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Abstract

The structure of cross-correlations between subthreshold potentials of neocortical neurons

was recently examined. Characteristic features included broad widths and significant peak

advances. It was suggested that dynamic synapses shape these cross-correlations. Here a

reference model is developed comprising leaky integrators with static synapses. The forms of

the subthreshold correlations are derived analytically for two different forms of synaptic input:

steady drive and populations bursts. For the latter case the model captures the widths seen in

experiment. However, the model could not account for the peak advance. It is concluded that

models with static synapses lack the necessary biological details for describing cortical

dynamics.
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1. Introduction

Exploring correlated activity between neurons is essential for the understanding of
how information is processed in cortex. A recent experimental study examined
correlations of subthreshold voltage due to the network activity in an active cortical
slice [5]. The subthreshold voltage responds to the activity of many thousands of
presynaptic cells and contains more information than the spike trains [3,6,7], which
have been the subject of previous correlation studies (see [8] for an information-
theoretic approach). In the slice experiment [5] the cortical network was in one of
two states, either a steady-firing state or a state in which the network had
intermittent bursts of activity. In each experiment subthreshold activity was
measured from two neurons. The experimental paradigm involved the injection of
a hyperpolarizing current bringing the neurons near to the reversal potential for
inhibition, thereby keeping the neurons in the subthreshold regime and isolating the
excitatory input. For the case where the network was in the steady firing state the
cross-correlation was sharply peaked and centered near zero. However, for the case
of population bursts the characteristic features of the cross-correlation were broad
widths (100! 500ms for the case of population bursts) and a significant advance to
the peak (50–100ms between pyramidal and certain interneuron types).
Here, it is examined whether a simple model comprising a pair of leaky integrators

with static synapses is sufficient to capture these basic experimental features. The
paper closes with an examination of the descriptive scope of models with static
synapses and of possible extensions that might allow for a better agreement with
experimental observations.
2. The model

Two leaky integrator neurons (having no spike mechanism) with membrane
potentials V 1ðtÞ and V2ðtÞ; receive input from a common and separate pool of
presynaptic neurons. Only excitatory post-synaptic potentials (EPSPs) are con-
sidered, consistent with the experimental procedure described above. (Synaptic
conductance changes will be ignored. However, it will be shown later that our
conclusions are not affected by this approximation.) The dynamics of the
subthreshold potential, subject to a synaptic input I syn; obey

tm _V ¼ �V þ RI synðtÞ where I synðtÞ ¼
q

tf

X
ftkg

Yðt � tkÞ exp �
t � tk

tf

� �
:

The quantities introduced are: tm the membrane time constant, R the neuronal
input resistance, tf the falling time constant, q is the total amount of charge in a
synaptic current pulse and ftkg the set of arrival times for all synaptic inputs.
These parameters will be later subscripted by the labels 1,2 for each of the
neurons. The subthreshold potential above is measured from the reversal
potential of the inhibitory drive (near �70mV) and can be written as a summation
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of EPSPs EðtÞ

V ðtÞ ¼

Z 1

0

dsEðsÞ
X
ftkg

dðs � ðt � tkÞÞ with EðtÞ ¼ qR
ðe�t=tm � e�t=tf Þ

ðtm � tf Þ
YðtÞ:

(1)

3. The cross-correlation function

Throughout this paper, the cross-correlation function is defined as follows

CðDÞ ¼ /V 1ðtÞV 2ðt þ DÞS�/V 1S/V2S; (2)

where it is stressed that the amplitude of CðDÞ is not normalized. Inserting the form
of the voltage given in Eq. (1) yields

CðDÞ ¼
Z 1

0

Z 1

0

ds1ds2E1ðs1ÞE2ðs2Þ½rcdðs1 � s2 þ DÞ þ r0rðs1 � s2 þ DÞ � r20�;

(3)

where rc is the average common rate and r0 is the average total rate. The quantity
rðtÞ is the cross-conditional probability of finding a pulse at a time t in the input of
one neuron given a pulse at t ¼ 0 in the input of the other.

3.1. Steady synaptic drive

For Poissonian input the cross-conditional density is constant rSðtÞ ¼ r0 giving the
cross-correlation function for D40 as

CSðDÞ ¼ rc

Z 1

0

dsE1ðsÞE2ðs þ DÞ

¼ rcq1q2R1R2ðM12e
�D=m2 � F 12e

�D=f 2 Þ; ð4Þ

M12 ¼
1

ðm2 � f 2Þ

m2
2

ðm1 þ m2Þðm2 þ f 1Þ
;

F 12 ¼
1

ðm2 � f 2Þ

f 22
ðf 1 þ f 2Þðm1 þ f 2Þ

:

The notation has been lightened by writing m1 for tm1
etc. The cross-correlation

function for Do0 takes a similar form, but with the indices and sign of D reversed,
i.e. X 12ðDÞ is replaced by X 21ð�DÞ:

The peak and mean advance: The time difference D�
S at which the cross-correlation

function peaks has the same sign as m2f 2 � m1f 1: When D�
S40

D�
S ¼ �

m2f 2
ðm2 � f 2Þ

log
m2

f 2

ðf 1 þ f 2Þðm1 þ f 2Þ

ðm1 þ m2Þðm2 þ f 1Þ

� �
V 1 leads V2: (5)

The advance can also be measured in terms of the moments of CSðDÞ: The mean
advance is DS ¼ ðf 2 þ m2Þ � ðf 1 þ m1Þ and of the order of the membrane and
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Fig. 1. Results from numerical simulations. (LEFT) Voltage traces for the neuronal pair (neuron 1 is

black and offset by 2mV, neuron 2 is grey) for the cases of steady Poissonian (a) and burst (b) synaptic

drive. (RIGHT) The corresponding cross-correlations. The parameters used are

ftm1 ¼ 20; tf1 ¼ 5; tm2 ¼ 25; tf2 ¼ 2gms and q1R1 ¼ q2R2 ¼ 3; for both cases. For the steady input
the common and total rates were 50 and 200Hz, respectively. For the population burst rcB ¼ 100Hz;
rsB ¼ 400Hz; TB ¼ 100ms and TIBI ¼ 500ms: The peak (Eq. 5) of the cross-correlation is �1:0ms
(dashed line), and the mean is 2ms (central dotted line). Neither of these are of the same magnitude as the

experimentally observed peak shifts. Widths (defined as twice the standard deviation, shown by the

flanking dotted lines) Poissonian drive (c) 64ms, population bursts (d) 104ms. The latter falls into the

range seen in experiment.

O. Melamed et al. / Neurocomputing 65–66 (2005) 685–690688
synaptic time constants ( 10ms). This is an order of magnitude less than that seen
in experiment: the model cannot reproduce the experimental results. An example is
given in Fig. 1 (panel c) where the peak is negative and the mean positive, but both
located close to zero.

The width: This is obtained from the moments of the cross-correlation:

ðD� DÞ2S ¼ m2
1 þ f 21 þ m2

2 þ f 22: (6)

Hence the width, measured as the square root of this quantity, is less than twice the
longest membrane or synaptic time-scale ( 10 s of ms: see Fig. 1 panel c) and again
this is less than that seen in experiment.
3.2. Population bursts

The population bursts are modeled here as a Poissonian distributed box-car
function, with the burst frequency rB ¼ rBc þ rBs where rBc and rBs are the common
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and separate rates within the burst. The burst length is TB and the average interval
between the centers of bursts is TIBI : The low spike rate between bursts is
approximated as being equal to zero. The required cross-conditional density rðtÞ for
this type of presynaptic input is

rBðtÞ ¼
rB 1� t

TB

��� ���� �
þ r0 0ojtjoTB;

r0 TBojtj:

8<
: (7)

The average rate r0 is a function of the inter-burst interval r0 ¼ rBTB=TIBI as is the
common rate rc ¼ rBcTB=TIBI : The correlation function can be written in terms of a
convolution with US ¼ CS=rc

CBðDÞ ¼ CSðDÞ þ rBr0

Z TB

�TB

dD0USðDþ D0Þ 1�
jD0j

TB

� �
: (8)

Performing the integration gives the cross-correlation for D40 as

CBðDÞ
r0q1q2R1R2

¼
rc

r0
ðM12e

�D=m2 � F12e
�D=f 2Þ

þ
2rB

TB
ðM12m

2
2e

�D=m2 ðcoshðTB=m2Þ � 1ÞÞ

�
2rB

TB
ðF 12f

2
2e

�D=f 2ðcoshðTB=f 2Þ � 1ÞÞ

þ
rB

TB
YðTB � DÞðTB � Dþ ðm2 þ f 2Þ � ðm1 þ f 1ÞÞ

þ
rB

TB
YðTB � DÞðM21m

2
1e

�ðTB�DÞ=m1 � F21f
2
1e

�ðTB�DÞ=f 1Þ

�
rB

TB
YðTB � DÞðM12m

2
2e

ðTB�DÞ=m2 � F 12f
2
2e

ðTB�DÞ=f 2 Þ: ð9Þ

The cross-correlation for Do0 is obtained by reversing all indices f1; 2g ! f2; 1g and
the sign of D:

The peak and mean advance: In the convolution Eq. (8), the width of the burst is
much greater than the steady-firing cross-correlation function. Hence D�

B ’ D�
S where

the small corrections would come from any skew in CS and it is seen that the burst
model also cannot explain the large peak advances seen in experiment. The mean
advance DB is also equivalent to the steady-input result DS given above. See Fig. 1
panel (d) for an example.

The width: The width is obtained approximately by using Eq. (8)

ðD� DÞ2B ’ ðm2
1 þ f 21 þ m2

2 þ f 22Þ þ
T2
B

6
(10)

noting that the common input (first term in Eq. (8)) is small compared to the within-
burst correlations. The model therefore captures the large widths seen in experiment.
This is seen in the example given in Fig. 1 (panel d) in which even relatively short
bursts (100ms) give a standard deviation that is almost twice the size of the
Poissonian case.
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4. Discussion

In this study an analytical approach was developed to examine the neuronal and
synaptic mechanisms that underlie features of the cross-correlation seen between
cortical neurons [5]. The model comprised a pair of leaky integrator neurons with
static synapses subject to steady input or population bursts. We demonstrated that
the duration of the population bursts largely determines the width of the cross-
correlation (Eq. (10)). It was also seen in experiment that the peak of the cross-
correlation showed a significant shift from zero (50–100ms for the cases of
correlations between pyramidal and certain interneuron types). However, Eq. (5)
and the derived formula for the mean cannot produce peak shifts of this order with
realistic synaptic kinetics and membrane parameters. It is concluded the model with
static synapses and passive membranes is not sufficiently detailed to explain the
dynamics of cortical microcircuits.
The model ignored the large synaptic conductance changes seen in neurons

embedded in active networks [1]. These effects are well approximated by a shorter
membrane time constant, which would only reinforce our conclusions. Another
mechanism ignored in this model is the dynamic nature of synapses [2,4]. That this
mechanism is likely to produce the peak shift is supported by the fact that the largest
peak delays were seen between neurons in which one received facilitating and the
other depressing synapses. The passive neuron models used here also neglected trans-
membrane currents. In particular, the Ih current is strongly active at hyperpolarized
membrane potentials and has the long time-scale necessary for a mechanism that
might underlie the peak advance. These mechanisms need to be investigated
to analyze which might underlie the observations and thereby better model
the dynamics of the correlated activity in active cortical microcircuits, both in the
isolated brain slice and in vivo [3,6].
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