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3.2 Damgård and Fujisaki scheme . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Commitment scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Knowledge proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Multiplicative proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Oblivious transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 (Prior) State of the art 18
4.1 Boudot’s range proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Lipmaa’s range proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Berry Schoenmakers’ scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 New efficient protocols for set membership and range proofs 22
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 New set membership protocol . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Computational assumptions. . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Boneh-Boyen signatures. . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Application to range proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.1 Range proofs from our new set membership protocol . . . . . . . . 25
5.3.2 Communication Complexity . . . . . . . . . . . . . . . . . . . . . . 25
5.3.3 Handling Arbitrary Ranges [a, b) . . . . . . . . . . . . . . . . . . . 27
5.3.4 Concrete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusion 30

3



4



1 Introduction

The domain of honest verifier zero-knowledge range proof is recognized as be-
ing a fundamental aspect in order to build privacy nowadays. Its applications
are far from being completely discovered and the research is still in progress.

The goal of this thesis will be to give a major contribution in this domain. In
order to do so, we first investigate different cryptographic protocols for prov-
ing that a secret lies in some interval, e.g., that the (secret) discrete log of some
element y to a base g lies in [a, b] for some integers a and b.

There are some known techniques that address this issue. Depending on
the actual size of a and b, some of these are more efficient than others. More-
over, there have been recently new more efficient proposals for specific cases
that constitute the current state of the art in this field. We will try to investigate
them in order to present a new one more efficient.

The organization of this master thesis will thus start with some introductive
notations and definitions in section 2. In section 3, we will recall some basic
cryptographic tools necessary for the comprehension of our new set member-
ship and range proof. Section 4 will be dedicated to the current state of the art.
In section 5, we describe our contribution to the state of the art, by providing
a new efficient set membership, which direct application to range proofs avers
to be a major improvement in this domain.
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2 Notations and Definitions

2.1 Commitment

One of the basic primitives in cryptography is the notion of commitment. A
commiter, usually named Alice, has a secret x which she wants to commit to.
In order to do so, she will hide her secret into a commitment α and release the
latter to some verifier, named Bob.

Two basic properties characterize the commitment: the hiding and the bind-
ing properties. The hiding property ensures Alice (the commiter and stakeholder
of the secret) that her commitment will leak no information about her secret,
i.e. Bob will not gain knowledge of the secret with the commitment only. The
binding property ensures Bob that upon receiving Alice’s commitment, she will
not be able to change her mind, her secret which she committed to, i.e. Alice
will not be able to cheat on the value of her committed secret.

These two properties can have several order of exactitude. They can be com-
putationally achieved, meaning that a cheater will not be able to computation-
ally break the property as he has bounded computational ressources. They can
be statistically achieved. In this case, even though the cheater has unbounded
computational ressources, he cannot achieve his goal statisticly speaking. Last
but not least, the properties can be perfectly achieved, i.e. there exist no cheater
able to break through the property. Note that a commitment cannot be simul-
taneously perfectly hiding and perfectly binding.

Commitment properties
Hiding Binding

Mutually exclusive events

L
ev

el
o

f
ex

a
ct

it
u

d
e

Perfectly Impossible to find
the secret without
the commiter re-
vealing it

Impossible to alter
the committed se-
cret

Computationally unbounded
Statistically Cannot find the se-

cret with a high
probability

Cannot cheat with
a high probability

Computationally bounded
Computationally Cannot find the se-

cret in a reasonable
amount of time

Cannot cheat due
to time constraint

Figure 1: Level of exactitude for the hiding and binding properties

Definition 2.1 (Ensemble) Let I be a countable index set. An ensemble indexed
by I is a sequence of random variables indexed by I. Namely, any X = {Xi}i∈I, where
each Xi is a random variable, is an ensemble indexed by I.

Definition 2.2 (Computational Indistinguishability) Two ensembles {Xw}w∈I

and {Yw}w∈I with identical index set I are said to be computationally indistin-
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guishable if for every probabilistic polynomial-time decision algorithm D, every pos-
itive polynomial p(·), and ∃ w0 ∈ I such that for every w > w0 (here |w| denotes the
size of w), we have

|Pr [D(Xw, w) = 1]− Pr [D(Yw, w) = 1]| < 1

p(|w|) . (2.1)

We denote such sets
{Xw}w∈I =c {Yw}w∈I (2.2)

Definition 2.3 (Statistical Indistinguishability) Two ensembles {Xw}w∈I and
{Yw}w∈I with identical index set I are said to be statistically indistinguishable if
∃ k0 such that for every k > k0, every element a ∈ {Xw}w∈I, and every w ∈ I, we
have

∑

a

|Pr [Xw = a]− Pr [Yw = a]| < 2−k. (2.3)

We denote such sets
{Xw}w∈I =s {Yw}w∈I (2.4)

Definition 2.4 (Perfect Indistinguishability) Two ensembles {Xw}w∈I and
{Yw}w∈I with identical index set I are said to be perfectly indistinguishable if for
every element a ∈ {Xw}w∈I, and every w ∈ I, we have

Pr [Xw = a] = Pr [Yw = a] . (2.5)

We denote such sets
{Xw}w∈I =p {Yw}w∈I (2.6)

Definition 2.5 (Hiding property) A commitment scheme is said to be hiding if for
any two commitment distributions α and α′, we have

{α =c α′} or {α =s α′} or {α =p α′}. (2.7)

Furthermore we will precise which type of hiding commitment is achieved, by the type
of achieved indistinguishability between the commitment distributions, i.e. computa-
tionally, statistically or perfectly hiding commitment scheme.

Definition 2.6 (Binding property) A commitment scheme is said to be binding if
for a committed secret x in α, the commiter cannot cheat by opening the commitment
α with a distinct secret x′. Formally we distinguish three types of binding, i.e. compu-
tationally, statistically or perfectly binding commitment scheme defined as below.

(i) Perfectly binding commitment scheme

A commitment scheme is said to be perfectly binding if for every commitment
procedure C⋆ that takes the public parameters Pubin as input and outputs the
commitment α together with the opening parameters β0 and β1, for two different
secret messages respectively m0 and m1, in the set of possible messages M, and
for the coresponding opening procedure Open(α, βi, mi) which verifies that βi

correctly opens the secret message mi, we have

Pr

[

∀i ∈ {0, 1}, ∀mi ∈M,
Open(α, βi, mi) = true

∣

∣

∣

∣

m0 6= m1,
(α, m0, m1)← C⋆(Pubin)

]

= 0. (2.8)
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(ii) Statistically binding commitment scheme

A commitment scheme is said to be statistically binding if ∃ k0 such that for
every k > k0, every commitment procedure C⋆ that takes the public parameters
Pubin as input and outputs the commitment α together with the opening pa-
rameters βm (for every secret message m in the set of possible messages M), and
for the coresponding opening procedure Open(α, βi, mi) which verifies that βi

correctly opens the secret message mi, we have

Pr

[

∀i ∈ {0, 1}, ∀mi ∈M,
Open(α, βi, mi) = true

∣

∣

∣

∣

m0 6= m1,
(α, m0, m1)← C⋆(Pubin)

]

6 2−k.

(2.9)

(iii) Computationally binding commitment scheme

A commitment scheme is said to be computationally binding if ∃ w0 ∈ I such
that for every w > w0 (here |w| denotes the size of w), every positive polynomial
p(·), every probabilistic polynomial-time commitment procedure C⋆ that takes
the public parameters Pubin as input and outputs the commitment α together
with the opening parameters βm (for every secret message m in the set of possi-
ble messages M), and for the coresponding opening procedure Open(α, βi, mi)
which verifies that βi correctly opens the secret message mi, we have

Pr

[

∀i ∈ {0, 1}, ∀mi ∈M,
Open(α, βi, mi) = true

∣

∣

∣

∣

m0 6= m1,
(α, m0, m1)← C⋆(Pubin)

]

<
1

p(|w|) .

(2.10)

Let p be a prime number and let G be the multiplicative group of inte-
gers modulus p. Let g, h be two generators for G. A standard method to
cryptographically commit to a secret value x is to randomly choose a value
r ∈R [1, p − 1] and compute α := gxhr(mod p). The commitment α is per-
fectly hiding and computationally binding (assuming that the commiter does
not choose g and h but is rather given these values).

2.2 Proofs

Once a commitment has been made, a verifier would want some guarantees
on the committed secret. He will want to be assured that the committed secret
obeys to some properties.

To begin with, Bob will want to be assured that the commitment makes
sense and that Alice knows the secret. In other words he wants to be sure that
Alice can open the commitment. He might also want to verify that the secret
obeys some computational properties. For instance the commiter might have
to prove that the secret is a positive integer, a square number, a product of two
primes, etc.

In all these issues, the commiter, who will also be called the prover, will
have to provide along with the commitment a proof of knowledge to the verifier.
This proof will be denoted as PK(x : predicates on x) and will have some
properties. The major property these proofs will have is the zero-knowledge
aspect. Of course Alice does not want to give more knowledge to Bob than
what he is supposed to learn. Then comes the completeness property as some
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proof might not always succeed in order to maintain the zero-knowledge. The
soundness of the proof is also a crutial element of the proof as it tells Bob how
much Alice can cheat with the proof. These proves will thus be given with
some properties (e.g. length of the protocol) and with some parameters (e.g.
range of the values).

Definition 2.7 (Zero-knowledge) A proof is said to be zero-knowledge if for any
transcript tPV between the prover and the verifier, there exist a simulated transcript
tSim, from an algorithm simulator Sim(·), such that

{tPV =p tSim} or {tPV =s tSim} or {tPV =c tSim}. (2.11)

Furthermore we will precise which type of zero-knowledge proof is achieved, by the type
of achieved indistinguishability between the transcript distributions, i.e. perfect, sta-
tistical or computational zero-knowledge proof. Note that we are assuming the honest
verifier model and that there exist transformation techniques to generalize it for any
verifier (see [8]).

Definition 2.8 (Soundness) The soundness of a proof of membership coresponds
to the probability that the verifier accepts a false proof. Formally for some predicates
p(·) on messages m ∈ M defining a language set Lp = {α |α = E(m, r) ∧ p(m)},
where the function E computes the commitment from a random seed r and the secret
message m, we define the soundness for a pair of interactive machines (P, V ) (for any
P , and where V has a polynomial time complexity) as such:

Pr [(P, V )(x) = “accept”] , ∀ x /∈ Lp. (2.12)

For proofs of knowledge, the notion of soundness is decomposed into four major notions:

• ǫview,P∗ : probability of P ∗ to make V accept conditionned on the view,

• the knowledge error κ(k): allowed threshold for ǫ0,P∗ , i.e. threshold for P ∗ on
how much he can make V accept while knowing nothing about w,

• the advantage of P ∗, Advκ,M,p(P
∗, k): probability that “M fails” on the view

generated by the “experiment”,

• the failure probability ν(k): threshold for the advantage of P ∗.

Definition 2.9 (Completeness) The completeness of a proof corespond to the pro-
bability of the proof completion. Formally for some predicates p(·) on messages m ∈
M defining a language set Lp = {α |α = E(m, r) ∧ p(m)}, where the function E
computes the commitment from a random seed r and the secret message m, we define
the completeness for a pair of interactive machines (P, V ) (for any P , and where V has
a polynomial time complexity) as such:

Pr [(P, V )(x) = “accept”] , ∀ x ∈ Lp. (2.13)

The most basic proofs of knowledge are called Σ-protocols and intend to
be honest-verifier zero-knowledge. They consist of three major steps: commit-
ment, challenge and response (see figure 2). The main objective of this proof
is to persuade the verifier on the existence of some specific binary relation R
between a common input v and a witness w to the later. Our focus will be to

9



Prover Verifier

(v, w) ∈ R v

Commitment a
a

//

Challenge c
c

oo

Response r
r

// Verification(v, a, c, r)

Figure 2: Σ-protocols.

consider the secret x contained in a given commitment as a part of the witness,
and the commitment α as a part of the common input. R is therefore a subset
of {0, 1}∗ × {0, 1}∗ such that if (v, w) ∈ R, then the length of w is bounded by
p(|v|), for some given polynomial p(·).

Two major properties accompany Σ-protocols: the special honest-verifier zero-
knowledge and the special soundness property. The first property states the exis-
tence of a polynomial-time simulator M , which outputs transcripts with the
same probability distribution as in a real honest conversation. Moreover M is
not based on the knowledge of the witness w, but rather the common input v.
The second property emphasis the potential recovery of a witness w for the
common input v, for any v and any pair coresponding valid transcript with
two different challenge. A complete formalization of Σ-protocols and there
properties can be found in [6], where they were first introduced.

Suppose Alice publishes a commitment α and now wishes to prove to Bob
that the secret value which has been committed in α lies in some range [a, b].
Moreover, Alice would like this proof to be a zero-knowledge proof in which
nothing other than the truth of this range is conveyed in the proof. General re-
sults in zero-knowledge show that such a proof, called range proof, is possible.

Definition 2.10 (Expansion rate) For a zero-knowledge proof where the secret com-
mitted value x is chosen by the prover in I, and is proved to the verifier to belong to the
range J, we define the expansion rate δ as

δ :=
|J|
|I| (2.14)

where |J| and |I| means the number of elements of respectively the set J and the set I.

Our goal, however, is to find an efficient method to make this proof. In a
composite group, the four-squares method is one way to show any range proof.
This method seems to be efficient since the amount of work and the soundness
error of the proof are independent of a and b. The basic idea is to reduce the
problem of showing membership in an interval to proving that a committed
value is “positive.” (In a composite group, the committer does not know the
order of the group, and so cannot make negative values wrap around.) In
order to do this, one finds four values x1, . . . , x4 such that x2

1 + x2
2 + x2

3 + x2
4 =

x. Finding such four values is possible for any positive x (this follows from
Lagrange’s Four-Square Theorem also known as Bachet’s conjecture).
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The four-squares method, alas, does not work for prime-order groups.
However, the same technique of showing that a committed value is “positive”
can be applied, albeit somewhat less efficiently. In the case of a prime order
group, showing that a value is “positive” amounts to showing that it is less
than p − 1/2. Essentially the idea is to commit to each bit of the secret and
show that these bit commitments together represent the same value that was
committed in α. With these bit commitments, one can string together a state-
ment such as “the top bit is zero or (the top bit is one and the second bit is zero)
or ....”. The size of this proof is related to the number of bits in p (typically a
few hundred) which makes this technique inefficient.

A few other approaches to this problem have been suggested by Schoen-
makers in [17] and in [19]. Hence, in order to have a better appreciation of our
contribution we will first explain some tools that we used, such as the oblivious
transfer in [4], and then we will dive in the current state of the art.
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3 Tools for the State of the Art

Before digging into the realm of zero-knowledge range proofs, we will first
present usefull tools. These ones will help us in the understanding of the state
of the art.

To begin with, we will recall the Schnorr proof as the basic sigma protocol.
Then we will study the commitment scheme presented by Ivan Damgård and
Eiichiro Fujisaki in [7], together with a proof of knowledge and a multiplicative
proof. We will also present the oblivious transfer presented by Jan Camenisch,
Gregory Neve and Abhi Shelat in [4] as it will contribute in the understanding
of our new efficient set membership.

3.1 Schnorr proof

Schnorr proofs are the first efficient Σ-protocols proposed, even though they
were not introduced as such in [16]. Nevertheless, this proof has become a fun-
damental tool for knowledge proofs. The aim of it, is to attest the knowledge
of a discrete logarithm, using cyclic groups (see figure 3). Let g be a generator
of the cyclic group Zp, where p is a prime number. Our secret x will be the dis-
crete logarithm of some number h. Thus the common input of this Σ-protocol
is composed by g, Zp and h. The witness is the secret value x. The relation be-
tween the witness and the common input is dictated by the discrete logarithm
problem.

Prover Verifier

x = logg h h

a = gu, u ∈R Zp
a

//

c ∈R Zp
c

oo

r = u + cx
r

// gr ?
= ahc

Figure 3: Schnorr proof.

3.2 Damgård and Fujisaki scheme

3.2.1 Commitment scheme

Damgård and Fujisaki presented there commitment scheme in three major
parts: a set-up, a commit and an open phase (see figure 5).

In the set-up phase the verifier first runs a probabilistic polynomial time
algorithm G with a k bit input of ones (denoted 1k) to obtain the description of
a set G. This set is built such that it is composed of two distinctive subgroups,
a large one with only large prime factors (denoted H) and a small one with
small prime factors (denoted U). Thus if we take a random element h in G, it
will have a high probability of being in the subgroup H. We can furthermore
verify this by checking if h|U| 6≡ 1(mod |G|). Secondly the verifier chooses h as

12



described above (∈R G,∈ H), and will try to find a g such that g ∈R 〈h〉 (where
〈h〉 denotes the set generated by h).

_�_
\
X
U
Q
N
I
E

h0

g = hd
??������

(a) Goal: find d s.t. g = hd(mod |G|) and
g ∈R 〈h〉

_�_
\
X
U
Q
N
I
E

h0

g = hd
??������

(b) What is achieved: with d ≫ |H|, g is
almost random in 〈h〉

Figure 4: Goal vs. what is achieved

However the description of G does not contain the factorization of the order
of G (hence the factorization of the order of H is unknown). In order to find a
correct g, the verifier will simply raise h to some large random power d, much
larger than the actual order of h (see figure 4). Ideally we would like d to
be such that the probability of outputting a given g is bellow than 2−k and
randomly chosen in 〈h〉. Hence ideally d should be picked randomly in the set
[0, 22B+k] where B = log2(|〈h〉|). With this constraint we obtain that 22B+k =

2k · (|〈h〉|2) which ensures our goal for g. However as we do not know |〈h〉|, we
will use |H| instead.

The verifier finishes the set-up phase by sending to the prover the descrip-
tion of G, g, h, and by proving him that g ∈ 〈h〉1.

The commit phase consists only for the prover to choose a random num-
ber r, to compute the commitment α ≡ gxhr ∈ G, and to send α to the verifier.

In order to open the commitment, the prover needs to reveal his secret x,
his choice of r and a value µ such that: α ≡ µgxhr ∈ G and µ|U| = 1.

According to theorem 1 in [7], the above commitment scheme is perfectly
hiding and computationally binding.

3.2.2 Knowledge proof

The knowledge proof (described in figure 6) proves to the verifier that the
prover knows the secret x committed in a given commitment α, with an ex-
pansion rate of δ = C(k) · (2k + 2), where C(k) denotes a super-polynomial
function in k, as suggested in [7].

First let us assume that the prover chooses x in some publicly known range
[−T, T ], and commits to his secret by computing and sending α = gxhr as seen
above (with r ∈R

[

0, 2B+k
]

). In order to run through the proof, he will need
to pick two variables y and s that will help him hide his secret and his random

1The description of PK((g, h) : g ∈ 〈h〉) can be found in detail in section A.1 of [4]
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Commiter Receiver

Setup

runs G(1k) −→ G

(s.t. G = H×U),
h ∈R G s.t. h ∈ H,
B = log2(|H|),
d ∈R [0, 22B+k],
g ≡ hddescr(G), g, h

PK((g,h) : g∈〈h〉)
oo

Commit

r ∈R [0, 2B+k],
α ≡ gxhr α

//

Open
x, r, µ s.t. µ|U|=1

// α
?
= µgxhr

Figure 5: Damgård and Fujisaki commitment scheme.

number chosen for the commitment. He will thus compute d ≡ gyhs and send d
to the verifier who will reply by a random number e taken from the set [0, C(k)[.
This last set can be contested as the value e = 0 allows a cheating prover to
use any secret x outside the expected range. A better choice of set would have
been to use the set ]0, C(k)]. Finally the prover simply computes u = y+xe and
v = s + re, sends them to the verifier who will check the equivalence between
guhv and dαe, along with the constraint that u ∈

]

−TC(k), TC(k)(2k + 1)
[

.

Prover Verifier

y ∈R

[

0, TC(k)2k
[

s ∈R

[

0, C(k)2B+2k
[

d = gyhs d
//

e ∈R [0, C(k)[
e

oo

u = y + xe
v = s + re

u, v
// guhv ?

= dαe

u ∈?
]

−TC(k), TC(k)(2k + 1)
[

Figure 6: Damgård and Fujisaki proof of knowledge.

Now that the proof process is described, let us see in more detail why we
get the mentioned expansion rate of δ = C(k) · (2k + 2). For a cheating prover,
his goal will be to send a u and v such that the verifier will accept them. In that

14



regard, the prover will try to guess the value of e. We will suppose the general
case where e ∈ [e1, e2] ⊆ [0, C(k)[ and y ∈ [y1, y2]. We have thus, according to
the value of x:

x > 0 ⇒ (y + xe) ∈ [y1, y2 + xe2] ⊆
]

−TC(k), TC(k)(2k + 1)
[

(3.15)

x 6 0 ⇒ (y + xe) ∈ [y1 + xe2, y2] ⊆
]

−TC(k), TC(k)(2k + 1)
[

(3.16)

We thus see by taking successively the value−TC(k) and the value TC(k)(2k+
1) for y that the secret x will be bounded by:

−TC(k)(2k + 2)

e2
< x <

TC(k)(2k + 2)

e2
(3.17)

Thus the largest set containing x that the verifier can expect is

x ∈
]

−TC(k)(2k + 2), TC(k)(2k + 2)
[

(3.18)

which explains the described expansion rate.

Objective: PK((x, r) : α = E(x, r) ∧ x ∈
]

−TC(k)(2k + 2), TC(k)(2k + 2)
[

)
(expansion rate: δ = C(k)(2k + 2))

Soundness: According to theorem 2 in [7], this proof of knowledge has a know-
ledge error κ(k) in O (1/C(k)) and a failure probability ν(k) = 9ǫ(k)l(k),
where ǫ(k) represents the maximal probability with which any adversary
bounded in time by t(k) breaks the root problem (see [7] for more precise
details and definitions).

Completeness: The protocol finishes after three exchanged messages.

3.2.3 Multiplicative proof

As mentionned before, we can have proofs for predicates on the secret. Here
the proof will consist of convincing the verifier that the secret x3 committed in
α3 is actually the product of secrets x1 and x2, committed respectively in α1 and
α2, i.e. x3 = x1x2 (see figure 7). As previously, the prover is expected to chose
his secrets in the set [−T, T ] and to follow section 3.2.1 for the commitment
procedure. We have thus the following reasoning on α3:

α3 = gx3hr3 = g(x1x2)hr3

= gx1x2 · h(r1x2−r1x2)+r3

= (gx1hr1)x2 · hr3−r1x2

= αx2

1 · hr3−r1x2 (3.19)

In order to prove that x3 = x1x2, the prover has first to convince the verifier
that he knows both x1 and x2, then prove the veracity of the relation 3.19. The
proof of knowledge for x1 and x2 is identical to section 3.2.2.

We can notice that the relation 3.19 is similar to α = gxhr where g has
been replaced by α1, where the secret message is x2, and the random number

15



Prover Verifier

y1, y2 ∈R

[

0, TC(k)2k
[

s1, s2 ∈R

[

0, C(k)2B+2k
[

s3 ∈R

[

0, TC(k)2B+2k
[

d1 = gy1hs1 , d2 = gy2hs2

d3 = αy2

1 hs3
d1, d2, d3

//

e ∈R [0, C(k)[
e

oo

u1 = y1 + x1e
u2 = y2 + x2e
v1 = s1 + r1e
v2 = s2 + r2e
v3 = s3 + (r3 − r1x2)e

u1, u2, v1, v2, v3
// gu1hv1

?
= d1α

e
1

gu2hv2
?
= d2α

e
2

αu2

1 hv3
?
= d3α

e
3

Figure 7: Damgård and Fujisaki multiplicative proof.

is (r3 − r1x2). Thus we can use the previous proof of knowledge replacing
the coresponding parts as mentionned, in order to prove the relation 3.19 and
ultimately to achieve the required goal.

Note that the range of s3 has to be different than the one for s1, s2 as the
random number range that needs to be hidden is different. Indeed, in the
previous proof of knowledge we have r ∈R

[

0, 2B+k
]

, where as for the last
part of the multiplicative proof, the random number that we are considering
is (r3 − r1x2) ∈

[

−T 2B+k, (T + 1)2B+k
]

. As the upper bound for the random
number is multiplied by T +1, it is natural to apply this scaling to s3. The lower
bound s3 should ideally conserve this scaling, but for efficiency concerns we
can limit s3 to positive values (this will reduce the probability of having a neg-
ative v3 and thus to have to compute the inverse of h at the verifier side).

3.3 Oblivious transfer

Oblivious transfers have become an important primitive in cryptography.
These are protocols for information retrival designed in such a way that the
information provider cannot learn which information is requested, and the in-
formation retriever does not gain any more knowledge than what he asked
for. These primitives have been consistently studied and several variants have
been found. One of which is the adaptive variant from Jan Camenisch, Gre-
gory Neve and Abhi Shelat in [4]. They gave two solutions for the k out of N
oblivious transfer which consists of a receiver queriying for k elements out of
N messages provided by the sender. We will only focus on their new protocol
for the standard model (see figure 8).

The general idea behind it, is for the sender to hide the actual messages Mi

in a value Bi using some verifiable random elements Ai and his secret key h.
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Sender Receiver

Initialization
g, h ∈R G1 \ {1},
x ∈R Zp, y = gx,
H = e(g, h) ∈ GT ,
Pk = (g, H, y),
For i = 1, ..., N do {
Ai = g( 1

x+i )

Bi = e(h, Ai) ·Mi

Ci = (Ai, Bi) }
Pk, (Ci)i=1,...,N

PK(h : H=e(g,h))
//

Request

v ∈R Zp, V = (Aσ)vV

PK((σ,v) : e(V,y)=e(V,g)σe(g,g)v)
oo

Unlocking

W = e(h, V )
W

PM(h : H=e(g,h) ∧ W=e(h,V ))
//

Recovery

M = Bσ

W 1/v

Figure 8: k out of N Adaptive Oblivious Transfer in the standard model
from [4]. A complete descritpion of the proof of knowledge PK((σ, v) :
e(V, y) = e(V, g)σe(g, g)v) as well as the proof of membership PM(h : H =
e(g, h) ∧ W = e(h, V )) can be also found in [4] respectively at section A.2 and
A.3.

The values Bi and Ai will be available to the receiver. In order to retrieve
the desired message Mi, the receiver will first blind his choice by raising the
value Ai to the power of his secret key v and assigning this value to V . Thus,
only with this last value, the sender is not able to determine which message is
requested. However he has the possibility to provide the unlocking element W
of Bi whithout revealing his secret unlocking all messages. This is feasible by
making use of a bilinear map. The operations done on V will affect Ai without
knowing the value of i.
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4 (Prior) State of the art

A large amount of research has already been achieved in the domain of hon-
est verifier zero-knowledge range proofs. In order to be able to find a new
efficient solution, one has first to fully understand the previous accomplished
work. This will be the purpose of this section. We will not try to present all the
possible solutions but rather focus on the relevant ones.

We will thus cover the work done by Boudot in [3] and Lipmaa (in [13] and
in [14]) on the sum of four square method, followed by the work accomplished
by Berry Schoenmakers in his presentations [17] and [18].

4.1 Boudot’s range proof

In order to prove that a given integer is contained in a given range, Boudot has
proposed two schemes depending if tolerance in the expansion rate is allowed,
or if an exact proof is required. In both schemes the proof is divided into two
positivity proofs. The novelty introduced by Boudot resides in these positivity
proofs.

If a small tolerance is allowed, the positive secret is decomposed as the sum
of the highest square possible and the remaining small positive value. The
square will be proved as being a correct square and thus a positive element,
while a Chan-Frankel-Tsiounis proof (see [5]) will be used for the remaining
value. This is described in figure 9.

If an exact proof is required, Boudot simply proposed to artificially enlarge
the original set such as the level of uncertainty is hidden by the integer con-
straint of the secret value, as shown in figure 10.

Note that Boudot uses t, l, and s as security parameters, taking values re-
spectively 80, 40 and 40.

4.2 Lipmaa’s range proof

Lipmaa followed the positivity property of square numbers and proposed
to prove positivity by decomposing the secret number into the sum of four
square (see [13] and [14]). This decomposition was first introduced by La-
grange in 1770 and a probabilistic polynomial time algorithm was given by
Rabin and Shallit in 1986 (see [15]). Thus this decomposition is realistic and has
been converted into a honest verifier zero-knowledge proof system for positive
intigers (see Protocol 2 in [13]).

Let us also mention the contribution of Jens Groth in [12] where he pushed
further the positivity proofs with square decomposition down to a three square
method.

4.3 Berry Schoenmakers’ scheme

Berry Schoenmakers focused his work on exact proofs for small intervals. In-
stead of trying to prove range proof through a square decomposition, he based
his research on the study of bit decomposition. Each bit of the secret is proven
to be eather 0 or 1 with a variant of Schnorr proof. This yields to a proof of
knowledge of the from PK

(

x, r : C = grhx ∧ x ∈ [0, 2k)
)

as described in his
presentations [17] and [18].
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Prover Verifier

Knowledge of x
PK(x,r:C=gxhr)

//

Setting

C̃ = C
ga (mod n),

C̄ = gb

C (mod n),
x̃ = x− a, x̄ = b− x

C̃ = C
ga (mod n),

C̄ = gb

C (mod n)

Step 1:
x̃1 = ⌊

√
x− a⌋,

x̃2 = x̃− x̃2
1,

x̄1 = ⌊
√

b− x⌋,
x̄2 = x̄− x̄2

1,
r̃1, r̃2 ∈R

[−2sn + 1, 2sn− 1],
s.t. r̃1 + r̃2 = r

r̄1, r̄2 ∈R

[−2sn + 1, 2sn− 1],
s.t. r̄1 + r̄2 = −r,

Step 2:

C̃1 = gx̃2
1hr̃1 ,

C̃2 = gx̃2hr̃2 ,
C̄1 = gx̄2

1hr̄1 ,
C̄2 = gx̄2hr̄2

C̃1, C̄1
//

C̃2 = C̃
C̃1

, C̄2 = C̄
C̄1

Step 3:

(Square)
PK(x̃1,r̃1: C̃1=gx̃2

1hr̃1 )

PK(x̄1,r̄1: C̄1=gx̄2
1hr̄1

//

(CFT)
PK(x̃2,r̃2: C̃2=gx̃2hr̃2 ∧ x̃2∈[−θ,θ])

PK(x̄2,r̄2: C̄2=gx̄2hr̄2 ∧ x̄2∈[−θ,θ])

//

Figure 9: PK(x, r : C = gxhr ∧ x ∈ [a− θ, b + θ]) with δ = 1 + ε.

However an arbitrary upper bound can be used by decomposing the set
[0, L) with an AND-composition or an OR-composition. Let us assume that
2k−1 < L 6 2k:

[0, L) = [0, 2k) ∩ [L− 2k, L) (4.20)

[0, L) = [0, 2k−1) ∪ [L− 2k−1, L) (4.21)

The subsets for the AND-composition being both of size 2k, the amount of
work required becomes equivalent to 4k Schnorr proofs. Similarly for the OR-
composition, the equivalent of 4(k − 1) Schnorr proofs are required. Note that
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Prover Verifier

Setting

C′ = C2T

, where T =
2(t + l + 1) + log2(b− a)

Proof
PK(x′,r′:C=gx′

hr′∧ x′∈[2T a−θ,2T b+θ])

where θ=2t+l+ T
2

+1
√

b−a

//

Figure 10: PK(x, r : C = gxhr ∧ x ∈ [a, b]) where x′ = 2T x.

in order to prove that a given number is contained in a range of size 2k we
can simply add or substract the constant noise parameter to the secret value in
order to fall back to a proof in [0, 2k), for instance:

x ∈ [L− 2k, L)⇔ (x − L + 2k) ∈ [0, 2k). (4.22)

From here, Berry Schoenmakers pushed forward the idea to find other
means to express the upper bound in order reduce the work needed. For
instance if we have 2k1 < L < 2k1+1 we can write L = 2k1 + R such that
2k2−1 < R 6 2k2 with k2 6 k1. The OR-composition will thus result in the
following:

[0, L) = [0, 2k1) ∪ [L− 2k2 , L) (4.23)

with an amount of work of 2(k1 + k2) Schnorr proofs.
The two major approaches that he proposed are to consider L as either a

product or a sum of two numbers. By doing this scheme recursively he can
decrease the amount of work needed. However the overall communication
load will still be in O(k).

The product case is possible whenever we can write the upper bound as
the product L = ab. This will result on the unique decomposition of the secret
as x = vb + y such that 0 6 v < a and 0 6 y < b. Three commitments will
be required for this matter: C = grhx, A = gs1hv and B = gs2hy , such that
a = s1b + s2(mod p), where s1, s2 ∈R Zp. The result of this construction will
be C = AbB. Therefore if we prove that the subsecret element v is in [0, a) and
that the subsecret element y is in [0, b), we end up proving that x is indeed in
[0, L).

The sum case is somehow similar to the previous one, in the sense that we
decompose x as being either in [0, a) with the help of the commitment C, or
either in [a, a + b) with the help of the commitment C

ha which will be used to
prove that the coresponding secret (x − a) lies in [0, b).

When combined recursively these two approaches suggest an ammount of
work in terms of Schnorr proofs, equal to the complexity of the range size. We
recall that the complexity of a number L is defined as the minimal number of
element 1 in order to write L with products and sums of element 1, including
parentheses. For instance we have 7 = (1 + 1) ∗ (1 + 1 + 1) + 1. The complexity
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function of natural numbers, that we will call W (·), is defined by the sequence
A005245 in the “On-Line Encyclopedia of Integer Sequences”. To resume we
can consider that the achievement of Schoenmakers in terms of communica-
tion load is bounded by W (L) Schnorr proofs, where L is the size of the range
considered.
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5 New efficient protocols for set membership and

range proofs

5.1 Introduction

As mentionned previously, the current state of the art is bounded by a com-
munication load of O(k). In order to do a major improvement in the field of
honest verifier zero-knowledge set membership and range proof, one has to
find a protocol that is asymptotically more efficient. This improvement rises
with the work done by Schoenmakers combined with the knowledge of oblivi-
ous transfers. Indeed, instead of limitting ourselves to a bit decomposition, we
consider a u-ary decomposition, where our basis is no longer Schnorr proofs,
but rather a signature-based set membership inspired from the presented adap-
tive oblivious transfer.

5.2 New set membership protocol

We persent here our new solution inspired by Oblivious Transfer, that we will
call Set Membership from Oblivious Transfer (SMOT, see figure 11). The goal is
to proove to some verifier that our secret is contained in some public set Φ. In
order to do so the verifier signs every value contained in Φ and publishes these
signatures. Thus, the prover receives a signature on the particular element σ
to which C is a commitment. This step represent the initialization of our new
solution. The verifier will simply have to “blinds” this received signature and
perform a proof that he knows a signature for his committed sercret value. The
proof then does not depend on the size of the secret itself but rather on the
cardinality of the set Φ from wich the secret is picked from. The novelty of
this approach is that the first verifier message can be re-used in other proofs
of membership; indeed, we use this property to achieve our results for range
proofs.

5.2.1 Computational assumptions.

Our protocol require bilinear groups and associated hardness assumptions. Let
PG be a pairing group generator that on input 1k outputs descriptions of mul-
tiplicative groups G1,GT of prime order p where |p| = k. Let G∗

1 = G1 \ {1}
and let g ∈ G∗

1. The generated groups are such that there exists an admissible
bilinear map e : G1 × G1 → GT , meaning that (1) for all a, b ∈ Zp it holds
that e(ga, gb) = e(g, g)ab; (2) e(g, g) 6= 1; and (3) the bilinear map is efficiently
computable.

Definition 5.1 (Strong Diffie-Hellman Assumption [2]) We say that the
q-Strong Diffie-Hellman assumption associated to a pairing generator PG holds if for
all probabilistic polynomial-time adversaries A, the probability that A(g, gx, . . . , gxq

)
where (G1,GT )← PG(1k), g ← G∗

1 and x← Zp, outputs a pair (c, g1/(x+c)) where
c ∈ Zp in negligible in k.
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5.2.2 Boneh-Boyen signatures.

Our scheme relies on the elegant Boneh-Boyen short signature [2] which we
briefly summarize. The signer’s secret key is x← Zp, the corresponding public
key is y = gx. The signature on a message m is σ ← g1/(x+m); verification is
done by checking that e(σ, y · gm) = e(g, g). This scheme is similar to the Dodis
and Yampolskiy verifiable random function [9].

Security under a weak chosen-message attack is defined through the fol-
lowing game. The adversary begins by outputting ℓ messages m1, . . . , mℓ. The
challenger generates a fresh key pair and gives the public key to the adver-
sary, together with signatures σ1, . . . , σℓ on m1, . . . , mℓ. The adversary wins if
it succeeds in outputting a valid signature σ on a message m 6∈ {m1, . . . , mℓ}.
The scheme is said to be unforgeable under a chosen-message attack if no p.p.t.
adversary A has non-negligible probability of winning this game. Our scheme
relies on the following property of the Boneh-Boyen short signature [2] which
we paraphrase below:

Lemma 5.2 ([2](Lemma 3.2)) Suppose the q-Strong Diffie Hellman assumption
holds in (G1,GT ). Then the basic Boneh-Boyen signature scheme is q-secure against
an existential forgery under a weak chosen message attack.

Theorem 5.3 If the |Φ|-Strong Diffie-Hellman Assumption associated with a pairing
generator PG holds, then protocol in figure 11 is a zero-knowledge argument of set
membership for a set Φ.

Proof: The completeness of the protocol follows by inspection. The sound-
ness follows from the extraction property of the proof of knowledge and the
unforgeability of the random function. In particular, the extraction property
implies that for any prover P ∗ that convinces V with probability ǫ, there exists
an extractor which interacts with P ∗ and outputs a witness (σ, ρ, η) with prob-
ability poly(ǫ). If σ 6∈ Φ, then P ∗ can be (almost) directly be used to mount a
weak chosen-message attack against the Boneh-Boyen signature scheme with
probability poly(ǫ) of succeeding. Thus, ǫ must be negligible.

Finally, to prove honest verifier zero-knowledge, follow the initialization
and the blinding instructions honestly (using a random σ ∈ Φ to compute V ).
Then run the simulator for the Σ-protocol in the following steps. Since G1 is a
prime-order group, then the blinding is perfect in the first step; thus the zero-
knowledge property follows from the zero-knowledge property of the Sigma
protocol.

The resulting overall communication load is given by

Coml(Φ) = |Φ| · |G1|+ (5 · |G1|+ 3 · |GT |+ 5 · |Zp|) (5.24)

5.3 Application to range proof

The previous protocol can be applied for range proof if the set Φ contains con-
secutive elements. However this will not be efficient for large ranges. In order
to make it efficient in this later case, we focus on the decomposition of our se-
cret σ to the base u (Φ = Zu). This decomposition needs to be done carefully
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Prover Verifier

Initialization
g, h ∈R G1 \ {1},
x ∈R Zp, y = gx,
H = e(g, h) ∈ GT ,
Pk = (g, H, y),
For ∀i ∈ Φ do
Ai = g( 1

x+i)Pk, (Ai)i∈Φ

PK(h : H=e(g,h))
oo

Blinding

v ∈R Zp,
V = (Aσ)v V

//

Step 1:

s, t, m ∈R Zp,
a = e(V, g)−se(g, g)t,
D = hmgs D, a

//

Step 2:

c ∈R Zp
c

oo

Step 3:

zσ = s− σc,
zv = t− vc,
zr = m− rc

zr , zσ, zv
//

Step 4:

D
?
= Cchzrgzσ ,

a
?
= {e(V, y)c

·e(V, g)−zσ

·e(g, g)zv}

Figure 11: SMOT scheme. PK(σ : σ ∈ Φ) with commitment C = gσhr.

as on how to choose u. Assuming that σ ∈ [0 B), the goal is to minimize the
communication load under the constraint uk > B.

First let us present how to prove that our secret σ lies in [0 uk), then we
will review the communication complexity. We will present at this stage the
asymptotic analysis and explain the issues for concrete optimizations. In a
third step, we will explain how to handle any arbitrary range [a, b) for the range
proof. We will thus finish with a concrete example in order to show a practical
comparison.
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5.3.1 Range proofs from our new set membership protocol

Similarly to the previous protocol, we will name this new one Range Proof
from Oblivious Transfer (RPOT - see figure 12). If we look at the decompo-
sition of σ in the base u, we will obtain k elements as such: σ =

∑

j

(

σju
j
)

.
Hence we apply on each of the decomposition coefficient a SMOT proof with
D =

∏

j

(

g
sj

j hm
)

. This modification of the D value enables us to take into
account that each σj is a coefficient of the σ decomposition.

Lemma 5.4 If the log k-Strong Diffie Hellman assumption associated to a pairing
generator PG(1k) holds, there exists a zero-knowledge range argument for the range
[0, uℓ) where uℓ < {0, 1}k−1.

Proof: Completeness follows from inspection. As before, the soundness fol-
lows from the unforgeability of the Boneh-Boyen signature and the extrac-
tion property of the proof of knowledge protocol. The honest-verifier zero-
knowledge property follows from the perfect blinding of the signatures in the
first phase, and the corresponding honest-verifier zero-knowledge property of
the Σ-protocol.

5.3.2 Communication Complexity

The first message of the protocol consists of u signatures, the public key Pk sent
by the verifier to the prover and a proof of knowledge PK(h : H = e(g, h)).
The prover then sends ℓ blinded values back. Thus, the first phase requires

Initl(u, ℓ) = (u + ℓ + 3) · |G1|+ 2 · |GT |+ |Zp| (5.25)

communication. The second phase of the protocol involves a proof of knowl-
edge. The prover sends ℓ + 1 first-messages of a Σ-protocol. The verifier sends
a single challenge, and the prover responds with 2ℓ + 1 elements. Thus the
overall communication load according to the parameters u and ℓ is:

Coml(u, k) = u · |G1|+ ℓ · (|G1|+ |GT |+ 2 · |Zp|)
+(4 · |G1|+ 2 · |GT |+ 3 · |Zp|) (5.26)

Finding the optimal u and ℓ thus involves solving

min c1u + c2ℓ + c3 (5.27)

s.t. uℓ
> B (5.28)

Notice that the bit-committing protocol corresponds to a setting where u = 2
and ℓ = k which leads to a total communication complexity O(k). Since our
protocol allows us to choose more suitable u, we first show that the asymptotic
complexity of our approach is smaller than the prior protocols.

Asymptotic Analysis For the asymptotic analysis, we may ignore the con-
stants c1, c2 and c3. Moreover, we can take B ≈ p/2 as this is sufficient for
showing that a committed value is “positive,” i.e., in the range [0 (p − 1/2)].
Since p ≈ 2k, the constraint becomes uℓ > 2k−1.
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Prover Verifier

Initialization
g, h ∈R G1 \ {1},
x ∈R Zp, y = gx,
H = e(g, h) ∈ GT ,
Pk = (g, H, y),
∀i ∈ Zu do

Ai = g( 1
x+i)

Pk, (Ai)i∈Zu

PK(h : H=e(g,h))
oo

Blinding

∀j ∈ Zℓ do {
vj ∈R Zp,
Vj = (Aσj )

vj ,
s.t. σ =

∑

j

(

σju
j
)

} (Vj)j∈Zℓ
//

Step 1:

∀j ∈ Zℓ do {
sj , tj ∈R Zp,

gj = guj

,
aj = e(Vj , g)−sj e(g, g)tj}
m ∈R Zp,
D = hm

∏

j

(

g
sj

j

)

D, (aj)j∈Zℓ
//

Step 2:

c ∈R Zp
c

oo

Step 3:

∀j ∈ Zℓ do {
zσj = sj − σjc,
zvj = tj − vjc}
zr = m− rc

zr, (zσj
, zvj

)j∈Zℓ
//

Step 4:

D
?
= Cchzr

∏

j

(

g
zσj

j

)

∀j ∈ Zℓ do

aj
?
= {e(Vj , y)c

·e(Vj , g)−zσj

·e(g, g)zvj }

Figure 12: RPOT scheme. PK(σ : σ ∈ [0 uℓ)) with commitment C = gσhr.

By taking logs and dividing, we have that ℓ ≈ k
log u . Setting u = k

log k then
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we get that

u = O
(

k
log k

)

, (5.29)

ℓ = O
(

k
log k−log log k

)

(5.30)

resulting in a total communication complexity of

Com(u, ℓ) = O
(

k
log k−log log k

)

(5.31)

which is asymptotically smaller than O(k).

Concrete Optimization Not only is our solution asymptotically better, but it
also performs well for realistic concrete parameters. In order to perform the
optimization for concrete parameters we substitute the constraint that uℓ ≈ B
into the equation u + ℓ above. To minimize, we set the derivative with respect
to u to 0 and attempt to solve the equation:

c1 −
c2 log B

u log2 u
= 0 (5.32)

which simplifies to

u log2 u =
c2 log B

c1
. (5.33)

This equation cannot be solved analytically. However, given B, c1 and c2, we
can use numerical methods to find a good u as described in [1].

5.3.3 Handling Arbitrary Ranges [a, b)

The above protocol works for the range [0, uℓ). In order to handle an arbi-
trary range [a, b], we use an improvement of a folklore reduction described by
Schoenmakers in [17] and [18]. Suppose that uℓ−1 < b < uℓ. To show the
σ ∈ [a, b), it suffices to show that

σ ∈ [a, a + uℓ) ∩ σ ∈ [b − uℓ, b) (5.34)

Proving that our secret lies in both subsets can be derived from our general
proof that σ ∈ [0, uℓ):

σ ∈ [b − uℓ, b) ⇐⇒ σ − b + uℓ ∈ [0, uℓ) (5.35)

σ ∈ [a, a + uℓ) ⇐⇒ σ − a ∈ [0, uℓ). (5.36)

Note that the u signatures and the verification key need to be sent only once
for both subsets. Since both a, b are public, the only modification necessary is
the verifier’s check, which should now be:

D
?
= Ccg−B+uℓ

hzr
∏

j

(

g
zσj

j

)

, (5.37)

D
?
= Ccg−Ahzr

∏

j

(

g
zσj

j

)

. (5.38)
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Thus, ℓ · (|GT |+2 · |Zp|)+ (|G1|+2|Zp|) extra elements are sent in the protocol.
This scheme can be further optimized when A + uℓ−1 < B with an OR-

composition. Indeed, the decomposition becomes:

[A, B) = [B − uℓ−1, B) ∪ [A, A + uℓ−1). (5.39)

The needed modifications are similar to the previous case; the efficiency arises
from the fact that we are now working with Zℓ−1. The length of the range set
can also be optimized. Indeed if B −A = uℓ then the proof reduces to proving
that σ −A ∈ [0, uℓ).

Combining this analysis with Lemma 5.4 yields the following theorem.

Theorem 5.5 If the log k-Strong Diffie Hellman assumption associated to a pair-
ing generator PG(1k) holds, there exists a zero-knowledge range argument for the
range [a, b] where 0 < a < b < {0, 1}k−1 whose communication complexity is
O( k

log k−log log k ).

5.3.4 Concrete Example

Concretely, if we pick B = 599644800 (which will represent people born before
1989, with their birth date encoded using the Unix Epoch system), we can find
the optimal values of u and ℓ by either computing them numerically or by
following [1]. Both methods will lead us to u = 57 and ℓ = 5, which minimize
the overall communication load:

Coml(57, 5) = 66 · |G1|+ 7 · |GT |+ 13 · |Zp| (5.40)

which includes an initialization load of

Initl(57, 5) = 65 · |G1|+ 2 · |GT |+ ·|Zp| (5.41)

Let us illustrate this optimization case with a concrete example. We will
assume that an airline company wants to provide special offers to its young
clients from a third party. However the exact age of clients should not be di-
vulged to the third party. This offer targets those who are born between 1981
and 1989 (not included). Following the previous example, the birth date will
be a secret number between [347184000, 599644800). Here the best option will
be to use the OR-composition as A + uℓ−1 < B (we know from the previous
example that u = 57 and ℓ = 5). Using parameters from Galbraith, Paterson,
and Smart [10], we estimate that the size of G1 is 256 bits, the size of GT is 3072
bits and the size of Zp is upper-bounded by 256 bits. This leads to an overall
communication load of2:

Coml∪(u = 57, ℓ = 5) = (u + ℓ + 1) · |G1|
+(2ℓ− 2) · |GT |+ 4ℓ · |Zp|

= 45824 bits (5.42)

In order to have a better appreciation of this result, we compare it to previous
protocols in figure 13.

2Note that we are here considering the case where the common input to both prover and veri-
fier is already composed by g, h, u, ℓ, and the commitment C, which means that they already ran
PK(h : H = e(g, h))
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Scheme Communication Complexity
Our new range proof 45824 bits
Boudot’s method 48946 bits
Standard bit-by-bit method 96768 bits
Schoenmakers’ method 50176 bits

Figure 13: Communication load comparison for range proof
[347184000, 599644800)
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6 Conclusion

The initial objectives of this master thesis where considerably high at the beg-
gining, considering that we were aiming for a new state of the art in the domain
of honest verifier zero-knowledge set membership and range proofs. In order
to cope with this requirements, we first studied some initial background on the
domain and tried to get in touch with the newest development in this area of
research. An important part of the time has been spent on the study and pre-
cise analysis of the curent flow of research, especially the work done by Berry
Schoenmakers. From this built experience, we managed to have a glimpse on
a potential unexplored path. This was made possible thanks to the advise of
Dr. Jan Camenisch and Prof. Abhi Shelat, who has actually opened a new fac-
ulty in the University of VirginiaTech. However we had still to materialize this
path into real protocols. This work has been now fulfilled as a patent will be
deposit on our results, together with an attempt to publish it. The knowledge
gained through this experience enabled us to realize our initial objectives with
serenity.

However we only grasped one of the fruits of knowledge. Future research
is still required in order to reduce as much as possible the communication load
and the amount of work for these proofs. Even in our own results, we did not
look in detail the potentiality to use or to modify our protocol for revocation
of anonymous credentials, group membership proof or even set membership
for certified attribute. Some research should be done in order to learn what
would be the minimum load that we can reach in order to see the boundary of
the remaining research. Potential clues for this boundary could be given by the
domain of information theory.
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