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1. Introduction 

Maglev (>400 km/h) refer to Maglev [1] such as the 
Japanese JR-Maglev MLX, the German Transrapid and 
the USA Inductrack. The Swissmetro Project, presenting a 
unique aspect of Maglev, is designed to work under partial 
vacuum (<10 kPa) in two tunnels. The authors investigate 
the combination of the propulsion with the levitation 
(Figure 1). To minimize the heat due to the iron and 
copper losses, a polarized excitation is proposed [2] with 
NdFeB PM for the magnetic way poles. The papers [3, 4] 
present the determination of the static guidance forces, 
produced by the magnetic way, and a first order analysis 
of the corresponding lateral dynamic behavior. 

This paper emphasis the dynamic of the vehicle 
guidance due to these passive guidance forces interacting 
with the real profile of the long stator track. The main goal 
is to determine: if the iron losses created in the magnetic 
way (PM and poles) can produce enough dynamic 
damping for the lateral passive guidance. 

Conventional 3D FEM software does not permit to 
determine the iron losses of a magnetic system having 
simultaneously two movements in two orthogonal axes 
(propulsion Ox, lateral guidance Oz). As a first 
investigation, a quasi stationary approach is proposed 
based on 3D FEM analysis of the magnetic system. For a 
constant vehicle speed, the iron losses of the magnetic 
way are determined as a function of the lateral eccentricity. 
Then the lateral effect is assumed in a quasi stationary 
behavior, considering the real track profile. The issues 
related to such an approach, are described. 
2. Main Guidance Specifications 

All specifications are given in [3, 4, 5]. Two cases are 
considered for the vehicle guidance. 
Specification 1 - passenger comfort: for an acceleration of 
0.8 [m/s2], a vehicle mass of 80 [tons] and a non total 
compensation of the acceleration, the necessary guidance 
force is equal to 64 [kN]. 

64000comfortavehiclemguidanceF =⋅=  [N] (1) 

Specification 2 - vehicle at stalls: when the vehicle stalls, 
in a curve of 9.66° inclination, the force becomes: 

134240)sin(gvehiclemguidanceF =α⋅⋅=  [N] (2) 

3. Passive Guidance Forces 
The passive guidance forces [5] are produced by the 

reluctant effect between the long stator and the magnetic 
way. To study the guidance specifications, 3D FEM 

analysis are carried out. Figure 3 shows a static 3D model 
with both longitudinal and transverse views of the motor. 
This elementary model is used to compute the passive 
guidance forces. Figure 4 presents the dynamic case 
corresponding to a partial magnetic way, having a 
transverse eccentricity Zz, composed of two poles moving 
at the vehicle speed. 
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Figure 1: Motor: combined propulsion with levitation, 
two magnetic poles and three stator teeth are presented. 
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Figure 2: Vehicle in a curve: inclination α, radius Rcurve. 
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Figure 3: Motor – 3D FEM model. 
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Figure 4: 3D FEM model for the iron loss determination. 
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4. Damping Effects 
4.1. Approach 

To evaluate the damping effects, both magnetic and 
mechanical studies are considered. A FEM strategy is 
proposed and a simplified mechanical system is defined. 

4.2. FEM Strategy 
3D FEM software does not permit to determine the iron 

losses of a magnetic system having simultaneously two 
movements in two orthogonal axes. The following 
developments suggest a FEM strategy. 

In dynamic, the passive guidance forces comprise a 
damping effect produced mainly by the permanent magnet 
iron losses, since the magnetic way has laminated yokes 
and poles. These losses are produced by the slot effect of 
the stator in the direction of the vehicle motion and by the 
variation of the transverse eccentricity (reluctant effect) 
due to the real track profile. 

In a first mathematical understanding, it can be 
assumed that the PM losses are proportional to the power 
two of the temporal derivative of the PM magnetic flux, in 
other words, the back EMF produced in the PM. This 
means that, in a first order analysis, the "global" PM 
resistance does not vary versus the spatial position (small 
variation of the transverse eccentricity). For time t, once 
the system is determined, it can be linearized around the 
spatial positions (x, y, z). Then the total flux, crossing one 
magnetic pole and more particularly one PM pole, and its 
total derivative become: 

( z,y,xPMPM Ψ=Ψ )  [Vs] (3) 
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Then the corresponding back EMF is expressed as 
follows, for a constant air gap ( δ=== wlwrs yyy ) of the 
magnetic way: 

z
z

x
xdt

d PMPMPM && ⋅
∂
Ψ∂

+⋅
∂
Ψ∂

=
Ψ  [V] (5) 

And the power two of the back EMF becomes: 
2

PMPMPM
2

PM
2

PM z
z

z
z

x
x

2x
xdt

d
⎟
⎠
⎞

⎜
⎝
⎛ ⋅

∂
Ψ∂

+⋅
∂
Ψ∂

⋅⋅
∂
Ψ∂

⋅+⎟
⎠
⎞

⎜
⎝
⎛ ⋅

∂
Ψ∂

=⎟
⎠
⎞

⎜
⎝
⎛ Ψ

&&&&

 [V2] (6) 
Admitting that the "global" PM resistance does not vary, 
the previous equation suggests, that the damping force 
produced by the PM losses is proportional to the 
following terms representing a magnetic drag force: 
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The factor k is homogeneous to an electrical resistance. 
Equation 6 becomes, considering Equations 7 and 8: 
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Then, per analogy, the resulting damping force in the 

direction Ox is: 

x
zFFFFx zPMxPMxPMPM &

&
⋅⋅+=  [N] (10) 

Similarly, the resulting damping force in the direction Oz 
is: 

z
xFFFFz zPMxPMzPMPM &

&
⋅⋅+=  [N] (11) 

With: 0F xPM < , 0
z

F zPM <
&

 and , due to the 

physical conditions and phenomena. 

0x >&

Equations 10 and 11 suggest that, investigating the 
effect of each of the two movements (Ox, Oz directions), 
then combining those, a first order analysis can be made. 

4.3. Mechanical System 
Different papers present [6, 7] the concept of the 

mechanical analysis of Maglev in motion. Here, a 
simplified mechanical system of the vehicle and the 
magnetic ways are defined assuming the following: 
• the vehicle comprises a primary system composed of 

the vehicle cell and the key electromechanical 
components. The corresponding mass is mpr; 

• a secondary mass is composed, on both side of the 
vehicle, of the motor magnetic ways and the 
corresponding electromechanical components. The 
secondary mass is mse. 

Figure 5 represents the mechanical scheme of the vehicle 
and the different spatial referential. The mass of the 
vehicle has two components, the primary mass and the 
secondary mass. 

seprvehicle mmm +=  [kg] (12) 
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Figure 5: Referential system and mechanical system. 

4.4. Dynamic Equations 
As a first order analysis of the dynamic behavior, the 

following assumptions are defined: 
• the vehicle primary and secondary systems are rigid in 

the directions xs, xw and ys, yw; 
• the vehicle speed vvehicle is constant; 
• the motor air gap is assumed to be constant: 20±2 [mm]. 
Defining the referential system of Figure 5, the above 



 

assumptions lead to the following conditions. 
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The real track (Fig. 6) has a profile defined in 
Equation 14. 
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Figure 6: Real track alignment. 

 
As a first order analysis, the passive guidance forces are: 
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For the y coordinate, the air gap δ is assumed constant:  

⎪
⎭

⎪
⎬

⎫

===
===
δ===

0yyy
0yyy

yyy

wlwrs

wlwrs

wlwrs

&&&&&&

&&&   (18) 

)cos(gmFy vehiclew α⋅⋅=  [N] (19) 

For the z coordinate, the dynamic of the system becomes:  
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4.5. Damping Effect – Axis Ox 

As the vehicle speed is constant, the iron losses have 
two components, a DC value and an oscillating term, such 
as, considering only the first harmonic (right track): 

( tsinP̂P̂P coggingxPMxPMxPM ⋅ω⋅Δ+= )  [W] (21) 

xPMxPM P̂P̂ Δ>>  [W] (22) 

The damping force is equal to, for the right track: 
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4.6. Damping Effect – Axis Oz 
Considering a simple oscillator permitting to have a 

first overview of the damping effect, the following 
developments can be made. When the real track profile is 
considered (Equations 14), the PM iron losses have a DC 
value and oscillating terms, such as (right track): 
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The damping force and coefficient become (right track): 
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The force has the same periodicity than the speed. 
4.7. Mutual damping factor 

The mutual damping factor (Equ. 10, 11) is defined as: 

2xPMloss z
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4.8. Damping factor 
For the right track the damping factor is defined as: 

rxzrzrzr
 [Ns/m] (30) 

PM losslosslossloss kkkk ⋅+=

4.9. Numerical Values - Axis Ox 
Table 1 shows the damping factor  as a function 

of the PM iron losses, in the direction Ox. For Swissmetro, 
the total mechanical power is 6 [MW], corresponding to 
3 [MW] on each vehicle magnetic way (right, left sides). 

rxlossk

 

rmecP  
rxPMP̂  vehiclev  

rxPMF  
rxlossk  

[MW] [kW] [m/s] [N] [Ns/m] 
3 -3.53 (a) 139 -25.4 -0.183 
3 -5.30 (b) 139 -38.1 -0.274 

Table 1: Damping factor  function of the PM losses 
rxlossk

F̂

 - (a) 8 PM segments; (b) 4 PM segments 
4.10. Numerical Values - Axis Oz 

Table 2 gives the forces and the damping coefficients 
for the chosen track profile, as a function of the 
PM 1 , in the axes Oz. 

rzPM



 

trackD  d vehiclev  trackω  maxz&  
[m] [mm] [m/s] [1/s] [m/s] 
50.4 3.0 139 8.66 0.026 

 

rzPM
1F̂  

rzloss
1k̂  

[N] [Ns/m] 
-0.1 -7.7 
-0.3 -11.6 
-0.4 -15.4 
-0.5 -19.3 

Table 2: Forces 1  function of the track profile and 

damping coefficients 1 . 
rzPMF̂

rzlossk̂

5. 3D FEM Simulation Results 
5.1. Static 3D FEM Simulations Results 

The static simulations were carried out in [5]. Figure 5 
gives the spatial distribution of the flux lines around the 
air-gap in a transverse plane. The passive guidance forces 
were determined [5] in a permanent behavior (constant 
vehicle speed and constant transverse eccentricity). 
Figure 6 represents the passive guidance forces 
corresponding to this case. 
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Wr=94 mm; Ws=90 mm; Air gap=20 mm; eccentricity Zz=10 mm 
Figure 5: Air-gap flux lines in the transverse plane. 
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Single magnetic way: a: Wr=112 mm; Ws=90 mm; Air gap =20 mm; 

 c: Wr=112 mm; Ws=90 mm; Air gap =10 mm; 
Two magnetic ways: b: Wr=56 mm; Ws=45 mm; Air gap =20 mm; 
 d: Wr=56 mm; Ws=45 mm; Air gap =10 mm. 
Figure 6: Passive guidance force versus transverse offset. 

5.2. Dynamic 3D FEM Simulation Results 
For the dynamic 3D FEM simulations, only the case a, 

of Figure 6 is considered: Wr=112 [mm]; Ws=90 [mm]; 
air gap =20 [mm]. Two PM segmentations are 
investigated: the first one with 4 PM and the second one 
with 8 PM. Then two types of simulations are carried out. 
The first simulations deal with longitudinal motions at 
constant speed of 139 [m/s]. The second ones deal with 
oscillating transversal motions corresponding to the 
profile track of Table 2. 

In both types of simulations, during the first 
computation steps, the electrical conductivity is set to a 
low value in order to reduce the transient time duration 
due to eddy current establishment. Consequently, during 

the first steps of the simulations the losses are very low 
but the results have not to be considered since the 
conductivity is wrong (Fig. 13). The behaviour of the 
magnetic materials is assumed to be linear (constant 
permeability). 

In the simple model, only two poles are considered 
(Fig. 4). For each case, the total PM losses in the whole 
Swissmetro are computed. For longitudinal simulations, 
only the case where there is no transverse eccentricity is 
studied. For transversal simulations, two longitudinal 
positions of the magnetic way versus the stator are 
considered. In the first one (axis d), a stator tooth is in the 
pole transition axis and in the second one (axis q), a stator 
slot is in the pole transition axis. 

Figures 7 and 8 show the spatial repartition of the eddy 
current density in the permanent magnets, showing that: 
• the currents are localized in the each segment; 
• the use of 8 PM segments leads to a decrease of the 

eddy currents density. 
Table 3 summarizes the configurations considered for 

the results given in Figures 9 to 16.  
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PM losses Fig. 9 Fig. 10 Fig. 13 Fig. 14 Fig. 17 

Damping 
Force Fig. 11 - - Fig. 15 - 

Damping 
coefficient Fig. 12 - Fig. 13 Fig. 16 Fig. 17 

Table 3: Description of the cases considered for the results 
presented in Figures 9 to 17. 

 

Figures 9 to 17 leads to the following comments: 
• the losses, the force and the damping coefficient 

obtained during a transverse simulation do not depend 
on the stator longitudinal position since the losses 
curves of Figure 6 and 7 are quite similar; 

• the use of 8 PM segments instead of 4 permits to reduce 
the losses with a factor of around 30 [%], but, as a 
consequence, the damping factor is quite low; 

• for the longitudinal movement, Equations 21 and 22 are 
confirmed. 

 
Figure 7: Color shaded of eddy current density. 
 Longitudinal simulation – 4 PM segments



 

 
Figure 8: Color shaded of eddy currents. 
 Longitudinal simulation – 8 PM segments
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Figure 9: Vehicle PM losses versus time. 
 Transverse simulation – 4 PM segments – axis d 
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Figure 10: Vehicle PM losses versus time. 
 Transverse simulation – 4 PM segments – axis q 
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Figure 11: Vehicle damping force versus time. 
 Transverse simulation – 4 PM segments – axis d 
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Figure 12: Vehicle damping coefficient versus time. 
 Transverse simulation – 4 PM segments – axis d 
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Figure 13: Vehicle PM losses and damping force versus 
time. 
 Longitudinal simulation – 4 PM segments 
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Figure 14: Vehicle PM losses versus time. 
 Transverse simulation – 8 PM segments – axis d 
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Figure 15: Vehicle damping force versus time. 
 Transverse simulation – 8 PM segments – axis d 
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Figure 16: Vehicle damping coefficient versus time. 
 Transverse simulation – 8 PM segments – axis d 

-10000
-9000

-8000
-7000
-6000
-5000

-4000
-3000
-2000

-1000
0

0 0,0002 0,0004 0,0006 0,0008 0,001 0,0012

Time [s]

PM
 L

os
se

s [
W

]

-100
-90

-80
-70
-60
-50

-40
-30
-20

-10
0

Fo
rc

e 
[N

m
/s

]

 
Figure 17: Vehicle PM losses and damping force versus 
time. 
 Longitudinal simulation – 8 PM segments 
6. Dynamic Simulation Results 

A first dynamic analysis has been carried out to 
evaluate the capability of the electromagnetic transverse 
damping to contribute to the lateral stabilization of the 
complete vehicle. A simulation is carried out without the 
second-level suspension shown in Figure 5 (mpr and mse 
are rigidly coupled), the simulation is based on Equations 
13 to19 without the first member of Equation 20. Based 
on the results obtained in [5], the case of Table 2 is 
considered. The stiffness value of each mechanical spring 
is 3 [MN/m]. Considering a total vehicle mass of 
8.104 [kg], the eigen frequency of the system is 

 [rad/s], corresponding to a period of 0.725 [s] 
for the natural system oscillation. At a vehicle speed of 
139 [m/s], this corresponds to 100.8 [m] critical guide 
way wave length (2·D

66.80 =ω

track). On the basis of the present 
results regarding the damping, a value of 11.6 [Ns/m] has 
been considered for each dash-pot of the mechanical 
system. The damping coefficient  and the damping 

factor  [8] for the global system are defined by: 
sysλ

sysη

5

vehicle

lossloss
sys 105.14

m2
kk

zlzr −⋅=
⋅

+
≡λ  [1/s] (31) 

11067.1 5

0

sys
sys <<⋅=

ω

λ
≡η −  [-] (32) 

The damping factor allows for determining the behavior 
of the dynamical system. In this case, it is much smaller 
than one, the damping is therefore sub-critical, leading to 

significant oscillations, as shown on Figure 18. 

 
Figure 18: Oscillations (in red) of the system due to an 
increment step of 3 [mm] (in black) on both side of the 
guide way (here: zs=zw). The electromagnetic damping 
alone is obviously negligible. 

 
Figure 19: Oscillations (here again: z =z , in red) of the 
vehicle due to an harmonic geometry of 3 [mm] of 
amplitude (z  in black) on both side of the guide way

s w

t . The 
eigen frequency of the track geometry is equal to the eigen 
frequency of the system. 
 

Another important aspect is the behavior of the system 
has it follows a harmonic guide way deflection as 
described by Equation 14. Figure 19 shows this behavior 
for the same dynamical system. The transient phase 
presented on Figure 19 tends to stabilize with time if 
damping exists. The “steady” amplification factor for the 
peak values μ  can be computed as follows [8]:max

4
2

syssyst

s
max 1099.2

12

1
z
z

max

max ⋅=
η−η⋅

=≡μ [-] (33) 

As can be seen, the amplification factor is extremely high. 
Therefore, this preliminary analysis shows that it is 
necessary to take additional measures to limit the 
amplification factor and to increase the damping effects. 
The electromagnetic damping alone is not sufficient to 
limit movement amplitudes near the eigen frequencies. 

6.1. Proposed Approaches 
Considering mechanical solutions, two types of solutions 
can be considered: 
• adding a dynamical system is proposed in [5]. 

However, practical contingencies limit the performance 
of this type of solution (in particular, the mass to create 
the additional dynamical system is limited); 



 

• The complete method should involve the 3D FEM 
simulations with both motions in two independent axes 
and simultaneously the resolution of the dynamic 
equations of the system. Due to the actual limitations of 
3D FEM software, this was not possible in this paper. 

• adding a second damping level to isolate the primary 
mass (Fig. 5), can also be considered. The behavior of 
the magnetic way is still strongly sub-critical. But its 
eigen frequency is increased, which is favorable and the 
damping inside the vehicle is considerable increased. 
Figure 20 shows typical results for this solution. 8. List of Symbols 

D track: half period of alignment [m] 

 

Fz force (z component) [N] 
a acceleration [m/s2] 
d track deflection [m] 
g earth acceleration [m/s2] 
k force constant [N/m] 
kz  force constant (guidance force) [Ns2/m2] 
kloss force constant (guidance force) [N/m2] 
m mass [kg] 
t time [s] 
v speed 
x coordinate [m] 
y coordinate [m] 

Figure 20: System positions: vehicle (zs, in red) position 
due to the profile track of Table 2; amplitude on both sides 
of the guide way (ztr in black) and position of the magnetic 
way (zw, in green). 

z coordinate [m] 
β0 shift between left tand right track profiles [m] 
δ air gap [m] 
ω pulsation [1/s] 

 - mechanical spring coefficient: 5.9·104 [N/m]; Indexes 
 - mechanical damping coefficient: 10100 [Ns/m]; PM permanent magnet 
 - PM damping coefficients: 11.6 [Ns/m]; l left 
 - primary mass: 68 [ton], secondary mass: 12 [ton]. pr primary 
 r right Another approach is to integrate an active 
electromechanical system. It has the advantage of 
offering a high quality of comfort, since an active system 
can handle any kind of perturbations from track profile, 
track dynamics or aerodynamics. It has the disadvantage 
to add equipment on board of the vehicle. 

t track 
s stator 
se secondary 
w magnetic way 
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