
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147932704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/copyright

Author's personal copy

INTEGRATION, the VLSI journal 41 (2008) 38–48

Joint hardware–software leakage minimization approach for the register
file of VLIW embedded architectures$

David Atienzaa,b,�, Praveen Raghavanc, José L. Ayalad, Giovanni De Michelia,
Francky Catthoorc,1, Diederik Verkestc,2, Marisa López-Vallejod

aLSI/EPFL, Station 14, 1015 Lausanne, Switzerland
bDACYA/UCM, Avda. Complutense s/n, 28040 Madrid, Spain

cIMEC vzw, Kapeldreef 75, 3001 Heverlee, and KULeuven Belgium
dDIE/UPM, Avda. Computense s/n, 28040 Madrid, Spain

Received 31 January 2007; received in revised form 11 April 2007; accepted 23 April 2007

Abstract

New applications demand very high processing power when run on embedded systems. Very Long Instruction Word (VLIW)

architectures have emerged as a promising alternative to provide such processing capabilities under the given energy budget. However, in

this new VLIW-based architectures, the register file is a very critical contributor to the overall power consumption and new approaches

have to be proposed to reduce its power while preserving system performance. In this paper, we propose a novel joint hardware–software

approach that reduces the leakage energy in the register files of these embedded VLIW architectures. This approach relies upon an

energy-aware register assignment method and a hardware support that creates sub-banks in the global register file that can be switched

on/off at run time. Our results indicate energy savings in the register file, after considering the overhead of the added extra hardware, up

to 50% for modern multimedia embedded applications without performance degradation. We illustrate this approach using real-life

applications running on these processors. We also illustrate the tradeoff between the area overhead vs. the gains in the leakage energy for

the different strategies.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Register file; Low-power design; VLIW; Compiler optimization; Leakage reduction

1. Introduction

In the last years there has been an increase in
computation requirements for embedded systems due to

increasing complexity of new communications and multi-
media standards. As a consequence, this has fostered the
development of high-performance embedded plat-
forms that can handle such high computational require-
ments of these recent complex algorithms, which cannot
be executed in traditional RISC-like embedded processors.
In addition, the continuous time-to-market pressure for
consumer embedded devices has made sure that a
design group can no longer perform a complete redesign
each time a new product needs to be developed. Due to all
these requirements, Very Long Instruction Word (VLIW)
architectures have become a very attractive solution for the
new consumer embedded multiprocessor architectures [1].
As a matter of fact, some platforms from the major
semiconductor vendors (e.g. Philips Nexperia [2], TI
OMAP [3] or ST Nomadik [4]) are already available today.

ARTICLE IN PRESS

www.elsevier.com/locate/vlsi

0167-9260/$ - see front matter r 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.vlsi.2007.04.004

$Part of this work has been submitted to PATMOS 2006. This work is

partially supported by the Swiss FNS Research Grant 20021-109450/1,

and the Spanish Government Research Grants TIN2005-05619 and

TIC2003-07036.
�Corresponding author. DACYA/UCM, Avda. Complutense s/n,

28040 Madrid, Spain. Phone: +3491 394 76 14; fax: +34 91 394 75 27.

E-mail addresses: david.atienza@epfl.ch (D. Atienza), ragha@imec.be

(P. Raghavan), jayala@die.upm.es (J.L. Ayala), giovanni.demicheli@epfl.

ch (G. De Micheli), catthoor@imec.be (F. Catthoor), verkest@imec.be

(D. Verkest), marisa@die.upm.es (M. López-Vallejo).
1Also professor at ESAT/K.U.Leuven-Belgium.
2Also professor at ESAT/K.U.Leuven and EE Dept/V.U. Brussels,

Belgium.

Author's personal copy

Although VLIW-based processors have significantly
improved the processing capabilities of embedded systems,
they still must rely on batteries, which puts intense
pressure on achieving high computational performance
(2–10Giga-OPS) at very low power (0.3–2W). Moreover,
as the impact of static power in forthcoming submicron
technologies is growing [5], energy consumption becomes a
critical design metric as well. In fact, the new processors
with multiple processing units that can fulfill the needed
performance figures consume too much power (10–100W)
[6]. Hence, new methodologies that can decrease the power
consumption of current VLIW-based embedded architec-
tures are required.

In these VLIW architectures, a very important factor is
the overall power consumption and achieved performance
of the final system. In fact, the correct implementation of
the data transfers in the memory hierarchy and its
organization can represent a variation of up to 70% of
the total power consumed in the system, and up to two
orders of magnitude in performance for dynamic multi-
media systems [7,3]. Moreover, recent research [8] has
shown that the shared register file is a key contributor of
the total energy consumed in VLIW designs [9] and its
correct management can dramatically affect the perfor-
mance of the final system. In addition, it is a clear
processor hotspot due to its size and multiple ports
included to handle the continuous exchanges of informa-
tion with the first level of memory caches. Due to these
larger fanout requirements of the cells in the register files,
the transistors in these devices are usually quite large. This
makes leakage to be quite high. Clustering is one of the
techniques to alleviate this problem. Our experiments show
that for a TI C64x-like core,3 the leakage energy of this
clustered register file is about 60% of the whole core and
about 15% of the full system on chip.4 Therefore,
reduction of leakage energy in register files is an important
issue. Technology scaling also worsens these numbers as
gate leakage begins to dominate as we scaled down to 65
and 45 nm devices.

While various techniques have been developed to reduce
the leakage energy in the memories [10–12], there has been
little research in the area of reducing the leakage energy in
register files. In this paper we introduce a novel joint
hardware–software method for VLIW embedded architec-
tures that aims to reduce the leakage energy consumed in
the register file. The proposed approach uses an energy-
aware register assignment method in combination of few
extensions of the hardware architecture. This minor
hardware support provides a suitable mechanism to
control the leakage energy consumed in the register file.
Moreover, our results in a cycle-accurate Coarse-grained

Reconfigurable Instruction Set Processor (CRISP) [13] show

significant gains (up to 50%) while running realistic
benchmarks from both the multimedia and wireless
domains. Also, our techniques do not introduce any
performance penalty and only a modest increase in silicon
area.
The remainder of the paper is organized as follows:

Section 2 presents an overview of related work in the area
of VLIW architectures. Then, Section 3 presents the
baseline VLIW architecture modeled in the CRISP frame-
work and Section 4 explains the proposed hardware
extensions for the baseline architecture. Next, Section 5
describes the energy-aware register allocation method used
in our approach. Section 6 presents the experimental
results while running realistic benchmarks that were
considered to illustrate our approach and summarizes the
obtained experimental results achieved. Finally, Section 7
summarizes the major conclusions obtained from our work
and possible future research lines.

2. Related work

Nowadays two major types of processing architectures
are being proposed to achieve low-power processing of
multimedia and consumer applications. First of all, most of
the new low-power embedded platforms (e.g. ST Nomadik
by [4], Philips Nexperia by [2] and TI OMAP by [3]) fall
under the Digital Signal Processing (DSP) paradigm. This
type of platforms is typically customized to handle signal
processing operations efficiently. Interesting domain-spe-
cific commercial DSP processors include processors like TI
C64x series [14] and Coolflux NXP PDSL [15]. Second type
includes application-specific instruction set processors
(ASIPs) [16]. Good examples of commercially available
ASIPs are Altera’s NIOS [17], Tensilica’s Xtensa [18] and
STLx [19].
The academic research performed, like [20,21], has

focused at the problem of identification and implementa-
tion of an efficient set of instruction set extensions. Atasu
et al. [22] presents a way to extend the instruction set
based on the energy-efficiency figures of the new instruc-
tions. Even though these two types of architectures
provide reduced power consumption compared to gener-
al-purpose processors, since these are both largely based on
the VLIW paradigm [23], the register files are usually quite
large and have several ports (although they tend to be
distributed).
In all these previous options of platforms, one key

element that heavily affects their deployed processing
efficiency and consumed energy, apart from the register
file, is the rest of the memory subsystem. Therefore, many
researchers have studied different ways to optimize the
memory bandwidth of the different levels of the on-chip
memory hierarchy taking into account power consumption
apart from performance (see [24,25] for good overviews).
Also, Sahir et al. [26] and Grun et al. [27] propose in their
recent works to exploit the off-chip memory bandwidth of
new dynamic memories in embedded systems, such as

ARTICLE IN PRESS

3By core, we mean the data path, including the control logic, the

pipeline registers and the register file.
4By System on Chip we mean the core and all the L1 and L2 on-chip

memories.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 38–48 39

Author's personal copy

DRAM and SDRAM memories, by using the compiler/
linker. Additional work in this field by Chang et al. [28] and
De La Luz [29] has suggested how to maximize perfor-
mance by distributing the data across the different banks
such that as many accesses as possible can be done in
parallel.

Some techniques like Drowsy Caches, ABB techniques
and other leakage reduction techniques like [11] can be
applied in data caches. Other circuit level approaches also
exist, like [10] which reduces the leakage energy consump-
tion in SRAMS. Some compiler techniques [30] can also be
used to turn off several parts of the processor architecture
based on the instruction schedule. Some other compiler
techniques like [12] exploit the locality of instructions in the
instruction memory to reduce the leakage energy con-
sumption. All these techniques are complementary to the
proposed approach.

However, even though the memory hierarchy has been
already largely studied, work related to the register file
has started only recently. In high-performance processors
research devoted to defining mechanisms that decrease the
energy of multiported register files can be found. Regard-
ing the hardware approaches to the problem, Zyuban and
Kogge [31] have studied the complexity of shared register
files and Scznec et al. [32] and Zyuban and Kogge [33] have
proposed distributed schemes and techniques to split the
global microarchitecture into distributed clusters with
subsets of the register file and functional units. Similarly,
other works like [34] have studied the benefits of multilevel
register file organizations. Conversely, Park et al. [35]
present other techniques that retain the idea of a
centralized architecture, but the register file is split into
interleaved banks, which reduces the total number of ports
in each bank. In a more general context, Koen et al. [36]
have proposed efficient voltage scaling techniques accord-
ing to the application’s behavior, which can efficiently
reduce the overall power consumption of the system. Most
of these techniques are complementary to the proposed
technique as they are applied at a different abstraction or
on other parts of the system. To the best of our knowledge,
we are not aware of techniques that reduce the leakage
energy of the register file at the register allocation level with
little hardware overhead.

In addition, from the software viewpoint, several
approaches have been proposed to alleviate the problem
of the register file. In the last years, several software
pipelining strategies to distribute the use of the register file,
targeted at reducing memory pressure in VLIW systems,
have been outlined [37,38]. Also, Ayala et al. [39,40] have
recently presented different compiler techniques, including
complex register renaming, to reduce the energy spent in
the register file of in-order processors. Nevertheless, such
techniques were not aimed to enable the use of voltage
scaling mechanisms in multiprocessor environments, as we
introduce in the present approach.

3. Initial VLIW architecture

In this work, we have used the compilation and
simulation capabilities provided by the CRISP framework
[13]. It is a re-targetable compiler and simulator framework
based on Trimaran [41], which is cycle accurate. The
baseline architecture described by CRISP consists of a
selectable number of processing elements as in VLIW
processors, with a coarse-grained reconfigurable logic that
can be adapted to each desired DSP instruction set to be
simulated. Furthermore, this framework also enables data
and instruction clustering. The overall architecture of the
VLIW processor used in this paper is shown in Fig. 1.
As Fig. 1 indicates, it includes a main processor core and

a coarse-grained reconfigurable logic, which is divided into
slices or clusters. The main processor core can be any type
of processor (RISC or a multiissue VLIW) and it is
included in the CRISP template architecture. Such a
template is needed to execute realistic applications where
the control-dominated part of the application can be in the
main processor and the ILP-rich part of the application can
be run parallely in the remaining units. In our simulated
architecture the main processor core is a simple single-issue
RISC core, but it is not relevant in our simulations since in
our case studies they form an insignificant proportion of
total operations compared to DSP-like or loop operations.
For the loop-dominated part of the application, they are
mapped on the other clusters.
The different clusters allow extensive customization of

the VLIW processing units for the desired instruction set to

ARTICLE IN PRESS

F
U

F
U

F
U

F
U

F
U

LC Loop Buffer Loop Buffer

Register File Register File

L
0

In
st

ru
ct

io
n

C
lu

st
er

D
at

a
C

lu
st

er

L1 Instruction Memory

L1 Data Memory

U
ni

fi
ed

 L
2

M
em

or
y

E
xt

er
na

l M
em

or
y

Main
Processor

F
U

PC

Fig. 1. Overall platform architecture.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 38–4840

Author's personal copy

be used in the simulated architecture within CRISP. In
each cluster, an instruction can be issued every clock cycle.
Regarding interconnections, different functional units
(FUs) in a cluster read/write data from/to the main shared
register file. In case of clustered register files, an explicit
inter-cluster operation is used to transfer the data from one
cluster to another. The load/store operations take place
from the L1 Data memory to the register file. The RISC
core and the different clusters read their instructions from
the level 1 instruction cache and/or a loop buffer. The loop
buffer is used when the processor is running a loop-
dominated code and the instructions are fetched from the
L1 Instruction Memory. For further details on the loop
buffer and its operation, the reader is referred to [42]. Both
types of caches (data and instruction) are connected to a
unified level 2 cache, which is in turn connected to an
external memory.

As we have previously mentioned, the full system is
divided into clusters (e.g. in Fig. 1 two clusters are
depicted). Each FU in a cluster can consist of a set of
processing elements like ALUs, shifter, multiplier or
memory unit. The choice of which type of processing
elements are added to each of the FU slots is left to the
user. For the experiments we have assumed a homogeneous
set of processing elements (i.e. each FU has all types of
processing elements).

In addition, each cluster is typically associated with an
instruction cluster. A data cluster implies that a set of FUs
use a common register file. Fig. 1 shows two data clusters,
where each cluster contains three functional units. Next, an
instruction cluster is formed by using a distributed
instruction buffer (also called loop buffer [42,43]) across
multiple-issue slots of the VLIW processor. Fig. 1 also
shows two instruction clusters. In fact, all the units of one
data cluster can access the data register file in that cluster.
However, accessing data from another data cluster (i.e.
another local register file) is relatively costly since it
requires an explicit inter-cluster copy operation to transfer
the data from the source data cluster to the destination
data cluster. In contrast, one data cluster with all the
functional units can access any data present in that register
file. Therefore, in order to provide enough bandwidth for
all these potential concurrent accesses, our baseline
architecture includes two read and one write port of the
register file, which are allocated to each slot of the VLIW
processor. All functional units in one slot are connected to
these three ports via a full crossbar.

4. Register file hardware modifications

The baseline architecture described by CRISP [13] has
been extended to support the power reduction mechanisms
proposed in this paper. These modifications are described
in the following paragraphs. Moreover, these architectural
modifications enable the use of voltage scaling techniques
to reduce power consumption in the register file by turning

down the voltage power supply of the unused areas of this
device.
First, the register file shared among all processing

elements has been split into several banks, which can be
independently accessed by the functional units. Then, a
Dynamic Voltage Scaling (DVS) technique is applied to
turn the unused banks into a low-power state and thus save
as much energy as possible in the system.
Turning memory devices into a low-power state has been

proposed before in the literature for different objectives. In
fact, previous research has focused on turning off unused
memory banks (or other resources) by gating the power
source. However, when the objective is a memory device,
the cost of recovering the lost information could hide any
power saving or, at least, represent a very significant time
penalty. For example, there is an extra cost to load the data
from the main memory. Moreover, when working with the
register file, there is no way to recover data from memory
without extra accesses to the cache. For register files,
various authors have suggested that turning these unused
registers into a low-power state (drowsy state), the power
consumption can be reduced to a minimum without data
loss [44].
As a result, the information in a memory cell is preserved

while it is in the drowsy state. However, the data line must
be restored to a high-energy mode before its contents can
be accessed. One circuit technique for implementing
drowsy memory devices is Adaptive Body-Biasing with

Multi-Threshold CMOS (ABB-MTCMOS), where the
threshold voltage is dynamically increased to yield reduc-
tion in leakage energy. This leakage reduction technique
requires that the voltages of the N-well and of the power
and ground supply rails are changed whenever the circuit
enters or exits the drowsy mode. Since the N-well
capacitance of the PMOS devices is quite significant, this
increases the energy required to switch the memory cell to
high-power mode and can also significantly increase the
time needed to transition to/from drowsy mode. A more
efficient approach to achieve the drowsy state is proposed
by Flautner et al. [45], where a DVS technique is exploited
to reduce static power consumption. In fact, due to short-
channel effects in deep-submicron processes, leakage
current is significantly reduced with voltage scaling. Thus,
the combined effect of reduced leakage current and voltage
yields a dramatic reduction in leakage power. This is the
solution used in our approach to reduce energy consump-
tion.
The method proposed by Flautner et al. utilizes DVS to

reduce the leakage power of cache cells. By scaling the
voltage of the cell to approximately 1.5 times V th, the state
of the memory cell can be maintained. Due to the short-
channel effects in high-performance processes, the leakage
current will dramatically reduce with voltage scaling. Since
both voltage and current are reduced in DVS, a dramatic
reduction in leakage power can be obtained. Since the
capacitance of the power rail is significantly less than the
capacitance of the N-wells, the transition between the two

ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 38–48 41

Author's personal copy

power states occurs more quickly in the DVS scheme than
the ABB-MTCMOS approach. Possible disadvantages of
the drowsy circuit are increased susceptibility to noise and
the variation of V th across process corners. The first
problem may be corrected with careful layout because the
capacitive coupling of the lines is small. The second
problem, variation of Vth, may be handled by choosing a
conservative V DD value.

Fig. 2 shows the modified register file cell used to support
the drowsy state. As can be observed, the dual power
supply is switched to low V DD when the cell is in drowsy
state. It is necessary to use high�Vth devices as pass
transistors because the voltage on bit lines could destroy
the cell contents. Before a register cell can be accessed, the
power supply has to be switched to high V DD to restore the
contents and allow the access. An extra read_enable/
write_enable gating circuit assures the memory cell is not
accessed (i.e. read or written) while being in drowsy state.
Furthermore, the register file architecture is split into
independent banks and each subbank counts with the
additional logic required to implement the DVS state. Since
the low-power consumption state is selected for the whole
bank instead of a specific register, the overhead of the
control logic is greatly minimized. While the above
mentioned technique is one of the techniques of imple-
menting turning off the register file banks or making them
drowsy, other methods can also be used. The proposed
technique can be used independent of the exact circuitry
used for making the register file banks drowsy.

The previously described hardware is now exposed to the
compiler to be taken advantage of. The compiler can now
power up banks of registers in the register file when they
are needed by the processing elements. In normal execution
of the system, most banks of the shared register file are
kept in a low-power state thanks to our modified register
assignment implemented in the compiler. In fact, only
when needed, the register file banks are powered up to

fulfill the register demands of the code, without perfor-
mance degradation.

5. Energy-aware compilation

The complete hardware architecture depicted in the
previous section is exploited in our approach thanks to the
design of an extended energy-aware compiler. The exten-
sions to exploit this hardware has been added to the
compiler included in the CRISP framework.
The register assignment is the phase of any compiler that

determines which register/s to use for each data element in
the Data Flow Graph (DFG). As a matter of fact,
computer architectures (out-of-order processors) can de-
stroy this first assignment by means of a hardware
mechanism designed to avoid hazards, namely using
register renaming, as was studied by Ayala et al. [39]. Since
there is no register renaming done in our architecture, this
is not an issue for the proposed technique.
Traditionally, the register assignment algorithm has been

designed to choose registers from the whole pool of free
registers without any other constraint. In the case of
Trimaran, as in many other compilers, when it tries to
assign an architectural register to the instruction operands,
it retrieves the first available register from a First Input

First Output (FIFO) list of free registers. In fact, the order
of the registers inside the list is not representative of the
underlying physical architecture. Moreover, since Trimar-
an does not consider any constraint on assigning the
registers, they are selected from the FIFO without a
particular order. Therefore, the assigned registers can easily
come from different register file banks if no modification to
the register assignment algorithm is accomplished.
The register assignment policy we have implemented in

the compiler modifies the aforementioned traditional
assignment of Trimaran by promoting every operand in

ARTICLE IN PRESS

Vth >> 0.3V
0.3V

drowsydrowsy

WE RE
drowsy

word1

word2

word3
in1

in2

out1

1.1V

Fig. 2. Register file cell.

select

register

from FIFO

mark

register

compare

with

previous operands

STARTwhile not

available

same bank

next

instruction?
different

bank

Fig. 3. Register assignment algorithm.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 38–4842

Author's personal copy

the instruction to the same register file bank. With this
modification, most of the registers are selected from the
first bank in the register file and the other banks can be
kept in the low-power state by turning down the voltage
power supply. If the register pressure increase, registers
may then be allocated from the next bank and so on.

The structure of the algorithm followed by the compiler
to assign the architectural registers is shown in Fig. 3. First,
the first available register in the list of free registers is
selected. This register is double-checked to be free and not
system-reserved. Then, it is compared to the registers
assigned to the other operands of the instruction and other
instructions in that Basic Block. If the register file bank for
the operand under assignment does not match any of the
other operands of the instruction, this register is discarded
and the procedure is repeated until a register belonging to
the same bank is found. When the register is selected, the
liveness of the register is calculated and the annotation is
generated. It is important to notice that the compiler
technique is not dependent on the size of banks. This is
further illustrated in Section 6.

6. Experimental results

We have applied the proposed method to several case
studies that represent different modern multimedia, wire-
less and encryption application domains from the Media-
Bench benchmark suite [46] and other realistic multimedia
and wireless applications. The following benchmarks were
used:

� adpcm_decode: this benchmark performs adaptive dif-
ferential pulse code demodulation, which is a very
simple audio decoding algorithm particularly suited for
embedded systems.
� g721_decode: it is a reference implementation of the
CCITT (International Telegraph and Telephone Con-
sultative Committee) for the G.721 voice decompression
standard.
� mesa_texgen: it is an implementation of the Mesa 3D-
graphics library clone of OpenGL. In our application, it
is used to generate a texture mapped version of the Utah
teapot. All display output functions were removed from
the library due to the lack of support in CRISP for this
type of I/O operation.
� aes: this benchmark is an implementation of the
Advanced Encryption Standard (AES), also known as
‘‘Rijndael’’. It is a block cipher that uses a fixed-block
size of 128 bits and a key size of 128, 192 or 256 bits. It
has been adopted since 2001 as an encryption standard
and is used worldwide today.
� blowfishencode: it is an implementation of the popular
royalty-free block encryption algorithm, designed by the
highly respected cryptographer Bruce Schneier. The
blowfish encoder encrypts and decrypts in 64-bit blocks,
and can use a key length of up to 448 bits.

� epic: this benchmark is an image compression utility that
uses a bi-orthogonal critically sampled dyadic wavelet
decomposition and a combined run-length/ Huffman
entropy coder. It has been designed specifically for
embedded systems to enable fast decoding without
floating-point hardware.
� sha: it is an implementation of the Secure Hash
Algorithm (SHA-1 Hash) for use in the Secure Hash
Standard (SHS), which can be used to generate a
condensed representation of a message called a message
digest. It produces a 160-bit hash and there are no
known attacks against it, making it very convenient for
inter-communication between wireless embedded term-
inals.
� mpeg2decode: it is an implementation of the decoder of
the MPEG2 standard for digital video transmission. In
this case, the most important kernel inside the applica-
tion is the inverse cosine transform and motion
estimation, which is a highly parallel operation.
� wcdma-transmit: this benchmark is an implementation
of wideband CMDA transmit algorithm which is one of
the newer 3G standards. The data rate for the transmit is
2Mbps. The most important part of the algorithm (from
profiling) is the filter phase in the algorithm.
� wcdma-receive: this benchmark corresponds to the
receiver end of the above wideband CMDA. The
important part of this algorithm is also the filter phase
and the Viterbi decoder as well.

All these benchmarks are largely loop-execution domi-
nated, like most embedded applications. For this reason, the
algorithm and our shown results focus on the registers
assigned inside loops in the VLIW processing part of the
system, which account for the largest part of the energy
consumed (both dynamic and leakage), and do not consider
the scalar registers in pure-control part of the application.
The CRISP framework detailed in Section 3 was used to

simulate a VLIW processor. The processor chosen for our
simulations was a 32-bit, 4 issue VLIW processor. Further
exploration of the optimal number of slots for the VLIW
platform is outside the scope of this paper, but the
technique proposed can be still used for wider VLIWs
and also for clustered register file. In case of the clustered
register file, care must be taken such that each of the
clusters are handled together. The register file was
considered to have 12 ports (eight read and four write),
64 entries deep. This size of register file is fairly
representative of embedded systems. The TI’s
TMS320C64x series has such sized register files. Various
banking strategies were chosen for exploration: 16, eight,
four and two banks. The 90 nm leakage model proposed by
Raghavan et al. [47] was used for the different register file
architectures considered.
When the benchmark compilation process has finished in

the CRISP framework, the percentage of utilization of the
register file was obtained from the generated trace of the
annotated code. Therefore, using this information obtained

ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 38–48 43

Author's personal copy

during the power-aware register assignment, the resulting
energy savings can be calculated for each of the banking
strategies.

Let us first consider the simplest possible partition with
respect to the extra hardware overhead and its complexity
for the management of the register file, namely, when the
register file is divided into two banks. The leakage energy
savings obtained for the different banking schemes are
shown in Fig. 4. The results shown for each benchmark
using our proposed hardware/software approach have been
normalized to the baseline architecture considered where
all the banks of the register file are switched on during the
complete execution of the program. Firstly, we can observe
that even with such a simple two-banked register file, the
leakage energy of some benchmarks can be reduced by a
50% when one bank is turned to low-power mode roughly
during the whole execution. In the case of some bench-
marks like the mpeg2decode, mesa_texgen, aes, blowfish,
after a careful analysis of the compilation and simulation
results, we could verify that these application put an
extremely high pressure in the register file. Hence, almost
all the registers are indeed used to the fullest extent during
the whole execution and no bank could be turned off.

Next we can consider the case when a larger number of
banks are introduced in the register file (say four, eight and
16 banks). Fig. 4 also shows the case when four, eight and
16 banks are used. Once again the gains are normalized to
the case when all the banks in the corresponding banked
architecture are active. It can be seen that, as the number of
banks defined for the register file increases, the gains
increase as well in most of the studied embedded
applications, since they do not use a large number of

simultaneous registers. Thus, more banks can be turned to
low-power mode. In addition, after a careful study of the
results, we can observe that the benchmarks that benefit
more from the eight-banked partitioning of the register file
are the embedded multimedia applications. Moreover,
adpcm_decode shows that even though it requires a
significant amount of main memory to process the
incoming audio (in our experiments up to 1MB), it puts
very little register pressure. Also benchmarks like wcdma_-
transmit and wcdma_receive, which have very high-perfor-
mance constraints, require only a few number of registers.
Hence, they enormously benefit from the increase in the
number of banks considered for the register file. Con-
versely, the benchmarks from the cryptography domain
(e.g. blowfishencode, sha, etc.) utilize more registers
concurrently and do not show any improvement till 16
banks are used. In the case of the mpeg2decode benchmark,
the register requirement is up to 59 registers and hence the
gains from the proposed leakage saving strategy comes in
only when 16 banks are used and one bank can be switched
off.
Finally, the previously described trends of benefits

achieved by bank-partitioning in the total energy con-
sumed of the register file for both types of application
domains are illustrated in Fig. 4. It shows, as has been
already mentioned, that the eight-banked configuration
saves more energy than the two-banked and four-banked
options since it keeps a larger area of the register file in the
low-power state. On the other hand, this configuration
presents more overhead of extra logic needed to turn the
banks into the low-power state. However, this extra logic
has been found to be quite simple. As a result, the gains

ARTICLE IN PRESS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ad
pc

m
_d

ec
od

e

g7
21

_d
ec

od
e

m
es

a_
te

xg
en ae

s

bl
ow

fis
he

nc
od

e
ep

ic
sh

a

m
pe

g2
de

co
de

w
cd

m
a_

tra
ns

m
it

w
cd

m
a_

re
ce

iv
e

A
ve

ra
ge

L
e
a
k
a
g
e
 E

n
e
rg

y
 (

N
o
rm

a
liz

e
d
)

No Banking 2 banks 4 banks 8 banks 16 banks

Fig. 4. Leakage energy savings for different benchmarks for various banking strategies for a 64 deep, 32 bit, eight read port, four write port register file.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 38–4844

Author's personal copy

achieved due to the low-power state at run time of a very
significant part of the register file overcomes the energy
overheads of the extra logic. Therefore, most of the studied
benchmarks still benefit from partitioning the register file in
eight banks.

The banking approach of the register file also comes with
an extra overhead of decoders which are needed to
determine which banks have to be activated for the read/
write. The corresponding hardware was also synthesized
and simulated in the same technology as in [47]. The

ARTICLE IN PRESS

0

200

400

600

800

1000

1200

0 2e-06 4e-06 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 1.8e-05 2e-05 2.2e-05

A
re

a
 O

v
e

rh
e

a
d

 o
f

b
a

n
k
in

g
 (

u
m

2
)

Leakage Energy (J)

Area-Leakage Power Pareto Tradeoffs for ADPCM Decode

adpcm_decode

Fig. 5. Pareto tradeoff between leakage energy and area overhead for ADPCM decode.

0

200

400

600

800

1000

1200

0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002 0.0022

A
re

a
 O

v
e
rh

e
a
d
 o

f
b
a
n
k
in

g
 (

u
m

2
)

Leakage Energy (J)

Area-Leakage Power Pareto Tradeoffs for wcdma receive

wcdma_receive

Fig. 6. Pareto tradeoff between leakage energy and area overhead for WCDMA receive.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 38–48 45

Author's personal copy

overhead in terms of energy is negligible compared to the
energy consumption of the register file itself and hence is
not taken for the cost. The area overhead however may be
important. Also, as we increase the number of banks the
decoder complexity also increases.

Based on the benchmark used the gains in the leakage
energy are different. Figs. 5–7 show the leakage energy vs.
area overhead pareto curve for the different banking
strategies. While designing the complete system, the design
can appropriately make a decision based on these trade-
offs. Each point on the curve represents a banking strategy
(say no banking, two banks, four banks, etc.), when the
proposed technique is applied. It can also be observed from
these curves that the gains in leakage energy as we increase
the number of banks follow a diminishing return.

Also there is an overhead in terms of dynamic energy for
turning on and off these banks (this would include the
instructions and extra hardware required for a DVS
mechanism, etc). This overhead was also evaluated, on
average over all the benchmarks, the dynamic energy
overhead was about 5% of the total leakage energy.
Therefore, this implies that such a technique would be
useful provided the leakage energy gains are greater than
5% which is the case in most of the benchmarks.

7. Conclusions

Emerging consumer applications demand a very high-level
of performance in the next generation of low-power
embedded devices. Therefore, new techniques and mechan-
isms that can provide solutions for an efficient mapping of
these complex applications in such platforms are in great
need. One of the most important factors of power consump-

tion and performance penalty is the shared register file
between all processing units. In this paper we presented the
applicability of a new set of architectural extensions to enable
the use of subbanks in the register file, which achieves
significant reductions in the leakage energy of this device in
VLIW processors. Our results indicate that this new integral
approach enables up to a 50% reduction of the energy
consumed in the register file for realistic multimedia, wireless
network and cryptography applications without introducing
performance penalties. We also illustrate the pareto trade-off
between the area overhead vs. the leakage energy savings for
the different strategies proposed.

References

[1] W. Wolf, The future of multiprocessor systems-on-chips, in:

Proceedings of DAC, 2004, pp. 681–685.

[2] Philips nexperia—highly integrated programmable system-on-chip

(MPSoC), 2004 hhttp://www.semiconductors.philips.com/products/

nexperiai.

[3] TI’s omap platform, 2004 hhttp://focus.ti.com/omap/docs/i.

[4] St Nomadik multimedia processor, 2004 hhttp://www.st.com/ston-

line/prodpres/dedicate/proc/proc.htm i.

[5] N.S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. Hu, M.

Irwin, M. Kandemir, N. Vijaykrishnan, Leakage current: Moore’s

law meets static power, Computer 36 (12) (2003) 65–77.

[6] P. Bose, D. Brooks, A. Uktosuno, G. Cook, K. Das, P. Emma, M.

Gschwind, H. Jacobson, T. Karkhanis, P. Kudva, S. Schuster, J.

Smith, V. Srinivasan, V. Zyuban, D. Albonesi, S. Dwarkadas. Early-

stage definition of lpx: a low power issue-execute processor, in:

Proceedings of PACS’02 (held in conjunction with HPCA), Cam-

bridge, MA, USA, November 2002.

[7] M. Viredaz, D. Wallacha, Power evaluation of a handheld computer,

IEEE Micro 23 (1) (2003) 66–74.

[8] A. Lambrechts, P. Raghavan, A. Leroy, M. Jayapala, T. Vander Aa,

F. Catthoor, et al., Power breakdown analysis for a heterogeneous

ARTICLE IN PRESS

0

50

100

150

200

250

300

350

400

450

5e-06 1e-05 1.5e-05 2e-05 2.5e-05 3e-05

Leakage Energy (J)

Area-Leakage Power Pareto Tradeoffs for sha

sha
A

re
a

O
ve

rh
ea

d
of

 b
an

ki
ng

 (
um

2)

Fig. 7. Pareto tradeoff between leakage energy and area overhead for sha.

D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 38–4846

Author's personal copy

NoC platform running a video application, in: Proceedings of ASAP,

June 2005.

[9] J. Abella, A. Gonzalez, On reducing register file pressure and energy

in multiple-banked register files, in: Proceedings of ICCD, 2003.

[10] K. Zhang, et al., Sram design on 65-nm cmos technology with

dynamic sleep transistor for leakage reduction, IEEE J. Solid State

Circuits 40 (4) (2005) 895–901.

[11] S. Kaxiras, Z. Hu, M. Martonosi, Cache decay: exploiting genera-

tional behavior to reduce cache leakage power, in: Proceedings of

International Symposium on Computer Architecture, July 2001.

[12] W. Zhang, J.S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan,

M.J. Irwin, Reducing instruction cache energy consumption using a

compiler-based strategy, ACM Trans. Archit. Code Optim. 1 (1)

(2004) 3–33 Addresses leakage energy in instruction caches based on

access history.

[13] P.O. de Beeck, F. Barat, M. Jayapala, R. Lauwereins, Crisp: a

template for reconfigurable instruction set processors, in: FPL, 2001,

pp. 296–305.

[14] Texas Instruments, Canada. TMS320C64x Programmer’s Guide,

February 2001.

[15] Philips PDSL - CoolFlux DSP, 2005.

[16] T. Glokler, H. Meyr, Design of Energy-Efficient Application-Specific

Instruction Set Processors, Kluwer Academic Publishers, P.O. Box

322, 3300 AH Dordrecht, The Netherlands, 2002.

[17] Altera, Nios embedded processor system developement, 2001.

[18] R.E. Gonzalez, Xtensa: a configurable and extensible processor, in:

IEEE Micro volume 20 (2), 2002.

[19] P. Faraboschi, Lx: a technology platform for customizable VLIW

embedded processing, in: Proceedings of ISCA, 2000.

[20] P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P. Ienne, N. Dutt,

Introduction of local memory elements in instruction set extensions,

in: Proceedings of DAC, June 2004, pp. 729–734.

[21] P. Yu, T. Mitra, Characterizing embedded applications for instruc-

tion set extensible processors, in: Proceedings of DAC, June 2004,

pp. 723–728.

[22] K. Atasu, L. Pozzi, P. Ienne, Automatic application-specific

instruction-set extensions under microarchitectural constraints, in:

Proceedings of Design Automation Conference (DAC), 2003,

pp. 256–261.

[23] L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria, R. Zafalon,

A power modeling and estimation framework for VLIW-based

embedded systems, in: Proceedings of Power and Timing Modeling,

Optimization and Simulation, Yverdon Les Bains, Switzerland,

September 2001, pp. 2.1.1–2.1.10.

[24] L. Benini, G. De Micheli, System level power optimization techniques

and tools, ACM Trans. Des. Autom. Embedded Syst. (TODAES)

5 (2) (2000) 115–192.

[25] P.R. Panda, F. Catthoor, N.D. Dutt, K. Danckaert, E. Brockmeyer,

C. Kulkarni, Data and memory optimizations for embedded systems,

ACM Trans. Des. Autom. Embedded Syst. (TODAES) 6 (2) (2001)

142–206.

[26] M.A.R. Saghir, P. Chow, C.G. Lee, Exploiting dual data-memory

banks in digital signal processors, in: ASPLOS-VII: Proceedings of

the Seventh International Conference on Architectural Support for

Programming Languages and Operating Systems, New York, NY,

USA, ACM Press, New York, pp. 234–243.

[27] P. Grun, N. Dutt, A. Nicolau. Access pattern based local memory

customization for low power embedded systems, in: Proceedings

of the DATE 2001 on Design, Automation and Test in

Europe, Piscataway, NJ, USA, IEEE Press, New York, 2001,

pp. 778–784.

[28] N. Chang, K. Kim, H.G. Lee, Cycle-accurate energy consumption

measurement and analysis: case study of arm7tdmi, in: Proceedings of

the 2000 International Symposium on Low Power Electronics and

Design, Rapallo, Italy, 2000. ACM Press, New York, NY, USA,

2000, pp. 185–190.

[29] V. De La Luz, M. Kandemir, I. Kolcu, Automatic data migration for

reducing energy consumption in multi-bank memory systems, in:

DAC ’02: Proceedings of the 39th conference on Design Automation,

New York, NY, USA, ACM Press, 2002, pp. 213–218.

[30] W. Zhang, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, D. Duarte,

Y. Tsai, Exploiting vliw schedule slacks for dynamic and leakage

energy reduction, in: 34th Annual International Symposium on

Microarchitecture (MICRO’01), December 2001.

[31] V.V. Zyuban, P.M. Kogge, The energy complexity of register files,

in: Proceedings of ISLPED, 1998.

[32] A. Seznec, E. Toullec, O. Rochecouste, Reducing register ports for

higher speed and lower energy, in: Proceedings of MICRO, 2002.

[33] V.V. Zyuban, P.M. Kogge, Inherently lower-power high-perfor-

mance superscalar architectures, IEEE Trans. Comput. 50 (3) (2001)

268–285.

[34] J.L. Cruz, A. Gonzalez, M. Valero, Multiple-banked register file

architectures, in: Proceedings of ISCA, 2000.

[35] I. Park, M.D. Powell, T.N. Vijaykumar, Reducing register ports for

higher speed and lower energy, in: Proceedings of MICRO, 2002.

[36] J.P. Koen, K. Langendoen, H.J. Sips, Application-directed voltage

scaling, IEEE Trans. Very Large Scale Integration (TVLSI) 11 (5)

(2003) 812–826.

[37] C. Akturan, M.F. Jacome, Caliber: a software pipelining algorithm

for clustered embedded VLIW processors, in: Proceedings of

ICCAD, 2001, pp. 112–118.

[38] C. Akturan, M.F. Jacome, FDRA: a software-pipelining algorithm for

embedded VLIW processors, in: Proceedings of ISSS, 2000, pp. 34–40.

[39] J.L. Ayala, A. Veidenbaum, M. López-Vallejo, Power-aware

compilation for register file energy reduction, Int. J. Parallel

Programming 31 (6) (2003) 449–465.

[40] J.L. Ayala, M. López-Vallejo, Improving register file banking with a

power-aware unroller, in: Proceedings of PARC, 2004.

[41] Trimedia Technologies Inc. Trimaran: an infrastructure for research

in instruction-level parallelism, 1999, hhttp://www.trimaran.orgi.

[42] M. Jayapala, F. Barat, T.V. Aa, F. Catthoor, H. Corporaal, G.

Deconinck, Clustered loop buffer organization for low energy VLIW

embedded processors, IEEE Trans. Comput. 54 (6) (2005) 672–683.

[43] N.P. Jouppi, Improving direct-mapped cache performance by the

addition of a small fully-associative cache prefetch buffers, in: ISCA

’98: 25 Year of The International Symposia on Computer Archi-

tecture (selected papers), ACM Press, New York, NY, USA, 1998,

pp. 388–397.

[44] H. Hanson, M.S. Hrishikesh, V. Agarwal, S.W. Keckler, D. Burger,

Static energy reduction techniques for microprocessor caches, in:

International Conference on Computer Design, 2001.

[45] K. Flautner et al., Drowsy caches: simple techniques for reducing

leakage power, in: Proceedings of International Symposium on

Computer Architecture, 2002.

[46] C. Lee, M. Potkonjak, W.H. Mangione-Smith, Mediabench: a tool

for evaluating and synthesizing multimedia and communicatons

systems, in: Proceedings of International Symposium on Microarch-

itecture (MICRO), 1997, pp. 330–335.

[47] P. Raghavan, A. Lambrechts, M. Jayapala, F. Catthoor, D.Verkest,

Empirical power model for register files, in: Workshop on Media and

Streaming Processors (with MICRO-38), 2005.

David Atienza received his B.S., M.S. and Ph.D.

degrees in Computer Engineering from Complu-

tense University of Madrid (UCM) in 1999, 2001

and 2005, respectively. He currently holds a Post-

Doc position at the Integrated Systems Labora-

tory (LSI) at EPFL. He also holds the position of

invited Assistant Professor at the Computer

Architecture and Automation Department (DA-

CYA) of Complutense University of Madrid

(UCM), Spain. Also, he is currently scientific

counselor of long-time research at the Digital

Design Technology (DDT) Group of Inter-University Micro-Electronics

Center (IMEC), Leuven, Belgium.

ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 38–48 47

Author's personal copy

Praveen Raghavan received his Bachelor’s Degree

from Regional Engineering College (REC), Tri-

chy in India. He then received in his Masters

Degree in Electrical Engineering in Arizona State

University, USA. He is a researcher at IMEC vzw

and also a Ph.D. candidate at KULeuven in

Belgium. His interests include low power design,

processor architectures and compilers.

José L. Ayala received his B.S., M.S. and Ph.D.

degrees in Electronic Engineering from Technical

University of Madrid (UPM), Spain, in 1999,

2001 and 2005, respectively. He currently holds a

position of Assistant Professor at the Department

of Electronic Engineering (IEL) of the same

university. His current research activities mainly

belong to the field of power and thermal

estimation in processor-based systems, and the

hardware/software design of embedded systems.

Giovanni De Micheli is Professor and Director of

the Integrated Systems Centre at EPF Lausanne,

Switzerland, and President of the Scientific

Committee of CSEM, Neuchatel, Switzerland.

Previously, he was Professor of Electrical En-

gineering at Stanford University. He holds a

Nuclear Engineer degree (Politecnico di Milano,

1979), a M.S. and a Ph.D. degree in Electrical

Engineering and Computer Science (University of

California at Berkeley, 1980 and 1983). His

research interests include several aspects of design

technologies for integrated circuits and systems, such as synthesis, hw/sw

codesign and low-power design, as well as systems on heterogeneous

platforms including electrical, optical, micromechanical and biological

components.

Francky Catthoor received a Ph.D. in El. Eng.

from the K.U.Leuven, Belgium in 1987. Since

then, he has headed several research domains in

the area of architectural methodologies and

system synthesis for embedded multimedia and

telecom applications, all within the DESICS

division at IMEC, Leuven, Belgium. His current

research activities mainly belong to the field of

system-level exploration, with emphasis on data

storage/transfer and concurrency exploitation,

both in customized and programmable (parallel)

instruction-set processors.

Diederik Verkest received the electrical engineer-

ing degree and the Ph.D. degree in Applied

Sciences from the Katholieke Universiteit Leuven

(Belgium) in 1987 and 1994, respectively. In the

period 1987–1994 he worked as a research

assistant in the domain of formal design and

verification methodologies. Since 1994, he has

been working in the VLSI design methodology

group of the IMEC laboratory (Leuven, Belgium)

on system design and hardware/software co-

design as part of the team that developed the

CoWare environment. From 1997 to 2001, he headed research in the

Embedded System design technology group in IMEC. Since 2001, he is the

principal scientist in the T-ReCS group where he is responsible for the

research strategy related to re-configurable system design. Diederik

Verkest is guest professor at the University of Brussels (VUB).

Marisa López-Vallejo received the M.S. and

Ph.D. degrees in Electronic Engineering from

the Technical University of Madrid in 1992 and

1999, respectively. She joined the Faculty of the

Technical University of Madrid in 1993 and is

currently an Associate Professor in the Depart-

ment of Electronic Engineering. Her research

interests include VLSI design for communication

systems and CAD tools for Hardware–Software

Codesign, with particular emphasis on power

optimization for embedded systems.

ARTICLE IN PRESS
D. Atienza et al. / INTEGRATION, the VLSI journal 41 (2008) 38–4848

