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ABSTRACT  
 
This paper describes experiments that were performed 
involving a professional downhill skier equipped with a 
low-cost L1 GPS receiver and a MEMS-IMU composed 
of 3 single axis gyroscopes, accelerometers and 

magnetometers. In addition, the skier carried an L1/L2 
GPS receiver and a tactical-grade IMU (LN200). The 
experiments aimed to assess the navigation performance 
of different GPS/MEMS-IMU integration strategies 
compared to high-quality GPS/INS integration. After 
presenting an overview of currently applied integration 
methods, the unscented Kalman filter approach was 
compared to the extended Kalman filter approach in 
loosely coupled mode. The relevance of the simple 
MEMS-IMU sensor error model was verified by 
comparing the filter output to the reference data. 
 
 

INTRODUCTION  
 
Nowadays, the performance analysis of athletes is based 
on simple chronometry and video recordings. GPS 
measurement methods allow the accurate recording of 
position, velocity and derived acceleration, which opens 
new possibilities for continuous comparison of athletes’ 
performance throughout a racecourse [1]. 
 
Unfortunately, the accuracy of GPS is limited by the high 
dynamics of sports (e.g. ski racing, car racing, rowing). 
Quick changes of the satellites constellation render the 
carrier-phase ambiguity resolution difficult or even 
impossible. To overcome the lack of continuity in the 
GPS signals and to observe accelerations and orientations, 
inertial and magnetic sensors are integrated with GPS. 
While motorsports can benefit from the traditional 
GPS/INS instrumentation [2], the ergonomic constraints 
of some sports (e.g. ski racing) urge to use devices based 
on Micro-Electro-Mechanical System (MEMS) 
technology. Due to their small size, low cost and power 
consumption, MEMS sensors are suitable for trajectory 
analysis in sports where ergonomics plays an important 
role. In addition, because of their cost and size, dual-
frequency GPS receivers will be restricted to few 
disciplines with higher accuracy demands.  
 



In [3], we introduced a L1 GPS/MEMS-IMU system that 
provides encouraging results for the performance 
evaluation in sports (RMS of 0.5m in the position, 0.2m/s 
for the velocity and 2° for the orientation determination). 
Furthermore, it has been shown that such integration was 
capable to bridge GPS gaps of up to 10s without 
significant accuracy degradation. Nevertheless, the 
GPS/MEMS-IMU integration strategy based on an 
extended Kalman filter (EKF) and the inertial error model 
are revised in this paper. 
 
Firstly, we investigate alternatives to the EKF that might 
be more appropriate to use considering the high dynamics 
of some sports. Indeed, the first-order approximation of 
the EKF may yield insufficiently accurate results for high 
non-linearities. After discussing some alternatives, we 
first study the implementation of sigma-point filters 
which by principle does not require the approximation by 
linearization. Secondly, the error model of the MEMS-
IMU is analyzed. The pertinence of sensor modeling is 
verified experimentally by means of reference signals 
(tactical-grade IMU and carrier-phase DGPS positioning). 
 
 

GPS/INS INTEGRATION STRATEGY TRADEOFF 
 
EKF is widely used in GPS/INS integration. Although it 
has proven its effectiveness with higher-grade inertial 
sensors, its dependency on correct (physical) models, the 
underlying Gaussian assumption and linearization 
somewhat limits its use when working with MEMS 
sensors. The linearization independency might be a 
crucial factor in sports because of the high dynamics 
endured in some disciplines. In addition, the fast 
convergence of the filter is crucial as the motion of the 
athletes may change rapidly (e.g. after the start). In the 
following, we revise different integration strategies and 
discuss their operation with the sports application (Table 
1).  
 

 
 
Table 1: Comparison of different GPS/INS integration 
strategies for the sports applications 
 
 
Linearization Dependency  
 
In conventional GPS/INS integration the state distribution 
of the EKF is approximated by a Gaussian random 
variable which is then propagated analytically through the 

(first-order) linearization of the non-linear system. In 
contrast, particle filters (PF) and sigma-point KF (SPKF) 
propagate the state covariance accurately (for the SPKF at 
least to the second-order). Hence, the prediction mode can 
be improved. Unlike EKF and SPKF, PFs make no 
assumption on the probability density function (PDF) and 
might show a superior numerical accuracy to other 
filtering methods. However, they are computationally 
expensive for high-dimensional systems with large 
sampling rates.  
The derivation of Jacobians for system and measurement 
models required in EKF is nontrivial and may lead to 
significant implementation difficulties. Furthermore, EKF 
only tolerates small errors. Otherwise, the first-order 
approximations may cause biased solutions and 
inconsistency of the covariance update which can lead to 
filter instability. Second order filters may correct the bias 
terms, but the calculation of the second order derivatives 
(Hessians) is nontrivial and computationally expensive. 
Iterative versions of KF as well require high computation 
power and are therefore not retained. 
 
 
Model and Prior Knowledge Dependency 
 
The KFs are based on simplified, physically meaningful 
error models which are established according to prior 
knowledge and experience. Artificial Intelligence (AI) , 
on the other hand, may be appropriate when the 
uncertainty in model structure is large, complex or vary in 
time – as it can be the case for MEMS sensors. Therefore, 
many AI-based algorithms (Artificial Neural Networks 
[4], neuro-fuzzy KF [5], Adaptive Neuro-Fuzzy Inference 
System [6]) have been developed which have sometimes 
shown improved error behavior compared to other 
filtering methods under steady conditions. On the other 
hand, it is questionable whether empirical models applied 
in AI are better suited to decorrelate signals from errors 
especially in cases where the varying dynamics make 
training sequences short and thus less appropriate. 
Additionally, AI methods do not use any statistical 
information as input, nor do they output statistics 
associated with the solution, unless methods of cross-
validation are applied [6]. Thus, AI-based methods are not 
very suitable for trajectory smoothing and appear less 
appropriate for sports applications. 
 
 
Sensor Dependency and Parameter Tuning 
 
Tuning the measurement covariance matrix R  and the 
system noise matrix Q  of the EKF can be time-
consuming and requires experience and background in 
both, GPS and inertial systems. The parameters may 
significantly vary even for sensors of similar quality. On 
the contrary, model-less algorithms based on AI can 
perform the self-following and tuning under steady 



dynamics. Unfortunately, this assumption can not be 
satisfied in sports, where rapid filter convergence is a 
major criterion. In addition, adaptive KF ([7], [8]) are not 
retained because of the mentioned difficulty to tune the 
statistical models over short time periods and because of 
the increased computational power. 
 
 
Computational Cost and Convergence 
 
As shown in Table 1, PF are computationally expensive 
because of the large number of particles that need to be 
propagated. They are computationally too costly for high-
dimensional systems and short integration times, 
especially in the perspective of implementing the filter in 
real-time. On the other hand, [9-11] have shown that the 
computational complexity of SPKF was equivalent to 
EKF (O(n3)). Furthermore, this research also mentions the 
fast convergence of the SPKF states compared to the 
EKF. Therefore, and with respect to the other criteria of 
Table 1, SPKF seems to be the most appropriate filter 
candidate for our application. The implementation of 
both, EKF and SPKF, is presented simultaneously and 
their performance compared in the sequel. 
 
 
SYSTEM AND OBSERVATION MODEL  
 
Both EKF and SPKF were implemented in the local level 
frame (superscript n) which makes the interpretation of 
the state variables straightforward. The following 
strapdown equations need to be solved [12]: 
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For the inertial measurements a simplified model was 
considered. Judging that the misalignments, drifts and 
constant offsets could not be decorrelated efficiently 
given the characteristics of the MEMS sensors and limited 
integration periods, only a bias term is considered. Their 
associated errors are modeled as first order Gauss-Markov 
processes: 
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where ˆ b is the estimated inertial observation (specific 
force or rotation rate), b  the inertial measurement, 

bb the bias of the inertial measurement, bw  the 

measurement noise, 2σ b  the covariance at zero time lag 

and bβ  the inverse of the correlation time [13]. 
 
GPS positions and velocities are integrated based on a 
loosely coupled approach. Accounting for the lever-arm 
effect, the GPS position measurement model can be 
expressed as follows: 
 

( )ˆ e n e n b
r k n IMU n b rh − = + +x R r R R a w               

 
where ba  is the lever-arm vector between the INS center 
of navigation and the GPS antenna location and rw  the 
position measurement noise. 
 
The GPS velocity measurement model needs to consider 
the rotation of the local level frame with respect to the 
body frame n

nbω : 
 

( )ˆ e n n b
v k IMU nb b vh − = + × +x v ω R a w               

 
The MEMS magnetometers can be introduced as external 
measurements as well. However, [3] and [14] have noted  
that these sensors were sensitive to high frequency 
accelerations. [3] further pointed out that the magnetic 
measurements improved the orientation estimation only 
negligibly and thus do not affect the capacity of the 
MEMS sensors to bridge GPS gaps. Thus, besides during 
the sensor orientation initialization, the magnetometers 
are left aside in this investigation. 
 
 
SPKF implementation aspects 
 
In SPKF, the variance of the state is represented by a set 
of sigma points (SPs) whose propagation in time follow 
the same non-linear function as the mean value. The SPs, 
as well as their weights, can be chosen in various ways. 
The main approaches are the Central Difference Filter 
(CDF) and the Unscented Kalman Filter (UKF). The 
difference between the two methods lies in the 
approximation of the posterior covariance term. The CDF 
has a smaller absolute error in the fourth order term and 
also guarantees positive semi-definiteness of the posterior 
covariance. In contrast, the UKF can handle the non-
positive semi-definiteness with two scaling parameters 
[15].  
 
Because of the simplicity and limited computational cost,  
a Square-Root (SR) version of the UKF with non-additive 
error model has been implemented for this usage. This 
method is an adaptation of the SR-UKF [9] and the scaled 
unscented transformation exploited for the spreading of 



the SPs [16]. The proposed algorithm chooses 2n +  SP 
( n  being the number of the states) that match the first 
two moments and that minimize the third order moments 
(called spherical simplex SP).  
 
As the system model is a nonlinear function of the state 
and noise vector, the system noise is generated and has to 
go through the system process model. By augmenting the 
state x  by the noise vector w , the effect of the noise on 
the covariance propagation can be described naturally: 
 

a ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
x

w
,  a ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

P 0
P

0 Q
                             

 
where superscript a  indicates the augmented state. Thus, 
the system model with non-additive noise can be written 
as 
 

1 ( ) ( , )

( , )

a
k k k k

k k k

f f

E
+ = ≡

=

x x x w
Q w w

                            

 
In the standard UKF, the covariance P  is computed 
recursively. This requires calculating the matrix square-
root T⋅ =S S P  at each step (by Cholesky factorization). 
On the other hand, the Square-Root implementation of the 
UKF (SR-UKF) propagates S  directly [10, 17]. This 
guarantees the positive semi-definiteness of the UKF 
during the covariance propagation.  
 
 
Trajectory smoothing 
 
The visibility of satellites often varies along the tracks. By 
processing the trajectories in forward and backward 
mode, the solution during periods with weak satellite 
constellations can be improved. The following fixed-
interval smoothing algorithm combines forward and 
backward filtered data sets in the least squares sense: 
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where subscript f  denotes the forward, b  the backward 
and s  the smoothed solution. 
 
 

EXPERIMENTAL SETUP  
 
In order to investigate the navigation performance of the 
low-cost L1 GPS/MEMS-IMU setup, the instruments 
were mounted in a backpack together with a reference 

system, comprising a dual-frequency GPS receiver 
(Javad) and a tactical-grade IMU (LN200). Three MEMS 
sensors (xsens MTi) were fixed rigidly to the reference 
IMU with a constant lever arm (Fig. 1). A dozen of 
downhills of approximately 1 minute duration were 
performed by a professional skier. Each run was preceded 
by a static initialization phase of 2-3 minutes. 
Unfortunately, the GPS measurements of the low cost 
receiver (u-blox) could only be exploited for one run 
because its antenna was physically damaged. Therefore, 
the L1 measurements of the dual-frequency reference 
receiver were also used in the GPS/MEMS-IMU 
integration. 
 

 
 
Fig. 1: Experimental Setup mounted on a professional 
skier 
 
 

GPS/MEMS-IMU PERFORMANCE ASSESSMENT  
 
The MEMS-IMU measurements were integrated at 100Hz 
with GPS position and velocity updates at 1Hz. The GPS 
trajectory was previously computed based on differential 
L1 GPS measurements with Novatel’s GrafNav software. 
The implemented EKF and UKF solutions were then 
compared to the reference tracks which were determined 
with the dual-frequency GPS and the LN200 
measurements and commercial software packages 
(PosProc). Table 2 compares the mean and maximum 
differences between 6 reference trajectories and those 
obtained by EKF and UKF integration of L1 
GPS/MEMS-IMU integration.  
 
The differences of the mean error are relatively small 
(cm-level for position, 0.3° for orientation) and are mainly 
driven by differential GPS accuracy (with floating 
ambiguities). On the other hand, the maximum errors are 
larger for the UKF – notably for the orientation. These 
maximum errors occur at the beginning or at the end of 
the run (Fig. 2 and Fig. 3). As soon as the filter 
parameters have converged the two filters provide 
identical results.  

xsens MTi 

LN200

Javad Legacy 



 
The covariance comparison provides similar results for 
both filters. This is demonstrated by plotting the 
covariance of the orientation and the bias during downhill 
11 in Fig. 4 and Fig. 5 respectively. The covariance 
decreases rapidly after the start of the skier (at 10s). 
 
From the implementation point of view, the UKF 
sometimes encountered problems with the positive semi-
definiteness of the S  matrix after the Cholesky update 
[18]. The Frobenius norm and the modified Cholesky 
factorization [19] helped to overcome these problems.  
 
 

 
 
Table 2: Comparison of the mean and maximum 
errors of the EKF and UKF for 6 downhills 
 
 

 
Fig. 2: Position and velocity errors of EKF and UKF 
during downhill #11 
 
Furthermore, we often noticed longer computational times 
with the UKF compared to the EKF, even though the 
previously mentioned references indicate that both 
algorithms are O(n3) which confirms the research 
presented by [20]. However, the differences might come 

from the programming language (Matlab) where the 
implementation of some functions (e.g. the matrix 
inversion) is highly optimized, whereas others are less 
(SP generation, update equations, covariance 
reconstruction). Additionally, the EKF system matrix F  
was derived analytically which saves computational 
power.  
 
Considering the increased processing time and numerical 
instabilities, the UKF seems to be less interesting for this 
application. On the other hand, the UKF remains a 
straightforward approach for the testing other (more 
complex) models (e.g. closely-coupled integration, 
hybridization with other sensors) and might provide better 
results than the EKF under different dynamics.  
 

 
Fig. 3: Orientation error of EKF and UKF during 
downhill #11 

 
Fig. 4: Orientation covariance estimation of EKF and 
UKF during downhill #11 
 



 
Fig. 5: Bias covariance estimation of EKF and UKF 
during downhill #11 
 
 

MEMS-IMU ERROR MODEL INVESTIGATION  
 
A simplified error model was considered for the inertial 
measurements assuming that other effects (e.g. 
misalignments, drifts and constant offsets) could not be 
efficiently decorrelated given the complexity of the 
MEMS sensors’ error behavior. The experiments allow 
the direct comparison of the 3 MEMS sensors’ output 
with the reference signals provided by the LN200. This 
information is also employed to verify the relevance of 
the MEMS error model and parameter estimation. 
 
Firstly, in order to compare the raw measurements, the 
physical misalignment between the two systems had to be 
determined. These were estimated by feeding the EKF 
with the reference attitude angles provided by the 
reference solution (based on the LN200) using the 
following observation model: 
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where B  is the skew-symmetric form of the 
misalignment angles, 200LNφ  are the attitude angles of 

the reference solution, ϕw  the measurement noise and 

Bβ  the inverse of the correlation time “fixed” to infinity. 
The accuracy of the misalignment angles is limited by the 
accuracy of the MEMS orientation determination and is 
estimated to 0.5°. 
 
With the reference signals corrected for the misalignment, 
the raw signals could be compared directly. We estimated 

biases b  and scale factors s  through parameter 
adjustment of the following model, assuming that drifts 
can be neglected for data sets of this short duration: 
 

( )200 1LN MEMSv s b− = − +                    
      

During the static initialization before the downhill, only 
biases could be computed (Fig. 6). The absence of 
dynamics during this period did not permit to isolate scale 
factors. On the other hand, during the downhills the 
signals decorrelated to a greater extent and the estimation 
of the scale factor became possible.  
 
By comparing the biases estimated on the static portions 
before and after the downhills and considering that the 
duration of the runs does not exceed one minute, the 
adjustment of drifts can be neglected. For longer data sets, 
the correlation time could take into account sensor error 
drifts. 
 

 
Fig. 6: Angular rotation rate around the z-axis.  
 
 
Table 3 summarizes the result of a representative data set. 
It can be seen from the standard deviation that some 
biases estimated during the static initialization period are 
statistically irrelevant. On the other hand, the biases 
adjusted during the downhill are statistically meaningful 
and more precise. The scale factors for the accelerometers 
are statistically significant, whereas those for the 
gyroscopes proof to be insignificant. However, the 
correlation between the accelerometer biases and scale 
factors remains large (0.9 for the “horizontal” axis, 0.3 for 
the “vertical” axis).  
 
Fig. 7 to Fig. 11 give examples of the estimated biases 
and scales factors for 3 MEMS sensors and 8 downhills. 
By comparing the time series of the biases estimated with 
and without scale factors during the dynamic portion of 
the downhill, it can be seen that the “bias-only” 
estimation provides similar values for all runs (Fig. 8 and 



Fig. 10). The two methods do not provide statistically 
different results. On the other hand, if accelerometer 
biases and scale factors are adjusted, the results vary 
considerably between the tracks and seem to be correlated 
between the MEMS sensors (Fig. 7 and Fig. 9). It appears 
that the mean values of the biases and scale factors vary 
considerably between runs. This emphasizes the difficulty 
to separate them and thus to determine “constant” 
calibration parameters for accelerometers with statistical 
significance. Thus, the results of the accelerometer scale 
factors have to be analyzed with caution. However, the 
gyroscope biases seem to converge to more constant 
values with the two estimation methods, mainly because 
biases and scale factors decorrelate to a greater extent 
(Fig. 11 and Table 3). 
 

 
 
Table 3: Estimated biases and scale factors during the 
static initialization and during the downhill of track #1 
and MEMS sensor #1 
 

 
Fig. 7: Biases and standard deviations (1σ) adjusted 
during the static initialization of downhills #1 to #8 for 
the z-axis of 3 accelerometers  
 

 
Fig. 8: Biases and standard deviations (1σ) adjusted 
during the downhills #1 to #8 for the z-axis of 3 
accelerometers  

 
Fig. 9: Scale factors and standard deviations (1σ) 
adjusted during the downhills #1 to #8 for the z-axis of 
3 accelerometers 
 

 
Fig. 10: Biases and standard deviations (1σ) adjusted 
during the static initialization of downhills #1 to #8 for 
the y-axis of 3 gyroscopes 
 



 
Fig. 11: Biases and standard deviations (1σ) adjusted 
during the downhills #1 to #8 for the y-axis of 3 
gyroscopes 
 
 
The biases deduced from the raw static signals are 
compared to those estimated by the EKF in Fig. 12 and 
Fig. 13. This comparison shows that the obtained 
differences are statistically insignificant.  
 
We also studied the performance of the estimated biases 
and accelerometer scale factors fed back to the EKF. 
Either the biases estimated by the EKF or the calibrated 
biases from the raw data comparison were applied. The 
accelerometer scale factors were alternatively applied to 
the raw measurements. Table 4 illustrates the performance 
of the EKF for one representative downhill. By correcting 
the specific force measurements with the adjusted scale 
factors, the results are influenced negligibly. The 
differences turn up to be below centimeter-level and of a 
few hundredth of a degree for the orientation. When 
applying the calibrated biases instead of estimating them 
with the EKF, the results are worse. The differences are at 
the centimeter level and of the order of a few tenth of a 
degree. 
 
The investigation has shown that the biases estimated by 
the EKF and those deduced from the comparison to the 
reference measurements were coherent. As shown in 
Table 4, applying the calibrated accelerometer scale 
factors does not improve the filter performance. This is 
most likely due to the large correlation with the estimated 
biases. Hence, extending the MEMS error model by 
constant scale factors does not lead to improved 
navigation performance of the integrated system. 

 

 
Fig. 12: Difference between the gyroscope biases 
estimated with the EKF and those deduced from the 
raw data comparison during the downhill (MEMS 
sensor #1). The error bar indicates the standard 
deviation of the difference (1σ). 

 
Fig. 13: Difference between the accelerometer biases 
estimated with the EKF and those deduced from the 
raw data comparison during the downhill (MEMS 
sensor #1). The error bar indicates the standard 
deviation of the difference (1σ). 
 

 
 
Table 4: Accuracy of position and orientation as 
function of the applied biases and scale factors 
(downhill #10) 
 
 



CONCLUSION AND PERSPECTIVES 
 
The presented research aimed to investigate two 
alternative GPS/MEMS-IMU integration strategies and to 
evaluate the inertial error model of the L1 GPS/MEMS-
IMU system for sports applications. 
 
Various integration techniques were discussed. Extended 
(EKF) and unscented Kalman filters (UKF) haven been 
identified as the most appropriate methods for the sports 
application because of their rapid convergence, limited 
computational complexity and reasonable computational 
complexity. Unlike the EKF, the UKF does not require 
the linearization of the system model for state and 
covariance propagation. However, the experimental setup 
showed that the performance of both filter types was 
numerically equivalent. On the other hand, the UKF 
implementation tends to be computationally more 
expensive and numerically less stable than EKF. 
Nevertheless, UKF remains an efficient alternative for 
model evaluation and might proof interesting when non-
linearities become more significant. 
 
The inertial error model was evaluated through a 
comparison of the raw measurements between the 
tactical-grade reference IMU and the MEMS-IMU. It was 
shown that the specific force biases and scale-factors 
identified by this comparison during the dynamic portion 
of the downhill were strongly correlated. Furthermore, 
applying the estimated accelerometer scale factors to the 
raw MEMS measurement did not improve the 
performance of the EKF. The gyroscope scale factors 
could not be determined with statistical significance. 
Then, the application of the biases based on the raw signal 
comparison was compared to those estimated by the EKF. 
The difference of navigation performance was shown to 
be statistically insignificant for all the downhills which 
proves the adequacy of the adopted MEMS error model.  
 
Future work will focus on the loosely coupled versus the 
closely coupled GPS/MEMS-IMU integration. The latter 
could bring benefits in this particular environment where 
satellite observations can be used even in the absence of 
GPS-position fix [21]. In addition, a setup of redundant 
MEMS-IMU will be investigated in order to reduce the 
noise in the navigation output parameters and detect IMU 
measurement errors [22].  
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