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ABSTRACT 

This work deals with an extension of the standard recursive 
least squares (RLS) algorithm. It allows to prune irrelevant 
coefficients of a linear adaptive filter with sparse impulse 
response and it provides a regularization method with au- 
tomatic adjustment of the regularization parameter. New 
update equations for the inverse auto-correlation matrix es- 
timate are derived that account for the continuing shrink- 
age of the matrix size. In case of densely populated im- 
pulse responses of length M ,  the computational complexity 
of the algorithm stays O(A1’) as for standard RLS while 
for sparse impulse responses the new algorithm becomes 
much more efficient through the adaptive shrinkage of the 
dimension of the coefficient space. The algorithm has been 
successfully applied to the identification of sparse channel 
models (as in mobile radio or echo cancellation). 

1. INTRODUCTlON 

Linear-in-parameters models 

4121 = wT[n]x[n] + e[n] (1) 

with the observed noisy output z[nl, the weight vector 
w[n] [wi [n],  . . . , w n ~ [ n ] ] ~ ,  the input data vector x[n] I 
[ ~ [ n ] ,  , . . ,z[n-Ad+l]jT andtheadditiveperturbation+], 
are considered. Many applications of these models share the 
features that the excitation signal Z[R] for the adaptive sys- 
tem i s  not always persistently exciting and that the structure 
of the model does not match the structure of the reference 
system. One mismatch example would be a too high or- 
der of the adaptive filter. In the first case the covariance 
matrix estimate blows up such that the adaptive algorithm 
gets unstable. A common stabilization method for such sit- 
uations is the regularization of the auto-correlation matrix 
estimate [l]. The second feature of model mismatch is due 
to the incomplete insight into the structure of the reference 
system. To guarantee some predefined error power after 
convergence, one has to select a conservative, i.e. over- 
estimated. model structure which takes into account our 
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incomplete knowledge about the reference system. In the 
case of an echo-canceler, where the echo-impulse response 
varies significantly over different environments, one has to 
initialize a conservative model which can handle the longest 
impulse-response expected to occur in practice. The inclu- 
sion of parameters in the model that are irrelevant from the 
viewpoint of a decrease in the error still causes an increase 
in the variance of the parameter estimates \t[n] of the adap- 
tive system compared to the variance ofthe estimates for an 
exactly matching model structure. In addition, the tracking 
performance of the adaptive filter gets reduced due to the 
inclusion of irrelevant parameters. 

In the statistics and machine learning literature this 
problem gets addressed by subset selection algorithms. In 
this work the algorithm proposed in [2], which simultane- 
ously performs subset selection and adaptive regularization, 
is incorporated in a recursive least squares adaptive algo- 
rithm. 

The Bayesian treatment of regularization using the ev- 
idence procedure [3] offers a simple way to estimate the 
regularization parameter and even allows an extension to 
estimate a regularization matrix [2]. In the adaptive filter 
literature, regularization methods can be found in, e.g. [ I ]  
and [4], on which the following presentation is based. Op- 
posed to our contribution, these two works share the fact 
that no adaptive computation of the regularization term is 
considered. 

2. DERIVATION OF THE ALGORITHM 

2.1. Bayesian estimation 

A Bayesian formulation of the estimation problem for the 
linear regression model (1) starts with the definition of the 
likelihood function p(z[n]lw[n]) and the prior distribution 
p(w[n]IA[n]) for the weights w[n] given the prior distri- 
bution parameter A[n] at a given sampling instant n, with 
4.1 = [2[n]. . . . , z[l]JT. In the following, for the sake of 
conciseness, the sampling time index n is omitted. It will 
be reintroduced in section 2.3 where recursive relations are 
obtained. For an additive white Gaussian noise model in (1) 
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the likelihood function reads 

P(ZlW) = 

- Xw)*A(z - Xw) 

with X[n] 3 [xjn], . . . , x[l]IT, where pre-windowing is 
applied. Where the diagonal exponential weighting ma- 
trix A = u-'diag([l, A, A', . . . , A"]) with the forgetting 
factor 0 << X < 1 was introduced, which can be inter- 
preted as a flattening of the likelihood function (2) with co- 
variance A-' for samples 21. which lie further in the past. 
For simplicity it is assumed that the noise variance uz is 
known. The conclusion in section 4 comments on the sit- 
uation where u' is not known. Similar to the method of 
weight decay in,regularized neural networks the prior over 
the weights is taken to be 

1 
2 

p(w1A) = (~T)-+IAI+ exp(--wTAw), (3) 

where A is assumed to be a diagonal matrix in the sequel. 
Each diagonal element A k k  describes the a priori estimate 
of the inverse width of the Gaussian distribution of the val- 
ues of the weight WI.. The posterior for w given the data 
z, known prior distribution parameter A and known noise 
variance u2 reads 

The maximum a posteriori (MAP) estimate of w gets 
iY = argmin, {-logp(wlz,A)}, which is identical to 
the maximum of p(zlw)p(wlA) because the normalizing 
integral of (4) is not a function of w anymore. Thus, the 
objective function to be minimized for the sampling instant 
n is 

1 1 
L(w) = -(z - X W ) ~ A ( Z  - XW) + -wTAw, 

2 2 (5) 

which corresponds to a regularized linear least squares 
problem with regularization matrix A. For the choice 
A = aI, this corresponds to a Tikhonov or uniform reg- 
ularization. This special case is discussed in section 2.6 
below. For now, we continue with the more general case of 
a diagonal matrix A with nonuniform entries which allows 
selective regularization for the individual elements of the 
weight vector. Computing the MAP estimate + by taking 
the derivative a/& of (5) and setting it to zero yields the 
regularized solution 

iY = (XTAX + A)-'XTAz (6) 

Iptroducing the regularized auto-correlation matrix estimate + 5 XTAX + A and the corresponding covariance esti- 

- - - - 1  
mate P I 8 
tivariate Gaussian 

, the posterior (4) can be rewritten as a mul- 

p(wlz,A) =(Za)-$(PI-i. 

with mean value iv = PXAz and covariance fi. 

2.2. Evidence procedure 

The derived MAP estimator (6) is based on the assumption 
that the parameter A is fixed and known beforehand. If 
a hierarchical Bayesian model is considered, which treats 
A as a random variable with some prior distribution p(A) 
the posterior distribution p(wlz) would be obtained by in- 
tegrating out, i.e., marginalization of the distribution pa- 
rameter A. This normally results in nongaussian poste- 
rior distributions which can even be multimodal. Thus, the 
MAP estimate is hard to compute and is not representative 
in general. To overcome these problems the evidence pro- 
cedure tries to estimate A from the data and then treats A 
as if it were a fixed distribution parameter and the poste- 
rior of (4) applies. This procedure choses A in order to 
maximize p(Alz), which is sometimes called the evidence 
for the parameter A given the data z. For flat prior distri- 
butions over a logarithmic scale for the parameter A, i.e. 
p( log (Akk) )  = const with k = 1;.  . . , Af the maximum of 
p(Alz) coincides with the maximum of p(zlA), which is 
just the normalizing integral of (4), Le., 

To maximize the evidence (7) with respect to the regulariza- 
tion matrix A we minimize L,(A) = - logp(zlA), thus 

1 n 1 
2 2 2 

+ -log 161 + - (zTAz - ivT6iv). 

&(A) = -- log 1A1+ - log 2~ - - log IAl 

1 1 
2 2 (8) 

Usingtheidentity 6 log lA(s)l = 'Ik(A-'W) thecon- 
dition X,(A)/aAkk = 0 gets 

with k = 1,. . . , A i .  Solving for Aak gives 
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with the obvious definition for y. This implicit equation for 
Aka can be used as a reestimation formula with 

(9) 

where i denotes the reestimation index. One reestimation 
loop includes the following computations: 

i+' = (XTAX + A')-'XTAz 
7; = 1 - Aik(XTAX + A');; 

Thus, at the current sampling instant n the reestimation (9) 
has to be iterated until L,(A) of (8) has reached a local 
minimum. 

2.3. Recursive relations 

In this section, we reintroduce the discrete-time sampling 
index n. The MAP estimate + in (6) is subsequently de- 
rived in a recursive form. Assume for the beginning that for 
each sampling instant n, the regularized auto-correlation es- 
timate Q[n] should have the same regularization term A[n], 
i.e. A[n] = A. Thus, in each recursion a regularization 
term has to be added such that in the steady state of the re- 
cursion the strength of the regularization reaches A. For 
convenience, the following computatitns are performed on 
the auto-correlation estimate 9 = u2Q. The recursive ex- 
pression 

Q[n] = AQ[n - 11 +x[n]x[nIT + uzA, ( 1 1 )  

with the regularization pump term A = A(l  - A), in the 
steady state coincides with 

a[.] = u2XT[n]A[n]X[n] + u'A. (12) 

Adding the regularization term ozA in (11) corresponds 
to a full-rank update and thus no fast recursive computa- 
tion of P[n] Q-'[n] using the matrix inversion lemma 
can be performed. For updating only one entry of u2A 
per sampling instant n, a rank-one update is sufficient 
[4]. Thus, by introducing the AI-periodic sequence of A I -  
dimensional pivot vectors v[n] [O,O, . . . ,1 ,0 , .  . . ~ OIT 
with the nonzero entry at position j = 1 + n mod N one 
can replace (1 1) with 

9[n] = Q[n] + x[n]x[n]T, (13) 

and 
&[n] = AO[n - 11 + n[n]v[n]v[nIT. (14) 

The steady state behavior of (13) and (14) is periodic with 
A I .  By averaging over one full period, this behavior can be 
matched with the steady state according to (12) if we select 

4.1 = uZMA,,(1-A) with j = l + n m o d A I .  (15) 

Introducing P[n] I &-'[n] and applying the matrix inver- 
sion lemmato(l3)and(14)yields 

P[n] = 

] A-'P[n - 11, (16) 
n[n]P[n - l]v[n]v[n]T [I - + K[TL]V[n]TP[n - l]V[n] 

] PlnI, (17) 
P[n]x[n]x[n]* 

1 + x[n]TP[n - l]x[n] 

respectively. Their corresponding Kalman gain vectors are 

and 
k[n] = P[nlx[nl 

1 + x[n]TP[n]x[n]. 
The update equations become 

P[n] = A-'P[n - 11 - A-'k[n]~[n]~P[n - 11, (18) 

P[n] = P[n] - k[n]x[nITP[n]: (19) 

and 

+[n] = (I-~[ra]v[n]v~[n]P[n])+[n-l]+k[n][[n]. (20) 

with the a priori error E[n] = r[n] - w T [ n  - l]x[n]. The 
weight update equation (20) differs from the standard RLS 
update equation in the term -r;[n]v[n]vT[n]P[n]&[n - 11, 
which is a leakage term due to the regularization [ 5 ] .  Con- 
sidering (15) and taking into account the positiveness of the 
elements of A (cf. to (3)) and the positive-definiteness of 
P[n] allows to show that all eigenvalues of (I - r;[n]v[n] 
vT[n]P[n]) are bounded by 1 in magnitude and, there- 
fore, to guarantee the stability of the difference equation 
(20). The updating of the regularization matrix A using 
n[n]v[n]vT[n] together with the auto-correlation update 
x[n]xT[n] results in two rank-one updates. This concludes 
the treatment of the RLS algorithm with constant regular- 
ization term. 

In non-recursive estimation the application of the rees- 
timation formula (IO) showed convergence in a few steps. 
Therefore, the following heuristic procedure is proposed to 
allow simultaneous reestimation of the regularization pa- 
rameters A k k  while performing the MAP estimator recur- 
sions according to (1 1) with (6) in the full-rank update and 
(16-20) in the rank-one case, respectively. Thus, for the 
full-rank update the reestimation index i of ( I O )  coincides 
with the sampling index n, i.e. 

For the case of the rank-one update (14) of the regular- 
ization term using the pivot vector .In], each component 
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of the regularization term gets reestimated after A ~ A  sam- 
pling instants. To guarantee that the algorithm settles sub- 
ject to the new regularization matrix, it is reasonable to 
chose A f A  = mAl with m E N. The adaptive regular- 
ization pump term n[n] becomes 

~ [ n ]  = a*Aj,[n]M(l - A )  with j = 1 f n m o d A l .  

2.4. Incorporating weight pruning 

The parameter A k k j n ]  of the prior (3) governs the inverse 
variance of the zero-mean prior distribution for the corre- 
sponding weight uik[n]. This inverse variance is estimated 
via the evidence procedure (9) from the observed data z[n]. 
lfthe data e[.] doesnot show any contributionofthe weight 
w ~ [ n ]  its corresponding variance parameter A;; [n] will 
tend to zero. Thus, the prior distribution p(w[n]lA[n]) 
for weight uik[n] gets highly peaked at zero. For infinite 
AM [n] the weight Z L ' ~  [ I ! ]  can be removed without changing 
the error signal. In practice, weights with Aks[n] > E, 
with B sz lo8, will be removed from the model. Thus, it is 
necessaly to reduce the dimensions ofthe involved matrices 
and vectors. To prune ulk[n], for the auto-correlation esti- 
mate +In] this would mean to prune the k-th row and k-th 
column. The question turns up, if one could directly prune 
the covariance estimate P[n], such that the efficient recur- 
sive computation (17) can still be applied. For the sake of 
conciseness the sampling time index n is omitted again. In 
the following, the case where the last row and the last col- 
umn of 8 has to be removed, is considered. This situation 
was chosen because of the possibility of a more compact 
notation of the following matrix algebra compared to the 
case where another row-column pair is removed. That this 
does not cause a loss in generality is seen from the relation 
(MTQM)-' = MTB-'M, where M is a permutation 
matrix permuting the k-th column with the AI-th column. 
Thus, + can be thought of being partitioned as 

+I  b C d  *=  (,,T .> and W' = (dT f). (21) 

where in addition a partition of W' was introducedforrea- 
sons which become obvious later. Using Gaussian block- 
elimination with 9' as pivot element for inverting the ma- 
trix + gives 

with /3 (c - bT9;'b)-'. Making the obvious identifi- 
cation of the matrix entries of the partition of 0-' in (21) 
with the entries of (22), the shrunken inverse matrix +;I is 
obtained as 

The elements C, d and f can be read off from +-I. The 
numerical effect of the subtraction in (23) on the positive- 
definiteness of +,:' is subject to future research. 

*;' = C - f - 'ddT.  (23) 

2.5. Pseudo-code of the proposed algorithm 

Table 1 shows the pseudo-code of the proposed algorithm. 
Function Prune ( ) performs the shrinkage of the weight 
vector 4 [n]  and the covariance matrix estimate Pjn] ac- 
cording to (23) if one or more diagonal elements of A[n] 
exceeds the threshold B. 

Algorithm 1: Recursive least squares algorithm with 
adaptive, selective regularization and weight pruning. 

Init A[O] = v01, P[O] = A-'[O] 
for n +- 1 to N do 

j = 1 + n m o d  A l  
Generate v[n] with "1" at j 
m[n] = ~~hfA,~[n](l- A) 
<In] = z[n] - @[TI  - l]x[n] 

k[n] = ~ + J ~ ~ ~ ~ ~ ~ & L l ' ~ v l n ~  

k[n] = l+x[n]r jn]x[n] 

@In] = A-'P[n- 4 - A-'L[n]v[nlTP[n - 4 
P[n] = P[n] - k[n]x[nITP[n] 

(I - K[n]V[n]VT[n]P[n])\t[n - I] + k[n]<[n] 

I n n  P n-1 v n  

I 

+[n] = 

ifnmodAfA = 0 & n > Nt then 
Aka[n + 11 = 
(1 - ~~Akl- [n]Pal ; [~] ) (~l i ' l i [n] ) -*  V k  
(\t[n],P[n])= P r u n e  (C[n],P[n],A[n]) 

2.6. Adaptive uniform regularization 

For the choice A = a1 no selective regularization for each 
weight or tap input is possible. If the derivative a/% of the 
log-evidence (8) is set to zero, the reestimation formula for 
the regularization parameter v simplifies to 

= A l  -ai Tr(f'<) 
+T+i 

with 
I3i = (XTAX + aiI)-'. 

The remaining equations of this uniform regularization RLS 
algorithm are identical to those of the selective regulariza- 
tion algorithm presented in section 2.3. 

3. SIMULATlON RESULTS 

For illustration of the regularization and pruning perfor- 
mance of the proposed scheme, a A4 = 64 taps sparse 
impulse response wv of a mobile radio channel, shown in 
Fig. I ,  is taken as a reference. The input signal is chosen 
to be a discrete multi-tone (DMT) signal with N, = 20 
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camers. As performance index for the adaptation quality 
the normalized squared norm of the misalign vector is used 

It is clear that a DMT signal comprising only N,  = 20 car- 
rier is not capable to persistently excite a linear A t  = 64 
taps filter. Thus, without pruning or regularization the co- 
variance matrix estimate P[n] will eventually blow up. In 
Fig. 2 the performance index Q[n] for the standard RLS 
and for the proposed RLS algorithm is depicted. Due to 
the pruning of the irrelevant weights a lower misalignment 
error can be reached and the auto-correlation matrix esti- 
mate does not get singular. The condition number of the 
auto-correlation matrix estimate for the proposed algorithm 
and the standard RLS are shown Fig. 3, which illustrates the 
ill-posedness of the standard RLS estimation. The results in 
Fig. 2 and Fig. 3 are averaged over 100 different realization 
of the additive noise tin], where a SNR of 45 dB is chosen. 
The algorithm setting X = 1 - 1/3Af,  (YO = 1 E-5 and m = 4 
is used. In Fig. 1, in addition to the estimated and reference 
imputse responses, the pruned filter weights are indicated as 
well (the two responses actually coincide in the graphics). 

0 10 20 30 40 50 W 

Fig. 1. Sparse impulse response of a mobile radio channel, 
reference w, (circle) and estimation * (circle), pruned filter 
weights (cross). 

_ _ - - - - - _ - _ _ - _  
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Fig. 2. Squared n o m  of the misalignment vector Q[n] (cf. 
to (24)) for each sampling instant n; Standard RLS algo- 
rithm (dashed) and proposed algorithm (solid). 

400 

Fig. 3. Condition number of the auto-correlation matrix es- 
timate for standard RLS (dashed) and for the proposed al- 
gorithm (solid). 

4. CONCLUSION 

The evidence procedure from Bayesian estimation is ap- 
plied to the regularization of the RLS algorithm. Due to 
the use of a regularization matrix it is possible to distin- 
guish the relevant model weights from the irrelevant ones. 
The regularization matrix is successively updated using a 
rank-one update. Thus the computational complexity of the 
proposed algorithm stays at O(AJ2) when no.model param- 
eters can be pruned. In the case of I; irrelevant weights the 
complexity decreases to U((AJ - which can be much 
lower than for the standard O(A1’) RLS. It is also possi- 
ble to estimate the noise variance u2 via the evidence max- 
imization, in analogy to the parameter A. As a negative 
point, in several situations the proposed algorithm exhibits 
stability problems if the regularization matrix update was 
performed too fast. To stabilize this updating is subject to 
future research. 

, 
; 
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