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Abstract: We present a novel yet simple 3D stereo vision tracking algorithm which computes the position and
orientation of an object from the location of markers attached to the object. The novelty of this algorithm
is that it does not assume that the markers are tracked synchronously. This provides a higher robustness
to the noise in the data, missing points and outliers. The principle of the algorithm is to perform a simple
gradient descent on the rigid body transformation describing the object position and orientation. This is proved
to converge to the correct solution and is illustrated in a simple experimental setup involving two USB cameras.

1 INTRODUCTION

Estimating the 3-D rigid body transformation
aligning two noisy sets of identifiable points is con-
sidered a solved problem in computer vision. Indeed,
various closed form solutions have been suggested
in the last two decades (Arun et al., 1987; Horn,
1987; Walker et al., 1991), and those solutions have
been widely used and compared (Eggert et al., 1997).
However, in spite of those existing solutions, we ad-
dress once again this problem and suggest an iterative
solution to the rigid body estimation problem. Our
belief is that in many applications, an iterative solu-
tion is preferable to a closed-form solution, especially
if the rigid body transformation changes in time, for
example when tracking a moving object. The major
reasons for this is that an iterative solution would be
more robust to noise in the data and that and would
not assume synchronicity of the set of points.

2 SETTING AND NOTATIONS

We consider a rigid body transformation T trans-
forming a set of n vectors {xi} into another set of n
vectors {yi}. This transformation is described by a
rotation R around an axis passing through the origin

and a translation V by a vector v:

yi = T(xi) = R(xi)+v. (1)

When considering a 3-D tracking application, the
rigid body transformation T can be used to describe
the position and orientation of the tracked object, rel-
atively to a reference position and orientation. The
reference positions of the n markers on the objects
make the set of {xi}. The positions of those mark-
ers when tracked by a stereo vision system constitute
the set of {yi}. It is assumed that the markers can be
distinguished one from another, for example by using
different colors. If the object is moving, the evolution
of T yields the trajectory of the object.

3 ROTATIONS

In this paper, we use the spinor representation of
rotations which is briefly recalled here, adopting the
approach described in (Hestenes, 1999). This repre-
sentation is very similar to the quaternion representa-
tion. The spinor q̄ representing the rotation R is given
by a scalar α and imaginary vector bi. The direction
of b yields the rotation axis (passing through the ori-
gin) and its norm is equal to sin(θ/2), where θ is the
rotation angle. The scalar α is given by cos(θ/2).The
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rotation of a vector x by a spinor q̄ is given by the
following equation.

Rb(x)= (1−2bT b)x+2
√

(1−bT b)b×x+2(bT x)b,

(2)
where Rb denotes the rotation represented by b.

4 ITERATIVE ESTIMATION OF A
RIGID BODY
TRANSFORMATION

We now present to the algorithm for iteratively es-
timating a rigid body transformation given a set of n
points {xi} and its noisy transform {yi}. The princi-
ple of the algorithm is quite trivial. Starting from an
initial guess for the parameters b and v of the trans-
formation, it consists simply on a gradient descent on
the squared distance between the measurement yi and
the transformed point Tb,v(xi)
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where ε is the learning rate. One assumes that i takes
values from 1 to n in a uniformly distributed manner.
So at each time step, an index i is selected among the
available points and b and v are update according to
(3) and (4).
The actual development of those two equations yields:

∆b = 2ε
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)T
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∆v = ε
(

yi −Tb,v(xi)
)
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where I is the 3×3 identity matrix and the unary op-
erator↑ is defined as

x↑ .
=
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0 x(3) −x(2)

−x(3) 0 x(1)

x(2) −x(1) 0



 , (7)

with x = [x(1) x(2) x(3)]T .

This concludes the description of the algorithm.
For efficiency purposes, it is preferable to choose ref-
erence positions so that the xi are centered on the ori-
gin. This allows to reduce the influence of b on the
computation of v.

5 CONVERGENCE

In this section, we prove that if there exists a rigid
body transformation matching the two sets of points
{xi} to {yi}, then the iterative algorithm described
above will converge to it.

Let T∗ be the true transformation mapping a finite
set of points {xi}= V into their corresponding image.
If V contains at least three unaligned points, there
is only one such transformation. Let T 6= T∗ be the
current estimate of this transformation.
We then define the following function E(T)

E(T) =
n

∑
i=1

Ei(T), with Ei(T) =
1
2
‖Txi−T∗xi‖

2 (8)

Here and in the rest of this paper, the parentheses
around xi are omitted to lighten the notation. We
also define the vector p = [bT vT ]T to be the vector
parameterizing the transformation.

We first show that the algorithm always converges
to a solution. If ε tends to zero and t is the time, then
ε−1∆b and ε−1∆v tend respectively to ∂

∂t b and ∂
∂t v .

So the gradient descent of the algorithm means that
∂
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The function E(T), being positive, the algorithm
always converges to a solution. It remains to be
shown that this solution is correct.

In order to show that the algorithm converges to
the right solution T∗, we show that for any T, T∗, V ,
satisfying the conditions mentioned above, there is a
transformation T† belonging to a neighborhood of T
such that

E(T†) < E(T) (9)

This amounts to saying that there is no local minimum
for E(T). We assume, without loss of generality, that
the xi are centered. Let us consider the transformation
T† defined by translation vector v† and rotation R†

v† = v+ ε(v∗−v) (10)

R† = εR+ ◦R with ε > 0. (11)

In the above expression εR+ is an infinitesimal rota-
tion of unit rotation axis given by

b+ = z∑
i

Rxi ×R∗xi (12)



where z = ‖∑i Rxi ×R∗xi‖
−1. This means that R† is

in the neighborhood of R. If ε is small enough, we
have, see (Altmann, 1986),

R†x = Rx+ ε(b+ ×Rx). (13)

Thus the variation in E when moving from T to T† is
given by

∆E = E(T†)−E(T) (14)

= ∑
i
‖T†xi −T∗xi‖

2 −∑
i
‖Txi −T∗xi‖

2

= ∑
i
‖T†xi‖

2 −‖Txi‖
2 −2(T∗xi)

T (T†xi −Txi)

= ∑
i
‖R†xi +v†‖2 −‖Rxi +v‖2 −2(R∗xi +v∗)T

(R†xi +v† −Rxi −v)

= ∑
i
‖Rx+v+ ε(v∗−v+b+ ×Rxi)‖

2 −

‖Rxi +v‖2 −2(R∗xi +v∗)T

(Rxi + εb+ ×Rxi +v+ ε(v∗−v)−Rxi −v)

= ∑
i

2ε
(

(v∗−v+b+ ×Rxi)
T (Rxi +v)−

(R∗xi +v∗)T (b+ ×Rxi +v∗−v)
)

+O(ε2)(15)

If ε is small enough, we can discard terms in O(ε2).
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We now show that the sum in (16) is also positive.
Using the matrix representation of rotation,

∑
i
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)
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In the last equation C is the covariance matrix of the
xi. The last inequality is justified by the fact that the
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Figure 1: Convergence of the algorithm. The three vector
components are indicated by x, y and z. The dotted horizon-
tal lines are the true parameter values of rigid body trans-
formation and the solid lines show the evolution of the esti-
mated values using the learning algorithm.

rotation matrix RT R∗ breaks the alignment between
the principal component of C and the direction of
maximum variance in V . Putting (17) and (16) to-
gether shows that E decreases when moving from T
to T†. There is thus no local minima in E, so E is
a Lyapunov function of the system, which proves the
convergence.

6 EXPERIMENTS

The first experiment aims at illustrating the
convergence properties of the algorithm described
above and is performed in simulation. A rotation
vector b∗ and a translation vector v∗ were randomly
generated. The estimated rigid body transformation
was initialized to the identity b = v = 0 and the
algorithm was run on randomly generated points xi.
The results can be seen in Figure 1. One sees that
both b and v converge to b∗ and v∗ respectively, as
is expected from the convergence properties studied
above.

The next experiment involves a tracking task in
a real stereo vision setting made of two low quality
USB cameras mounted on a fixed support. Three
color patches were taped on the object to be tracked.
A software, based on the OpenCV library can track
color blobs and locate them in three dimensions.
The object was moved by hand, so the only in-
formation about the position of the object is given
by the stereo vision system. So the real position
of the object is unknown, i.e., there is no ground truth.

Using the data recorded from the stereo vi-
sion system, the position and orientation of the
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Figure 2: The behaviors of the tested algorithms in case of
noise in the data. The iterative algorithm (left graphs) is less
noisy than the closed-form algorithm. The object is static,
and the same data was used on both algorithms.

end-effector were computed using two different
algorithms, the iterative one described in this paper
(5) and (6) and the closed-form solution described
in (Horn, 1987). This algorithm finds the rigid body
transformation by optimizing a least square criterion
similar to E(T) defined in (8).
In both cases, the data was taken as it is, without
any preprocessing. The iterative algorithm was
initialized using the closed-form algorithm on the
initial patch positions. In the absence of ground
truth, the precision of the tracking algorithm is not
investigated. Rather, we compare the behaviors of the
iterative and closed-form algorithms

The first experiment was made with a static object.
Using the same marker position data coming from the
stereo vision software, we ran both algorithms to es-
timate the position and the orientation of the object.
The results can be seen in Figure 2. One sees that the
iterative solution is much less sensitive to noise in the
data. This is because the closed-form solution has no
memory, whereas the iterative solution can only up-
date its current estimate up to a certain amount, which
produces a smoothing effect.

The second experiment was made with a moving
object. In this experiment, the effect of missing points
is investigated. Two different scenarios were tested.
In the first scenario (periodic occlusion), a randomly
selected point was removed in each frame. In the sec-
ond scenario (lasting occlusion) a given point was re-
moved from the data for 10 consecutive frames. The
results can be seen in Figure 3. One sees that for both
scenarios, the closed-form algorithm (dotted lines)
cannot deal with the missing points as it requires at
least three concomitant points. To the contrary, the
iterative algorithm (dashed-dotted line) can deal with
the missing points as it has no such requirement. It
can follow pretty well the position given by the base-
line (solid line). This baseline was obtained by using
the closed-form algorithm and smoothing the result.
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Figure 3: The behaviors of the tested algorithms in case
of occlusions. The iterative algorithm can deals well with
points periodically missing and points missing for a number
of consecutive frames (lasting occulsions).

7 DISCUSSION

The results presented above show that an iterative
solution to a rigid body transformation can be advan-
tageous in a tracking application. The main advan-
tages come from the fact that the iterative solution
does not make the assumption that it has concomitant
points. Moreover, it ensures a continuity in the es-
timates, which is not guaranteed by the memoryless
closed-form solution. When using the iterative solu-
tion suggested here, the learning rate must be care-
fully chosen to be big enough to avoid loosing track
of the object, while remaining small enough to ensure
a smooth estimate of the transformation.
Although it was not investigated in this paper, we be-
lieve that the suggested algorithm could be useful in
other applications, especially in iterative algorithms
like ICP. This algorithm could also most probably be
easily extended to include uniform scaling of rigid
body transformations.
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