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Abstract— This paper shows equalization approaches for high-
data-rate transmitted-reference (TR) IR-UWB systems employing
an autocorrelation receiver front-end. Using a maximum like-
lihood sequence detector (MLSD) with decision feedback (in
the back-end of the TR-receiver), a significant improvement
of the receiver performance is possible. To avoid the high
complexity of the MLSD detector, alternative equalizer structures
are evaluated. If the parameters of the channel are not known
a priori, an equalizer has to be adapted during the transmission
of training data. Such an adaptive equalizer is presented as
a reference. Furthermore, we study the design of Minimum
Mean Square Error (MMSE) equalizers assuming knowledge of
the channel. A linear MMSE equalizer is designed using the
linear and nonlinear channel coefficients. Then the concept of
the linear equalizer is extended to a nonlinear Volterra equalizer
which further improves the performance of the IR-UWB receiver
structure. All proposed methods are discussed and the effects are
shown with computer simulations.

I. INTRODUCTION

Autocorrelation Receivers (AcR) are widely used in Trans-
mitted Reference (TR) Ultra-wide Band (UWB) communica-
tions. The authors in [1] have shown that the Inter-symbol
Interference (ISI) of a frame-differential AcR and the wireless
multipath propagation channel can be modelled as a second
order Volterra system [2]. Thus, the output of the AcR depends
non-linearly on the input data d[i] € {—1, +1} where ¢ denotes
the symbol index. The decision variable without noise z[i] is
given by

2[i] = ho + d[i] "hy + d[i]THad]i], (1)

where the vector d[i] consists of the data symbols up to a
finite memory depth L = n + 2, i.e.,

dli] = [dli =l dli—n+1),...,dli+ 17 (@)

and ho,h; and Hs are the zeroth, first and second order
kernels of the Volterra system, respectively. n denotes the
number of past interfering symbols and depends on the excess
delay of the channel impulse response. If a low-data-rate
scenario with a data rate up to about one-fifth of the reciprocal
of the channel RMS delay spread (7,,,5) is considered, (e.g.
10 Mbps [1] at an RMS delay spread of 7,.,,,s=10ns) little ISI
occurs and the conventional slicer is capable of retreiving the
data without equalization. If the data rate is increased further
(e.g. 125 Mbps) equalization has to be investigated for the
receiver.

To equalize this structure, one can use a Maximum Likeli-
hood Sequence Detector with decision feedback (MLSD-DF),
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Fig. 1. Equivalent system model and proposed nonlinear equalization.

where the Euclidean distance of the received sequence and
all possible symbol states is minimized to find the currently
transmitted data symbol. Hence, the complexity of an MLSD
can become very large. Differences between a nonlinear and
linear distance calculation heavily affect the performance of
the receiver structure [1].

To avoid the high computational complexity, adaptive linear
or polynomial equalizers, i.e., Volterra equalizers, can be
used to improve the performance of the system. Usually the
coefficients of the kernels are not available at the receiver
side which means the kernels of the equalizer have to be
determined at the beginning of a transmission using a training
sequence. This consumes part of the available bandwith. With
the estimated coefficients of the system model, the MLSD-DF
may work properly.

In this paper linear Minimum Mean Square Error (MMSE)
equalizers are designed to compensate the introduced distor-
tions. As shown in Fig. 1 the linear equalizer coefficients are
denoted as g; and are optimized under a MMSE criterion.

Furthermore, it is possible to design a nonlinear equal-
izer where the determined linear equalizer coefficients are
kept constant and one tries to improve the performance by
finding a second order Volterra kernel G, shown in Fig.1,
to compensate the nonlinear distortions and to recover the
transmitted data symbols d[i]. These approaches are taken
under the assumption of knowledge of the system parameters
h; and Hs.

The paper is organized as follows. A short summary of
the specific properties of this second order equivalent system
model is presented in Section II. The performance of an
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MLSD-DF detector with linear and nonlinear distance calcu-
lation is reviewed in Section III. Adaptive approaches, using
training data to adapt polynomial filters for equalization are
found in Section I'V. These results serve as a benchmark for the
equalizers derived in this paper. In Section V, the design of a
linear equalizer is shown, where the coefficients are optimized
in a MMSE sense. This concept is extended in Section VI,
where higher order kernels of the equalizer are designed. All
approaches are compared in their performance by computer
simulations. The results are shown in Section VII and finally
conclusions are presented in Section VIII.

II. SPECIAL PROPERTIES OF THE VOLTERRA MODEL

This work is based on the derivation of an equivalent
nonlinear system model for TR-IR-UWB receivers. Witrisal et.
al. have shown in [1], that the inter-symbol interference (ISI)
can be modeled as a second order Volterra system which has
several properties used throughout this paper. Since d?[i] = 1,
all the main-diagonal elements of the second order kernel
matrix Hy can be summed up in the bias term hy because
the data dependency vanishes for these elements. Hence, the
output of the second order Volterra system can be written as in
(1) or, when including the bias term and distributing it equally
on the main-diagonal of a matrix Hy ¢ (cf. Fig. 1) as

2[i] = d[i]"hy + d[i] " Ha od]i]. 3)

One other specific property of the model assumed in [1] is
that the second order kernel matrix H is represented by an
upper triangular matrix. Furthermore, it can be easily shown
that a symmetric version of this matrix can be computed [3].

III. MLSD WITH DECISION FEEDBACK

The MLSD detector is used to serve as a reference for
further results in this paper. Also for the nonlinear case
the MLSD is an optimal detector since we assume that the
parameters of the equivalent system model are known. In
the noisy case, the output of the equivalent nonlinear system
model is written as

2[i] = ho + h]d[i] + d"[i{]Had[i] + nli], 4)

where n[i] is a zero-mean Gaussian process which has, as
a first approximation, independent samples and a constant
variance o2 for all data symbols. This assumption has been
validated by computer simulations in [1]. To detect the se-
quence of transmitted symbols {d[¢]}, the MLSD with decision
feedback [4] applies the Viterbi algorithm to a reduced trellis
with 27~ % +1 gtates. For this trellis, the branch metric m; from
state q1[i] = [d[i —n+ K],d[i —n+ K +1],...,d[i]]" to state
q2li] = [dli—n+K+1],d[i—n+K+2],...,d[i+1]]T for the
reduced complexity MLSD-DF-NLIN with decision feedback
is given by

ma(auli], g2li]) = |2[i] —ho —hid[i] - d[{]"Had[i]|*. (5)

Conversely, the MLSD-DF-LIN with linear distance calcu-
lation has a branch metric mso given by

ma(au[i], q2(i]) = ||2[i] — ho — hid[i]||*. (6)

In both cases, d[i] = [dT(qu[i]),dli — n + K],d[i — n +
K +1],...,d[i + 1]]7 denotes the vector for computing the

distances, where d(q; [i]) denotes the K x 1 vector containing
feedback decisions which depend on the state q; [¢] determined
by the path histories. Thus, the branch metric, computed in (5)
is only dependending on the noise because all other quantities
can be computed deterministically resulting in the optimality
of the detector even in the nonlinear case.

The achieved performance of linearly and nonlinearly com-
puted branch metrics is evaluated and compared to the pro-
posed equalization methods in Section VII, where for the
feedback vector, a length of K = n — 1 is chosen leading
to a trellis of only 4 states..

IV. ADAPTIVE POLYNOMIAL FILTERS FOR CHANNEL
EQUALIZATION

Usually the parameters of the channel are not known a
priori on the receiver side to compute the best equalizer
for a given channel. Therefore these equalizer coefficients
have to be estimated during transmission of training data
{d;[i]}:5", where N; denotes the length of the training
sequence. Conventional least mean square (LMS) adaptive
linear and adaptive Volterra filters [5] are used to adapt an
equalizer at the receiver side. Thus, the coefficient vector of
the adaptive polynomial filter can be written as

g = [g(()l)v gil)a sty gélzla g(()72(%7 g(()21); sty 92211,[/—1]5 (7)
where the superscript denotes the order of the kernel. For up-
dating the coefficients, a conventional LMS adaptive algorithm
with the update equation

glk] = glk — 1] + pze[k], ®

is used. In the update equation e[k] denotes the error at output
of the adaptive filter, i.e.

el[k] = di[k] — d[k]. ©)

Z is a vector containing the received symbols, and in the
nonlinear case, products of the received symbols and p is
the stepsize of the algorithm, which can be chosen differently
for the linear and nonlinear part [5]. To achieve reliable
convergence of the adaptive filters, the length of the training
sequence has to be long enough to estimate equalizer parame-
ters properly. In our simulations the convergence of the filters
was achieved with sufficiently long training sequences and the
steady state solution of the equalizer was used for equalization.

V. LINEAR MMSE EQUALIZER

Considering the rather high complexity of the MLSD, a
linear equalizer can help to equalize the channel distortions
and detecting the symbols with a very simple conventional
threshold detector. The complexity of the linear equalizer is
rather low which justifies the design and reduces implemen-
tation costs. The linear MMSE approach for designing an
equalizer tries to minimize the variance of the error aglm,
which is the difference between the desired response and the

given response, at the detector. This variance aglm for the
linear term is given by
ol = (fi —Higi)"(fy — Higi)og + gl gion,  (10)

where g1 = [¢1[0] ...

g1[L —1]]7 are the equalizer coef-
ficients, f; = [0...010...0]"

0]" is the desired impulse
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response from the interconnection of the two systems, i.e. a
d-pulse with a certain delay, and H; is a 2L — 1 x L Toeplitz
matrix consisting of the channel coefficients h;,

hf0] 0 - 0 0
hi[l] 0] O .- 0
0= : = - (11)
0 0 hi[L—1] l[L—2]
0 0 -+ 0  h[L—1]

The solution to the regularized least squares problem (10)
is given by

2
~ ~ (o3 ~
g1 = (HH: + 1) Hfi, (12)
d

where the solution with the lowest noise gain, i.e. lowest
amplification of the noise o2 at the equalizer input, is found
and I denotes the identity matrix. Assuming that the AWGN
n[i] in Fig. 1 is zero, the pseudo-inverse solution yields for

the equalizer coefficients

gl = (H[H)'Hf. (13)

Furthermore, it is possible to compute a linear MMSE
equalizer with consideration of the nonlinear channel model,
i.e. considering the nonlinear channel coefficients in the design
of the linear equalizer. In this case the MSE is given as

Uglinz =(f; — Hig1)" (f1 — Hig1)oj+ (14)
(f, — Hog1) " (£, — Hygy)oh + gl gio2,

where H’y is a matrix consisting of the coefficients of the
second order kernel and fs is the vector representing the
second order kernel of the cascade, which should be ideally
zero. The variance of the error in (14) is rewritten as a
combined error equation yielding

- T
o2 = ] | Hy
€lin2 Udf2 UdH/Q 81,2

f H
) ([Udlfé] B [dell’z] g1,2) g+ g-lr,2g1720721-
(15)

Since the variance and the squared variance o5 = o} = 1 the
additional data variance vanishes in front of f, and HY. For
that reason the matrix H; has to be extended by the nonlinear
channel coefficients Ho. Similarly to the linear equalizer the
nonlinear channel coefficients are collected in a matrix HY in
a regular Toeplitz structure,

H, =
[ H2(1,0) 0 0 1
Hy(1,1) H>(1,0) 0
0 Hy(1,L —2) Hy(1,L — 3)
0 0 Hy(1,L —2)
Hy(L-1,1) 0 0
0 Hy(L—-1,1) 0
: 0 :
L 0 0 Hy(L —1,1) |
(16)

where the notation Hy(«, 3) simply maps the off-diagonals to
a vector notation. The first index o denotes the off-diagonal
of the matrix Hs> and the second index 3 denotes the element
index within the off-diagonal. Consequently, the solution for
the “improved” linear equalizer coefficients is given in the
same manner as before by
~ ~ 0'2 ~
g2 = (HoHio+ 5D Hf0,  (7)
d

where ﬁLg and f; » denote the concatenation of the linear
and the nonlinear channel coefficients and desired impulse

responses as seen in (15), respectively. Note that these deriva-
tives assume that the bias term has been subtracted before.

VI. SECOND ORDER MMSE EQUALIZER

Similarly to the linear equalizer design approach it is
possible to design a nonlinear, i.e., second order Volterra
equalizer. This second order kernel (Go in Fig.1) should
further reduce the introduced distortions from the receiver
front-end. To design a second order equalizer one possible
criterion is, to furthermore claim that the second order kernel
of the interconnection is forced to zero, i.e.,

fi=[0...010...0]", Fy=0, (18)

where F'5 is the second order kernel matrix of the interconnec-
tion of two nonlinear Volterra systems. Generally, the size of
F5 is determined by the length of the two interconnected sys-
tems {H;} and {G,}, where {-} denotes a set of homogeneous
Volterra kernels. In the proposed equalizers we assume that
channel and equalizer have the same memory length, either
linear or nonlinear, which means that f; is a 2L — 1 x 1 vector
and Fy is a 2L —1 x 2L —1 matrix with their desired responses
as shown in (18).

Of course, this introduces distortions of order 3 and 4 which
are not negligible. However, in weakly nonlinear systems the
contributions of these kernels might be very small compared to
the first and second order distortions but it is not clear whether
this is the case in the studied system. Nevertheless, the first
approach for the computation of the equalizer coefficients does
not consider these higher order terms at all. A second approach
tries to model the effects of the third and fourth order term
approximately. Furthermore, it is assumed that the coefficients
of the linear equalizer are designed properly with the approach
shown in Section V and a second order equalizer is designed
to improve the performance.
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The resulting second order kernel F5[my,mz] of the inter-
connection of two nonlinear systems is given as

L-1
Fg[ml,mg] = Z gl[l]hg[ml - l,mg - l]
=0
L1L-1 (19)
+ Z Z 92[11,12“7,1[7’)11 — ll]hl[mg — 12]
11=012=0

To have a more compact expression for optimizing the Volterra
equalizer, the convolution in (19) is rewritten as a matrix mul-
tiplication. For that reason we have to compose new matrices
G and Hs which map the two-dimensional convolution on a
matrix multiplication. Note that if we assume the same length
L for the channel and for the equalizer, the second order kernel
of the interconnection has to be 2L — 1 taps long, i.e. a kernel
with the dimensions 2L —1x 2L —1. If this dimension problem
is considered properly, the convolution is given as

F; = G H, + H,G,H] (20)
where the matrices are composed as follows
T
Gig|ofoO]-- \i|
0|Gui|o]- @
G, = : @
B' -1 0|0|G1,L-1
where the matrix G ; is defined as
Gl,j :gl,g[j]IL j :()...L—l7 (22)
and _ ~
H: 0|0 @
0/ H:> |0 @
H, = , (23)

@"00 H,

and H; is the previously defined Toeplitz matrix consisting of

the linear channel coefficients. To minimize the mean squared

error (MSE) of all the coefficients in the resulting kernel

matrix F», we have to minimize the MSE given by
-~ - - - 2

o2 H (O - (G1H2 + HngHI)) HFUZIl

€non

+ 204 Tr(GJ Go),

(24)

where one can show that white Gaussian noise with (0, 02)
is amplified over a nonlinear homogeneous second order

n ~N(0,07) y

Ny G,

Fig. 2. Noise amplification over a homogeneous second order Volterra kernel.

Volterra system Go as follows. The output of the system is
denoted as y (cf. Fig 2) and has a mean given as [6]

L—-1
py = Gall,l]o2 (25)
=0
and a variance
o = 20,Tr(G3 Ga), (26)

where Tr(-) denotes the trace operator.

Finding a minimum for the variance of the error can be
done by computing the first derivative of the expression w.r.t.
G- and setting it to zero. Neglecting the noise gives

G2 = *(ﬁ{ﬁl)_lﬁl—élﬁgﬁl(ﬁIﬁl)_l.

Considering the noise term in (24) and computing the first
derivative w.r.t. G yields the expression
4

27)

~ o o~ ~o o~ o ~ o~ o~ o~
H'H,G,HH, + 254G, = -H]G,H,H,. (28)
d
Equation (28) is a matrix equation of the form
AXAT+X.-¢c+B=0, (29)

which is very similar to the well-known Lyapunov equation
[7]. Rewriting (29) as a linear equation system, the solution
is given by

vec(X) = —(A ® A + Ic) tvec(B), (30)

where ® denotes the Kronecker product of two matrices and
I is an identity matrix. Then we obtain for the equalizer
coefficients

4
vec(Ge) = — (ATH, @ ATH, +2701)-!
(G2) (H;H; 1 Hy U§> 31)

VeC(ﬁIélﬁgﬁl).

Remembering that the cascade connection of two second
order systems results in a fourth order system, the nonlinear
equalizer coefficients should account for the third and fourth
order kernel of the interconnection. Similarly to the first
nonlinear equalizer design, the calculation of these equalizer
coefficients is done by computing the first order kernel of
the equalizer with the conventional equations given in [§]
or Section V and finding the optimal second order equalizer
for the determined linear equalizer coefficients. Consequently,
the third and fourth order kernel of the cascade are given as
[91,[10]

Fslmi,ma, ms| =

L—1L-1

Z Z gall1, l2]hi[my — l1]ha[ma — l2,m3 — la]+

11=01=0

L—1L-1

Z Z 92[117 lz]hz[ml — 1, mg — 12]h1[m3 - lz]

11=0102=0

(32)
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and

F4[m17 ma,ms, m4] -
L—1L-1
Z Z g2[l1, l2)halmqy — l1,ma — li]ha[ms — la, ma — 2],
11=010>=0
(33)

where many contributions of these kernels are already zero
due to the limited order of {H,} and {G,} and only the
remaining parts of the kernels are shown. It is seen in (32) and
(33), that the linear equalizer coefficients g; do not contribute
to the third and fourth order kernel of the interconnection.
Furthermore it is seen, that the third order kernel consists of
combinations of h; and Hy and the fourth order kernel has
contributions proportional to the squared and mixed products
of the kernel matrix Hy. If the third and fourth order kernel
is included in the computation of the second order kernel
G2 many terms in the resulting equation can be immediately
skipped because their influence is rather weak. In fact it turns
out, that as a first approximation, only one single term has the
main contribution to the overall equalizer coefficients. Using
this term in the equation for the MSE we obtain

4
G,) = — (2BTH, o HTH, +2221)!
vec(Ga) (2H H; @ H{ H; + p ) 34)

vec(ﬁ{élﬁgﬁl),

for the “improved” second order equalizer kernel. To model the
third and fourth order term in the MSE equation is not easy.
It is not clear how the third and fourth dimension of these
kernels are mapped to a two-dimensional system. However,
the approximate consideration in computing the equalizer
coefficients shows that this rather crude consideration gives
a slight improvement.

VII. PERFORMANCE COMPARISON

For evaluating the performance of the different equalization
methods, 1000 different channels, i.e. nonlinear equivalent
system models like shown in (3) have been used to transmit
data sequences and evaluate the bit error rate (BER). These
models correspond to a high-data-rate scenario with 125Mbps
and an RMS delay spread of 7,,,s=10ns to demonstrate
the variations of individual performance results for different
channels. Additionally the median, 10% and 90% quantiles of
the BERs are shown.

It is seen in Fig. 3 that the lower complexity approach,
with calculating the linear distance in the MLSD-DF-LIN,
achieves only limited reduction of the introduced distortions.
Conversely, the full knowledge of the channel parameters is
exploited in the MLSD-DF-NLIN with a nonlinear distance
calculation and a very good performance is achieved.

The adaptive approaches with an adaptive linear and an
adaptive polynomial, i.e. second order Volterra filter, are
shown in Fig. 4. It is seen that also for the linear equalizer
most of the channels can be equalized referring to the median
of the BER curves. A significant improvement is made when
the nonlinear Volterra equalizer is used.

However, the computed linear MMSE equalizer, shown in
Section V achieves slightly better performance than the linear
adaptive approach because at high SNR the bias term heavily

data averaged BER
>

_3| | #©~ mean BER; threshold detector
10 "F| =A- mean BER; MLSD-DF nonlinear
=+~ mean BER; MLSD-DF linear

— = 10 % quantiles
— — median BERs
— - 90 % quantiles

n i

10 15 20 35 40

25
E,/N, [dB]

Fig. 3. Comparison of linear and nonlinear distance calculation in the MLSD-
DF algorithm.

affects the result. For the non-adaptive approaches the bias
is known and subtracted. Furthermore, the consideration of
the nonlinear coefficients for the design of an improved linear
equalizer shows, that a better performance could be achieved
with a consideration of nonlinear terms for computing the
linear equalizer. If the 90% quantiles of the approaches are
compared, the improved linear equalizer shows room for
further gain.

data averaged BER
>

A
\ \
_3| | #©~ mean BER; threshold detector \ h ~
10 "F| =& mean BER; LMS nonlinear A N k|
—+ mean BER; LMS linear X B
— — 10 % quantiles \ : N
— - median BERs \ N
— — 90 % quantiles
1074 1 I 1 1 1
10 15 20 25 30 35 40
E,/N, [dB]

Fig. 4. Equalization performance of linear and nonlinear adaptive equalizers.

A similarly designed nonlinear equalizer which tries to
compensate the nonlinear distortions was used to compare
the linear to the nonlinear equalizer performance. One can
easily see that this results in similar mean BER performance.
Comparing the 90% quantiles again, a performance increase
to the linear equalizer is achieved. Furthermore it is assumed
that if all channel parameters are available to design the
equalizer, the bias term hg is easily subtracted from the
signals provided to the computed equalizers. Otherwise an
ambiguity like described in [11] may occur, which heavily
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TABLE 1
COMPARISON OF THE ALGORITHMS

Complexity Channel knowledge
#add = #mul -
MLSD-DF-LIN L. 20=K+2) full
MLSD-DF- L+ (L(L41)/2) 20— K+2) full
NLIN
Adaptive linear 2L none

Adaptive nonlin- none
ear
MMSE linear L full
MMSE L+ L(L+1)/2 full
nonlinear

2L + L(L + 1)

affects the performance of the proposed equalizer. Similarly to
the p-th order inverse approach described in [3] this approach
may handle weak nonlinearities very well but has a lack in
performance when equalizing severe nonlinearities.

Results of the computer simulation are depicted in Fig. 5.
As mentioned in Section VI the third and fourth order term are
only approximately included in the computation of the second
order kernel matrix Go. This presumably causes the observed
deviation in terms of BER (cf. Fig. 4 and Fig. 5) from the
adapted equalizer.

A comparison with respect to algorithm complexity and
prior channel knowledge is shown in Table I. It is obvious
that the MLSD-DF has the highest complexity since it tries
to compute all possible outcomes of the receiver. Due to the
reduction in complexity by using decision feedback from past
detected symbols, the complexity can be reduced for the state
computation but the complete information about the channel
parameters has to be available to the algorithm. The two
adaptive approaches are twice as complex as the non-adaptive
approaches also shown in this paper. This results of the
additional update equation (8) which has similar complexity
as the convolution and thus depends on the filter length.

However, the adaptive equalizers have the additional advan-
tage that no a priori information about the channel has to be
available. The proposed MMSE equalizers assume knowledge
of the channel but stay rather low in terms of complexity.
Compared to the adaptive approach it just has to be computed
once and remains constant for the transmission of a data burst,
thus resulting in an “online” comlexity of a non-adaptive linear
and second order Volterra filter.

VIII. CONCLUSION

It is shown in this paper that the nonlinearity represented
by the second order equivalent system model of a TR-IR-
UWB system has severe impact on the ISI introduced. For a
reduced state MLSD-DF detector the performance is heavily
deteriorated when the branch metric is computed linearly while
a nonlinear version yields nearly-optimal detection. For a
huge range of possible channels also linear equalizers may
equalize the distortions very well. Adaptive linear approaches
only achieve limited equalization performance. For a further
performance improvement a nonlinear adaptive equalizer can
be used.
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Fig. 5. [Equalizers with manually determined first and second order kernels.

We have shown how to compute linear MMSE equalizer
coefficients. Taking into consideration the second order kernel
of the equivalent system model different linear equalizer coef-
ficients are computed which further improve the performance
of the equalizer. To compensate for the nonlinear distortions,
the computation of the coefficients for a second order MMSE
equalizer was derived. It is furthermore shown that the third
and fourth order terms should be considered in the computa-
tion. An exact consideration of these terms not easily possible
due to the multi-dimensionality of the kernels, however.
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