work have shown that, whereas Factor Analysis has
better modeling abilities than traditional least-squares when compounds interact with each
other or when the signal is subjected to a drift of predictable pattern. Both methods gave the
same results when facing random noise, and they both turned out to be unable to model a

case in which the absorbance was not linear with respect to concentration (Table 1 and 2).
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4/ CONCLUSIONS

The nine examples studied using virtual calibrations have shown that Factor Analysis is
superior to traditional least-squares when the spectrometer signal is subjected to a rather
predictable drift, and when compounds interact with each other therefore inducing peak
distortion. Both methods showed similar performances when facing random noise, and none
of them was able to deal with the case in which absorbance was not linear with respect to
concentration.

However, it must be said that PCR and PLS are in reality more robust than traditional
least squares, and able to deal to some extent with non-linear response. This was not
illustrated by the very simple, simulated cases presented here, but should be taken into
account when having to choose a calibration approach.

In terms of real applications, these virtual calibrations show that preliminary experiments
on the validity of the Lambert-Beer law and the independence of the species present should
be conducted before developing a calibration model. If the absorbance is linear with respect
to concentration, and if the compounds do not interact in solution (a condition which is likely
to be satisfied, keeping in mind the degree of dilution of most culture media), traditional least
squares should be preferred to Factor Analysis if keeping modeling simple is a priority. The
presence of signal drift of predictable pattern would promote the use of Factor Analysis, but
the problem can also be tackled separately by using specific signal drift correction methods
such as anchoring of Savitzky-Golay filtering. Models based on Factor Analysis are also
certainly more robust regarding unexpected perturbations, since they focus on points of
major variance.

Checking for linearity and interactions not only has an impact on data treatment, i.e. on
the approach chosen for regression, but it also largely influences the design of the calibration
set itself. Apart from noise and drift considerations, a multi-level design does not bring more
information than a 2-level design if the Lambert-Beer law is strictly followed and if all
compounds are independent. Since the number of levels influences in an exponential manner
the size of the calibration set, preliminary experiments are therefore absolutely worthwhile,
because they can lead to a significant reduction of the calibration set and a simplification of

the modeling approach.
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5/ LIST OF SYMBOLS

For clarity reasons, the matrix sizes are given for the current case, which involved 3
compounds (A, B and C), 50 standards for calibration and measurement of spectra at 100
wavelengths. The number of factors used in modeling depended on the example, and is

referred to here as f.

Matrices

Symbol Size Matrix Name

C 50x 3 Matrix of concentrations (calibration design: the concentration
level of each compound in each standard)

E 50 x 100 Calibration matrix (the spectra simulated for each standard, or
in other words the experimental data one would obtain after
having measured the 50 standards)

K 3x3 Correlation coefficients matrix

M 3 x100 Molar spectra matrix (molar absorbance of A, B and C)

N 1 x 100 Additive white Gaussian noise

R fx3 Regression matrix (matrix determined by regression during
the calibration and used for concentration prediction)

S 50 x 100 Singular values matrix (diagonal elements are singular values
in decreasing order; others are equal to zero)

T 50 x100 Scores matrix (is equal to U x S, contains the weighed
contribution of each factor to each standard)

To 50 x f Scores matrix used for regression (size depends on the number
of factors retained for modeling)

U 50 x50 No special name

A" 100 x 100 Loadings matrix (contain spectral features of the factors)

Vb 100 x f Loadings matrix used for regression (size depends on the
number of factors retained for modeling)

Vj 100x1 j-th loading (i.e. j-th column of matrix V)

zZ 1x100 Drift vector (spectrum of the drift)
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Other symbols
Symbol Name
a Absorbance
f Number of factors chosen
i Column of matrix row
j Position of matrix column
1)) (i,j)-th element of a matrix (row i, colum j)
(i,) i-th row of a matrix
) j-th column of a matrix
m Total number standards (e.g. 50 for the current work)
n Coefficient for noise level
y Standard concentration
Greek symbols
Symbol Name
a Model Parameter
B Random number between -1 and 1
A Singular value
v Wavenumber [cm!]

Superscripts and subscripts

Symbol Type Name

T superscript  Transpose of a matrix

-1 superscript  Inverse of a matrix

+ superscript ~ Pseudo-inverse of a matrix

k subscript Standard number (k < m)

x subscript Compound A, Bor C

unk subscript Unknown concentration

rel subscript Relative to the sum of all singular values
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APPENDIX

A-1

Design of the 50-standard calibration set (matrix D), for the three compounds A, B, and C.
Adapted from Brereton {Brereton, 1997 #8857}. The numbers in the matrix, form 0 to 6,
correspond to the 7 concentration level.

Standard No A B C
1 3 3 3
2 3 0 1

3 0 1 2
4 1 2 2
5 2 2 5
6 2 5 4
7 5 4 5
8 4 5 3
9 5 3 4
10 3 4 0
11 4 0 5
12 0 5 5
13 5 5 6
14 5 6 2
15 6 2 6
16 2 6 3
17 6 3 2
18 3 2 4
19 2 4 6
20 4 6 6
21 6 6 1

22 6 1 5
23 1 5 1

24 5 1 3
25 1 3 5
26 3 5 2
27 5 2 1

28 2 1 1

29 1 1 0
30 1 0 6
31 0 6 0
32 6 0 3
33 0 3 6
34 3 6 5
35 6 5 0
36 5 0 0
37 0 0 4
38 0 4 1

39 4 1 4
40 1 4 3
41 4 3 1

42 3 1 6
43 1 6 4
44 6 4 4
45 4 4 2
46 4 2 0
47 2 0 2
48 0 2 3
49 2 3 0
50 0 0 0
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A-2

K, the correlation coefficients matrix of D:

A B C
1.0000 0.0431 0.0431
0.0431 1.0000  0.0431
0.0431 0.0431 1.0000

O w>
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