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Abstract— The work presents the first results of the authors
research on adaptive Cellular Neural Networks (CNN) based
on a global information theoretic cost-function. It considers
the simplest case of optimizing a resistive grid such that the
Shannon information rate across the input-output boundaries
of the grid is maximized. Besides its importance in information
theory, information rate has been proven to be a useful concept
for principal as well independent component analysis (PCA,
ICA). In contrast to linear fully connected neural networks,
resistive grids due to their local coupling can resemble models
of physical media and are feasible for a VLSI implementation.
Results for spatially invariant as well as for the spatially variant
case are presented and their relation to principal subspace
analysis (PSA) is outlined. Simulation results show the validity
of the proposed results.

I. INTRODUCTION

The big picture of this ongoing research is the study and
design of local learning algorithms for the cell parameters α
of a CNN [1]. After the adaptation the collective dynamics
of the cells should obey a global information theoretic
optimality criterion J which in general is a function of the
input and the output signal. For a planar lattice of cells the
situation is illustrated in Fig. 1. This field of research touches
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minα J(u(t), z(t), α)

Fig. 1. Adaptive CNN, with local identical learning algorithms for each
cell (indicated by an arrow); the CNN parameters α are adjusted according
to some global optimality criterion J .

upon methods of artificial intelligence such as multi-agent
systems [2] and collective intelligence [3]. It is also related to
artificial neural networks, and especially for this result, to the
PCA and ICA neural networks [4]. Furthermore, synergies
are expected from the fields of decentralized control [5] and
smart matter research [6].

In this work focus is put on the study of the simplest
case where the lattice is given as a planar resistive grid.
The objective of the network is to tune its parameters α
such that the information rate or the mutual information [7]
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between the input u ≡ [ u1, . . . , uN ]T and its in general
distorted output signal z ≡ [ z1, . . . , zM ]T is maximized.
It was shown [8] that for a fully connected one-layer feed-
forward neural network with linear activation the optimal
network configuration corresponding to this optimization
problem is the PCA or PSA network. The exploding wiring
complexity of fully connected networks results in serious
problems for a VLSI implementation of such networks. Thus,
a natural question to ask is whether it is possible to perform
PCA or PSA with a network that has local connectivity but
multiple layers. It is well known that networks with local
connectivity such as CNNs are very suitable for a VLSI
implementation [1]. On the other hand CNNs have been
successfully applied to model distributed physical systems
governed by partial differential equations. Thus, another
naturally arising question is whether one can design physical
distributed spatially-invariant or spatially-variant systems that
process input signals such that their output corresponds to the
result of a continuous PCA or PSA analysis.

Throughout the work it is assumed that the perturbation of
z is given as z = y + ε with the deterministic output of the
grid y ≡ [ y1, . . . , yM ]T and the additive perturbation ε ≡
[ ε1, . . . , εM ]T . In contrast to information theory which tries
to maximize the information rate over a given communication
channel subject to different channel coding schemes, our
attempt is to adapt the channel, i.e., the parameters of the
resistive grid, to maximize the information rate.

Initially in [9] the InfoMax principle, i.e., the principle
of maximum information preservation has been proposed to
model orientation selective cells in the mammalian visual
cortex [10]. Based on these results the popular InfoMax ICA
algorithm was developed in [11]. In [8] the application of
this principle to linear feedforward networks is considered.
While most of the subsequent work deals with the derivation
of the InfoMax principle for the resistive grid and does not
culminate in a local learning algorithm, section VI goes all
the way to a local algorithm for a particular grid structure.
The applied structure is based on results in [12].

The work is organized as follows. In section II the con-
sidered processing system is defined and its input-output
(i/o) relation is given. Section III introduces the mutual
information or information rate. Results for the spatially
invariant resistive grid is given in section IV, while section
V presents the result for the spatially invariant situation. A
special case of a spatially variant network, which performs
exact PCA is proposed in section VI. Simulation results
are presented in section VII and section VIII draws the
conclusions.
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II. THE RESISTIVE GRID

Following Fig. 1 we define a layer k of the resistive grid
[13] as the collection of cells which are k−1 cells away from
the input boundary. Thus, the cells at the input boundary
resembles layer k = 1 while the output layer denotes layer
k = L. The dynamics for the cell at position (l, k) at layer
1 < k ≤ L of the resistive grid is described as

ẋ(l, k, t) =
R∑

r=−R

R∑
s=−R

Ā(l, k, r, s)x(l − r, k − s, t), (1)

with the appropriate boundary and initial conditions and R
the Moore neighborhood size. The output signal y at layer
k = L computes to yl(t) = x(l, L, t). For k = 1 we have

ẋ(l, 1, t) =
R∑

r=−R

R∑
s=−R

Ā(l, 1, r, s)x(l − r, 1 − s, t)

+
R∑

r=−R

B̄(l, r)u(l − r, t).

(2)

The following assumptions are made for the sake of clarity of
the presentation. Only the nearest neighbor coupling R = 1
is considered and Dirichlet boundary conditions are assumed
for the input and output boundary, while periodic (case
I) as well as Dirichlet conditions (case II) are considered
for the remaining two boundaries. Some of the subsequent
results can be generalized by suspending these assump-
tions. Introducing the collection of cell states of layer k as
xk(t) = [ x(1, k, t), . . . , x(1, N, t) ]T and defining x(t) ≡
[xT

1 (t), . . . ,xT
L(t) ]T the dynamics of the grid can be cast

into the standard form of a linear control system

ẋ(t) = Ax(t) + Bu(t)
y(t) = Ξx(t),

(3)

with x(0) = x0. The involved matrices are block matrices
of the following form

A ≡




C1 N1 0 0 · · · 0
P2 C2 N2 0 · · · 0
0 P3 C3 N3 · · · 0
...

...
0 0 · · · 0 PL CL


 , (4)

where the submatrices Pk, Ck and Nk refers to the coupling
matrices at layer k with the previous (k−1), the current (k)
and the next (k+1) layer, respectively. The structure of these
matrices are exemplified for Pk subsequently. The (p, q)-th
element of the submatrix Pk is

(Pk)pq ≡
{

Ā(p, k, 1, q − p) for |q − p| ≤ 1
0 otherwise

(5)

for the case II and

(Pk)pq ≡
{

Ā(p, k, 1, q − p) for Nmod(|q − p|) ≤ 1
0 otherwise,

(6)

for the case I. The corresponding submatrices Ck and Nk

are obtained by replacing the “1” in (5) and (6) by “0” and
“−1”, respectively. The LN × N input matrix B of (3) is
B ≡ [Θ,0 ]T with the N × N submatrix

Θpq ≡
{

B̄(p, q − p) for |q − p| ≤ 1
0 otherwise,

(7)

for the case II and

Θpq ≡
{

B̄(p, q − p) for Nmod(|q − p|) ≤ 1
0 otherwise,

(8)

for the case I. The M ×LN output matrix Ξ of (3) becomes
to Ξ ≡ [0,Γ ] with the M × N auxiliary matrix Γ =
[0, IM ] and with the M -dimensional unit matrix IM . This
complication arising through the fact of different input and
output dimensions is necessary to study situations where the
resistive grid should perform a dimension reduction, i.e., a
PCA. The setup for M < N is shown in Fig. 2.

u1(t)

u2(t)

u3(t) z2(t)

z1(t)

Fig. 2. Dimension reduction M < N of the adaptive resistive grid, for
the purpose of principal component analysis.

For A a Hurwitz matrix the asymptotic output y ≡
limt→∞ y(t) for a constant input with u(t) = u for all
t computes to y = Wu with the M × N weight matrix
W ≡ −ΞA−1B. In terms of the coupling matrices Pk, Ck

and Nk the weight matrix W turns out to be

W = (−1)LΓS−1
L PLS−1

L−1PL−1 · · ·P2S−1
1 Θ (9)

with the recursion

Sk = Ck − PkS−1
k−1Nk−1, (10)

with S1 = C1 and k = 2, . . . , L. Interestingly, Sk is just the
Schur complement [14] of the matrix(

Ck Pk

Nk−1 Sk−1

)
. (11)

Using (9) together with the Schur complement (10) we are
able to compute the asymptotic transfer matrix W of the
resistive grid deploying only the coupling matrices.

The following two points should be noted. First, the matrix
W will subsequently be used to compute the steady state
response y to a constant input applied only a finite time T .
This is only reasonable if we assume that the time constant
of the dynamics of the resistive grid is much smaller than
T . Thus under this assumption the input signal u(t) to the
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resistive grid can be any piecewise constant signal generated
from a discrete-time sequence u[n] by a zero-th order hold
operation

u(t) = u[n]γ(t), with n = � t

T
� ∈ Z, (12)

where γ(t) is a rectangular pulse of unit height and width
T centered around time t. The second point to note is that,
the goal of this research is to learn the coupling templates
A(k, l, r, s) and B(k, r) during the processing of input data
u(t). Thus, to put it precisely, the coupling templates are also
a function of time t and (3) is time-variant linear system.
By the assumption that the time constant for the adaptation
dynamics is much larger than T the separate treatment of
the processing dynamics and of the adaptation dynamics is
justified.

III. INFORMATION RATE, MUTUAL INFORMATION

In the following we digress from the exact notation by not
distinguishing between a random variable and its realization
for the sake of conciseness. Furthermore all the following
probabilistic quantities relate the input, the noise and output
process at an arbitrary but same time point. As no quantities
relate signals evaluated at different time points such as
temporal correlations, the time arguments of the signals are
not display subsequently.

The information rate or mutual information for continuous-
valued random variables [7, p. 231] is defined as the differ-
ence between two entropies

I(z;u) ≡ H(z) − H(z|u), (13)

where H(z) denotes the entropy of the output signal z and
H(z|u) denotes that part of the entropy of the output signal
that is not caused by the input signal. Thus, in the current
setup H(z|u) is the entropy of the additive perturbation ε.
From (13) it becomes clear that for a ε with given constant
statistics the method of maximizing the mutual information
I(z;u) is equivalent to the maximum entropy method [15],
i.e., maximizing H(z). In terms of probability densities
I(z;u) can be written as

I(z;u) =
∫ ∞

−∞
p(u, z) log

p(u, z)
p(u)p(z)

dudz

=
∫ ∞

−∞
p(z|u)p(u) log

p(z|u)
p(z)

dudz,
(14)

where in the second equation the definition of the conditional
distribution is applied. We assume that the input signal u
as well as the additive output perturbation ε are zero-mean
Gaussian random processes with covariance matrices Φ and
Σ, respectively. Thus, the conditional density of z given the
input u is

p(z|u) =
1

(
√

2π )M |Σ|) 1
2

× exp
[
−1

2
(z − Wu)T Σ−1(z − Wu)

]
,

(15)

while the density of the input process u is just

p(u) =
1

(
√

2π )N |Φ|) 1
2

exp
(
−1

2
uT Φ−1u

)
. (16)

The distribution of the output signal p(z) is obtained by
marginalization

p(z) =
∫ ∞

−∞
p(z|u)p(u)du, (17)

which yields

p(z) =
1

(
√

2π )M |WΦWT + Σ| 12
× exp

[
−1

2
zT (WΦWT + Σ)−1z

]
,

(18)

Applying (15), (16) and (18) to the second equation in (14)
gives

I(z;u) =
1
2

log
|WΦWT + Σ|

|Σ| . (19)

IV. SPATIALLY INVARIANT GRID

For the analysis of the spatially invariant grid the following
assumptions are made. Periodic boundary condition for the
boundaries perpendicular to the input boundary (case I) and
N = M is assumed. The reason for this is that the setup
allows for insightful simplifications through its rich algebraic
structure. In the spatially invariant situation the entire resis-
tive grid is characterized by its feedback template Ā(r, s)
and its control template B̄(r), i.e., 12 real numbers. For
convenience we associate with the feedback template Ā(r, s)
a template matrix Ā with the elements Ākl = Ā(k−2, l−2).
Correspondingly a template vector B̄k = B̄(k−2) is defined.
For the matrices of (3) this results in a block-Töplitz matrix
for

A ≡




C N 0 0 · · · 0
P C N 0 · · · 0
0 P C N · · · 0
...

...
0 0 · · · 0 P C


 , (20)

with the N × N circulant [16] submatrices

P = circ(Ā32, Ā33, 0 . . . , 0, Ā31)
C = circ(Ā22, Ā23, 0 . . . , 0, Ā21)
N = circ(Ā12, Ā13, 0 . . . , 0, Ā11).

(21)

The submatrix Θ of B is the circulant matrix

Θ = circ(B̄2, B̄3, 0, . . . , 0, B̄1) (22)

and the submatrix Γ of Ξ is just the N ×N identity matrix,
which is the special circulant Γ = circ(1, 0, . . . , 0). The
interesting property of circulant matrices is that all circulant
share the same eigenvector system, i.e., all circulants get
diagonalized by the same unitary matrix U with components

Ukl =
1√
N

e− 2π(k−1)(l−1)
N , (23)
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which is just the discrete Fourier transform matrix. A direct
consequence of this fact is that products, sums and inverses of
circulants are once again circulants. Thus, the set of circulant
matrices form a group. Because of this, the result of the
recursion in (10) and consequently the weight matrix in (9)
are circulants. The eigenvalues of the matrices P, C and N
denoted as pl, cl and nl with l = 1, . . . , N , respectively are

pl = Ā32 + Ā33ξ
l + Ā31ξ

−l

cl = Ā22 + Ā23ξ
l + Ā21ξ

−l

nl = Ā12 + Ā13ξ
l + Ā11ξ

−l,

(24)

with ξ ≡ e− 2π
N . With (10) the eigenvalues sk

l of the Schur
complement Sk with k = 1, . . . , L are

s1
l =

1
cl

s2
l = cl − plnl

cl

s3
l = cl −

plnl

cl −
plnl

cl

...

sL
l = cl −

plnl

cl −
plnl

cl −
plnl

cl − · · ·

,

(25)

written in terms of continued fractions. With (9) the eigen-
values wl of the weight matrix W are

wl =
(pl)L−1θl

s1
l s

2
l · · · sL

l

(−1)L (26)

where θl denotes the eigenvalues of the submatrix Θ.
Applying the continued fractions of (25) to compute the
product s1

l s
2
l · · · sL

l we obtain through inference from the
intermediate steps

s1
l s

2
l = c2

l − plnl

s1
l s

2
l s

3
l = c3

l − 2clplnl

s1
l s

2
l s

3
l s

4
l = c4

l − 3c2
l plnl + (plnl)2

s1
l s

2
l s

3
l s

4
l s

5
l = c5

l − 4c3
l plnl + 3cl(plnl)2

s1
l s

2
l s

3
l s

4
l s

5
l s

6
l = c6

l − 5c4
l plnl + 6c2

l (plnl)2 − (plnl)3,
(27)

that with β(pl, cl, nl) ≡
∏L

k=1 sk
l

β(pl, cl, nl) =
�L

2 �∑
k=0

(−1)ka(k, L)cL−2k
l (plnl)k, (28)

where a(k, L) denotes the polynomial coefficients. The result
allows for an expression of the eigenvalues of W of a
resistive grid on a cylinder (periodic boundary conditions)
without the recursive definition of the sk

l as

wl =
(pl)L−1θl

β(pl, cl, nl)
(−1)L. (29)

Based on (29) an expression for I(z;u) of (19) in the above
style can be obtained if one additionally assumes that the
input covariance matrix Φ as well as the noise covariance
matrix Σ are circulant matrices. An example of an input
process with such properties would be the response of a
spatially invariant resistive grid to a spatially white random
vector with equal variance for each component. Thus, for a
cylindrical setup and equal variance for each component the
choice can be considered reasonable. Concerning Σ, the most
popular choice in many disciplines for the noise covariance
is Σ = σ2I, which obviously is a circulant matrix.

Applying these assumptions to (19) and making use of the
eigenspace representation of the involved matrices yields

I(z;u) = log |UU†| +
N∑

l=1

log(1 +
φl

σ2
w∗

l wl)

=
N∑

l=1

log(1 +
φl

σ2

∣∣ (pl)L−1θl

β(pl, cl, nl)

∣∣2),
(30)

where φl are the eigenvalues of Φ and “(·)†” and “(·)∗”
denote hermitian and complex conjugation, respectively.
Viewing the expression (30) as ∝ log(1+SNR) with SNR the
signal-to-noise-ratio, indicates that I(z;u) can be arbitrarily
increased by scaling the signal component through a larger
gain w∗

l wl of the resistive grid. Thus, without an additional
constraint the InfoMax solution is not finite. A natural choice
is to limit some norm of the coupling templates. Another one
would be to limit some norm of the eigenvalues wl directly.
For simplicity the control template is set to B̄kl = δkl with
the Kronecker delta δkl for the following analysis. The first
of the above choices would yield a Lagrange function

L(Ā, λ) = I(z;u) + λ(Tr(ĀT Ā) − K), (31)

with K is predetermined positive constant and λ the La-
grange multiplier. In addition to this constraint, a stability
constraint has to be applied because the expression (9) is
only valid for the system (3) to be stable.

The following approach aims to combine the two above
constraints into one. The idea is to set the self-feedback
template coefficient Ā22 to a negative constant which guar-
antees a stability margin under the norm constraint for
the remaining template coefficients. This can be formalized
using the Gerschgorin circle theorem [14]. It states that the
eigenvalue of the matrix A in (4) lie within the union of
circles described by η with

|η − All| < ρl, with ρl =
LN∑
k=1

|Alk| − |All| (32)

For the special case of (20) the set of conditions can be
reduced to one condition in terms of the template coefficients

|η − Ā22| < ρ, with ρ =
3∑

l=1

3∑
k=1

|Ālk| − |Ā22|, (33)

which is valid for rows of (20) describing the dynamics of
layer 1 < k < L. For the layers k = 1 and k = L a tighter
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bound for ρ can be obtained, but subsequently the sufficient
condition (33) is used. Interpreted in terms of stability we
require that for a given negative value of Ā22 the interval of
radius ρ should not contain positive numbers, i.e., we require
that Ā22 + ρ < 0. Thus,

3∑
l=1

3∑
k=1

|Ālk| < 2|Ā22|, (34)

which means that A is diagonally dominant. To be compat-
ible with the constraint term in the Lagrange function (31)
we use Hölders inequality

L∑
k=1

|xkyk| ≤
(

L∑
k=1

|xk|p
) 1

p
(

L∑
k=1

|xk|q
) 1

q

, (35)

with 1
p + 1

q = 1 by choosing yk = 1 for k = 1, . . . , L and
p = q = 2, such that

L∑
k=1

|xk| ≤
(
L

L∑
k=1

x2
k

) 1
2 (36)

Thus the condition

4
3∑

l=1

3∑
k=1

Ā2
lk < Ā2

22 (37)

is sufficient for (34) to hold. Therefore the constant in (31)
can be chosen to be K = Ā2

22
4 − ε, where ε > 0 is a small

additional margin. The optimization problem for a given
value of Ā22 then reads

max
Ā\Ā22

N∑
l=1

log(1 +
φl

σ2

∣∣ (pl)L−1

β(pl, cl, nl)

∣∣2)
subject to

Tr(ĀT Ā) =
( Ā22

2
)2 − ε,

(38)

where pl, cl and nl are related to Ā by (24). The nota-
tion Ā\Ā22 should indicate that Ā22 is not in the set of
optimization variables. A thorough simulation study of this
optimization problem will is subject to an upcoming paper.

V. SPATIALLY VARIANT GRID

For the spatially variant grids we are going to distinguish
two situations. In the first, for each layer k the coupling
template is spatially invariant, but is different for different
layers. The second case considers the most general case
where each coupling strength can be adjusted individually.

A. Spatially Invariant Layers

Similar to section IV we associate with the feedback
template of (1) and (2) a spatially invariant 3 × 3 feedback
matrix Āk for the layer k. In contrast to (20) the matrix
A now takes on the general form of (4) and is not Töplitz
anymore. On the other hand the submatrices resemble the
spatially invariant coupling inside a layer and are therefore
either Töplitz (case II) or a circulant (case I). Once again we

will assume case II boundary conditions because of its richer
algebraic structure. The submatrices of (4) is thus defined as

Pk = circ(Āk
32, Ā

k
33, 0 . . . , 0, Āk

31).

Ck = circ(Āk
22, Ā

k
23, 0 . . . , 0, Āk

21)

Nk = circ(Āk
12, Ā

k
13, 0 . . . , 0, Āk

11)

(39)

Correspondingly, it is assumed that the control template (1)
is spatially invariant such that (22) remains valid. Denoting
pk

l , ck
l and nk

l as the l-th eigenvalues of the matrices Pk,
Ck and Nk, respectively, the eigenvalues of the asymptotic
transfer matrix read

wl =
θl

∏L
k=2 pk

l

s1
l s

2
l · · · sL

l

(−1)L, (40)

with the recursion sk
l = ck

l − pk
l nk−1

l

ck−1
l

. In terms of the

maximization of the information rate the results of section
IV can be generalized to

max
{Ā1\Ā1

22,...,ĀL\ĀL
22}

N∑
l=1

log(1 +
φl

σ2

∣∣ ∏L
k=2 pk

l

s1
l s

2
l · · · sL

l

∣∣2)
subject to

Tr((Ā1)T Ā1) =
( Ā1

22

2
)2 − ε

...

Tr((ĀL)T ĀL) =
( ĀL

22

2
)2 − ε,

(41)

where the feedback template was set to B̄kl = δkl.

B. The General Case

An important restriction of the above formalism for the
spatially invariant grid and spatially invariant layers is, that
no dimension reduction as illustrated in Fig. 3 can be incor-
porated. Even if a spatially invariant grid of rectangular shape
with periodic boundary condition is used in combination with
a output matrix Ξ of lower dimension M < N , the elegant
eigenvalue formalism breaks down. This becomes evident
from (9), because the Γ is no more a identity matrix and W
is rectangular matrix.

To study this interesting problem of dimension reduction,
i.e., of lossy compression, one has to go back to the equations
(3), (4), (9) and (19). Obviously, no constraints for the lateral
boundary conditions and on the geometry of the grid is
imposed. Thus, the transfer matrix of the grid in Fig. 3 can
still be cast into the form (9). In terms of maximizing the
information rate the general problem now reads

max
A,Θ

log |WΦWT Σ−1 + I|
subject to

�(A) < 0

Tr(WT W) − K̄ = 0,

(42)

in combination with (9) and (10), with K̄ some predeter-
mined constant. The variables A and Θ are the representa-
tives of the individual coupling parameters of the grid.
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u3(t) z2(t)

z1(t)

Fig. 3. Dimension reduction M < N of the adaptive resistive grid, with
different number of cells in the layers.

VI. RELATION TO PRINCIPAL COMPONENT ANALYSIS

The section is devoted to the relation between the InfoMax
principle and the PCA as well as PSA. Using the identity
log |X| = Tr log(X) for a general positive definite matrix X
and applying it to (19) yields

I(z;u) = |I + WΦWT Σ−1|
= Tr log(I + WΦWT Σ−1)

= Tr
[
WΦWT Σ−1 − 1

2
(WΦWT Σ−1)2 + · · ·

]
≈ J(W) ≡ Tr

(
WΦWT Σ−1

)
,

(43)
where a truncation of the power expansion of the logarithm
at the first order is used. For Σ a diagonal matrix the last
expression of (43) is just the weighted sum of the variances
of the output signals yk with k = 1, . . . , M . This is the
general cost-function for PCA [17], [4] and reduces to the
cost-function of Oja’s PSA algorithm for Σ = I. While for
PCA Σ is a diagonal matrix with monotonically decreasing
entries which was introduced to eliminate the ambiguity of
the PSA in favor of PCA, in the InfoMax framework Σ has a
physical, tangible interpretation. In PCA and PSA algorithms
the matrix W should converge to a matrix with orthogonal
rows which span the principle subspaces. This constraint with
the necessary magnitude constraint for the network gain can
be combined in

WWT = I. (44)

The gradient of the cost with respect to W [17] is

∂J(W)
∂W

= −WΦWT Σ−1W + Σ−1WΦ, (45)

where the constraint (44) was taken into account. One
associates a gradient flow Ẇ = −µ∂J(W)

∂W , which performs
gradient ascent on the cost function J(W). Applying the
stochastic approximation Φ ≈ uuT allows to decompose the
expression of the matrix flow Ẇ into flows of the M × 1
column vectors of W = [w1, . . . ,wN ]

ẇk = µy(ûk − uk) = µeky, (46)

where additionally Σ = I was assumed. The quantity û ≡
[ û1, . . . , ûN ]T is the reconstruction of the input in terms
of the, in general lower dimensional, output û = WT y,
ek ≡ ûk − uk is the reconstruction error and µ > 0 is the

learning rate. According to the discussion in section II the
learning rate has to be chosen small enough such that the
adaptation and the processing dynamics can be considered
to operate at largely different time scales.

Unfortunately, for the resistive grid one can not update the
matrix W using (46), because it is a function of the coupling
templates Ā(l, k, r, s) and B̄(l, r). This is in contrast to
feedforward networks where the matrix of coupling strength
is identical to its transfer matrix.

The interesting question posed here is whether there exists
a recursive system, especially a resistive grid where a matrix
of coupling strengths is identical to the asymptotic transfer
matrix W of the system. The following approach is based
on [12], where a very interesting multilayer recursive neural
network is proposed. In this network the processing cells
of all layers are recursively coupled to all cells of their
neighboring layers except for the first layer. In terms of the
processing topology the cells of the first layer, i.e., the input
layer, do not receive the feedback signal from the second
layer.

The difference to a planar resistive grid for layers k > 1
is that there is global coupling between layers, i.e, a cell at
layer k is coupled to all cells in layers k−1 and k+1. In [12]
an in-depth treatment of the PCA using such a network with
two layers is performed. But for a network with two layers
the proposed processing topology is just of the classically
feedforward type, because the second layer, as it is the last
layer, does not receive a feedback signal.

Subsequently it is shown that the topology can be changed
such that the first layer receives a feedback signal from the
second layer. The resulting network is depicted in Fig. 4 for
the case of N = 3 and M = 2. The special features of the

u1(t)

u2(t)

u3(t) z2(t)

z1(t)

Fig. 4. A Two layer resistive grid which global coupling between the layers
and no lateral, layer-internal coupling; output layer is not adaptive.

network is that the coupling strengths are symmetric and that
there is no lateral coupling between the cells. In terms of the
coupling matrices in (4) we obtain

x1 = C1x1 + N1x2 + Θu

x2 = C2x2 + P2x1

(47)

with C1, C2 and Θ diagonal matrices and P2 = NT
1 . For
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Fig. 5. Adaptive cell k for the resistive grid with global coupling between
layers of Fig. 4; Although, there are only local learners for each cell, the
network self-organizes to maximize the global PSA cost function J(W) of
(43) with Σ = I.

the recursively coupled higher layers k > 1 in [12] the self-
feedback matrices were assumed to be C1 = −IN and C2 =
−IM . In the following we choose C1 = −κIN , C2 = −κIM

and Θ = (κ2 − 1)IN with κ > 1. Applying the expressions
(9) and (10) to this setting gives

W = (κI − P2PT
2

κ
)−1 1

κ
P2Θ. (48)

As there is global coupling between the layers, P2 is a
general matrix without any band-structure. Thus, the matrix
can be forced to obey P2PT

2 = I. With this the asymptotic
transfer matrix becomes

W = P2. (49)

From (48) it is clear that for κ = 1 the matrix to be inverted
is singular and the corresponding dynamical system (3) gets
unstable.

Thus, for this specific network the matrix of coupling
strength is identical to the asymptotic transfer matrix. The
big advantage of this structure, compared to general recursive
topologies is that no inverse matrix as in (9) is involved.

With this slight modification the network has been made
fully recursive and stable. From (46) one can conclude that,
subject to the global PCA cost function, each cell can adapt
its coupling strength based on the signal locally available
to the cell. Such an adaptive cell is shown in Fig. 5. The
cell architecture can be generalized to perform PCA instead
of PSA by choosing Σ to be the diagonal matrix with
monotonically decreasing entries. The learning algorithm
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Fig. 6. Learning curve for the principal subspace network of Fig. 4;
extraction of two principal subspaces from a 3-dimensional random input;
mutual alignment of the two strongest eigenvector (dashed), alignment of
the extracted subspace to the offline computed third eigenvector (solid).

remains local with the difference that each weight in cell
k would now receive a different reconstruction error signal
for its adaptation.

VII. SIMULATION RESULTS

The behavior of the special resistive grid for PSA in-
troduced in section VI is illustrated with the following toy
example. Consider the network in Fig. 4 with a 3-dimensional
random process as input and the first two principal com-
ponents as its output. The input process is generated by
correlating a discrete-time white Gaussian random process
with variances σ2

1 = 1, σ2
2 = 0.6 and σ2

3 = 0.1 by a
randomly generated orthogonal matrix to yield a nondiagonal
input covariance matrix Φ. This process is transformed to a
continuous-time piecewise constant signal through a zero-th
order hold operation and is then applied to the continuous-
time Simulink model of the resistive grid. The time constant
in (12) for the hold operation is T = 20 sec. The stability
margin parameter κ is chosen to be κ = 2, while the learning
rate is conservatively set to µ = 3 × 10−4. In Fig. 6 the
alignment, i.e., the cosine of the angle between two vectors,
is shown over time. The mutual alignment of the two vectors
spanning the principal subspace as well as their alignment to
the offline computed third eigenvector of the input covariance
matrix Φ is depicted. A short section of the time evolution
of one input component u1(t) and its internal reconstruction
û1(t) is given in Fig. 7.

VIII. CONCLUSIONS

First results of the research on adaptive Cellular Neural
Networks are presented. Focus is put on the analysis of
a simple linear resistive grid. A compact expression for
the information rate over the resistive grid for the spatially
invariant case is derived in terms of the eigenvalues of the
asymptotic transfer matrix and the spectrum of the input
correlation sequence. Furthermore, the optimization problem
with its magnitude constraint as well as its stability con-
straint is formalized. For resistive grids where the coupling
templates vary for different layers but where the template
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Fig. 7. Short section of the time evolution of one component u1(t) (solid)
of the vectorial input process and its network reconstruction û1(t) (dashed)
after adaptation; one clearly observes the piecewise constant nature of the
input sequence using a zero-th order hold and the sufficiently fast processing
dynamics of the network.

inside one layer is spatially invariant similarly compact
expression as for the spatially invariant case are derived.
For a special two-layered fully connected resistive grid we
are able to compute the gradient flow of the weight matrix
without involving a inverse of a matrix. This allows for the
design of local learners inside each cell which requires the
locally available signals inside a cell only. One approach to
overcome the exploding wiring complexity for large input
dimension of this fully connected grid is to performs local
PSA or PCA by splitting the input vector into multiple
vectors of smaller dimension. In this case the networks has
to be fully connected for the smaller dimension. Many of the
obtained results can be generalized to a multilayer resistive
grid with a 2-dimensional (visual) input.
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