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Imitation is a powerful mechanism for social learning and 
it has received in the last decade, a great deal of interest 
from researchers in robotics (see Billard and Dillman, 
2006). In order to imitate complex behaviors, one must 
recognize goals, understand how individual actions are 
embedded in a hierarchy of sub-goals, and recognize 
recursive structures. Human infants and adults do not copy 
exactly the movements of the demonstrated act. Deciding 
what to imitate may represent a problem of determining 
the saliency of objects (Breazeal and Scassellati, 2002), 
extracting the invariants of the demonstrated acts (Billard 
et al, 2003) or parsing the structure of the goal hierarchy 
(Byrne and Russon, 1998). 
     For instance, when presented with a complex sequence 
of nesting actions, children aged between 11 and 36 
months exhibit different imitation strategies, correlated to 
their developmental age (Greenfield et al., 1972). During 
the first stage (12-14 months), infants typically place a 
single cup in/on a second cup and use a proximity criterion 
(i.e., same side of the table with the moving hand) for 
pairing cups. In a second stage (16-24 months) two or 
more cups are placed in/on another cup and the contiguity 
criterion is followed (i.e., never reaching behind a nearer 
cup to use a more distant cup). In the third developmental 
stage, 28-36-months olds spontaneously imitate using the 
most advanced nesting strategy, by using a size criterion. 
     Understanding of the computational mechanisms that 
underlie the consistency of strategic behavior as well as 
the variety of the behaviors occurring within a 
developmental stage, becomes a crucial step in our quest 
towards creating autonomous, self-growing cognitive 
robots. In Goga and Billard (2006) we propose such an 
account, based on a multiple constraint satisfaction 
framework, where imitation is addressed as a means for 
disassembling and reassembling the structure of the 
observed behavior.  
      The visual attention system represents an essential 
component of any cognitive model of goal-directed 
imitation. Humans selectively direct attention to objects 
using bottom-up, image-based saliency cues and top-down, 
task dependent cues (Itti and Koch, 2001).  Objects can 
gain saliency, due to their properties (i.e., they move 
quickly, they have bright colors) or due to contextual 
effects and their behavioral relevance. 
     During the demonstration phase, attention is employed 
to break up the visual scene, into a series of smaller 
chunks that are computationally less demanding. The 
mechanisms of joint attention play a major role in creating 
a shared context between the demonstrator and the 
imitator, and in reducing the computational cost of 

selecting and segmenting possible clues from the 
environment. Despite an increasing amount of work 
dealing with joint attention, current research in robotics 
(Kozima and Yano, 2001; Nagai et al., 2003; Hoffman et 
al., 2006) concentrates on partial and isolated elements of 
visual attention behavior, such as simultaneous looking or 
simple coordinated behavior (for a review see Kaplan 
2006). In this work, shared attention ability represents a 
prerequisite for the development of higher-order cognitive 
structures required by goal-directed imitation.  
     The role of the visual model is to integrate bottom-up 
and top-down constraints in such a way that enables the 
imitator to follow the demonstrator�s focus, to shift 
attention between different locations in the scene, and to 
actively select salient objects from the environment. We 
start with a system capable of simple attention behaviors, 
such as the selection of objects based on their saliency, 
gaze following, and skin color detection. In biological 
systems, bottom-up attention is computed in a pre-
attentive manner across the entire visual image as a non-
linear combination of the contrast with the contextual 
surround, of different low-level features (Nothdurft, 
2000). In this work, two types of feature contrast units 
(i.e., color and motion) are weighted and then summed 
into a single saliency map.   
     In principle, top-down attention is deliberate and more 
powerful in orienting attention, and covers the goal-
directed factors. Others have shown how a basic set of 
perceptual preferences (i.e., movement, contrast, color), 
attention and learning mechanisms are sufficient for gaze 
following to emerge in typically structured social 
interactions (Fasel et al., 2002). Hands� gestures are highly 
informative for the inference of the demonstration goal. 
The imitator simulated agent has a pre-wired capacity to 
follow the gaze of the demonstrator and to recognize the 
skin color of the hand. The model is described in Fig. 1. 
     An environmental setup for the visual attention model 
was implemented using the Xanim dynamic simulator 
(Schaal, 2001). The imitator follows with the gaze the 
seriation of four differently sized cups, and its task is to 
reproduce the goal of the demonstration. In Goga and 
Billard (2006) we describe how a neurobiologically 
inspired model, developmentally constrained, can account 
for the systematic differences between infants� strategies. 
     The weights of the bottom-up and top-down constraints 
are set to satisfy a number of constraints on the overall 
shift of attention of the robot. During the learning phase, 
when information on the demonstrator�s direction of gaze 
signal is available, the weights are adapted in such a way, 
that: a) gaze following is preferred to looking at any static 



Figure 1. A two-dimensional saliency map is used to deploy the attention to the most salient location in the scene, which is 
detected using a winner-take-all strategy. The system uses a mechanism of inhibition of return to inhibit the attended location 
and to allow the network to shift to the next most salient object. 

object, but not to looking at objects moved by the 
demonstrator. Accordingly, the imitator closely follows the 
sequence of movements performed by the demonstrator while 
it seriates the cups (central and right side in Fig 2).     
Furthermore, by manipulating the parameters of the attention 
model, the learner can extract different amounts of information 
concerning the sequential structure of the demonstrator�s 
behavior.  

 
Figure 2. The deployment of the focus of attention for the pair 
of simulated agents during the demonstration of the seriated 
cups task. The imitator�s focus results from the integration of 
bottom-up (color, motion) and top-down cues (skin color, 
demonstrator�s gaze). 

      During imitation, in the absence of the demonstrator�s gaze 
signal, attention is deployed as a result of satisfaction of 
saliency constraints: b) skin color preference (for any static 
scene, the saliency of an end-effector is higher than that of any 

colored object); and c) preference for moving objects 
(for any moving object its bottom-up saliency is 
higher than that of any static object, including the 
end-effectors) (see the shift of focus between hands 
and the most salient objects in the left most side of 
Fig 2). Different imitative behaviors result due to the 
compound effects of the bottom-up (stimulus-driven) 
and the top-down (goal-directed) constraints. 
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