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ABSTRACT
Multimedia coding technology, after about 20 years of active

research, has delivered a rich variety of different and complex

coding algorithms. Selecting an appropriate subset of these

algorithms would, in principle, enable a designer to produce

the codec supporting any desired functionality as well as any
desired trade-off between compression performance and im-

plementation complexity. Currently, interoperability demands

that this selection process be hard-wired into the normative

descriptions of the codec, or at a lower level, into a predefined

number of choices, known as profiles, codified within each

standard specification.

This paper presents an alternative paradigm for codec

deployment that is currently under development by MPEG,

known as Reconfigurable Media Coding (RMC). Using the

RMC framework, arbitrary combinations of fundamental al-

gorithms may be assembled, without predefined standardiza-

tion, because everything necessary for specifying the decoding

process is delivered alongside the content itself. This side-

information consists of a description of the bitstream syntax,

as well as a description of the decoder configuration. Decoder

configuration information is provided as a description of the

interconnections between algorithmic blocks. The approach

has been validated by development of an RMC format that

matches MPEG-4 Video, and then extending the format by

adding new chroma-subsampling patterns.

1. INTRODUCTION

Media coding has changed a lot since its infancy in the early

nineties. The original MPEG video coding standard was re-

leased in 1993, and since then MPEG-2, MPEG-4 and AVC

(Advanced Video Coding) have been produced, and SVC (Scal-

able Video Coding) is well underway. Each successive codec

released by MPEG has been substantially more complex than

the last, typically yielding twice the compression efficiency of

its predecessor. Because of this growing complexity, the tex-

tual specification of recent standards (since MPEG-4) has lost

its normative role, being replaced by the reference software
implementation as the true normative specification. However,

while this normative specification (typically in C or C++) is

very precise, it presents a number of limitations.

A large portion of compression technology (ie. coding

tools) are common across all MPEG standards, but there is

no direct way to recognize this commonality. Additionally,

the sequential C/C++ descriptions do not expose the potential

parallelism that is intrinsic to the algorithms constituting the

codecs. They have also become excessively large (in terms of

lines of code) making it extremely labor intensive, for example,

to transform the reference software into a VHDL implemen-

tation. In other words, the complex C/C++ specifications no

longer constitute a good starting point for implementation of
the standard. It would be preferable to develop formalisms that

operate at a higher level of abstraction, that simplify top-down
system development and design.

The large number of coding tools available also leads to

difficulty in specifying predefined subsets for different appli-
cation scenarios (i.e. standard profiles). As an example, a low

complexity profile is often defined to provide the minimum

configuration expected to achieve acceptable results on highly

constrained decoding devices. However, specifying such pro-

files prior to, or soon after, release of the standard would not

appear to allow the optimal combinations of tools to be iden-
tified. Furthermore, it is often not possible to identify all of

the application scenarios in which a codec will be used, at the

time of its release. Nor is it feasible to provide a normative

profile for every scenario. Ideally, implementers of a standard

should be able to select arbitrary combinations of the avail-

able tools, in the way that best matches the requirements of

each application. The challenge with this approach is ensuring

interoperability, and it is with this aim that we present Recon-

figurable Media Coding (RMC), a new framework currently

under development by MPEG [1].

The following sections consider the objectives (1.1) and

requirements (1.2) for a reconfigurable coding framework, as

well as related work (2). After that, each of the components

of RMC are discussed: the structure of an RMC bitstream

(section 3), the CAL language (4), and the framework as a

whole (5). Finally, section 6 presents the results of valida-

tion experiments on the framework. This paper presents an

overview of the framework as a whole; for greater detail on

the bitstream structure, see [2].

1.1. Objectives
A recent trend in multimedia devices (Cell phones, music

players, PDAs and the like) is convergence in terms of the

functions supported on any single device. This means that the
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device must support an increasing number of media formats

for images (such as JPEG or TIFF), audio (MP3, AAC, Real

Audio) and/or video (MPEG-2, MPEG-4, AVC or Quicktime).

Since many of these codecs share common or similar coding
tools, the traditional codec-level conformance specification

and implementation is not the most efficient way of imple-

menting multiple codec support on real devices. However, this

redundancy between coding formats is implicit, at best, and

device vendors must expend a great deal of effort to identify

and exploit this redundancy. The objective of an RMC frame-

work is thus to describe current and future codecs in a way

that makes commonality explicit, reducing the implementation

burden for device vendors.

The framework has the following objectives:

� to create a flexible video and audio coding framework

for new codec and coding tool development;

� to simplify the specification and adoption of new coding

tools by explicitly reusing the desired elements of pre-

vious standards, instead of defining a new monolithic

standard;

� to provide a new interoperable model of codec defini-

tion at the level of fundamental algorithmic modules

(such as the Discrete Cosine Transform) that gives users

the ability to utilize any module required to suit the

requirements of the application, content or network; and

� to simplify the implementation process for new codecs

by making component reuse explicit.

1.2. Requirements

The key requirement for the construction of RMC decoders is

that their basic architecture allows for a variety of implement-

ations,—e.g. in software on single or multiple processors, in

hardware, or in a heterogeneous mix of hardware and software

components. Consequently, the description of an RMC de-

coder should lend itself easily to parallelization, and it should

permit the use of various scheduling policies.

Another essential requirement is that components of RMC

decoders can be developed independently and be composed

easily. Consequently, the interfaces between components must

be well-defined, with precisely specified interactions between

components.

Both requirements point to the need for a component model

that emphasizes strong encapsulation of state and thin commu-

nication interfaces. In particular, the requirement for paralleliz-

ability, schedule independence and well-defined interactions

suggest the absence of shared memory between components—

i.e. components need to strictly encapsulate any state informa-

tion so that no other components can see or modify it.

In the absence of shared memory, components need to

interact by sending each other messages containing packets

of data we call tokens. In order to increase the independence
from specific scheduling and execution mechanisms, message

sending (or token passing) needs to be asynchronous, and it

will often be buffered, in order to accommodate jitter in the

execution between the sender and receiver of tokens.

Finally, an RMC decoder requires information about the

syntax of the media content, so that it may pass the correct

input data to each of the subsequent components. This in-

formation must include enough detail to parse data into the

atomic units expected by each component. It must identify

not just the cardinality constraints of syntactical elements, but

also the algorithm to determine the actual cardinality of an

instance.

2. RELATED WORK

The requirements outlined in section 1.2 are usually met very

well by approaches known by names such as dataflow or

stream processing. Early examples of dataflow are Kahn pro-

cess networks [3] and Dennis Dataflow [4]. Kahn process

networks have the interesting property that they guarantee

complete determinism irrespective of the schedule used, at the

price of significantly constraining the kinds of computation

that could be expressed in that formalism. In Dennis’ dataflow

the components (called actors) execute in a sequence of atomic

state transitions (firings). It was primarily designed for very

loosely coupled computational systems allowing significant

generality, while limiting the amount of analysis that can be

performed on the actors themselves, or on their composition.

Other approaches, such as Hewitt’s message passing [5] make

similar tradeoffs.

Synchronous dataflow (SDF) [6] combines dataflow with
firing with an even further restricted form of Kahn process net-

works. The result is a model which permits sufficient a priori

analysis to compute a complete cyclic schedule statically (i.e.

off-line), including sophisticated analysis and optimizations of

buffer access patterns (e.g. [7]. The downside of this approach

is even less expressiveness, limiting it to fixed-rate systems,

and making it quite unsuitable for general media coding.

Cyclo-static dataflow (CSDF) [8] provides a slight gen-

eralization over SDF while retaining its advantages of static

schedulability and analyzability, but it also shares the problem

of being essentially limited to systems with fixed data rates.

A family of synchronous languages (such as Lustre [9],

Signal [10], and Esterel [11]) use dataflow-like constructions
(such as tokens and signals) to provide abstractions of time.

Yet while their handling of time makes them eminently suitable

for real-time applications (a field in which they enjoyed some

notable successes), it makes them less attractive for expressing

"pure" dataflow-dominated applications such as media coders.

Parallel programming languages such as Hoare’s Commu-

nicating Sequential Processes (CSP) [12] also provide chan-

nels and the exchange of units of data across them as mecha-

nisms for coordinating concurrent computations. In addition,
CSP and the languages built on it (Occam, Mï£¡bius, Handel-C,

etc.) conflate the issue of communicating data and of synchro-

nizing computation by building on top of a rendezvous-style

interaction, where sending and receiving data is synchronized.
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Fig. 1. A general view of an RMC bitstream

Consequently, CSP-style programs can be very sensitive to

scheduling and often include a high degree of unchecked non-

determinism.

Instead, RMC builds on the CAL actor language [13] for

describing modules of media codecs. This is a language for

writing dataflow actors, designed to combine expressiveness

with analyzability: it supports the construction of very gen-

eral actors (more general than Kahn processes, on par with

general purpose languages such as CSP), while allowing tools

to identify potential sources of nondeterminism, as well as

more specialized classes of dataflow such as SDF and CSDF.
This information can then be used by tools to decide about

implementation options and for off-line scheduling and other

optimizations.

Finally, the requirements for content syntax are well met

by the Bitstream Syntax Description Language (BSDL), but

for a detailed discussion of other alternatives see [2].

3. AN RMC BITSTREAM

The novelty of RMC is that instead of a decoder being rigidly

specified, its architecture is transmitted with the encoded data,

to enable reconfiguration on-the-fly. In other words, an RMC

bitstream is essentially self-describing, in that its structure

and that of the decoder are both transmitted as part of the

bitstream (Figure 1). The decoder structure is written using

the Decoder Description Language (DDL), which is a XML

dialect, described in section 5.1. The compressed content,

on the other hand, is described using a tool from the MPEG-

21 standard [14] known as the Bitstream Syntax Description

language (BSDL), which is discussed in section 5.2.

In the RMC framework, the receiver device gets the de-

coder description which fully specifies the architecture of the

decoder. In order to instantiate the decoder, the receiver then
needs an implementation of the standard library of building

blocks specified by RMC. This library is normatively specified

using CAL (see section 4), which can be directly synthesized

into both hardware (VHDL) and software (C, C++, Java, and so

on) by using appropriate tools. Device vendors are, however,
free to provide alternative implementations of the standard

library that are optimized for their particular platform.

An appropriate level of granularity for blocks within the

standard library is important, to enable efficient reuse within

the RMC framework. If the library is too coarse, modules

will be too large to allow reuse between different codecs. On

the other hand, if the granularity is too fine, the number of

modules in the library will be too large for an efficient and

practical reconfiguration process, and may obscure the desired

high-level description of the RMC decoder.

4. THE CAL ACTOR LANGUAGE

One fundamental component of the RMC framework is the

standard library of coding tools that are the high level build-

ing blocks of a codec. For this library a syntax is required to

specify each algorithm and its interfaces, in such a way that

algorithms may be combined easily, yet correctly. Traditional

libraries composed of C functions or C++ classes are inade-

quate, because they require too much integration overhead to

yield a working codec model. For these reasons, CAL [13] was

chosen over C/C++ for specifying the RMC standard library.

This section presents the fundamental characteristics of CAL,

and the features that make it suitable for RMC.

4.1. Dataflow oriented processing
Looking for high level descriptions of MPEG codecs leads

naturally to a dataflow processing paradigm. This is not sur-

prising since the fundamental operation of such codecs is to

transform a stream of data from the compressed domain to

a stream of decoded audio or video (or vice versa). Further-

more, this transformation is characterized by a sequence of

operations that are repeated for each unit in the stream.

CAL is a language used to define the behavior of dataflow

components called actors, which is a modular component that

encapsulates its own state. That is, an actor can neither read

nor modify the state of any other actor. The only interaction

between actors is via messages (known in CAL as tokens)

which are passed from an output of one actor to an input of

another. The behavior of an actor is defined in terms of a set

of actions, at most one of which is active at any point in time.

The operations an action can perform are to consume (read)

input tokens, modify internal state, produce output tokens, and

interact with the underlying platform on which the actor is

running. Examples of such interaction include reading the

incoming RMC bitstream or rendering decoded output.

After an action completes, the next action to be executed

(fired) depends on

� the availability of token(s) at the requisite input(s);

� the value of input tokens;

� the state of the actor; and

� the priority of each action.

An actor may contain any number of actions. Its execution

follows a cycle:

(a) determine, for each action, whether it is enabled, by

testing all the conditions specified in that action;

(b) execute one enabled action (if any); go to (a).

The selection order and the firing conditions for actions

form the core of the design of an actor. CAL provides several

constructs for describing action selection, including:
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� action guards: conditions on the values of input tokens

and/or the values of actor state variables, that need to be

true for an action to be enabled;

� a finite state machine, expressed as a set of transitions

from one state to another. The condition for each transi-

tion is specified by the guards of an action, and when a

transition is made, the associated action is fired; and

� action priorities: actions may be related to each other

by a partial priority order, such that an action will only
execute if no higher-priority action can execute. In this

way, the process of action selection is specified in a

declarative manner by the designer. As a result the actor

becomes more compact and easier to understand.

4.2. Hierarchical modular design
With CAL, a RMC decoder is composed of a network of

independent actors, which interact with each other only via

token passing. This approach facilitates modularity, where the

internal implementation of any actor can be modified without

impacting other actors. The behavioral description of an actor,

and the architecture of the system are thus completely separate.

In contrast, the reference implementations of existing MPEG

codecs (written in C or C++) make extensive use of shared

memory and are difficult or impossible to componentize.

4.3. Communication protocols
Interaction between actors is solely via FIFO channels con-

necting output ports to input ports. The atomic unit of data

sent across these channels is called a token, which may be a

simple value (such as an integer), an arbitrarily complex data

structure, or even a function or procedure (borrowing from the

functional programming paradigm).

When a token is produced at an output port, it is delivered

to the queue at each input port to which it is connected. The

token remains in the queue(s) until it is consumed by the actor

that owns that queue.

4.4. Nondeterministic scheduling and explicit parallelism
Notwithstanding the firing conditions and schedules discussed

above (in 4.1), the order of execution for actions is nondeter-

ministic. This provides the designer of an RMC decoder great

flexibility to schedule action execution according to the par-

ticular requirements and constraints of the hardware/software.

In terms of the former, this allows better optimization of area,

throughput, power consumption, latency, and so on.

Moreover, a codec specified as a network of CAL actors

explicitly exposes parallelism by virtue of the independence of

different actors. This parallelism can be exploited if desired, by

specific implementations. This is not possible with monolithic

C/C++ specifications, where the identification of parallelism

is a significant and resource-intensive task.

4.5. Summary
To summarize, CAL is a language that

Fig. 2. Reconfigurable Media Coding framework

� is based on dataflow processing primitives;

� facilitates top-down (block diagram) design;

� encapsulates processing tasks in units called actors;

� facilitates parallelization both in terms of development
(ie actors may be written in parallel by different authors),

and operation (actors may be executed on independent
processors or cores); and

� hides details of execution scheduling that are unneces-

sary for dataflow modeling, but can specify scheduling

and flow control when necessary.

5. THE RECONFIGURABLE MEDIA CODING
FRAMEWORK

Like previous MPEG coding tools, RMC specifies the opera-
tion of the decoder and the bitstream syntax, leaving the partic-

ulars of the encoder open to proprietary competitive advantage.

However, unlike previous tools, RMC does not itself define

a new codec. Instead, RMC provides a framework to allow

content providers to define a multitude of different codecs, by

combining together blocks (actors) from the standard library.

There are two slightly different models for an RMC de-

coder (Figure 2). In the abstract model used for the reference

software, decoder actors are instantiated directly from the ref-

erence CAL library. The bitstream schema is transformed into

a parser actor (see [2]), and the actors run on an interpreter.

On the other hand, device vendors implementing RMC

have considerable latitude to optimize the decoder execution
environment. Instead of instantiating CAL blocks, the standard

library is implemented in a format native to the environment.
The library may be synthesized from the reference library (for

example, a CAL to VHDL compiler is available [15]), and/or

further optimized as part of the decoder implementation. The
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Fig. 3. Part of the BSDL Schema for MPEG-4 Video

interface of each actor in the standard library (in terms of

inputs, outputs and behavior) is normatively defined, but the

implementation is not. Equally, the bitstream schema bitstream

metalanguage and semantics are normative, but the parsing

process is fully implementation dependent.

5.1. Decoder Description Language

The second fundamental component of the RMC framework

is the language used for the description of the decoder as a

network of coding tools (i.e. actors). This Decoder Descrip-

tion Language (DDL) specified in RMC is an XML dialect

that describes an interconnected network of standard library

components, which together represent a complete decoder. A

DDL description of the intended decoder configuration is trans-

mitted as part of an RMC bitstream, and is used by the decoder

to instantiate and interconnect the appropriate modules from

the standard library. DDL can also be used recursively; that

is, an Actor may be defined as a composition of other actors,

with the interconnections specified by DDL. In this case, the

DDL itself declares input and output ports.

DDL provides a facility for declaring parameters, and pass-

ing parameters to actors in the network. This is useful for

declaring values that are constant for a particular instantia-

tion of an actor, but may vary between different instantiations.

For example, a vendor may have a number of different RMC-

enabled devices, with varying screen resolution or audio depth.

In this case the vendor may implement certain actors in the

standard library only once, but with parameters to fix the vary-

ing quantities.Parameter values are denoted by expressions,

which may depend on the values of other parameters and global

or local variables.

5.2. Bitstream Syntax Description

The other part of a RMC bitstream is a description of the

syntax used for the content data. This information allows a

RMC decoder to parse the bitstream into fields, as well as

group individual fields into semantic units. Of the numerous

Table 1. Comparison of the MPEG-4 Video Decoders

syntax description languages available, BSDL [14] was found

to be the most suitable, because

� it is stable and defined by an international standard [14];

� its XML-based syntax integrates well with DDL; and

� a parser may be easily derived by transforming the

BSDL using standard tools such as XSLT [16].

BSDL provides a way to create schemata for bitstreams.

For example, Figure 3 presents part of the BSDL Schema for

any MPEG-4 Video stream. Informally, this excerpt states

that a Video Object Layer is made up of either a long header

or a short header, as well as many Video Object Plane struc-

tures (VOP is MPEG-4 terminology for a video frame). The

choice between a long or short header is made on the basis of

whether the subsequent bits in the bitstream are equal to the

hexadecimal value 00000120 (this is in fact the start code that

is subsequently stored as the first field of a long header). The

variable (mbCount) is computed on the basis of prior fields in

the long header, and is used when parsing VOPs to determine

the number of MacroBlocks (MBs) to parse.

For further information on BSDL in RMC, see [2].

6. RESULTS

In order to validate the RMC approach, we have developed an

RMC bitstream and decoder that correspond to the MPEG-4

Video Simple Profile (Figure 4). The CAL-based decoder is

substantially more concise than either the C and C++ reference

software (published by MPEG as the normative specification
for MPEG-4), or an optimized, proprietary decoder implemen-
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Fig. 4. MPEG-4 Video Simple Profile decoder & extensions

tation (as shown, Table 1). Additionally, the CAL implementa-

tion is considerably more modular than any of the others, and

its dataflow paradigm greatly simplifies parallelization.

Furthermore, we have extended this decoder with new

chroma-subsampling patterns; features which are not available

in MPEG-4 Simple Profile. The changes to the bitstream and

its schema to effect these extensions consist of extra chroma

blocks in each Macroblock, as well as changes to the chroma

block pattern header field. The DDL is changed to instantiate

DC Addressing and DC & AC inverse prediction blocks with

a greater resolution (Figure 4; altered blocks in bold).

7. CONCLUSION

This paper describes the objectives and the essential compo-

nents of a new framework under standardization at MPEG

for Reconfigurable Media Coding. These components are: a

standard library of coding tools (actors) described in CAL, a

language (DDL) for the specification of networks of actors

that provides the decoder description, and a language (BSDL)

for the specification of the bitstream syntax. Using these tools

it is possible to reconfigure codecs as desired, and this new

mode of specification results in decoders that are substantially

more compact, modular, and expressive in terms of potential
parallelism and task scheduling, in comparison to previous

C/C++ specifications. RMC also allows the user to combine

coding tools from different standards, and to achieve trade-offs

not allowed by current monolithic predefined profiles.
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