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RÉSUMÉ 
 

 

Dans le contexte du développement de méthodes de pré-fractionation pour la protéomique, ce 

travail de thèse est basé sur la conception d’instruments électrophorétiques pour la 

focalisation isoélectrique de peptides et protéines, en vue de l’analyse de mélanges 

biologiques. A la lumière des techniques existantes dans le domaine de la focalisation 

isoélectrique, l’objectif est de développer des cellules multi-compartiments pour la 

focalisation isoélectrique de peptides et de protéines. Le premier choix de la focalisation 

OFFGEL comme technique de focalisation isoélectrique se justifie par sa facilité pour 

collecter les fractions de peptides en solution, de faibles volumes, et compatibles avec les 

analyses par chromatographie liquide (en tant que seconde dimension de la séparation) ou de 

spectrométrie de masse. La résolution est le facteur clé à considérer au cours de la fabrication 

des cellules de séparation. 

Des simulations par éléments finis ont été effectuées, pour décrire la focalisation 

OFFGEL des peptides, et ont permis de réaliser le dimensionnement d’une cellule OFFGEL 

en format multi-puits pour une séparation à haute résolution de peptides. Ces simulations ont 

par ailleurs démontré l’importance de la mobilité proche du point isoélectrique (pI) au niveau 

de la cinétique de séparation ainsi que son influence sur la forme finale du pic focalisé. Le 

calcul de la distribution des mobilités proches du pI pour trois protéomes a permis de conclure 

sur la largeur optimale du puits de OFFGEL de manière à obtenir la meilleure résolution 

possible. Cette étude mathématique a illustré le fort pouvoir résolutif de la focalisation 

OFFGEL, pour son utilisation en protéomique. 
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Basée sur les résultats de la simulation, la fabrication d’une cellule OFFGEL multi-

puits a ensuite pu être réalisée. La caractérisation de cette cellule a ensuite été effectuée. La 

reproductibilité du gradient de pH a été validée, la capacité de charge a été évaluée pour les 

protéines, et la haute résolution pour la séparation des peptides a été démontrée. Un mélange 

biologique a également été séparé. La focalisation OFFGEL a ensuite été intégrée dans une 

stratégie combinant le marquage chimique des résidus de cystéines dans les peptides. Cette 

approche a démontré le gain d’information sur la séquence des peptides, conduisant à une 

identification plus sûre et plus précise de la protéine.  

Dans un contexte de protéomique « sans gel », une cellule différente a été fabriquée, 

permettant de réaliser la focalisation isoélectrique en l’absence d’un gel à gradient de pH 

immobilisé (IPG). La nouvelle cellule a été également caractérisée en termes de performances 

et a été utilisée pour la fractionation d’un échantillon d’Escherichia coli, permettant une 

séparation plus rapide des protéines que la focalisation OFFGEL, démontrant ainsi son 

potentiel pour une pré-fractionation rapide de protéomes.         

Une cellule électrochimique a également été développée, pour le transfert d’espèces 

ionisables, par électrochimie à la micro-interface entre deux électrolytes immiscibles (µ-

ITIES), supporté par un gel IPG pris en tant que phase aqueuse, et une gouttelette de phase 

organique. Cette étude a été initialement menée dans le but de réaliser une extraction en ligne 

des protéines et peptides au cours de la focalisation OFFGEL. L’utilisation du système 

développé a été démontrée pour des molécules modèles, et a ouvert les portes pour l’étude du 

transfert de protéines.   

 

Mots-clés : protéines, peptides, focalisation isoélectrique, gradient de pH immobilisé, 

ampholytes porteurs, électrophorèse, OFFGEL, spectrométrie de masse, marquage chimique, 

électrochimie, ITIES. 
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ABSTRACT 
 

 

In the context of prefractionation methods for proteomics, this work deals mainly with the 

development of electrophoretic tools for isoelectric focusing of peptides and proteins for the 

analysis of biological mixtures. In the light of existing devices for isoelectric focusing (IEF), 

the objective has been to develop multicompartment devices, designed for the IEF of peptides 

and proteins. The first choice of the OFFGEL for IEF among other techniques is justified by 

the easy recovery of liquid fractions of peptides, of small volumes, further amenable to liquid 

chromatography (as a second dimension separation) or mass spectrometry analyses. The 

resolution is a key point to consider in the design of separation units.  

Finite element simulation of the isoelectric focusing of peptides by OFFGEL has 

allowed the design of a multicompartment OFFGEL device for high resolution separation of 

peptides. The numerical simulations have highlighted the importance of the mobility near pI 

for the IEF kinetics and the final peak shape. The calculation of the distribution of peptides 

mobility near pI for three proteomes has allowed concluding on the optimal width of the well 

to obtain best separation. This mathematical study has also illustrated the high focusing power 

of the OFFGEL technique as a separation tool for shotgun proteomics application. 

The design of a multicompartment OFFGEL device was then done, based on the 

results of the simulations. The reproducibility of the pH gradient was validated, the loading 

capacity was evaluated for proteins, and a demonstration of the high resolution separation of 

peptides and proteins from a complex biological mixture was performed. The OFFGEL 

separation was then integrated in a workflow combining chemical tagging of the cysteine 

residues. This approach showed that the high resolution of peptide OFFGEL and the added 
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information on the sequence of the peptides permitted a more confident and accurate protein 

identification. 

In the context of gel-free proteomics, another separation cell has been designed, that 

enables performing isoelectric focusing without the need of an immobilized pH gradient (IPG) 

gel. The novel device has been characterized in terms of performances and has been be 

applied to a biological sample of Escherichia coli, showing a more rapid separation of 

proteins than OFFGEL IEF, thus demonstrating its potential for fast proteome prefractionation 

purposes.  

An electrochemical cell has also been designed, for the transfer of ionizable species by 

electrochemistry at the micro-interface of two immiscible electrolytes (µ-ITIES), supported 

by an IPG gel as the aqueous phase and a small drop of organic phase. This study was initially 

motivated by the aim of performing online extraction of proteins/peptides during IEF 

separation. The use of this device for the transfer of model molecules was demonstrated, 

opening the door to further developments concerning the electrochemical transfer of proteins.   

 

 

Key words: proteins, peptides, isoelectric focusing, immobilized pH gradient, carrier 

ampholytes, electrophoresis, OFFGEL, mass spectrometry, chemical labeling, 

electrochemistry, ITIES.  
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  List of symbols and abbreviations 
 

 viii

Greek letters 

 

α   Ionization coefficient      - 

β   Buffer capacity      M = mol·L-1   

iγ   Coefficient of activity of species i    - 

μ i   Electrochemical potential of species i   J·mol-1 

0
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φ   Electric potential      V 

iσ   Conductivity of species i     S·m-1 
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α
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α '
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0,α β
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1. Why proteomics? 

It is only recently that the Human Genome Project was completed (2003), 13 years after its 

launch by the US Department of Energy and the National Institute of Health. The goals of this 

huge project were mainly to identify all the approximately 30,000 genes in human DNA, 

determine the sequences of the 3 million chemical base pairs that make up human DNA, store 

that information in database, and improve tools for data analysis.1 The completion of the 

human genome led to results sometimes disappointing to many scientists, because counting 

genes was viewed as a way of quantifying the genetic complexity. With around 30,000 genes, 

the human gene count would be only one-third greater than that of the simple roundworm C. 

elegans, at about 20,000 genes. All the more as, knowing the sequence of letters (“the genetic 

code”) does not mean that we understand the subtleties of the language.  

In parallel, proteomics, “the study of proteins expressed by a genome, and the 

systematic analysis of protein profiles in tissues” (1995),2 was slowly but steadily making its 

way. The field of proteomics has known a tremendous growth after the rather costly genome 

projects, to become a necessary field, since it was widely concluded that the knowledge of the 

DNA sequences solely could not account for the complexity of living organisms.3, 4 For 

example, proteins, not genes, are responsible for the phenotype of the cells, thus the 

elucidation of the mechanisms of disease or aging cannot be done by studying the genome 

only. Such questions as the protein function, localization and compartmentalization, and 

protein-protein interactions, needed answers. 

Proteomics however, was faced with multiple challenges. In 1997, during the third 

Sienna meeting, Anderson presented a multigene comparison plot of mRNA vs. protein 

abundance for cellular gene products, and showed a very low correlation of 0.43 between 
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them.5 Indeed, the processes occurring from the gene to the final protein are numerous (Figure 

1).  

 

 

Figure 1: Mechanisms by which a single gene can give rise to multiple gene products. Multiple protein isoforms 

can be generated by RNA processing, when RNA is alternatively spliced or edited to form mature mRNA. 

mRNA, in turn, can be regulated by stability and efficiency of translation. Proteins can be regulated by 

additional mechanisms including post translational modifications, proteolysis or compartmentalization. 

Reprinted from4 

 

The existence of post-translational modifications (phosphorylation, glycosylation…) 

as well as alternative splicing during the processing of proteins, leads to the painful 

conclusion that one initial gene can produce between five to fifteen final different gene 

products. If the human genome contains roughly 30,000 genes, the human body may contain 

more or less half a million different proteins having possibly very different functions.6 Thus, 

unlike the genome, the complexity of the proteome is far greater, especially if considering the 

proteome a dynamic ensemble, changing to reflect the environment of the cell. In addition, the 

complexity of the proteome lies in the wide range of physicochemical properties of proteins 

(charge, mass, hydrophobicity), as well as in the large dynamic range of concentrations, from 

7-8 orders of magnitude up to 12 in serum or plasma.7 Unfortunately, there is, to date, no 

technology equivalent to Polymerase Chain Reaction (PCR) as for genes,8 thus proteomics 

analyses are generally limited by the substrate amount. 
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2. Technological tools of proteomics 

Two main analytical tools have traditionally been used for protein identification: two 

dimensional gel electrophoresis (2D-GE, for reviews, see9-13), and mass spectrometry (MS, 

for reviews, see14-16), combined in a classical widely used approach (Figure 2).  

2D gel electrophoresis has been the technique of choice for analysis of proteomes for 

the last 20 years,7 allowing a separation according to the charge in the first dimension and to 

the molecular weight in the second dimension. The advent of immobilized pH gradient (IPG) 

gels has drastically improved the reproducibility of the first dimension,11-13 thus replacing the 

initial use of carrier ampholytes.9, 10  A typical 2D gel can resolve 2,000 spots with a usual 

loading of 5-10 mg of protein mixture, and up to 10,000 protein spots can be resolved on the 

best gels.17 The detection sensitivity depends on the staining method, for Coomassie brilliant 

blue staining, the limit of detection is 100 ng/spot while silver staining is more sensitive with 

down to 1 ng/spot.  

Although 2D remains a standard tool for proteomic research, it is clear that this 

strategy has significant analytical limitations in addressing the many challenges presented by 

the systemic analysis of complex protein mixtures. The main limitations include: (i) limits in 

sample capacity and detection sensitivity, which restrains 2D-GE to identify only relatively 

abundant proteins, especially when analyzing un-fractionated protein mixtures from whole 

cell lysates, low abundant proteins usually remaining unseen,18, 19 (ii) the separation of 

insoluble membrane and hydrophobic proteins is still a major challenge, despite efforts in 

making 2D compatible to this class of proteins,13 (iii) co-migration of different proteins, and 

differently modified proteins migrating to multiple locations on the gel, complicating the 

quantitative analysis of visualized spots,18 (iv) proteins with extreme pI (below 3 and above 

10-11) or extreme molecular weights are usually excluded from the separation.  
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The advent of mass spectrometry increased the sensitivity of detection, and catalyzed 

the field of proteomics. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Scheme of a classical 2D gel electrophoresis combined to MS for protein identification. 
 

Mass spectrometry has known a major breakthrough in late 1980’s, with the 

introduction of two methods of soft ionization of molecules. In electrospray ionization mass 

spectrometry (ESI-MS),20, 21 the ions are formed from a solution at atmospheric pressure. In 

the most common configuration, ESI sources are used with quadrupole mass analyzers. In 

matrix-assisted laser-desorption ionization mass spectrometry (MALDI-MS),22, 23 ions are 

formed from the solid state. The analyte is deposited on a probe by co-crystallization with a 

matrix and then introduced to the ionization chamber, which is under vacuum. Ionization is 

MW 

pI 

2D gel electrophoresis 

Excise spot 

Digestion 

Sample 
preparation 

MS analysis 

Peptide mass fingerprint or  
Peptide sequence 

Protein sequence 
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induced by short pulses of laser light focused on the sample probe. In the most common 

configuration, MALDI sources are coupled to time-of-flight (TOF) mass analyzers.   

Concerning the practical aspects, MALDI-MS is compatible with buffers and additives 

commonly used for isolation of proteins or peptides,24-26 except sodium dodecyl sulfate 

(SDS).27 Sensitivity of sub-picomoles can be achieved and low femtomoles in special cases. 

ESI-MS is less tolerant to solvent conditions than MALDI. High concentrations of salts lead 

to signal suppression14 and clustering effects. Sensitivity of low femtomole can be achieved 

through miniaturization of the ESI source: fused silica capillary sources,28 glass capillaries,29 

glass microchips,30 and polymer micro-spray emitters31 for ESI-MS were constructed to 

enhance sensitivity of analyses. 

The introduction of tandem MS or MS/MS, pioneered by Cooks et al.,32, 33 and the 

instrumental developments (introduction of an ion collision cell in the instruments) has 

expanded the field of mass spectrometry. From a parent ion mass, it became possible to 

analyze the products of fragmentation, induced by high or low energy collision. The 

fragmentation pattern of peptides being predictable, this allowed obtaining the complete or 

partial sequence of the peptide, thus improving the database search and enhancing protein 

identification. 

The developments in mass spectrometry are ongoing. Fourier Transform Ion 

Cyclotron Resonance mass spectrometers (FTICR-MS), with their extremely high mass 

accuracy and baseline isotopic resolution have shown very promising results34 and start to be 

a necessary tool for the analysis of high mass biomolecules, needing high accuracy.35  
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3. Gel-based versus gel-free proteomics  

Over the past decades, the overall sensitivity, accuracy, and dynamic range of mass 

spectrometers have improved drastically.8 This and the limitations of the traditional method 

(2D gel electrophoresis) to address the many challenges for comprehensive proteomics, 

combined to the increasing public availability of completely sequenced genomes,36 have 

motivated the development of gel-free MS-based strategies to obtain information not 

accessible until then: gel-free, non gel, shotgun and other peptide-centric strategies. In these 

strategies, instead of analyzing the protein directly, its peptides are analyzed. The latter are 

generally more soluble than their precursors, and are more readily subjected to MS. 

Another driving force behind the emergence of proteomics methods not based on 2D-

GE has also been the coupling of reverse phase liquid chromatography (RP-LC) with 

automated MS/MS37 (strategy usually called “shotgun proteomics”). In gel-free proteomics, 

the starting point is an enzymatic digestion step. Clearly, when digesting an already complex 

mixture of proteins with an enzyme, that on average is expected to hydrolyze a peptide bond 

every ten amino acids, the generated peptide mixture will be even more complex. Even with 

an approach like LC-MS/MS, this would result in identifying only a very small part of the 

whole proteome.38 

One way to reduce this complexity and increase proteome coverage is to include a 

different (orthogonal) chromatographic separation step prior to RP-HPLC. The most common 

of multidimensional peptide separations couples strong cation exchange (SCX) with RP-LC. 

This method, termed MudPit (Multidimensional Protein Identification Technology), which 

principle is shown on Figure 3, was shown by Yates et al. to be effective in overcoming some 

limitations of 2DE, such as membrane protein analysis and low-abundance proteins.39, 40  
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Figure 3: Principle of MudPit (Multidimensional Protein Identification Technology).  
 

A variety of alternative non-gel based solution phase methodologies have also 

appeared recently as front end separations prior to automated MS/MS. The use of µLC 

coupled to high resolution FTICR-MS has demonstrated high efficiency in resolving 

thousands or peptides with only one dimension of separation.41 Other multidimensional 

strategies have successfully combined electrophoretic and chromatographic fractionations, 

such as chromatofocusing with non-porous chromatography,42 or liquid phase IEF with RP-

HPLC.43 For a review on multidimensional fractionation methods, see Issaq et al.44 In general, 

multidimensional peptide separation play an increasingly important role in the drive to 

identify and quantitate the proteome. By increasing the peak and load capacity, 

multidimensional approaches increase the number and dynamic range of peptides that can be 

analyzed in a complex biological organism. Separation methods using different physical 

properties of peptides have been combined with varying degrees of success.45 
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4. Bottom up and top down approaches 

The above described strategies, centered on peptide identification (peptide mass fingerprint or 

peptide sequence) to go up to the information on protein, belong to what is described as the 

“bottom up” approach. This approach is widely and successfully used today, numerous papers 

publish about the increase number of proteins identified compared to the classical 2D GE.46-49 

“Shotgun” strategies also belong to this peptide-centered approach, this term designing 

strategies based on reverse phase LC separation of tryptic digests of whole cell lysate, coupled 

to MS or MS/MS.50  

However, while the “bottom up” strategy has turned out to be an excellent tool for the 

identification of a large number of proteins, complete sequence coverage of proteins is rarely 

achieved, thus limiting the ability to examine site-specific mutations and post-translational 

modifications of individual proteins, which are of utmost important in protein regulation. This 

justified the need for an alternative strategy, described by McLafferty et al.51 and called the 

“top down” approach, is based on the identification of native and intact proteins, using high 

accuracy mass measurement (FTICR), and performing MS/MS directly on the intact 

proteins,52 as described in Figure 4. Intact protein level analyses are generally less effective 

for protein identification than peptide level measurements, but offer insights unobtainable at 

the peptide level. Using electron capture dissociation (ECD), it was shown that post-

translational modifications could be localized.53  

Both “bottom up” and “top down” approaches were successfully integrated in a 

comprehensive proteomics analysis, combining the capabilities of each approach.54 
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Figure 4: Schematic presentation of a top down experiment, adapted from52. 
 

5. Chemical labeling for the enrichment and isolation of proteins 

Despite the fact that mass spectrometers have become more powerful, easy-to-use and 

affordable in recent years, the successful outcome of proteomics projects relies also on the 

sample handling and prefractionation steps that reduce the enormous complexity of the 

protein mixtures obtained from biological systems.  

In the context of an increasing use of gel-free “bottom up” approach based on liquid 

chromatography, a number of so-called tagging (or labeling) strategies have been developed 

that target specific amino acid residues or post-translational modifications, enabling the 

enrichment of subpopulations of peptides from the total digest (Figure 5), via affinity clean-

up, resulting in the identification of an ever increasing number of proteins. For example, only 

those peptides that contain a certain amino acid will be targeted. Via chemical modification, 
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an affinity tag (e.g. containing a biotin moiety) is attached to the functional group of interest, 

allowing the sample to be purified by affinity chromatography (in this case, biotin-avidin 

chromatography). If a relatively rare amino acid like cysteine or tryptophan is chosen as a 

target, only a relatively small fraction of peptides will carry this residue, resulting in a 

significant reduction of sample complexity after the affinity separation. In most cases, it is 

still possible to deduce the parent protein from which the peptide was generated. With a 

similar strategy, it is also possible to isolate post-translationally modified peptides from a 

mixture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  The use of chemical tagging strategies for sample fractionation. A protein mixture is either first 

labeled with an affinity tag and then digested (left) or first digested and then labeled (right). In both cases, 
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labeled peptides are subsequently enriched by an affinity chromatography step, so that ideally only the tagged 

peptides remain. 

 

Frequently, affinity tagging is also combined with stable-isotope labeling to allow 

relative quantification of protein levels of two samples, e.g. representing two different cell 

states. This is for example very useful for comparing the expression of proteins in a variety of 

normal, developmental and disease states. Namely, one widely-used quantification method is 

the isotope-coded affinity tags (ICAT), developed by Aebersold et al.55 Figure 6 illustrates the 

principle. One sample is labeled with an isotopically “light” tag (containing for example 1H, 

12C, 14N or 16O), the other sample with the “heavy” tag containing 2H (deuterium), 13C, 15N or 

18O. Samples are then combined and digested, and further isolated by affinity 

chromatography, prior to MS analyses. Thus, both forms of the peptides (light and heavy) are 

similarly affected by variations during the ionization process (e.g. suppression effects caused 

by co-eluting compounds in ESI, inhomogeneous crystallization in MALDI). The peaks 

corresponding to the light and heavy forms are shifted in mass spectrometry and this mass 

shift is constant and known from the structure of the tags reagents. Because light and heavy 

forms serve as mutual internal standards, the relative intensities of the two forms should 

accurately reflect the ratios of the peptides (and therefore the proteins) in the original samples.    
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Figure 6: Principle of quantification by incorporation of stable isotope-coded affinity tags. Adapted from56.   

 

The labeling strategy can be implemented at different levels of the analysis (Figure 7), 

including in vivo incorporation of stable isotope containing amino acids to cell culture media 

(SILAC),57 introduction of stable isotope chemical tags to isolated protein mixtures (ICAT),55  

labeling during protein proteolysis (16O to 18O exchange),58 and labeling of peptides derived 

from enzymatic proteolysis (iTRAQ).59   
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Figure 7: Summary of the commonly used stable isotope labeling strategies in comparative, quantitative 

proteomic experiments.  

 

The particularity of SILAC, which is in vivo labeling, constitutes also one major 

limitation: its amenability to clinical protein samples such as those derived from tissues or 

fluids of patients.  The enzymatic labeling of proteolyzed peptides with heavy oxygen (18O) 

involves the proteolysis of proteins in the presence of light (H2O16) or heavy (H2O18) water. 

The hydrolytic activity of the protease (e.g. trypsin) results in the natural exchange of two 

oxygen atoms from the C-terminus of the peptides with two oxygen atoms from the 

surrounding water molecules. iTRAQ is based on amine reactive, isobaric, isotope tag 

reagents. This approach renders differentially labeled intact peptide masses indistinguishable, 

but produces diagnostic fragment peaks when selected for MS/MS analysis, that provide 

quantitative information on proteins.  
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6. Why prefractionation techniques in proteomics? 

Face to the challenging complexity of the mixtures to analyze, and more precisely, to the 

dynamic range in such mixtures, the development of effective fractionation and separation 

methods has become a critical component of any proteomic strategy. The dynamic range 

analyzed can reach 10-12 orders of magnitude when dealing with serum, plasma or 

cerebrospinal fluids (CSF).7 Prefractionation methods allow decreasing the dynamic range of 

the sample analyzed, and mining “below the tip of the iceberg”, for detecting the “unseen 

proteome”,19 meaning that the same set of proteins, i.e. the most abundant ones, is being re-

discovered. Prefractionation techniques include fractional centrifugation, chromatographic 

and electrophoretic approach, as well as flow-field fractionation techniques, as reviewed 

below. 

 

6.1. Fractional centrifugation 

One of the oldest and still most effective methods to simplify a cell proteome is the separation 

of cell substructures by centrifugal fractionation. Via a series of run at different centrifugal 

forces (Figure 8), this technique allows isolating, in a reasonably pure form, subcellular 

organelles, such as nuclei, mitochondria, lysosomes, peroxisomes, etc. Clearly, it is the most 

direct method for enrichment of the desired protein fractions if one is studying the proteome 

of such organelles. Such a method has been recently re-discovered and widely applied in 

proteomics.60-64 In particular, centrifugal fractionation has been applied to the isolation of 

nuclei, and subsequently of nuclei matrix proteins. The fractionation allowed further 

successful analysis on a classical 2D gel.65, 66 Another main application is centrifugation by 

sucrose density gradient of mitochondria proteomes,67, 68 the method was shown to evidence 
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diseases that are related to mitochondrial dysfunctions, making it a powerful tool for 

diagnostics.  

 

 

 

 

 

 

 

 

 

 

 Size 
(µm) 

Density  
(g/cm3) 

Lysosomes 1-2 1.1 

Ribosomes 0.02 1.6 

Mitochondria 1-2 1.1 

Nuclei 5-10 1.4 

 

Figure 8: Schematic representation of cell substructure fractionation using centrifugation gradients. 
 

6.2. Chromatographic approaches 

Chromatographic methods are varied and allow the separation of analytes in complex 

mixtures in function of their distribution between two phases: a stationary phase and a mobile 

phase that percolates through the stationary phase. The analytes enter the column with the 

mobile phase, and migrate at different rates, depending on their affinity for each of the phase, 
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which provides separation. Many types of chromatography have been used, and only the 

principle of some will be shortly described. For extended review, see reference69. 

Ion-exchange chromatography uses stationary phases that bind proteins according to 

their charge. The elution is performed with increasing salt concentration buffers. The non-

denaturing conditions limit the analysis to soluble proteins only. Fountoulakis et al.70 

successfully detected low-abundant proteins of the bacterium H. Influenzae. Strong cation 

exchange belongs to this category of chromatography and has been widely-used as a first 

dimension separation for proteomics,71-73 or in MudPit as mentioned in section 3. 

Reverse Phase liquid chromatography (RP-LC) separates proteins according to 

their hydrophobicity. Proteins are adsorbed on a stationary phase carrying hydrophobic 

groups, and are eluted with increasing concentration of acetonitrile. It is one of the most 

widely used type of chromatography in proteomics, namely in shotgun multidimensional 

strategies. Normal phase chromatography (polar stationary phase and mobile phase non-polar, 

in contrast to reversed-phase) is not so much used in proteomics, due to the poor compatibility 

of normal phase solvent and ESI-MS and low reproducibility compared to RP-HPLC. 

Recently however, it has become useful as chiral chromatography technique, to analyze 

enantiomeric bioactive lipids, using electron capture atmospheric chemical ionization/tandem 

mass spectrometry.74 

Affinity chromatography is based on the interaction between a particular compound 

constituting the stationary phase, and a subset of proteins. The nature of the compound used 

determines the range of proteins that bind to the column. For example, monoclonal antibody 

will bind a single protein, heparin and hydroxyapatite phase will bind thousands of proteins. 

Heparin affinity chromatography uses gels containing heparin, a natural mixture of 

linear polymeric sulfated glycosaminoglycan, which has the highest negative charge density 

observed in biological molecule. This property also makes it a strong cation exchanger (SCX), 
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with affinity for a broad range of proteins, such as coagulation factors, nucleic acid-binding 

proteins (protein synthesis factors) or growth factors. An illustration of this technique is the 

work of Fountoulakis et al.,75 who separated the soluble proteins of H. Influenzae and showed 

the enrichment of low-abundant proteins.  

 

Figure 9: Heparin  
 

Hydroxyapatite affinity chromatography uses a matrix carrying positively charged 

(calcium) and negatively charged (phosphate) sites. Proteins are retained in two ways, either 

by non-specific electrostatic interactions between their positive charges and the general 

negative charge of the hydroxyapatite when equilibrated in phosphate buffer, or by 

complexation of the proteins carboxyl sites with the calcium sites. Elution is performed by 

increasing salt concentration buffer. Fountoulakis et al. showed the fractionation of E. coli 

soluble proteins.76 

More interestingly, immunoaffinity columns are increasingly used for the depletion of 

high abundance proteins, to enhance sensitivity in proteome analysis, especially when dealing 

with plasma or serum samples (high complexity). This type of column was shown to be 

particularly useful for the detection of biomarkers in plasma.77, 78 Currently, there are three 

multi-parameter depletion resins commercially available: (a) the multiple affinity removal 

system (MARS) from Agilent Technologies, targeting 6 abundant plasma proteins (b) an IgY-

based immunoaffinity resin against 12 individual proteins developed by Genway and now 
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commercialized by Beckman Coulter for the ProteomeLab IgY system, and (c) the ProteoPrep 

20 immunodepletion kit from Sigma, to remove 20 different plasma proteins.       

Size-exclusion chromatography separates proteins according to molecular mass, like 

the second dimension of 2D-GE. However, the main difference is the non-denaturing 

conditions of the chromatography, allowing studying protein complexes.79 This technique is 

also called gel filtration and uses dextran derivatives-gels (Sephadex gels). A recent 

illustration of the technique is Hu.80 

A summary of these approaches and the physicochemical properties underlying the separation 

process is given in Table 1.  

 

Table 1:  Summary of fractionation methods and the physicochemical properties according to which the 

separation is performed. 

Fractionation method Physicochemical properties 

Ultracentrifugation Density 

SCX, Ion-Exchange Chromatography Charge 

Reverse phase Chromatography (RP) Hydrophobicity 

Affinity Chromatography 

             (heparin, hydroxyapatite) 

Specific biomolecular interactions 

                  (Affinity + Charge) 

Size Exclusion Chromatography MW (Stokes radius) 

Isoelectric focusing  pI 

Gel electrophoresis MW (Stokes radius) 

 

 

One can also distinguish between analytical and preparative chromatography. 

Preparative elution chromatography is generally carried out under mass overload: the sample 

concentration is increased beyond the linear adsorption region, resulting in asymmetric band 

profiles, while analytical chromatography remains in the linear adsorption range. The main 
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difference lies in the working flow rates (a few up to 30 mL/min in preparative mode, and a 

few µL/min in the analytical mode) and the collection of fractions (preparative) or not 

(analytical). 

As a conclusion, chromatographic methods can be powerful tools for enrichment of 

low-abundance proteins prior to 2DE. However, the enrichment of abundant proteins is 

achieved simultaneously as for low-abundant ones. No clear correlation exists between the 

elution profile and a particular functional class of proteins. And the main drawback is the 

protein loss due to adsorption inherent to the technique. In addition, the sometimes large 

amount of salts (depending on which chromatography is used) and the large volumes of eluted 

fractions constitute significant challenges to the subsequent analysis of chromatographic 

fractions. Concentration and desalting steps are thus necessary, increasing the risk of protein 

loss. 

In addition to prefractionation use, chromatographic methods have also been used in a 

two dimensional approach (MudPit, typically combination of strong cation exchange with 

RP). These powerful methods represent a way to overcome the limitations of 2DE, 

particularly for high MW and hydrophobic proteins. However, some limitations remain. 

Highly hydrophobic proteins are difficult to digest and necessitate additional cleavage steps. 

Low MW proteins are also a challenge due to the insufficient number of peptides available for 

MS analysis. 

6.3. Electrophoretic approaches 

The use of classical electrophoretic methods has been hindered by the limited loading 

capacity, but many improvements have been made, due to new instrumental developments. 

Most electrophoretic methods are based on isoelectric focusing (IEF) separation. Below is a 

non-exhaustive review of IEF-based methods only.  
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ROTOFOR 

It is in 1998 that Bier, who had long been working on preparative electrophoretic separations 

in free zone, developed the concept of the Rotofor (rotationally stabilized focusing apparatus), 

based on recycling carrier ampholytes IEF.81 The device is today commercialized by BioRad. 

A typical instrumental setup is presented in Figure 10. 

 

 

 

Figure 10: Schematic presentation of the Rotofor instrument. Rotation and the screen partitioning are essential 

for good separations. Reprinted from81 

 

The apparatus is assembled from 20 sample chambers, separated by liquid-permeable 

nylon screens, except at the extremities, where cation- and anion-exchange membranes are 

placed against the anodic and cathodic compartments, respectively, to prevent diffusion 

within the sample chambers of undesired electrodic products. The whole setup is rotated 

along the axis perpendicular to the chambers, thus avoiding decantation. The initial purpose of 

the Rotofor was for preparative use, with a loading capability of up to 1 g of protein in a total 

volume of up to 55 mL. A mini-Rotofor, with a reduced volume of 18 mL is also available, 

and recently a micro-Rotofor sold by Bio-Rad as well.82 
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The resulting pI fractions can then further be used for analysis on a conventional 2D 

gel electrophoresis.83 But IEF with the Rotofor can also be integrated as a first dimension in a 

2D methodology.43 The fractions are further analyzed by RP-HPLC in a second dimension, 

each LC peak is then collected and tryptically digested, before being subjected to MALDI-MS 

analysis. This method was successfully applied to many challenging biological protein 

mixtures.43, 84, 85 The pI accuracy of this method was estimated to range from ± 0.65 to ± 1.73 

pI units. More recently, Xiao et al. reported the application of the Rotofor for the fractionation 

of tryptic peptides from human serum in an ampholyte-free environment, and showed an 

“autofocusing” effect.86 

 

CONTINUOUS FREE FLOW ELECTROPHORESIS (FFE)  

 

Figure 11: Schematic presentation of the Free Flow electrophoresis setup (commercial name Octopus). 

Separation chamber dimensions are 50×10×0.4 cm (50 cm electrode length, 10 cm between electrodes and 0.4 

cm chamber depth). Focused protein samples are collected into 96-well plates via an in-line multichannel outlet. 

The volume of each fraction is typically ~2 mL. Reprinted from87 
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This liquid-based IEF technique was described in 1982 by Hannig88 and more recently 

reviewed by Bocek et al.89 A commercial version exists under the name of Octopus.90 In FFE, 

the sample is injected continuously into a carrier ampholyte solution flowing as a thin film 

(0.4 cm thick) between two parallel plates and, by introducing an electric field perpendicular 

to the flow direction, proteins are separated by IEF according to their different pI values and 

finally collected into up to 96 fractions (Figure 11). Two main advantages of this method are 

the recovery of liquid fractions, and the sample loading capacity due to continuous sample 

feeding. FFE was used as prefractionation tool before 2D-GE,91 or integrated as a first 

dimension in a 2D strategy.92, 93 Conventional FFE was initially developed as a preparative-

scale technique for isolation and purification purposes, but further developments have led to 

micro-fabricated devices (mFFE or µFFE), reported by Kobayashi et al.,94 and Manz and co-

workers.95-97  

 

MULTICOMPARTMENT ELECTROLYZERS WITH ISOELECTRIC 

MEMBRANES 

Another apparatus that has also proved its efficiency is the multicompartment electrolyzers 

(MCE) designed by Righetti et al.98, 99 The device is constituted of multiple compartments, 

separated by a polyacrylamide gel membrane with a specific pH produced by immobilines 

that are incorporated into the polyacrylamide membranes (Figure 12). Thus, the principle is to 

capture proteins in an isoelectric trap formed by two Immobiline membranes having pI values 

encompassing the pI of the protein under analysis. 
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Figure 12: Schematic presentation of the multicompartment electrolyzers. The upper right panel shows a 2D 

map of unfractionated sample vs. three different 2D maps (lower panel) of three isoelectric fractions, captured 

into traps having membranes with pIs 3-5, 5-6 and 6-10.5. Reprinted from100.  

 

A commercial apparatus, called IsoPrime, incorporating this principle has been 

marketed (Amersham Biosciences, Piscataway, NJ, USA). The commercial unit has been 

developed primarily for large scale purification (about 30 mL). The device was later 

miniaturized for proteomics purpose101, 102 and could detect low abundance proteins unseen 

until then. Good results have also been obtained by Zuo et al. with the same type of apparatus 

being used as prefractionation tool.103, 104 

While most of these devices can provide reasonable to high quality separations, the 

limitations encountered with either the Rotofor or the IsoPrime are the following: (1) they 

require a large sample volume; (2) they produce large volume, dilute fractions that need to be 

concentrated with attendant losses. 
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OFFGEL  

Contrary to the previously mentioned devices, the OFFGEL was designed for analytical to 

semi-preparative purposes, the volumes required are much smaller compared to other 

techniques. However, just like the MCE, OFFGEL has been devised for IEF separation with 

direct recovery in solution, and without adding ampholytes to form the pH gradient.105  

The principle is to place a sample in a liquid chamber positioned on top of an IPG gel. 

The gel buffers a thin layer of the solution in the liquid chamber and the proteins are charged 

according to their pI values and to the pH imposed by the gel. Theoretical calculations have 

shown that the protonation of an ampholyte occurs in the thin layer of solvation close to the 

IPG gel/solution interface.106 Upon application of a voltage gradient perpendicularly to the 

liquid chamber, the electric field penetrates into the channel and moves all charged species 

(those having pI above and below the pI of the IPG gel under the chamber) out of the 

chamber. After separation, only the globally neutral species (pI = pH of the IPG gel) remain 

in solution. This technique offers high separation efficiency and allows easy recovery of the 

purified compounds directly in the liquid phase. In further developments, the OFFGEL 

electrophoresis format was adapted to a multicompartment device (Figure 13), composed of a 

series of chambers of small volumes (100-300 µL).107   

 

Figure 13: Schematic presentation of the mutlicompartment OFFGEL device. Reprinted from107  
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The resolution thus depends on the pH gradient of the underlying IPG gel, and of the 

number of compartments for recovery. A resolution of 0.1 pH units could be obtained when 

operating in narrow ranges, for example the separation of β-lactoglobulin A and B. The 

capability of the multicompartment device to fractionate complex biological mixture was also 

demonstrated, by the fractionation of an E. coli cell extract. Further developments were done 

and this device is now being commercialized by Agilent Technologies since last year.   

The main concern about electrophoretic methods is to design instruments that 

effectively dissipate Joule heat or to limit that heating. In the Rotofor and multicompartment 

electrolyzers for example, there is a cooling system that allows temperature control during 

electrophoresis. For the commercial OFFGEL, the electrophoresis is performed on a cooling 

plate, allowing that control. But another way to limit this Joule heating is to control the 

maximum current/power allowed. For example, this is done in the OFFGEL device, by 

limiting the current to few hundreds of micro-amperes. 

A summary of electrophoretic methods is given in Table 2. 

 

Table 2:  Summary of electrophoretic methods and the volumes needed. 

Electrophoretic methods Usual volumes loaded Use* 

Rotofor: - preparative, mini 55 mL, 18 mL P, SP 

              - micro 2.5 mL (ref.82) A 

Free Flow Electrophoresis (FFE) 

              - continuous FFE 

Chamber: 50 (width)×10 (length)×0.4 (depth) cm 

2 mL/fraction 

P 

 

              - micro devices mFFE and µFFE  300 µL (ref.94) and 0.2 µL (ref.96) respectively A 

Multicompartment Electrolyzers 

              - miniaturized 

30 mL up to 125 mL (IsoPrime device) (ref.103) 

500 µL/chamber × 3 chambers = 1.5 mL (ref.103) 

P 

A 

OFFGEL 

 

100–300 µL/chamber 

× 10–20 chambers = 1–6 mL 

SP, A 

 

* P = preparative, SP = semi-preparative, A = analytical use 



  Chapter I. Introduction 
 

 27

6.4. Field-Flow Fractionation (FFF) 

Recently, many papers have been published, describing the use of field-flow fractionation 

techniques for proteomics.108-113 

FFF is based on the simultaneous action of laminar flow of a carrier liquid inside a 

separation channel and an external physical field (acting perpendicularly to the flow 

direction). Clearly, FFF combines elements of elution methods and methods based on external 

force fields. The activity of an external field differentiates FFF from chromatography, but it 

cannot be classified as an electrophoretic method either, because the external field does not 

cause separation directly. It induces the motion of analytes to different positions across the 

channel, where the non-uniform flow velocity profile causes differential migration of 

analytes. Thus, their separation takes place in the longitudinal direction, perpendicularly to the 

field direction. 

According to the nature of the external field, different FFF techniques can be 

described: sedimentation FFF, thermal FFF, electrical FFF and flow FFF (for theory, see114). 

The last two techniques are of main interest for the separation of proteins.  

In electrical FFF, an external electric field is applied perpendicularly to the separation 

channel, as shown in Figure 14.  

 

 

 

 

Figure 14: Separation of anionic (A, B) or cationic (C, D) species in various channels for electrical FFF, 

reprinted from115.   
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Interestingly, a variant of electrical FFF was described with the application of pH 

gradients, and called IEF FFF or hyperlayer electrical FFF. The separation of horse 

myoglobin components in a trapezoidal cross-section channel (Figure 15) was described,116 

and later a model mixture of proteins was also fractionated.117 The performances of this 

technique were however not stable enough, due to the hydrodynamic flow. It was later 

supplanted by CIEF, which offers a more stable (electro-osmotic) flow and better resolution.  

 

 

Figure 15: Separation of two amphoteric compounds in the trapezoidal channel for IEF FFF. Reprinted from115. 

 

Recently, a rapid non-gel based 2D separation method was introduced for protein 

analysis, by Kang and Moon.113 It consists in the combination of pI-based separation by CIEF, 

followed by molecular mass-based separation in a hollow fiber by flow FFF. 

Flow FFF is the most frequently and successfully used FFF technique for protein 

separation. It uses a fluid flow across the channel membrane to transport sample to the 

accumulation wall. This can be done either by using a second fluid flow across the channel, or 

by splitting the inlet flow into two flows, one eluting analytes towards the detector, and the 

other is a crossflow of the carrier liquid out of the channel, as described in Figure 16. All 

sample components are displaced with the same velocity towards the permeable wall. As a 

result, analytes are separated based on the differences in their diffusivity. The elution order is 

according to increasing protein molecular weight.   
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Figure 16: Examples of channels for flow FFF. Reprinted from115.  
 

The advantages of flow FFF in comparison to chromatographic techniques are mainly 

the mild conditions of separation (lower pressure, smaller contact area of the analytes), which 

contribute to maintaining native protein conformations and allows the study of large protein 

complexes,108 making this technique very attractive for “top-down” proteomics strategies, or 

for analysis of PTMs. Further instrumental developments should reveal the potential of these 

techniques for proteomics analyses.     

 

Concluding remarks on prefractionation methods 

With the advent of many gel-free fractionation techniques, efforts to develop devices to 

perform IEF in liquid phase, multi-dimensional chromatography strategies, one can wonder 

where the place of 2D-GE is today. Is it still predominant in proteomics? From our 

observations, highly sophisticated labs in Switzerland, either public or private, still use 2D GE 

A. Symmetric flow FFF 

B. Asymmetric flow FFF 

C. Hollow fiber flow FFF 
(Capillary tube) 
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as the method of choice for routine analysis of proteomics. Why are the gel-free developed 

methods so difficult to implement in a proteomics routine?  

The reason may be that most studies are comparative and thus, it is easier to compare 

results of 2D-GE between themselves. But one should add too, that despite its limitations, 2D-

GE is still the method that allows giving most information at the same time, compared to 

others. And probably too, that until now, the rush into proteomics mainly consisted in looking 

for the most obvious data, the high abundant proteins, but scientists are no more satisfied with 

re-discovering the proteome, because it is believed that in the unseen proteome lie the keys to 

understanding mechanisms of regulation of proteins. 

 

7. On transfer of proteins 

One of the main challenges of separation techniques today is the loading capacity. Indeed, to 

detect the low abundance proteins (the “unseen proteome”19), it is very often necessary to 

increase the concentrations loaded on the separation device. This usually leads to problems 

such as decrease in resolution, or protein precipitation/aggregation.118  To overcome these 

limitations, as well as allow a continuous separation, the idea is to perform continuous online 

extraction of the proteins separated, to allow a continuous sample loading. In addition, this 

would allow continuous focusing, opening the possibility for enrichment of proteins.   

In parallel, increasing interest has been devoted to the electrochemical transfer of 

biomolecules at the liquid-liquid interface (mostly water/organic solvent). Electrochemistry at 

the interface between two immiscible electrolytes (ITIES) has been extensively used for the 

study of transfer mechanisms for ions and ionizable drugs.119-125 

Concerning the transfer of amino acids across liquid-liquid interface, numerous papers 

can be cited, namely Shao et al. did a systematic study of the transfer, at micropipet electrode, 

of amino acids, facilitated by dibenzo-18-crown-6 (DB18C6).126 Recently, Osakai et al. used 
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a voltammetric approach to study the transfer of amino acids, as well as di- and tripeptides, in 

the presence or absence of  DB18C6 in nitrobenzene, to determine their hydrophobicity.127, 128 

Other approaches with three-phase electrodes have also been used for peptide ions.129, 130   

Besides, numerous works also relate to the transfer of low molecular-weight 

polypeptides such as protamine and heparin across a liquid-liquid interface. The facilitated 

transfer of protamine in the presence of a negatively charged sulfonate ionophore was 

reported.131, 132 Since water-soluble proteins contain ionizable groups on their surface, and can 

even be considered as polyelectrolytes, there was much interest in extending this study to the 

transfer of proteins as well. 

  It was noted that to observe protein transfer across a liquid-liquid interface, it is 

necessary to decrease their re-solvation energy in the organic phase.133 For that reason, an 

approach consisting in the formation of micelles was used. The usual four-electrode system 

was however not compatible with the micelle approach, due to breakdown of the interface at 

large surfactant concentration, and polarity of the solvent (micelles form only in non polar 

solvents). A solution described by Karyakin et al.,133-135 consisted of a special carbon 

electrode shielded with a layer of organic solvent containing a redox mediator. They managed 

to show the transfer of a few proteins (the highest molecular weight studied was 88 kDa). 

More recently, the transfer of proteins by reverse micelles was measured by voltammetry with 

a three-electrode setup (Figure 17).136, 137  

The observation of electroactivity of redox-inactive proteins at liquid-liquid interface 

is important and opens new horizons for electro-anaytical chemistry, in particular in 

proteomics. 
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Figure 17: Possible mechanism for reverse-micelle electro-extraction of proteins, reprinted from136. 
 

 

8. Objective of the work 

In the context of prefractionation methods for proteomics, this work deals mainly with the 

development of electrophoretic tools for isoelectric focusing of peptides and proteins for the 

analysis of biological complex mixtures.  

In the light of existing devices for IEF, the objective is to develop a multicompartment 

OFFGEL device, designed for the IEF of peptides in the perspective of shotgun proteomics 

(analysis of peptides derived from proteins). The choice of the OFFGEL for IEF among other 

techniques is justified as OFFGEL allows the recovery of liquid fractions of peptides, of small 

volumes, and that are further amenable to liquid chromatography (as a second dimension 

separation) or mass spectrometry analyses. 

The resolution is a key point to consider in the design of such a unit, as well as the 

volumes required. If the device is designed for biological samples, the range of volume loaded 

will be the same order of magnitude as for analytical or semi-preparative purposes (hundreds 
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of µL to few mL). The resolution depends on the IPG gel used, as well as the dimensions of 

the compartments and the distance between them.  

In such a device, the separation is performed mainly in the gel. Even though the 

collection of fractions is done in solution, the limiting step is still the migration in the gel. 

Thus, another objective is the design of a completely gel-free separation unit. However, the 

isoelectric focusing process requiring a pH gradient, the use of carrier ampholytes is then 

necessary, instead of a gel.  This gel-free approach (justifying the title) should allow faster 

focusing of proteins, retaining the advantages of recovering liquid fractions at the end of the 

separation, and the small volumes, making it convenient for analytical purposes. 

Finally, face to the usual problems encountered when loading a high quantity of 

sample on the separation unit (deterioration of resolution, precipitation of proteins at their pI), 

the final objective was to perform online extraction of proteins/peptides during IEF 

separation. This would allow continuous focusing, opening the possibility for enrichment of 

proteins. For that purpose, an electrochemical system was envisaged, allowing the transfer of 

species to another phase. The electrochemical cell was first tried on model molecules, to 

ensure the transfer of ionizable species at the liquid-liquid interface between two immiscible 

electrolytes (ITIES). 

 

This thesis is thus articulated into the following sections:  

 

Chapter II first describes the theory concerning isoelectric focusing, gives a mathematical 

description of the equations of IEF, the generation of the pH gradient, by carrier ampholytes  

(CA) and immobilized pH gradients (IPG), as well as an evaluation of the conductivity and 

buffer capacity of the species forming the pH gradient. It also discuss the use of IPG and CA 

nowadays. 
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Chapter III describes the numerical simulation of the IEF of peptides in an OFFGEL device. 

It illustrates how the mobility near pI is an important parameter for the IEF kinetics and the 

peak shape at steady state. With the help of an in silico digestion of three proteomes and the 

calculation of the distribution of the peptide mobility near pI, a width of the well could be 

deduced, to have best separation, with the recovery of peptides in at most two wells. The 

global study illustrated the high focusing power of the OFFGEL technique as a separation tool 

for shotgun proteomics application. 

 

Chapter IV is the design and characterization of a multicompartment OFFGEL device, based 

on the results of the simulations in chapter III. The reproducibility of the pH gradient (one 

important requirement for reproducible separations) was checked, the loading capacity 

evaluated for proteins, and a demonstration of the high resolution separation of peptides and 

proteins from a complex biological mixture was performed.     

 

Chapter V illustrates the use of OFFGEL IEF and the inherent information obtained on the pI 

of peptides, as an efficient tool for the validation/filtering of peptides, thus allowing the 

elimination of false postives and more accurate protein identification in a shotgun approach. 

The isoelectric focusing was then combined to the chemical tagging of cysteinyl peptides, in 

order to enhance the level of confidence in the identification step. These two tools combined 

together (OFFGEL IEF and chemical tagging) were shown to be highly valuable for building 

a strategy for the improved identification of proteins by Peptide Mass Fingerprinting (PMF).   

 

Chapter VI is the design of a completely gel-free device for IEF, to be used in the presence 

of carrier ampholytes. Like the OFFGEL, it has the advantage of small volumes fractions and 
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is easy-to-use, requiring no special equipment. The fractionation of biological samples of E. 

coli and human cancer cells showed a rapid separation of proteins, demonstrating that this IEF 

separation mode has high potential for fast prefractionation of proteomes.  

 

Chapter VII is an excursion on the transfer of ionizable species by electrochemistry at the 

interface of two immiscible electrolytes (ITIES). This study was initially motivated by some 

recently interesting works on the electrochemical transfer of peptides and proteins at ITIES, 

cited in the previous pages. A setup was designed for the study of the transfer of ionizable 

species at a micro-ITIES, which is originally supported by an IPG gel as the aqueous phase 

and a small drop of organic phase. The use of this device for the transfer of model molecules 

was demonstrated.   

 

The chapters have been written with the possibility to be read independently. Thus, to 

facilitate the independent reading, the experimental techniques used are sometimes described 

more than once.  
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1. Isoelectric focusing as a separation technique  

Isoelectric focusing (IEF) is a method dedicated to the separation of amphoteric species, that 

are molecules that can act both as acids and as bases. Peptides and proteins are mainly the 

samples fractionated by IEF, their amphoteric nature stemming from the presence of both 

carboxylic and amino groups. This type of ampholyte, to be distinguished from a species such 

as H2PO4
-, can exhibit both a net positive charge and a net negative charge, in response to the 

pH of its environment. Therefore, there is a pH called the isoelectric point, and noted pI, 

where the molecule displays a zero net charge. A peptide or protein is usually represented by 

its titration curve, expressed as the net charge versus the pH (Figure 1).  

The separation principle of IEF is based on differences in pI, and a pH gradient is 

required to achieve the focusing of samples.  

 

 

 

 

 

 

 

 

 

 

Figure 1: A shows the titration curve associated to the protein, B is the representation of the pH gradient and 

electric field, and the focusing peak around the pI. 
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A protein which is at a point in a pH gradient below its pI has a net positive charge, 

and a net negative charge above its pI. The presence of the electric field of the appropriate 

polarity will therefore move the molecule toward the isoelectric pH, at which point it ceases 

to respond to the electric field, because of the lack of a net charge. Any movement of 

diffusion away from this point in the pH gradient will cause the molecule to acquire a net 

charge and migrate back to its pI. IEF is therefore a constant dynamic equilibrium. So the two 

main parameters for IEF are the pH gradient and the electric field. The generation of the pH 

gradient will be discussed here, and the influence of the electric field will be shown in this 

chapter and in chapter III as well. 

 

2. Mathematical description of isoelectric focusing1-3 

2.1 General equation for the diffusion-migration of ions  

The transport of ions in solution can be attributed to convection (thermal or mechanical 

agitation), or to the influence of a gradient of Gibbs energy. The flux through a defined 

surface area is given by: 

i iJ c v=         (2.1) 

where iJ  and ic  are the flux and concentration of the species i, and v  is the velocity.   

In solution, basically two forces act on the ion in motion.  

  

 

 

Figure 2: Forces acting on an ion in solution. 
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The force 1F  is the force due to the electrochemical potentialμ gradient: 

1
1 μ

A

F
N

= − grad        (2.2) 

The second force 2F , in the opposite direction, is the frictional force, proportional to the 

velocity and the frictional coefficient of viscosity f:  

  2F fv= −         (2.3) 

In the steady-state, the sum of the forces equals zero and the velocity can be expressed as: 

  1 μ
A

v
N f

= − grad        (2.4) 

According to Equation (2.1), the flux is proportional to the velocity and the concentration of 

the ion, resulting in: 

   μ μi
i ii i

A
i

cJ c u
N f

= − = −grad grad     (2.5) 

where iu  is defined as the electrochemical mobility of the ion. 

The electrochemical potential is defined as: 

  0μ μ lni i ii RT a z F= + + φ       (2.6) 

where 0μ i is the standard chemical potential, ia  the activity of species i, iz  the charge of the 

species, φ the electric potential, F the Faraday constant, R the gas constant and T the 

temperature. In an ideally diluted solution, it results in: 

  0μ μ lni i ii RT c z F= + + φ       (2.7) 

The flux under an electrochemical potential can thus be expressed as follows: 

  μi i i i ii iJ c u z F c u= − − φgrad grad     (2.8) 

where μ i is the chemical potential, defined by: 

  0μ μ lni i iRT c= +        (2.9) 
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Diffusion term (first term of the flux equation) 

The flux of diffusion is proportional to the gradient of concentration, as defined by Fick’s first 

law: 

  i
i i

cJ D
x φ

∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠
       (2.10) 

where Di is the diffusion coefficient of species i. 

If comparing with the diffusion term in Equation (2.8), the diffusion coefficient can be written 

as: 

   i iD RT u=         (2.11) 

According to the Stokes-Einstein equation, which describes the way that diffusion increases 

with temperature and inversely proportional to the frictional force: 

  i
kTD
f

=         (2.12) 

where k  is the Boltzmann constant. The frictional force depends on the size and shape of the 

molecule. The larger the molecule is, the larger the frictional coefficient (i.e. more resistance 

to the motion of the molecule). For a spherical particle of radius r , Stokes’ relation gives: 

  6f r= πη         (2.13) 

where η is the viscosity. 

The coefficient of diffusion can thus be expressed as: 

  
6i

kTD
rπη

=         (2.14) 

 

Migration term (second term of the flux equation) 

In ionic conductors (ionic solutions), proportionality exists between the current and the 

applied electric field, as expressed by Ohm’s law. The current density, which is a flux due to 

the migration of charges (ions), is thus written as: 
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  i i i ij z FJ= = −σ φgrad       (2.15) 

The proportionality factor iσ is named ionic conductivity and by comparing with the 

migration term in the flux Equation (2.8), iσ  writes as: 

  2 2
,i i i i i ep iiz F c u z Fc uσ = =       (2.16) 

where ,ep iu  is the electrophoretic mobility, defined as: 

  ,ep i i iu z Fu=         (2.17) 

For a cation, it is always positive, for an anion, it is always negative. The electrophoretic 

mobility is the proportionality factor between the velocity and the electric field: 

  ,i i i ep ii iv z Fu z Fu E u E= − φ = =grad     (2.18) 

If coming back to the expression of the velocity given by Equation (2.4), and considering the 

Stokes’ relation for the frictional coefficient f, we have: 

  1
6
i

ii
A A

z FEv
N f N rπη

= − μ =grad      (2.19) 

And thus the electrophoretic mobility: 

  , 6
i

ep i
A

z Fu
N rπη

=        (2.20) 

Therefore, the electrophoretic mobility is proportional to the charge density (charge/size ratio) 

of the particle. 

 

2.2 IEF at the steady state 

For a stationary regime of isoelectric focusing without chemical reactions, the equation of 

conservation of flux is given by: 

  
  

∂ci

∂t
= −divJi = 0         (2.21) 
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Considering only the diffusion-migration transport in one direction, and substituting with 

Equation (2.8), this equation reduces to the following 1-D steady-state equation: 

  0ii i
ii i

i

c u RT c c u z F
x c x x

φ⎛ ⎞∂∂ ∂− − =⎜ ⎟∂ ∂ ∂⎝ ⎠
     (2.22) 

It results from Equation (2.22) that the flux of species i (term in brackets) is uniform over x. 

Since at the isoelectric point, the concentration is maximal and the charge zero, the global flux 

at the steady-state is zero.  

  0i
i ii i

cu RT c u z F
x x

φ∂ ∂− − =
∂ ∂

      (2.23) 

By rearranging and taking the electrophoretic mobility, ,ep i i iu z u F= , this equation becomes: 

,
i

i i ep i
cu RT c u E
x

∂ =
∂

       (2.24) 

And if combining with the definition of the diffusion coefficient (Equation (2.11)): 

,
i

i i ep i
cD c u E
x

∂ =
∂

       (2.25) 

The concentration distribution of an electrolyte at the isoelectric point is the “equilibrium” 

between mass transport and diffusional flow.  

 

2.3 Resolving power 

The mobility ,ep iu  can be regarded as a linear function of x, because of the narrowness of the 

focused zone near pI. With the proportionality factor p, it can thus be written: 

  ,ep i iu p x= −         (2.26) 

We can note that if the x-axis is pointing in the direction of a positive pH gradient, the 

mobility slope is then negative (cf. titration curve), thus the negative factor.  

(Equation (2.25)) can then be written: 
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  ( )/ /i i i ic c p E D x x∂ = − ∂       (2.27) 

The integration of this equation gives: 

  
2

,max

2

( ) e
p E x

D
i i

i
ic x c

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠=        (2.28) 

where ,maxic is the maximum local concentration of the species i in the focusing region. The 

concentration thus expresses a Gaussian concentration distribution with a standard deviation 

σ: 

  ( )σ /i iD p E=        (2.29) 

If we consider a narrow focused zone, the pH gradient dpH / dx  and the electrophoretic 

mobility slope ,d / dpHep iu can be regarded as linear functions of x. The proportionality factor 

(mobility slope around the pI) can be written as: 

, ,d d dpH
d dpH d

ep i ep i
i

u u
p

x x
⎛ ⎞ ⎛ ⎞⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
     (2.30) 

By substituting Equation (2.30) into Equation (2.29), one obtains: 

  
,

dpH dσ
d dpH

i

ep i

D x
E u
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

      (2.31) 

According to calculations of Vesterberg and Svensson,4 two adjacent zones are considered to 

be resolved when their peak to peak separation is three times larger than the distance from the 

peak to the inflection point: 

  dpH dpHpH 3σ
d d

x
x x

Δ = Δ =       (2.32) 

Substitution of Equation (2.31) into Equation (2.32) gives at the pI: 

  
,

dpH
dp 3

d
dpH

i

ep i

D
xI

u
E

⎛ ⎞
⎜ ⎟
⎝ ⎠Δ =

⎛ ⎞
−⎜ ⎟
⎝ ⎠

      (2.33) 
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where pIΔ  is the difference in isoelectric points between two proteins to be separated by IEF. 

A similar equation was later demonstrated by Giddings et al.,5 in an approach similar to the 

chromatographic one. They pointed out the relevance of the peak capacity as a general 

criterion of over-all resolving power.   

Equation (2.33) shows how the resolution can be increased. When the diffusion 

coefficient is high, a gel with small pores should be chosen, to limit diffusion. The flatter the 

pH gradient is, the better the resolution. But it also shows the limits of IEF: a high electric 

field increases the resolution, but the field strength cannot be increased indefinitely. And 

,d / dpHep iu− , the mobility slope at the pI is a property inherent to the protein. 

 

3. Gel electrophoresis 

Electrophoretic separation in solution is due to differences in the mass/charge ratio. However, 

the resolution is poor, because of Joule heating effects, which can create temperature gradient, 

thus density gradients, leading to natural convection and disturbance in the focused zone. 

Diffusion in solution also has a negative effect on the sharpness of the focusing. To minimize 

these effects, electrophoretic separations are mainly carried out in supporting media, such as 

aqueous gels. Depending on the pore size, the gel modifies the diffusion coefficient of 

proteins, as well as the apparent radius, thus the mobility. 

The gel material that best fulfills the requirements for protein separation and pore size 

optimization is polyacrylamide gel. This kind of gel was first used by Raymond and 

Weintraub in 1959,6 for zone electrophoresis. It is formed by co-polymerization of acrylamide 

monomers with a cross-linking reagent (usually N,N’-methylenebisacrylamide), resulting into 

a chemically inert and transparent gel, stable over a wide temperature, pH and ionic strength 

range. The polymerization reaction scheme is shown on Figure 3. To initiate the reaction, 
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several polymerization catalysts are used, most commonly ammonium persulfate (APS) and 

N,N,N’,N’-tetramethylenediamine (TEMED). The pore size can be reproducibly controlled by 

the total acrylamide concentration T%  and the degree of cross-linking C%.7 

  % 100a bT
V
+= ×  and % 100bC

a b
= ×

+
   (2.34) 

a is the mass of acrylamide in g, b is the mass of methylenebisacrylamide in g and V is the 

volume in mL. 

When C% remains constant and T% increases, the pore size decreases. When T% 

remains constant and C% increases, the pore size follows a parabolic function: at high and 

low values of C%, the pores are large, the minimum being at C% = 5%. For example, for T% 

= 5% and C% = 5%, a pore size of approx. 20 nm can be obtained.3 For higher C% (25 to 

60%), Righetti et al. report on pore size increasing from 200 to 600 nm.8 Some further studies 

were done on the kinetics of the polymerization, namely on the effect of different cross-

linkers and the effect of the temperature.9, 10 From information given by Amersham,11 a gel 

with T% = 5% and C% = 3% has a pore diameter of 5.3 nm. Commercialized IPG gels (T% = 

4%, C% = 3%) should have a pore size of a few nm.  

 

 

 

 

 

 

 

 

 

Figure 3: Polymerization reaction of acrylamide and methylenebisacrylamide from12   
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4. Generation of a pH gradient for isoelectric focusing 

The prerequisite for highly resolved and reproducible separations is a stable and continuous 

pH gradient with constant conductivity and buffering capacity. Two concepts meet these 

demands: pH gradients which are formed in the electric field by amphoteric buffers, the 

carrier ampholytes, or immobilized pH gradients, in which the buffering groups are part of the 

gel. 

4.1 Carrier ampholytes (CA) 

That important concept was introduced by Svensson in 1961,13 to synthesize the minimum 

basic requirements for stable pH gradients in an electric field. The buffers used to form a pH 

gradient had to have two fundamental properties: 1) to be amphoteric so that they could also 

reach a steady state position during the separation and 2) to be “carrier”. The concept of 

carrier is more subtle, but just as fundamental. The carrier species has to be capable of 

“carrying” the current (a good conducting species) and capable of carrying the pH (a good 

buffering species).14 In the following section, these two properties will be defined following 

Rilbe-Svensson’s description15 and illustrated by some examples. 

If we consider a biprotic ampholyte:  

+
2AH    +AH + H    

AH    +-A + H  

The two dissociation constants associated to these reactions can be written as follows: 

2

1
AH H

AH

c c
K

c
+

+

=          (2.35) 

2
A H

AH

c c
K

c
− +=         (2.36) 

 
From the dissociation constants, we can derive: 

1K

2K
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2

1/AHAH H
c c c K+ +=        (2.37) 

  2 /AHA H
c K c c− +=        (2.38) 

The total concentration totc of the ampholyte is noted: 

  
2

tot AHAH A
c c c c+ −= + +        (2.39) 

By adding the two equations together with AHc  to obtain the total concentration, the 

concentration of the three species can be deduced: 

  ( )
2

2 2
1 1 2/totAH H H H

c c c c c K K K+ + + += + +     (2.40) 

  ( )2
1 1 1 2/AH totH H H

c c K c c c K K K+ + += + +     (2.41) 

  ( )2
1 2 1 1 2/totA H H

c K K c c c K K K− + += + +     (2.42) 

The charge is defined as: 

( )
2

2
1 2

2
1 1 2

AH A H

tot H H

c c c K K
z

c c c K K K
+ − +

+ +

− −
= =

+ +
    (2.43) 

At the isoelectric point, the charge equals zero, thus: 

2
1 2H

c K K+ =          (2.44) 

And the isoelectric point is defined by: 

( )1 2p p p / 2I K K= +        (2.45) 

 

Note on the influence of the ionic strength on the pI 

These calculations are made assuming ideally diluted solutions. If this hypothesis is not valid 

(high ionic strength), the activity coefficients have to be taken into account. The equations 

(2.35) and (2.36) can then be rewritten as K11 and K22 respectively:  

  
2 2 2

11
AH AH AHH H H

AH AH AH

a a c c
K

a c
γ γ

γ
+ + +

+ + +

= = ⋅      (2.46) 

22
A H A H A H

AH AH AH

a a c c
K

a c
γ γ

γ
− + − + − += = ⋅      (2.47) 
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If assuming that the activity coefficient for the uncharged species is unitary, this leads to: 

  11 1K K>  and 22 2K K<       (2.48) 

These changes in the dissociation constants do not change the value of the pI (compensated in 

the half sum of the pKa according to equation (2.45)), but should influence the slope of the 

titration curve near the pI.  

 

Buffer capacity of ampholytes 

The buffer capacity of carrier ampholytes near their isoelectric point is important, because 

they should exhibit a buffer action stronger than that of the proteins and therefore control the 

pH gradient. The buffer capacity β is defined as the amount of acid or base necessary to 

change the pH by one unit. If a concentration of base Bc  is added, β is written as: 

  dβ=
d(pH)

Bc         (2.49) 

The higher the buffer capacity of an ampholyte is, the better its buffering power (meaning the 

change in pH is not so much affected by the addition of acid or base).  

The charge balance for the ampholyte solution to which a certain amount of base Bc  is added, 

can be written as (if neglecting water dissociation): 

  
2

B AH A
c c c+ −+ =        (2.50) 

Combining Equations (2.40) and (2.42), the base concentration can be expressed as: 

( )2
1 2

2
1 1 2

tot H
B

H H

c K K c
c

c c K K K
+

+ +

−
=

+ +
      (2.51) 

The expression of the buffering capacity is thus:16 

  
( )

( )
( )

2
1 1 2 2

22
1 1 2

ln10 4dβ
d p

tot H H HB

H H

c K c K K c K cc
H c c K K K

+ + +

+ +

+ +
= =

+ +
  (2.52) 
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At the isoelectric point, the relative molar buffering capacity can thus be written as (see 

Appendix 1):  

, p
1 2

4 4B
1 / 4 1 (1/ 4) 10

i rel KK K Δ
= =

+ + ⋅
    (2.53) 

 

Conductivity of ampholytes 

Another important factor for a good ampholyte is the conductivity at and near the isoelectric 

point. Regions of low conductivity cause local overheating because of the resulting high local 

electric field. The conductivity is directly proportional to the concentration of ions in solution, 

which is dependent on the degree of dissociation α  of the ampholytes. For a bivalent 

ampholyte, the degree of dissociation can be written as: 

 2AH A

tot

c c

c
α

+ −+
=        (2.54) 

By using Equation (2.40) and Equation (2.42), the degree of dissociation can also be written 

as: 

  
2

1 2
2

1 1 2

H

H H

c K K
c c K K K

α +

+ +

+
=

+ +
      (2.55) 

At the isoelectric point, the degree of ionization can thus be written as:   

  
p

1 2

1 1
1 / 4 1 (1/ 4) 10

i KK K Δ
= =

+ + ⋅
α     (2.56) 

If comparing Equations (2.53) and (2.56), at the isoelectric point, there is a direct 

proportionality between the conductivity and the buffering capacity.  

  β 4i iα=         (2.57) 

Thus, at the isoelectric point, a high degree of ionization (good conductivity) is accompanied 

by a good buffer capacity, and vice versa. 
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The dependence of both the buffering capacity and the conductivity on the ΔpK is 

summarized on Figure 4. Panel A shows the relative buffer capacity for a biprotic ampholyte, 

with pI = 7 and different values of ΔpK. This confirms that ampholytes that have a ΔpK 

greater than 4 possess little buffering capacity in the isoelectric state and therefore are of little 

use as carrier ampholytes.17 The conductivity profile in panel B shows the same behavior. 

Ampholytes that have a ΔpK greater than 4 show little conductivity in the isoelectric region, 

they are thus not useful ampholytes. 
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Figure 4: The relative molar buffer capacity of biprotic ampholytes (panel A) and their degree of ionization 

(panel B) as a function of ΔpK = 1, 2, 4. 
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Svensson18 reviewed and listed possible CAs based on their ΔpK values. Amino acids 

can be found in that list. However, if tracing the buffering capacity of some amino acids 

(Figure 5), it can be seen that not only the ΔpK value is important, but also the pI value. For 

histidine, ΔpK = 3 and the pI is located half a way between the two basic groups. The buffer 

capacity is acceptable, but it is not one of the best CAs. For example, lysine is a much better 

one: the pI is located between two closely spaced pK values, and the buffer capacity is quite 

high, close to the maximum value. For the same reasons, cysteine and tyrosine are bad 

potential CAs, even though their ΔpK values meet the requirements. In the same review, 

however, it is noted that there is a crucial gap of missing CAs in the pH region between 4 and 

7, this being one difficult challenge of CAs. 

 

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Importance of the relative buffer capacity at the pI value for some amino acids. 
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Formation of the pH gradient with ampholytes 

Once the ampholytes properties discussed, it is important to describe and understand how 

these compounds align themselves in order to form a stable and linear pH gradient. 

If an ampholyte is place in an electric field, it will migrate away from the electrodes, 

to position itself at its pI position. Thus the most acidic ampholyte (lowest pI) will migrate 

closer to the anode where it condensates in its isoelectric state, and a basic ampholyte (highest 

pI) will migrate closer to the cathode. If a mixture of carrier ampholytes is used with 

intermediate pI values, they will focus along the electric field, so that a pH gradient is formed, 

defined by the pH of ampholytes at their point of focusing. The nature and linearity of the pH 

gradient will depend on the range of isoelectric points, the number of CAs in the system, and 

their relative concentration and buffer capacity.16 

To describe the behavior of CAs in an electric field and the subsequent establishment 

of the pH gradient, numerous simulations were performed and confronted with experiments. 

One of the early works are from Thormann et al., who simulated the focusing dynamics of a 

mixture of three ampholyte amino acids (Glu, His, Arg) and described the concentration and 

pH profiles obtained.19 They concluded on a two-phase process, a relatively rapid separation 

step, and a slower stabilization step.  

However, a three-ampholytes mixture was quite simplistic and commercial systems 

are more complicated, with hundreds of different species. Thus, a mixture of 15 components 

was later simulated, showing the increasing complexity of the process.20 And recently, even 

more sophisticated simulation programs allowed describing up to 150 carrier ampholytes,21, 22 

as shown in Figure 6. 
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Figure 6: Computer-simulated distributions of 140 carrier components and three dyes after 12, 100, 500, 1000 

and 5,000 min of current flow under IEF conditions. The numbers 6.6, 7.4 and 8.6 refer to the pI values of three 

colored marker dyes and the arrowheads point to their locations. The arrows of the bottom graph mark the two 

transient concentration valleys that are characteristic for the stabilizing phase. Cathode is at the right. Reprinted 

with permission from22. 

 

Carrier ampholytes nowadays 

Today, on the market, there are four brands of carrier ampholytes commercialized: 

Ampholine, Servalyt, Pharmalyt and Bio-Lyte. 

The synthesis of the first CAs was done by Vesterberg in 1969, a student of Svensson, 

through a “remarkable chaotic” process. Initially, it consisted in mixing aliphatic oligoamines 

(from two to nine amino groups) to oligocarboxylic acids.23, 24 Some 360 isomers were 

estimated to be obtained on the pH 3–10 range. This number of isomers could be increased 

when adding some methyl or ethyl residues on the amino groups.24 The pH interval could also 

be extended to more basic (pH 9–11) or more acidic (pH 2.5–4) intervals, as suggested by 

Vesterberg,25 by using aliphatic oligoamines having amino groups more than three methylene 
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groups apart (1,6-diaminohexane) or dicarboxylic acids (malonic acid). Vesterberg’s synthesis 

process was patented and those CAs are today commercialized under the name of 

Ampholine. 

 

H2C N

(CH2)x

(CH2)x N

(CH2)x

COOHNR2

CH2

 

 

Figure 7: General chemical formula of Ampholines. 
 

Despite a slow growth since its first introduction in vertical columns stabilized by 

density gradients, IEF saw its popularity increased in the 1970s thanks to the use of thin 

polyacrylamide gels for IEF.26 This motivated other companies to enter the competition and 

synthesize carrier ampholytes via alternative routes. The first attempts were initiated by 

Pogacar and Jarecki27 and by Grubhofer and Borja.28 Their oligoamino mixture was obtained 

from the condensation of ethylene imine with propylene diamine. To introduce the acidic 

groups, propansulfone, Na-vinylsulfonate and Na-chloromethyl phosphate were used, thus 

yielding CAs containing sulphate and phosphate groups instead of carboxylic groups, as 

counter-ions to the basic groups. Although this was the only way to avoid patent 

infringement, these species had a big gap in the pH 3.5-5.8 interval, thus they had to introduce 

also carboxylic acids, which provide enough buffering power in that zone. These compounds 

were marketed by Grubhofer under the name of Servalyt. 

The next attempt was from Williams and Söderberg,29 scientists from Pharmacia 

Biosciences. Their synthesis process consisted in the co-polymerization of amines, amino 

acids and dipeptides with epichlorohydrin. 
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O
Cl

 

Figure 8: Epichlorohydrin or chloromethyloxirane. 

 

By an appropriate choice of amines and amino acids, five narrow intervals could be 

generated, which is a major difference to the other syntheses, where a wide range would be 

generated and narrow cuts would be obtained by focusing in a multicompartment 

electrolyzer.30 Until now, it turns out that Pharmalyte (trade name of the marketed CAs) are 

the best CAs, offering the smoothest conductivity and buffering capacity over the pH 3-10 

range (Figure 9).31 Bio-Lyte carrier ampholytes are assumed to be derivatives of Servalyt and 

are commercialized by Bio-Rad.  

 

Figure 9: Buffering capacity versus pH of focused Ampholines (solid line), Servalytes (broken line) and 

Pharmalytes (dotted line). Reprinted from14 with permission. 

 

For many years since the introduction of the concept by Svensson in 1961, CAs have 

been used and commercialized under four different brand names indicating different synthesis 

processes but for all of them, the exact composition of the CAs was never known, as well as 

CAs structure and effective properties. Until recently, it was assumed that they were complex 

mixtures, ranging from > 360 for Ampholine, up to 2,000 to 3,000 species for Pharmalyte. 
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However, recent studies have shown surprising results concerning the mass distribution and 

focusing properties of CAs for IEF,31 which reportedly led to much debate, by “crumbling the 

Berlin wall” in the knowledge of CA-based IEF.  

Indeed, according to Svensson’s definition, CAs would be good as ampholytes and 

carriers and should be focusing into sharp zones. In this study,31 the four brands of CAs were 

studied in terms of mass composition and isoforms composition, and unexpected new results 

were shown. First, the CAs narrow cuts turn out to be still polydisperse considering their 

narrow pH range (0.1 pH unit), exhibiting from 85 to 306 isomers in 2 pH units of the alkaline 

region, most of them being isoforms (same molecular weight, but different pI and mobilities). 

A second important pattern also appeared: contrary to theory, for all of them, a very large 

proportion of CAs (75%) are “poor carrier ampholytes”, in that they are unable to focus and 

are evenly distributed along the generated pH gradient in the electric field (Figure 10). The 

pH is created and sustained by the minority of species, which appear to focus at their pI into 

sharp zones. 

 

 

Figure 10: Percentage of species focusing in either a single fraction or over the entire pH gradient (5 fractions). 

Reprinted from 31 with permission. 
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This study shows the still existing challenges of CA-based IEF, faced to IPG-based 

IEF (where a total of only ten chemicals generate the smoothest possible pH gradients, of any 

shape and interval). The short term remedy suggested is to mix the three best brands of CAs 

(according to this study, Bio-Lyte, Pharmalyte and Servalyt contain the larger number of 

species), to obtain a better resolution and shape of pH gradient. But in the long term, if the 

CAs are to be used as narrow cuts, the synthesis routes could be improved. 

 

4.2 Immobilized pH gradient (IPG) gels 

It is in the 1980s, almost twenty years after the works of Svensson on the carrier ampholytes, 

that works with immobilized pH gradients were first published, by Bjellqvist et al.32 Despite 

the enormous success of carrier ampholyte based IEF since its introduction, the technique still 

had certain inherent limitations and problems, which justified the need for another way 

towards a pH gradient. The main drawbacks mentioned of the CA-based IEF were: the 

“cathodic drift” or “plateau phenomenon”33, 34 (slow change of what was expected to be a 

stable pH gradient with time), conductivity and buffer capacity gaps (due to the cathodic drift 

leading to the depletion of carrier ampholytes in some parts of the pH gradient), too low and 

uncontrolled ionic strength. The main weakness of CAs was that the pH gradient was 

generated thanks to a large number of amphoteric compounds, and that the distribution of 

these compounds was not even (and unknown), as well as their conductivity and buffer 

capacity.35  

To overcome these limitations, alternative ways for creating stable pH gradients 

without CAs had thus been explored, namely thermal pH gradient,36 dielectric pH gradient,37 

rheoelectrolytic generation of pH gradient,38 or isoelectric membranes IEF.39 More 

interestingly, a patent by Gasparic et al.40 was published by the end of the 1980s, on the 
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original concept of binding the buffering groups generating the pH gradients to the matrix 

used for convectional stabilization. For the generation of this type of pH gradient in 

polyacrylamide gels, a set of buffering monomers, called Immobiline (in analogy with 

Ampholine), is used. The Immobilines™ are acrylamide derivatives with the general chemical 

formula: 

2CH CH CO NH R= − − −  
 
where R contains either a carboxylic acid or an amino group. 

An Immobiline is thus a weak acid or base defined by its p aK values. These monomers 

are incorporated in the polyacrylamide gel during polymerization (Figure 11). The gel will 

thus have a pH defined by the concentrations and dissociation constants of the Immobilines. 

The conductivity of the gel will also be related, not only to +H and OH− , but also to the 

amount of incorporated Immobilines and their buffer capacity. 

 

 

 
Figure 11: Polyacrylamide matrix with bound Immobilines  
 

The available Immobilines allow the generation of any narrow pH gradient between 

pH 3 and 10. Table 1 lists the available Immobilines and their pK values determined 

experimentally and in different medium by Bjellqvist et al.:32 three acidic and four basic, with 
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pK values spanning the pH range 3.6–9.3. These values have been determined in gels 

(dimensions 240×110×1 mm) by titration of an Immobiline with another, fully dissociated 

Immobiline. The results show that the differences observed between the monomer and the 

buffering groups incorporated in the gel are mainly due to medium effects and temperature 

variations.32 

 

Table 1: Apparent pK values for Immobilines from reference.32 T is the total acrylamide concentration and C is 

the degree of cross-linking. 

 H2O Polyacrylamide gel 
T% = 5%, C% = 3% 

Polyacrylamide gel 
T% = 5%, C% = 3% 
glycerol 25% (w/v) 

 10°C 25°C 10°C 25°C 10°C 25°C 
Acid       

Immobiline p 3.6K  3.57 3.58 - - 3.68 ± 0.02 3.75 ± 0.02 
Immobiline p 4.4K  4.39 4.39 4.30 ± 0.02 4.36 ± 0.02 4.40 ± 0.03 4.47 ± 0.03 
Immobiline p 4.6K  4.60 4.61 4.51 ± 0.02 4.61 ± 0.02 4.61 ± 0.02 4.71 ± 0.03 

Base       
Immobiline p 6.2K  6.41 6.23 6.21 ± 0.05 6.15 ± 0.03 6.32 ± 0.08 6.24 ± 0.07 
Immobiline p 7.0K  7.12 6.97 7.06 ± 0.07 6.96 ± 0.05 7.08 ± 0.07 6.95 ± 0.06 
Immobiline p 8.5K  8.96 8.53 8.50 ± 0.06 8.38 ± 0.06 8.66 ± 0.09 8.45 ± 0.07 
Immobiline p 9.3K  9.64 9.28 9.59 ± 0.08 9.31 ± 0.07 9.57 ± 0.06 9.30 ± 0.05 

 

 

After the original article of 1982, further developments were made concerning the 

immobilized gradients, computer modeling for calculation of extended IPG,41-44 as well as 

development of the chemistry of the buffering compounds.45, 46 Further work was thus 

performed to better understand the properties of Immobiline chemicals,47 namely on the basic 

compounds and their hydrophobicity. Those works led to the development of new basic 

Immobiline chemicals, which have better properties in terms of hydrophobicity and stability. 

Table 2 gives the chemical structure of some Immobilines.47 
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Table 2: Immobilines chemical formula from reference.47  

pK  Formula Name MW 
(g·mol-1) 

Acid    

1.0  C

CH2SO3H

CH3

CH3

NHCOCHCH2

 

2-Acrylamido-2methylpropane sulfonic 
acid 207 

3.1 
CH COOHNHCOCHCH2

OH  2-Acrylamidoglycolic acid 145 

3.6  CH2 CH CO NH CH2 COOH  N-Acryloylglycine 129 
4.4  CH2 CH CO NH (CH2)2 COOH  3-Acrylamidopropanoic acid 143 
4.6  CH2 CH CO NH (CH2)3 COOH  4-Acrylamidobutyric acid 157 
Base    

6.2  CH2 CH CO NH (CH2)2 N O
 

2-Morpholinoethylacrylamide 184 

7.0  CH2 CH CO NH (CH2)3 N O
 

3-Morpholinopropylacrylamide 198 

8.5  CH2 CH CO NH (CH2)2 N(CH3)2  N,N-Dimethylaminoethylacrylamide 142 
9.3  CH2 CH CO NH (CH2)3 N(CH3)2  N,N-Dimethylaminopropylacrylamide 156 

10.3  CH2 CH CO NH (CH2)2 N(C2H5)2  N,N-Diethylaminopropylacrylamide 184 
 

 

Altland48, 49 and Giaffreda50 have published software, which allow the calculation of 

the desired pH gradients with optimization of the distribution of buffer concentration and 

ionic strength. Developments have also been performed to expand the existing pH range in 

both directions by using additional types of Immobilines and also to prepare very acidic and 

basic narrow pH gradients.45, 46, 51, 52  The use of immobilized pH gradients is at present 

restricted to polyacrylamide gels only, but some developments had been done concerning the 

matrix as well.53  

 

Buffer capacity of IPG gels 

Following the introduction of the concept of immobilized pH gradients, some work was done 

on the simulation of pH gradient and buffer systems54, to optimize and determine the 

concentrations needed for the formation of wide range pH gradient. This work further allowed 

the calculation of the effective pH gradient, the buffer capacity as well as the ionic strength of 
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a given mixture of Immobilines. This calculation is based on the consideration of the buffer 

capacity of monoprotic weak acids A Hi  and bases B j : 

A Hi     +A + Hi
−       

2B H Oj +    +B OH + Hj  

The total concentration of A Hi  and B OHj are: 

  
ii

A A HA
c c c−= +        (2.58) 

jj
B B OHB

c c c+= +        (2.59) 

By substituting 
iA Hc  and 

jB OHc  by the appropriate expressions in the dissociation constants iK  

and jK , it can be written: 

  ( )/ /
i

A i iA H
c c K K c− += +       (2.60) 

  ( )/ /
j

B jB H H
c c c K c+ + += +       (2.61) 

The partial buffer capacity for each acid and basic species in the mixture is: 

  ( )2
d / dpH ln10 /

i
i A iA H H

c K c c K c− + += − +     (2.62) 

  ( )2
d / dpH ln10 /

j
j B jB H H

c K c c K c− + += − +     (2.63) 

The electroneutrality condition imposes:  

  
1 1

i j

m l

A B
i j

c c− +

= =

=∑ ∑        (2.64) 

where m  is the number of acidic Immobilines and l  the number of basic Immobilines. If 

neglecting the H+ and OH- concentrations compared to the concentration of other ions, and 

summing for all the m l+  species present in the Immobiline mixture, the total buffer capacity 

can be written as: 

  ( )2

1
= ln10 /

m l

i i iH H
i

C K c K cβ + +

+

=

+∑      (2.65) 

with iC  the total acid and base concentrations. 

jK

iK
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Conductivity of the Immobiline gels 

The immobilized gradients theoretically exhibit a very low conductivity because the buffers 

are not freely mobile. Bjellqvist et al. had showed that the conductivity of the Immobilines 

could be 100 times lower than the one of carrier ampholytes.32 Computer simulations for pH 

gradient engineering allowed the control of important parameters such as buffer capacity, 

conductivity and ionic strength (see Figure 12), while generating a pH gradient as linear as 

possible.41 

 

  

 

Figure 12: Panel A is the computer simulation of the pH, buffer capacity and ionic strength, and Panel B is the 

optimization (flattening) of the conductivity. Reprinted from41 with permission. 

 

Generation of the immobilized pH gradients 

In practice, immobilized gradients were obtained by copolymerizing in the polyacrylamide 

gel matrix reactive compounds (buffering Immobilines) titrated with reactive counterions 

(non-buffering Immobilines). For narrow range of pH gradient, a simple variation of the 

Immobiline / titrant ratio is done. If the buffering Immobiline is an acid and Ac and Bc the 

I 

β 

pH 

pH 

σ 
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concentrations of acidic and basic Immobilines, respectively, the pH is given by the 

Henderson-Hasselbach equation: 

  pH p log A
A

A B

cK
c c

⎛ ⎞
= + ⎜ ⎟−⎝ ⎠

      (2.66) 

In the case of a basic Immobiline:  

  pH p log B
B

B A

cK
c c

⎛ ⎞
= + ⎜ ⎟−⎝ ⎠

      (2.67) 

If the buffering Immobiline concentration is kept constant, the pH gradient resulting from 

linear mixing of two solutions will correspond to an ordinary titration curve. The best pH 

gradients, in terms of linearity and buffer capacity, will in this case be those centered at the 

pK  of the buffering group. When using only one buffering species, gradients of 1.2 pH unit 

could be generated.32 

For the generation of extended pH gradients, the use of more than two Immobilines is 

necessary to create gradients spanning linear pH ranges wider than one unit. The first 

approach from Righetti was to use multiple chamber mixers and adequate computer programs 

to calculate the Immobiline concentrations for the different chambers.55 Multiple chambers 

were soon replaced by the easier to use two-chamber mixers. In this method, two solutions 

containing Immobilines are required, one for the acidic and one for the basic end of the 

gradient. These two solutions are then cast using a two-vessel gradient mixer to establish the 

desired pH gradient. The concentration ic  of species in the output flow of a gradient mixer 

can be calculated. Peterson and Sober56 give the basic equation of the output concentration in 

a mixer with hydrodynamic equilibrium: 

  
1( 1)! 1

( )!( 1)!

N n n

i i
Nc L

N n n V V

− −− ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟− − ⎝ ⎠ ⎝ ⎠
υ υ     (2.68) 
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with iL  is the concentration of species i in the vessel, N the number of vessels, υ  the output 

volume at a certain point, V the total volume in the mixer and n  the number of the chamber, 

in which the species of concentration iL  is placed. The compound i is only placed in one 

chamber of the mixer. Placing the compound of interest in two or more vessels, the output 

concentration ic  is obtained from the summation of the Peterson Sober equation as follows: 

  
1

1

( 1)! 1
( )!( 1)!

N n nN

i in
n

Nc L
N n n V V

υ υ− −

=

− ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟− − ⎝ ⎠ ⎝ ⎠
∑    (2.69) 

with inL  the concentration of the Immobiline species i in the nth chamber, N the total number 

of chambers, V the total volume of the system and υ  the dispensed volume. 

 

Use of IPG gels nowadays 

The use of IPG gels has by far exceeded the expectations. The pioneers of this technology 

thought that IPG gels would be used only when their advantages would be needed, such as the 

generation of ultra-narrow pH ranges when high resolution is needed.41 Today, IPG gels are 

used routinely in 2-D gel electrophoresis, OFFGEL IEF, shotgun proteomics, because of the 

reproducibility of the pH gradient and the ready-made format. Immobilines are 

commercialized by GE Healthcare (former Amersham Biosciences), as well as ready-made 

dried gels (brand name Immobiline DryStrip gels). Bio-Rad commercializes the ReadyStrip 

gels, containing already the Immobilines. Both type of gels just need to be rehydrated in the 

appropriate sample solution before use. Their development contributed to the fast 

development of 2-D gel electrophoresis as well, because they are used in the first dimension 

of that methodology. 
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Example of the focusing of an amino acid in an IPG 

Once the pH gradient established, the focusing of ampholyte species in an IPG can be 

described, for example of an amino acid without side chains. The amino acid has one C-

terminus acid group (dissociation constant Ka1) and one N-terminus basic group (dissociation 

constant Ka2). For the acidic group: 

  AH totA
c c c− + =   and  1

A H

AH

c c
K

c
− +=      (2.70) 

This gives:  

pH
1

pH
1

10
1 10totA

Kc c
K−

⋅=
+ ⋅

       (2.71) 

pH
1

1
1 10AH totc c

K
=

+ ⋅
       (2.72) 

For the basic group, the same reasoning gives: 

  pH
2

1
1 10totBH

c c
K+ =

+ ⋅
      (2.73) 

  
pH

2
pH

2

10
1 10B tot

Kc c
K

⋅=
+ ⋅

       (2.74) 

The amino acid is thus present under four forms: in the cationic form (AH-BH+), neutral (AH-

B), zwitterionic (A--BH+) or anionic form (A--B). The following concentrations are thus 

obtained, assuming that the two groups do not interact: 

  2
pH pH

1 2

1 1
1 10 1 10totAHAH BH BH

c c c c
K K+ +−

⎛ ⎞ ⎛ ⎞
= = ⋅⎜ ⎟ ⎜ ⎟+ ⋅ + ⋅⎝ ⎠ ⎝ ⎠

  (2.75) 
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K K−
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K Kc c c c
K K− −−
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   (2.78) 

The distribution of the species is represented on Figure 13, panel A is the distribution before 

focusing, panel B is after focusing and panel C is after focusing with a stronger electric field. 
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By increasing the electric field, the charged species disappear completely, to focus into a total 

concentration. The peak corresponding to the zwitterionic species is superposed to the total 

concentration peak (panel C). 
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Figure 13: Panel A is the distribution of the different forms of the amino acid, panel B is the distribution 

obtained after focusing with an electric field of 1 and panel C with an electric field of 10. 

20

15

10

5

0

x1
0-3

 

7.06.56.05.55.04.5

pH

AH-B

A
-
-BAH-BH+



  Chapter II. Theoretical aspects 
 

 76

For the focalization of peptides in an IPG, the peptide is then represented by its titration 

curve. But this point will be further discussed in the chapter III, where the transient IEF 

equation is solved for peptides. 

 

5. OFFGEL isoelectric focusing (OG-IEF) 

OFFGEL IEF is a concept recently developed in the lab.57 It is a method for IEF, using an 

immobilized pH gradient, and which consists in using the pH gradient in the gel and the 

buffering capacity near the gel surface, to separate proteins and recover them in liquid 

fractions. The gel buffers the solution in the chamber and the proteins are charged according 

to their pI and to the pH imposed by the gel (Figure 14). 

 

Figure 14: Principle of the OFFGEL IEF separation. Cations migrate to the cathode, placed on the alkaline 

extremity of the gel, and anions migrate to the anode, placed on the acidic extremity of the gel. Neutral species 

go through the chamber. Reprinted from57.   

 

Upon application of an electric field perpendicularly to the liquid chamber, the current 

lines penetrate into the chamber and extracts charged species from the solution into the gel 

(Figure 15). After separation, only the globally neutral species (pI = pH of the IPG gel) 

remain in solution. 

+
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Figure 15: Current line distribution in a cross section of the OFFGEL chamber, the length of the arrow is 

proportional to the current intensity. Reprinted from57. 

 

The necessary condition for OFFGEL is the buffering of the solution by the gel. Thus the 

buffering of the solution by the Immobilines present in the gel was studied, and described the 

pH profile in the thin layer of solution close to the gel. The OFFGEL focusing of two 

ampholytes was also studied and showed the progressive buffering of the chamber (Figure 

16). 

 

Figure 16: pH isovalues as a function of time, during the focusing of two ampholytes by OFFGEL. Reprinted 

from2. 
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The OFFGEL technique, as described above, was initially developed for protein 

purification purposes. It was later adapted to a multicompartment format, in order to recover 

the protein fractions and further analyze them (semi-preparative use).58 The system was able 

to resolve the two forms of β-lactoglobulin A (pI 5.1) and B (pI 5.2). The technique was later 

used for the separation of peptides generated from tryptic digestion of proteins, in a two 

dimensional approach.59 Numerical simulations of the OGE of peptides will be described in 

details in the next chapter, and experimental results will be discussed in chapter IV and V.  
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1. Introduction 

 

Isoelectric focusing (IEF) is a high-resolution electrophoretic technique used to separate and 

concentrate amphoteric biomolecules at their isoelectric point (pI) in a pH gradient and under 

the application of an electric field. IEF is classically used in buffered free solution (in the 

presence of so-called carrier ampholytes), or in Immobilized pH Gradient (IPG) gels. In the 

past decades, isoelectric focusing has gained great significance due to its wide applicability in 

different fields.  

In the field of proteomics, in-gel IEF of proteins is used routinely as the first 

dimension of two-dimensional gel electrophoresis,1, 2 which remains the workhorse for 

proteome analysis.3 But because further protein analysis and characterization by mass 

spectrometry4 require tedious sample preparation, new IEF schemes and devices have been 

designed for prefractionation of proteins by IEF:5, 6 several teams have explored the use of 

free-flow electrophoresis for the fractionation of proteomic samples.7-12 Righetti et al. have 

introduced multicompartment electrolyzers, in which proteins are separated into different 

compartments separated by Immobiline membranes.13-15 Wall et al. have also validated the 

use of Rotofor for fractionation of proteins prior to RP–HPLC and MALDI–TOF analysis of 

intact proteins.16 We have introduced a new concept named OFFGEL IEF with the first aim to 

purify proteins.17 The technique was later successfully used for the isoelectric fractionation of 

Escherichia coli proteins, proving to be a promising tool for proteomic applications.18 

Besides these general efforts to develop IEF for protein fractionation, IEF has also 

been used for peptide separation in a shotgun approach, where proteins are first proteolized, 

and the resulting peptides mixture separated and analyzed by tandem mass spectrometry. 

Several groups have used in-gel IEF as a first separation dimension in shotgun proteomics19-23 

as well as free-flow electrophoresis24-26 and homemade devices based on Immobiline 
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membranes.27-29 OFFGEL IEF was demonstrated to be of great interest in shotgun 

proteomics:30-34 a commercial device is now marketed  by Agilent Technologies. But not only 

does IEF provide a separation means for peptides, but it also provides an additional physico-

chemical information about each peptide, its isoelectric point, which can then be used to 

validate MS/MS peptide sequence identification, and ultimately filter out false peptide 

identifications.20-23, 30-32 IEF separation of peptides can thus play a crucial role, not only as an 

efficient separation dimension, but also as a validation / filtering tool when combined with 

tandem mass spectrometry. As such, it is thus relevant to optimize devices used to separate 

peptides by IEF, such as OFFGEL.  

The multiwell format of OFFGEL electrophoresis initially consists in placing the 

sample in wells, which are opened at top and bottom extremities and are placed on an IPG gel. 

The gel buffers a thin layer of the solution in the liquid chambers and the proteins are charged 

according to their pI and to the pH imposed by the underlying gel. Two electrodes are 

respectively placed in the extreme compartments of the setup (lowest and highest pH). Upon 

application of an electric field, the charged species migrate through the gel from well to well 

until they reach the well where they are neutral (pI = pH gel) and from where they are directly 

recovered in solution. For the solution to be buffered by the Immobilines present in the gel, 

the ampholyte concentration in the solution must not be too high and the buffering capacity of 

the gel must be efficient. Numerical simulations were used to study the influence of the 

ampholyte concentration in solution and the buffering capacity in OFFGEL IEF.35  

Dynamic computer simulation of electrophoresis has already demonstrated 

considerable value as a research tool. Since the 1980s, numerical simulations have been 

performed to better understand and describe IEF 36-40 and have shown a qualitative agreement 

between predictions and experimental results. Recent advances in computer simulation have 

led to the development of a simulator that can handle up to 150 components and voltages 
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typically used in experiments. This recently allowed Thormann et al. to perform the 

simulation of the dynamics of protein IEF in the presence of a large number of carrier 

ampholytes.41, 42 Computer simulation of immobilized pH gradient gels were also done, at 

acidic and alkaline conditions, showing the focusing dynamics, as well as the conductivity 

and buffering capacity in these regions.43 Previous works had already led to the creation of a 

pH gradient simulator for the engineering of IPG gels and isoelectric membranes.44, 45 

Regarding OFFGEL electrophoresis, the buffering capacity has been studied numerically, and 

a model has also been developed to describe the isoelectric separation of two simple 

ampholytes in a 2-D chamber.46 

In this chapter, we have addressed the questions how sharp the separation of peptides 

by OFFGEL IEF is and how the fractionation cell can be optimized to obtain the best 

resolution in the shortest time. We have taken as model biomolecules the peptides generated 

by in silico digestion of the proteomes of Deinococcus radiodurans, Saccharomyces 

cerevisiae, and Homo sapiens and simulated the OFFGEL isoelectric focusing in a 

multicompartment device. The peptide charge slope at pI was demonstrated to be a key 

parameter in the focusing dynamics, and its influence on the peak width and focusing time 

was studied in order to determine the proportion of correctly focused peptides (peptides 

recovered in one or two wells at most). This allowed the determination of the optimal well 

width to obtain the best focusing. The effects of the well height and shape were further 

studied, to determine the well configuration allowing the highest peptide recovery in the 

shortest time. In this analysis, we show that the high-resolving power of OFFGEL makes it a 

highly valuable tool to fractionate peptides in shotgun proteomics, and that it is relevant to 

optimize the fractionation unit to obtain the best recovery. 
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2. Methods 

2.1 Short introduction on the theory of finite element  

In the history of isoelectric focusing, and for other electrophoretic techniques as well, 

computer simulations have always been of great help in understanding the separation process. 

Here, the method mainly used for modeling IEF is the finite element method (abbreviated 

FEM) 

The FEM is a numerical method allowing the resolution of partial differential 

equations, for either stationary or transient problems, linear or non linear, for one to three 

independent space variables. The domain of study, noted W, is divided into sub-domains, 

called the finite elements, defined by the nodes, where the unknowns are discretized. Overall, 

the method consists in transforming partial derivatives into algebric expressions, allowing 

further simplification of the equation.  

The equation of diffusion – migration is here taken as example to describe the principle of the 

method. Its local form is:  

( ) 0m
c D c V c
t

∂ + ∇ − ∇ − =
∂

i       (3.1) 

with   m
zFV D
RT

= ∇φ   the migration velocity    (3.2) 

The unknown concentration is a function of space and temporal variables. The determination 

of the concentration profile by the F.E.M. consists in solving the previous equation on the 

nodes of the finite elements. The continuous unknown, c, is approximated by c� , using the 

interpolation functions jβ  and the values of the unknown at the nodes, jc (see Figure 1): 

  
1

N

j j
j

c c β
=

=∑�         (3.3) 

N is the total number of nodes.  
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Figure 1: Discretization and interpolation of the unknown concentration. The interpolation function jβ  is of the 

first order.    

 

The interpolation function is, in this case, of the first order, and is described as (see Figure 1):  

,

,

1

0
j j i

j j i

=

≠

=

=

β
β

        (3.4) 

If the concentration is replaced by the approximated concentration in Equation (3.1), a residue 

function appears:  

  c zFD c Dc R
t RT

φ∂ ⎛ ⎞+ ∇ − ∇ − ∇ =⎜ ⎟∂ ⎝ ⎠

� � �i      (3.5) 

So the resolution of the primary Equation (3.1) consists in determining the concentration 

profile by minimizing R. To do so, the expression of R is multiplied by a projection function, 

α, and integrated over the domain of study W. This is called the Galerkin formulation: 

0
W

c zFD c Dc dW
t RT

∂α φ
∂

⎡ ⎤⎛ ⎞+ ∇ − ∇ − ∇ =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫∫
� � �i         (3.6) 

The projection function (Galerkin) allows lowering the order of derivatization of the 

unknowns (passing from the strong formulation to the weak formulation). This is realized 
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by using the properties of the derivative. By decomposing the product between α and the 

divergence in Equation (3.6), the second order derivative becomes: 

  ( ) ( )D c D c D cα α α∇ − ∇ = ∇ − ∇ + ∇ ∇� � �i i i     (3.7) 

and   ( ) ( )m m mV c V c V c∇ = ∇ + ∇� � �i i iα α α      (3.8) 

Injecting (3.7) and (3.8) into (3.6), and using the following Green-Ostrogradski theorem:  

( ) ( ) ( )dl dldiff
W

D c dW D c J⎡ ⎤∇ − ∇ = − ∇ ⋅ = ⋅⎣ ⎦∫∫ ∫ ∫
A A

� �i α α α   (3.9) 

and   ( ) ( ) ( )dl dlm m m
W

V c dW V c J⎡ ⎤∇ = ⋅ = ⋅⎣ ⎦∫∫ ∫ ∫
A A

� �i α α α    (3.10) 

where diffJ  and mJ  are the diffusion and migration flux, respectively. Thus, the divergence 

term (second term of (3.6)) is rejected at the boundary, where it expresses the diffusion and 

migration flux conditions of the species. In the present case of study, these boundary 

conditions are equal to zero (no flux across the boundaries of the domain, because the length 

of the gel is finite) and only the products of the gradients are conserved in (3.7) and (3.8). 

Equation (3.6) becomes: 

0m
W

c D c V c dW
t

⎡ ⎤
+ ∇ ∇ + ∇ =⎢ ⎥

⎣ ⎦
∫∫

� � �i i∂α α α
∂

    (3.11) 

So the projection function allowed passing from the second order ( )D c∇ − ∇�i  in equation 

(3.6) to the first order D c∇ ∇�iα  in equation (3.11). 

Using the interpolation function of the concentration (Equation(3.4)), we obtain:   

( )
1

0
N

j
j m j j

j W

D V c dW
t

∂β
α α β α β

∂=

⎡ ⎤
+ ∇ ∇ + ∇ =⎢ ⎥

⎣ ⎦
∑∫∫ i i   (3.12) 

Like the concentration c , α can also be discretized using an interpolation function jϕ :  
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1

N

j j
j=

=∑α α ϕ         (3.13) 

jϕ  is of the same type as the function jβ  (Galerkin formulation): 

  ,

,

1

0
j j i

j j i

ϕ
ϕ

=

≠

=

=
         (3.14) 

Thus the final discretized form of the equation:  

  ( )
1

0
N

j
i i j m i j j

j W

D V dW c
t

∂β
α α β α β

∂=

⎡ ⎤
⎡ ⎤+ ∇ ∇ + ∇ =⎢ ⎥ ⎣ ⎦

⎣ ⎦
∑∫∫ i i   (3.15) 

for 1..i N=  

This equation leads to a square matrix with a linear system of N equations for the N 

unknowns jc : 

0ij jm c⎡ ⎤ ⎡ ⎤ =⎣ ⎦ ⎣ ⎦  

The matrixes ijm  and jc  are then described in the generator of equations of the software 

FLUX-EXPERT™. Thus, solving the problem consists in an inversion of the matrix ijm , to 

find the solutions which are the coefficients of interpolation, jc  (i.e. the values at the nodes j). 

 

2.2 Analytical Model 

The isoelectric point (pI) of a peptide is the pH at which the sum of all the electrical charges is 

equal to zero. In a peptide, the global charge can be calculated by taking into account the 

charge of the N-terminus (N-ter) and the C-terminus (C-ter), as well as the charge of ionizable 

side chains. In addition to the N-terminus, the positive charges can be provided by three 

amino acids which are lysine (K), arginine (R) and histidine (H). The negative charges 

originate from the C-terminus and four amino acids, tyrosine (Y), cysteine (C), aspartate (D) 
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and glutamate (E). The charges of the ionizable groups depend on their pKa values and on the 

local value of the pH. For a given ionizable amino acid i, the positive charge   zi
+ (pH) or the 

negative charge   zi
− (pH)  is estimated from Henderson–Hasselbach’s equation: 

  

  

zi
+ (pH) =

1

1+
Ki

10-pH

       (3.16) 

  

  

zi
− (pH) = −

1

1+ 10-pH

Ki

       (3.17) 

where Ki is the acidic dissociation constant of the amino acid i. 

Under these assumptions, the global charge of a peptide can be expressed as follows: 

  

  

z(pH) = −
1

1+ 10-pH

Ki

i∈A−
∑ +

1

1+
Ki

10-pH
i∈A+
∑     (3.18) 

where { }Y,C,D,E,C-terA− =  and { }K,R,H,N-terA+ = . 

This approach assumes that the pKa value of an ionizable group is independent of its 

position in the molecule, and that all the individual acid–base equilibria can be considered as 

independent. It should be noted that the calculated pI depends considerably on the set of pK 

values assumed for the ionizable groups. It was shown that when different sets of published 

pK values were used, the predicted pI of some proteins or peptides differed by up to 1 pH 

unit.47 However, the aim of the present paper is to describe the focusing phenomenon in an 

OFFGEL device, rather than to give exact values of pI. All the data presented in this study use 

the pK values of amino acids from48. Other values from Expasy49 and Promost50 have been 

used and qualitatively showed the same distributions for peptide pI and charge derivative 

(results not shown). 
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For a stationary regime of isoelectric focusing without chemical reactions, the 

equation of conservation of flux is given by: 

  
  

∂ci

∂t
= −divJi = 0         (3.19)  

where ci and Ji are the concentration and the flux density of species i. Considering only the 

diffusion-migration transport in one direction, this equation reduces to the following 1-D 

steady-state equation: 

  
  

∂
∂x

−Di

∂ci

∂x
−

zi F
RT

Dici

∂φ
∂x

⎛

⎝⎜
⎞

⎠⎟
= 0      (3.20) 

where Di, and zi are the diffusion coefficient of species i and its charge as calculated in 

equation (3.18). F is the Faraday constant, R is the molar gas constant, T is the temperature 

and φ is the local electric potential.  

It results from equation (3.20) that the flux of species i (term in brackets) is uniform 

over x. Since at the isoelectric point, the concentration is maximal and the charge zero, the 

global flux at the steady-state is zero. The flux of species due to diffusion is thus compensated 

by the flux due to electromigration, leading to: 

   
  

∂ci

∂x
=

FE
RT

zi (x)ci(x)  (where E = −∇φ )    (3.21) 

This differential equation describes the isoelectric focusing in a steady-state regime, the 

charge of the peptide being a function of the pH or of the distance (in the cases studied, the 

pH gradient is linear). Assuming a uniform electric field, equation (3.21) was solved 

analytically with Igor software (Wavemetrics, Portland) and allowed to display the steady-

state concentration profile of the focused peptide for different values of electric field (no 

geometry effect taken into account here). This model will be taken as reference to validate the 

following Finite Element Model. 
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2.3 Finite Element Model  

Numerous studies have been presented in the literature on the diffusion–migration phenomena 

to describe capillary electrophoresis or IEF processes.36-42 Regarding OFFGEL, various finite 

element models based on diffusion, ampholyte reactions, and/or migration have been 

developed.35, 46, 51 In the previous case of diffusion–migration–reaction of two model 

ampholytes,46 one protonation site per ampholyte molecule was considered to facilitate the 

study. The main difference here is the consideration of not only one protonation site, but the 

global charge of the peptide, taking into account the many possible ionization sites existing on 

such a molecule, resulting in a pH-dependent global charge (as the pH is a function of the 

distance on the gel, the charge thus depends on the location of the peptide on the gel).  

The numerical model was developed for 1-D and 2-D geometries and computes the 

peptides concentration profiles at different time steps of the focusing. The electric field was 

first calculated by solving the Laplace equation: 

div ) 0(j )= (  σ φ∇ − ∇ =i       (3.22) 

where j is the electrical current density and σ is the electrical conductivity. Next, the electric 

field ∇φ  was injected into equation 8, describing the transient transport of a species i by 

diffusion-migration: 

   

(pH( )) 0i i
i i i i

c z x FD c D c
t RT

φ∂ ⎛ ⎞+ ∇ − ∇ − ∇ =⎜ ⎟∂ ⎝ ⎠
i     (3.23) 

 

Assumptions for the numerical model 

• No standard transfer potential is considered at the gel/solution interface, as the 

solution and the gel are considered aqueous media. This assumption was proved 

elsewhere.52 
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• Gel and solution are assumed to be convection-free and isothermal. 

• A uniform diffusion coefficient of 10-9 m2·s-1 is taken for peptides.  

• To decouple the electric field calculation (equation (3.22) from the transport equation 

(3.23), a uniform conductivity is assumed both in the gel and in the solution. This 

assumption is valid at neutral pH but becomes less accurate at extreme values of pH, 

as under real conditions, the conductivity is lower at neutral pH and higher in acidic 

and basic compartments. The conductivity in the gel is taken to be equal to the one in 

solution, as they have been measured 46 and show the same order of magnitude.  

• The pH gradient is linear along the gel and the sample solution in the well is assumed 

to be totally buffered46. The establishment of the pH gradient in the solution is 

assumed to be much faster than the focusing of peptides.  

 

Geometries of interest 

1-D geometry consists of a vertical cross-section of an IPG gel (Figure 2a) to study the 

influence of peptide charge gradient on the focusing time and focused peak width. 2-D 

geometry consists of a vertical cross-section of the multicompartment OFFGEL device 

(Figure 2b). The 2-D geometry (dimensions consistent with the experimental setup described 

by Michel et al.18) is used to study the influence of the well height and shape on the focusing, 

as well as to describe the IEF of three peptides under conditions close to experimental ones. 

The potential gradient applied across the gel as boundary conditions is 100 V·cm-1 for both 1-

D and 2-D studies. The initial peptide concentration was fixed at 1 mM for all the calculations 

(uniform distribution along the gel and in the solution). The model was implemented on the 

finite element commercial software Flux-Expert™ (Astek Rhône-Alpes, Grenoble, France).  
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
Figure 2: Geometries used in the simulation: (a) the 1-D geometry (calibration) is constituted of an IPG gel of 5 

cm length; (b) the 2-D geometry is constituted of three or seven wells of 6.25 mm width, 5 mm height and 

distant of 0.75 mm with an underlying IPG gel. 

 

Boundary conditions 

For the gel strip, the concentration of the species of interest was set to zero at the anode and 

cathode (Dirichlet conditions in FEM, corresponding to a gel of finite length). For the wells, 

the condition of zero flux is set at the borders of the wells (Neumann conditions in FEM). 

0 cm 2,5 cm 
(pH 9,43) 

-2,5 cm 
(pH 5,24) 

pH gradient  

pH gradient  

well 

IPG gel with pH gradient 

6,25 mm 

5 mm 

x 

y 



 Chapter III. Modeling the Isoelectric Focusing of Peptides  
 

 96

2.4 In silico proteome digestion and computation of physico-

chemical parameters 

A program simulating tryptic digestion was written with Igor. Proteomes of D. radiodurans, 

S. cerevisiae, and H. sapiens were downloaded from the Swiss-Prot database through the 

Sequence Retrieval System (http://www.expasy.ch/ftp/) (July 2006). The homemade program 

was used to: 

1. Perform the tryptic digestion of proteins with two miscleavages. 

2. Calculate the MW and pI of peptides resulting from their sequence, using the amino 

acids pK values from reference48 (see Appendix 2)48 

3. Trace the titration curve for each peptide (net charge vs pH), and calculate the charge 

derivative at pI.  

Values of pIs were estimated by a secant algorithm from the titration curve, with a precision 

of 0.02 pH unit. The titration curve was obtained from the sequence of amino acids and based 

on Eq.3. The charge slope d /dpHz  at pI was obtained from the derivation in pH of Eq.3. 

Peptide/protein masses and pI calculation were validated through manual comparison with 

pI/MW compute available on Expasy (http://www.expasy.ch). Values of pI are slightly 

different from those obtained with pI/MW compute due to the different values of pK used. 

The pI distribution of proteins was calculated for a few species and produced the well-known 

bimodal pI distribution 47 (data not shown), which adds to the validation of our calculations. 

The tryptic digestion was also validated by comparison to the tool MS-digest from 

http://prospector.ucsf.edu/. 
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3. Results and discussion 

3.1 Model validation 

The numerical model is validated by comparing the focused peaks obtained at steady state 

with the peaks calculated with the analytical model. The comparison shows a good agreement 

(Figure 3). The focusing peaks from numerical simulations can be exactly superposed to the 

peaks from analytical calculations. The shape and peak width are the same for both methods 

of calculation, and this for all values of electric field. 
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Figure 3: IEF on a linear pH gradient gel (0,5 pH·cm-1) simulated for a peptide 

(
   
nasp = nglu = nhis = ncys = ntyr = nlys = narg = 1 ). The normalized concentrations were obtained from 

numerical (dots) and analytical models (lines) for different values of electric field (5, 50 and 500 V·cm-1). 

 

However, numerical simulations allow observing transient states of the focusing, whereas the 

analytical calculation gives results at the steady state of focusing only. Another drawback of 

the analytical model is the 1-D limitation. Following this validation, numerical simulations 

with Flux-Expert™ were used for further investigation. 
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3.2 Determination of the order of magnitude of dz/dpH at pI 

The in silico tryptic digestion of the different proteomes was performed and the resulting 

peptides were analyzed. Figure 4 shows the distribution of the charge derivative d /dpHz  

calculated at pI for peptides generated from the proteome digestion of D. radiodurans, S. 

cerevisiae, and H. sapiens. As shown, charge slopes are mostly comprised between 0 and –3. 

The highest bar corresponds to the “flattest” peptides, illustrated by the titration curve of the 

peptide NSSVY (see Figure 4, bottom). It is in that case more relevant to define a “pI zone” 

rather than a pI value, as the charge of the peptide does not vary much around its pI. The 

peptides having a charge derivative at pI comprised between –0.1 and –3 (illustrated by the 

titration curve peptide DLTFLLEESRDKVNQLEEK, Figure 4, bottom) represent 76.8% (D. 

radiodurans), 77.4% (S. cerevisiae) and 79.0% (H. sapiens). For these peptides, the charge 

gradient is steeper around the pI.  

Simply for comparison, as this study can be applied to proteins as well, the charge 

derivatives for proteins were calculated (results not shown) and unsurprisingly showed larger 

a range than that for peptides, as proteins charge is higher than peptides charge. For peptides, 

interestingly, the distribution of charge derivative is quite similar for the three organisms. It 

gives an overview of the diversity of peptides’ charge properties near pI and allows estimating 

the range of charge slope at pI.  
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Figure 4: Distribution of charge derivative d /dpHz at pI for the peptides generated by the simulated digestion of 

D. radiodurans (top), S. cerevisiae (middle) and H. sapiens (bottom). 
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3.3 Effect of the charge gradient d /dz x at the pI (1-D study) 

As seen in the previous distribution, the range of  dz / dpH  for most peptides from the 

digestion of different proteomes varies between –0.1 and –3. The charge gradient can be 

written as follows: (d /d )=(d /dpH)(dpH/d )z x z x  

As the pH gradient dpH/dx is linear, if in a small region near the pI the slope of the titration 

curve d /dpHz  is assumed to be linear, the charge gradient d /dz x  will also be linear. In the 

following study, a value of 1 pH·cm-1 is taken for the pH gradient. The influence of a linear 

charge gradient value on the focusing will be studied numerically. The comparison with the 

case of peptides will be done to show that the peptide charge slope at pI is the key parameter 

for the focusing. The following study is done considering the 1D geometry consisting of an 

IPG gel. 

 

3.3.1 Effect on the peak width 

Figure 5a shows the shape of the focused peak for different linear charge gradients from 0.05 

to 2 (absolute values). As expected, the higher the charge gradient, the higher the final 

concentration and the narrower the focused peak width at steady state, because with a greater 

charge gradient, the mobility gradient is higher. The peak is thus more “focused” and 

concentrated. The effect of the charge slope at pI on the peak width was then studied for 

peptides, by giving as input to the simulation the expression of the charge as a function of pH. 

For this, three peptides were chosen according to their charge curve and slope at pI: leucine 

enkephalin (YGGFL), angiotensin II (DRVYIHPF) and a peptide from the human proteome 

digestion (DLTFLLEESRDKVNQLEEK) were used. Simulations of IEF were performed on 

these peptides, and the focused peak width at steady state was reported for each one on Figure 

5a. The peptides fit to the curve deduced from linear charge gradients, which validates the 
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idea that the slope near pI is the most important factor, and the shape of the titration curve far 

from pI has no influence on the width of the focused peak. 
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Figure 5: (a) Evolution of the focused peak width at half height versus absolute values of charge gradient, 

(insert: focused peak for different linear charge gradients from 0.05 to 2 pH·cm-1) and validation with three 

peptides: (1) leucine enkephalin (flat slope at pI), (2) angiotensin II (intermediate slope at pI) and (3) a peptide 

from the human proteome digestion (steep slope at pI), (b) evolution of the focusing time versus charge gradient 

(insert: transient concentrations for different linear charge gradients from 0.05 to 2 pH·cm-1). 
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From the top panel of Figure 5, the theoretical peak width of any peptide can be 

calculated from its charge derivative at pI. Figure 6 thus shows the theoretical peak width 

distributions of in silico digested proteomes; bars represent the percentage of peptides 

focusing with a given peak width at baseline, whereas the continuous line shows the 

percentage of peptides focusing with a peak width at baseline below a given value. 

Interestingly, the three species exhibit a very similar peak width distribution, which 

demonstrates the versatility of OFFGEL electrophoresis in the context of shotgun proteomics. 

Additionally, for the three species considered, around 90% of peptides focus within less than 

6 mm (the well width used in practice), which means that in theory, 90% of peptides should 

be recovered in no more than two wells. This result is well in line with the experimental 

findings of Hörth et al. who found that 74% of tryptic peptides of E. coli focus in one well, 

and 90% focus in two wells at most.32  

3.3.2 Effect on the focusing time 

Figure 5b illustrates the evolution of the focusing time for different values of linear charge 

gradient from 0.05 to 2 (absolute values). The steeper the charge gradient at pI, the higher the 

final concentration and the faster the steady state is reached. As previously stated, to validate 

our approach (linearization of the charge slope at pI), the effect of peptide charge slope at pI 

on the focusing time was studied. For this, the same peptides as before were used. For each of 

them, the focusing time (defined as the time needed to reach 99% of the steady-state 

concentration) was reported on Figure 5b. For the three peptides, focusing times fit to the 

linear gradient curve, showing that the slope at pI is the key parameter for the focusing time 

as well. As a consequence, the shape of the titration curve far from pI has no influence on the 

focusing time. One can easily understand this tendency by seeing that the migration velocity 
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far from pI is so high that only the migration near pI determines the kinetics of focusing, as 

the limiting factor. 

 

 
 
 

 
 
 

 
 

 

Figure 6: Histogram of peak widths at baseline, as fitted from the numerical simulations for D. radiodurans 

(top), S. cerevisiae (middle), and H. sapiens (bottom). In each graph, the inset shows a magnification of the bar 

histogram, and the continuous line shows the cumulative percentage of peptides focusing with a given peak 

width. 
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In this section, it was shown that, given the distribution of d /dpHz for the in silico 

digested proteomes (charge gradient between –0.1 and –3), and if taking a particular pH 

gradient (e.g., pH 3–10 on a 13 cm long strip), an optimal dimension of the well can be given, 

for a chosen percentage of correctly focused peptides. It is estimated that the optimal well 

width in an OFFGEL device (given by the largest peak width obtained with a flat titration 

curve) is 6–7 mm, which allows recovering 90% of peptides in at most two wells. 

From the main results on the peak width and focusing time, some practical conclusions 

can be drawn for the IEF of peptides in an OFFGEL device. Assuming the initial peptide 

sample solution is loaded in all the wells, the starting voltage should be low in the first step. 

As we see, the focusing process is quite fast at the start, as most of the species are highly 

charged (far from pI). In practice, the presence of salts accompanying the sample at the start 

should be taken into account as well. Thus a low starting voltage should allow performing 

efficient focusing meanwhile avoiding too much heating. Then the voltage should be 

increased gradually or stepwise to reach the steady state of focusing, as the charge decreases, 

and the closer the species gets to its pI, the slower it is migrating. Thus, to allow a sharp 

focusing at the end, it is recommended to apply a high final voltage. The current, if 

monitored, is also a good indicator of the advancement of the focusing process. The current at 

the beginning is at the maximum (highly charged species migrating) and should decrease to 

finally reach a steady-state residual value (dynamic equilibrium between migration and 

diffusion). To give an idea of the focusing time, some authors have recently published 

interesting results concerning the IEF of peptides in gel,23 and papers concerning the 

OFFGEL IEF of peptides can be taken as reference.30, 32, 33  

Concerning the use of peptides pI as a filtering/validating tool in the identification of 

peptides and proteins, not only the pI value is important, but also the slope of the titration 

curve at pI. Thus, in setting the limits of exclusion based on the pI of peptides, this slope 
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should also be taken into account, to avoid eliminating true peptides, which did focus but in 

several wells, due to their characteristic titration curve. 

 

3.4 Effect of the well height on the recovery and focusing time (2-D 

study) 

To study the influence of the well height on the focusing, numerical simulation of OFFGEL 

IEF was performed for a given peptide (Angiotensin II) in a three-compartment device (2D 

geometry). Different height ratios were studied: well gel/ 1, 2, 4 and 10.h h =  Figure 7 displays 

the peptide concentration at different time steps, for the ratios well gel/ 10h h = (high wells) and 

well gel/ 2h h =  (low wells). The initial concentration of peptides was fixed at 1 mM for all the 

calculations.  

The focusing can be described in two phases. These two phases can be best seen for 

well gel/ 10h h =  on Figure 7a. In a first phase (for times < 800 s), the peptide migrates essentially 

in the gel underneath the wells toward its pI (horizontal focusing). In a second phase (for 

times > 800 s), the species diffuses to the solution in the well (vertical focusing due to 2-D 

geometry). For the low wells, well gel/ 2h h = , the process consists mostly of the first phase, 

because the vertical focusing is strongly limited by the height of the well.  
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(a)        
 
0 s        

  
200 s 

  
1600 s  

 
 14 000 s        (Steady-state 1600 s) 

 
(Steady-state 14 000 s) 

 
 
(b) 
 
 
 
 
 
 
 
 
 
Figure 7: Effect of the well height: (a) concentration isovalues of angiotensin II (pI = 7.25) at different times for 

two height ratios / =10 and 2well gelh h . IEF conditions: constant applied voltage of 100 V·cm-1 and pH gradient 

of 0.5 pH·cm-1, (b) distribution of the current lines in the wells under the same conditions. 

 

The two focusing steps can be correlated with the distribution of migration velocities, 

shown in Figure 7b for both height ratios. In a high well, the migration velocity has a non-

negligible vertical component, which is the driving force for the vertical focusing, whereas in 

the low well, the current lines are all parallel to the gel (except at the corners). The vertical 

=well gelh  / h   10 =well gelh  / h   2
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focusing is quasi nonexistent. Thus, it takes approximately 10 times longer to reach the steady 

state in high wells than it does in low wells (14000 s for a height ratio of 10 vs. 1600 s for a 

height ratio of 2). In the high well, once the species reaches the top of the well, the solution 

horizontal focusing gives broader shape, due to the lower local values of the migration (i.e., 

electric field) compared to the diffusion. 

However, the final to initial quantity ratio recovered in solution is higher for the high 

wells, as shown in Figure 8. The recovery percentage is an interesting parameter, which is 

defined as the ratio of the quantity of focused species in the central well to the initial quantity 

(i.e., in all the wells and the gel) and noted well tot/n n . It illustrates that although the steady state 

is reached faster for low wells than for high wells, the recovery is still better for high wells. 

For height ratios of: well gel/ =10, 4, and 1h h  recovery of 96%, 82% and 50% were obtained, 

respectively. These values of recovery could be theoretically predicted by geometrical 

considerations, as shown in Figure 8, where the values theoretically expected for the recovery 

are 91%, 80% and 50% respectively for height ratios of 10, 4, and 1. The 2-D effect of the 

vertical focusing is amplifying the recovery for high wells (5% more than the predicted 

recovery for height ratio of 10). This enhancement in the recovery observed for high wells can 

be explained by the higher proportion of current lines penetrating the well compared to the 

ones in the gel (Figure 7b).  
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Figure 8: Recovery percentage in the focusing well solution versus time for different height ratios /well gelh h  

 

3.5 Effect of the well shape on the recovery and focusing time  

The effect of the well shape was also studied. In particular, three shapes were considered, as 

illustrated in Figure 9, and compared to determine which shape should be optimal for the IEF. 

Shape S0 is the straight well used for the simulations presented above. S1 is the well with 

narrow top and S2 is the well with narrow bottom. The concentration factor, defined as the 

ratio of final concentration to initial concentration in the focusing well solution, is displayed 

in Figure 9a for different shapes. The concentration factor is slightly higher for the shapes S1 

and S2, compared with S0 (straight well), which indicates that the recovery should be only 

slightly higher for these shapes, if the initial concentration is the same in all cases. But most 

striking is the difference in focusing time. For narrow-top and straight wells, the focusing is 

almost 2 times faster than for narrow-bottom wells (12000 and 14000 s versus 22000 s, 

respectively).  
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Figure 9: (a) Final to initial peptide concentration ratio in the focusing well (mean value), for three different 

well shapes, (b) peptide concentration isovalues for narrow–top and narrow–bottom wells at different time steps. 

Same IEF conditions as in Figure 7. 

 

The difference in focusing times could be explained by the presence of “dead zones” 

in S2 (see Figure 9b). These are the zones in the top corners of the well, where the electric 

current lines are quasi nonexistent. Consequently, the migration in these zones is not efficient 

and only diffusion takes place. In S1, where these zones are reduced because of the narrow 

S1 S2 
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top, the steady state is reached faster than in S2. Moreover, in S2, the current lines have to go 

through a longer way to enter the basis of wells (see Figure 9b), thus adding to the time 

needed to reach steady state. However, in terms of practicability, the straight wells or wide–

top wells should be better to introduce or retrieve the sample. 

3.6 IEF of peptides in a seven-well device 

Three peptides (leucine enkephalin, angiotensin II and angiotensin III) were used to visualize 

the focusing in an OFFGEL device with seven wells. IEF conditions were as close as possible 

to the experimental conditions. A constant voltage was applied between anode and cathode 

(mean value of 100 V·cm-1); a pH gradient of 0.8 pH·cm-1 was taken (for comparison, a 3-10 

pH gradient on a 13 cm strip for OFFGEL IEF gives a pH gradient of 0.54 pH·cm-1). Figure 

10 displays the concentration isovalues for each peptide at different time steps.  

Here as well, the two phases of horizontal and vertical focusing are observed, 

especially clearly for the “flat peptide”. At 100 s, that peptide is still migrating toward the 

well corresponding to its pI, whereas the other two peptides, which are steeper, have already 

reached their focusing well. For comparison, the ratio of focusing time for the flat peptide 

over the one for steep peptide ( /flat steept t ) is 3.33 for 2-D geometry, while it was equal to 

8.89 for 1-D geometry. This shows clearly the 2-D effect, which tends to reduce the 

discrepancy between a flat and a steep peptide in terms of focusing time. This could be 

explained by the vertical focusing step, during which the steep peptide is “losing its advance” 

on the “flat peptide”. Not much difference was observed between the focusing times of the 

last two peptides, and their charge slope at pI was very close (0.64 for angiotensin II and 0.49 

for angiotensin III). Even though the distance to migrate is longer for angiotensin III than for 

angiotensin II, only the charge slope at pI is to be considered, and for this case, it does not 

induce a big difference in focusing time. 
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Figure 10: Peptide concentration isovalues in a seven-compartment OFFGEL device. IEFconditions: all initial 

concentration 1mM, pH gradient = 0.8 pH unit·cm-1, voltage = 100 V·cm-1 
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4. Concluding remarks 

A preliminary in silico tryptic digestion of the proteomes from three different 

organisms was performed, to give an overview of the distribution of peptide charge slopes at 

pI. The influence of this charge slope at pI was then investigated. The main result is that this 

slope not only acts on the focused peak shape, but also constitutes the limiting factor in the 

focusing kinetics, the charge far from pI having no influence. By modeling the peak width as 

a function of the charge gradient at pI, we demonstrate that 90% of peptides should be 

correctly focused in at most two wells, considering the geometry used. This interestingly 

confirms recent experimental results and strongly suggests the high–resolution power of 

OFFGEL and its relevance in shotgun proteomic strategies. Concerning the use of peptides pI 

as a filtering/validating tool in the identification of peptides and proteins, not only the pI 

value, but also the slope of the titration curve at pI, is important when setting the limits of 

exclusion based on the pI of peptides. Other geometrical parameters were also investigated 

(well height and shape). For higher wells, the recovery of peptides is much more important 

than for lower wells, although it takes longer to recover the maximal quantity of peptides. As 

for the shape of the wells, straight or narrow-top wells are optimal for faster focusing. 

 

Appendix  

Appendix 2 is the table of pKa values used for the calculations. Appendix 3 gives details 

about parameters of the simulation (Peclet number, mesh size).  
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1. Introduction 

Face to the high complexity and large dynamic range of proteomics samples, efficient and 

reproducible separation has become an essential step in the strategies to analyze such samples. 

In a typical proteomics experiment, a sample of interest is separated either at the protein level 

or at the peptide level after enzymatic digestion of the proteins, followed by protein 

identification by mass spectrometry (MS).  

Isoelectric focusing (IEF) is a high-resolution electrophoretic technique used to 

separate and concentrate amphoteric biomolecules at their isoelectric point (pI) in a pH 

gradient and under the application of an electric field. In comparison with other 

electrophoretic separation techniques, isoelectric focusing (IEF) offers the highest resolution, 

due to the inherent nature of the focusing process: it is a dynamic process resulting from the 

constant equilibrium between diffusion and migration. IEF thus combines separation and 

concentration, a useful feature for preparative or semi-preparative purposes.  

In the context of the evolution of gel-based separations towards gel-free strategies, 

many techniques have recently been introduced to allow the fractionation of proteins and 

peptides in solution, such as continuous Free Flow Electrophoresis (FFE),1 Rotofor,2 

multicompartment electrolyzers (MCE)3, 4 and Off-gel electrophoresis (OGE)5 (more details 

on these techniques are given in chapter I). Initially, these techniques were designed for 

preparative purposes and protein purification. Most of them handle volumes in the range of 

preparative (MCE, Rotofor , FFE). Off-gel requires volumes in the order of semi-preparative 

to analytical range. Later, the preparative techniques evolve into “mini” or “micro” formats, 

designed for analytical purposes. The initial preparative MCE (commercialized as IsoPrime™ 

by GE Healthcare, 30 mL)3 evolved into an analytical system (commercialized as Zoom™ by 

Invitrogen, 500–700 µL per chamber).6, 7 Early versions of the FFE2 (commercialized by 

Tecan, now BD) have evolved to miniaturized devices as well, going down to volumes of 0.2 



  Chapter IV. Design and characterization of device 
 

 119 

µL required for the analysis on chip.8 The Rotofor (commercialized by Bio-Rad) evolved to a 

semi-preparative system (1 mL per fraction).9 However, these techniques are today still 

widely used for preparative purposes.10   

OFFGEL IEF was first described by Ros et al. (2002),5 as a free-flow technique to 

purify proteins according to pI and to isolate the protein fraction of interest, in a one-chamber 

device. The techniques was later adapted to a more versatile multicompartment format, in 

order to recover fractions of well-defined pI values at the end of the separation, and submit 

them to further analysis or detection.11 The particular advantages of multicompartment 

OFFGEL IEF are: (i) the low volumes used (100–300 µL per compartment), positioning it as 

a semi-preparative device, useful for prefractionation purposes, but also for analytical uses, 

and (ii) the direct recovery of liquid fractions, making it fit elegantly into the usual LC-MS 

workflow. Recirculation OFFGEL was also described to concentrate the same pI fraction of 

proteins by circulating the same fraction repeatedly through a one-chamber channel.12 This 

was demonstrated to be useful for enrichment of proteins. 

In the present chapter, we report the characterization of a device for OFFGEL IEF, 

built in-house, based on the geometrical considerations and numerical calculations of chapter 

III. The dimensions of the device were chosen in such a way to obtain optimal resolution for 

the separation of proteins and peptides as well as practical recovery/retrieval of the liquid 

fractions. A setup was designed to monitor the evolution of the current and potential during 

IEF, useful to assess the end of the separation. The device was then characterized in terms of 

reproducibility, loading capacity, performance and resolution of the separation. The 

reproducibility of the pH in the OFFGEL multiple chambers was first tested. This aspect is of 

utmost importance, for the accuracy of the determination of pI especially if the pI is to be 

used as information for validation of peptides experimentally found in a given compartment. 

The loading capacity was then determined for a mixture of model proteins, to set a working 
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range for the homemade device. OFFGEL IEF of peptides was then performed to demonstrate 

the high resolution of the device and evaluate the sharpness of the separation, for shotgun 

proteomics analysis. Finally, the separation of Escherichia coli protein extract was carried 

out, under denaturing conditions, to show the applicability of the present OFFGEL device for 

proteome prefractionation of a complex biological mixture. 
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2. Chemicals and instrumental  

2.1 Chemicals and biologicals 

OFFGEL: Immobiline Drystrips, linear pH range 3–10 of 13 cm in length (for protein and 

peptide fractionation) and 4–7 of 13 and 7 cm in length (for Escherichia coli protein extract 

fractionation, and 2-D mini-gels, respectively) were purchased from GE Healthcare 

(Otelfingen, Switzerland), as well as IPG buffers pH 3–10 and pH 4–7 (carrier ampholytes 

mixtures). Proteins: seven proteins were analyzed. Bovine serum albumin (BSA), myoglobin, 

α-lactalbumin, β-lactoglobulin B, and trypsin inhibitor were purchased from Sigma (Buchs, 

Switzerland). Amyloglucosidase (Aspergillus Niger) and cytochrome C were from Fluka 

(Buchs, Switzerland). Digestion and LC-MS: Ammonium hydrogenocarbonate (> 98%), 1,4-

dithio-DL-threitol (DTT, > 99.5%) were from Fluka (Buchs, Switzerland). Porcine trypsin 

sequencing grade was from Promega (Madison, WI, USA). Formic acid and acetonitrile (> 

99.5%, Fluka, Buchs, Switzerland) were used without further purification. Escherichia coli 

sample: urea, thiourea, 3-[3-cholamidopropyl dimethylammonio]-1-propansulfonate 

(CHAPS), and the Escherichia coli lyophilized cells were all from Sigma (Buchs, 

Switzerland). SDS and 2D: sodium dodecyl sulphate (SDS), Trizma base, bromophenol blue, 

ammonium persulfate (APS), N,N,N’,N’-tetramethylenediamine (TEMED), iodoacetamide, 

the visible stain Brilliant Blue G (for colloidal Coomassie blue preparation), and the mixture 

of acrylamide and bisacrylamide were all from Sigma (Buchs, Switzerland). Deionized water 

(18.5 MΩ·cm) was prepared using a Milli-Q system from Millipore (Bedford, MA, USA). 
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2.2 OFFGEL (OG-) IEF in the homemade device 

OFFGEL electrophoresis (OGE) separations were performed with a prototype apparatus 

described below, composed of a linear raw of twenty adjacent but independent wells, opened 

in both extremities. In this way, the wells can be placed over the IPG gel and the 

introduction/uptake of the sample in contact with the IPG gel can be made directly over the 

gel. The multicompartment device was placed on top of a 13 cm reswelled Immobiline 

Drystrip exhibiting a linear pH gradient (ranging from 3–10 or 4–7). A platinum electrode 

was placed in each compartment (lowest and highest pH).  

OG-IEF was performed with a high voltage power supply Spellman CZE 1000R 

(Spellman High Voltage Electronics Corp., NY, USA), controlled by a computer using 

software written in LabView (National Instrument, Austin, TX, USA). 

The separations were performed by dispensing 50 µL protein or peptide solution in 

each well (the total volume loaded in all wells is thus 1mL) and the potential was fixed during 

1 h at 500 V, then 1 h at 1000 V, and finally 3-5 h at 5000 V. The current limit was set at 200 

µA per strip, to avoid too much Joule heating. At the end of the separation, the volume of 

each well was collected, vacuum dried or not, and submitted to further analysis. 

For the OGE of proteins, pH ranges 3–10 and 4–7 on 13 cm have been used (loading 

estimation and E. coli proteins fractionation, respectively). The fractions were then analyzed 

directly by CE or 2-D PAGE without any particular treatment. For the OGE of peptides, pH 

range 3–10 on 13 cm has been used. The fractions were then vacuum-dried and then further 

analyzed by LC-MS.  
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2.3 Capillary electrophoresis (CE) 

CE experiments were performed using a P/ACE MDQ system (Beckman Coulter, Munich, 

Germany) equipped with a photodiode-array detector, an autosampler and a power supply 

able to deliver up to 30 kV. Data were handled by the Beckmann software and then extracted 

and treated using IGOR software (Wavemetrics, Portland). Fused silica capillaries were 

obtained from BGB Analytik AG (Böckten, Switzerland). The capillaries were presenting 50 

and 375 µm internal and external diameters respectively, and 21 and 31 cm effective and total 

length respectively. Samples were injected by hydrodynamic injections (30 mbar, 5 s). The 

anode was set at the injection end of the capillary. The new bare fused silica capillary was 

activated as follows: 10 min 1M NaOH rinse, 10 min 0.1M NaOH rinse, then 10 min water 

rinse. Between different separation in the same background electrolyte, a water and buffer 

rinse were successively performed. 

2.4 Tryptic digestion 

1 mg of BSA was dissolved in 1 mL ammonium hydrogenocarbonate solution (50 mM, pH 

8), and 1.23 mg DTT (8 mM) and 10 µg trypsin (protein ratio of 1:100 w/w) were added. The 

digestion was run at 37 °C for 4h. The solution was then divided in two aliquots of 500 μL 

and stored at –20 °C, until used for the experiments. 

2.5 LC-MS 

The capillary HPLC system was an LC Packings (Dionex) Ultimate™ Plus, with a PepMap 

C18, 3μm, 0.3 × 150 mm capillary column and a pre-column. Sample volume injected was 1 

μL (injection loop). The mobile phase consisted of solvents A (water/ACN 98:2 (v/v) with 

0.1% (v/v) formic acid) and B (water/ACN 20:80 (v/v) with 0.085% (v/v) formic acid). The 

column was developed with a biphasic gradient from 2–50% of solvent B in 40 min, followed 
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by an increase from 50–100% of B in 10 min. The column was regenerated with 3 column 

volumes of B followed by 3 volumes of A. Chromatography was run at a flow rate of 4 

μL/min. MS analysis was conducted on a LCQ Duo ion trap from Thermo Finnigan (San Jose, 

CA, USA). All experiments were done in full scan mode (m/z 150–2000) without averaging, 

and the heated capillary was kept at 200°C. 

2.6 Protein extraction from E. coli 

The starting material was an E. coli suspension (E. coli lyophilized cells from strain B-ATCC 

11303, Sigma) stored at – 20°C. The procedure was as follows: 250 mg E. coli were diluted in 

5 mL of Rabilloud buffer composed of 7 M urea, 2 M thiourea, 4% (w/v) CHAPS and 1% 

(w/v) DTT. The cell suspension was then disrupted on ice with an ultrasonic probe during 3 

min, to ensure cell lysis and protein extraction. After centrifugation at 40,000 g for 10 min, 

the supernatant was diluted (1:1) in Rabilloud buffer. Protein concentration was estimated by 

the Bradford protein assay test (according to Bio-Rad protocol) to be approximately 8 mg/mL. 

2.7 2-D PAGE 

For the analysis of the fractions recovered from OGE IEF fractionation of an E. coli protein 

extract, mini 2-D PAGE analysis was performed. For the first dimension, 7 cm IPG strips of 

pH range 4-7 were rehydrated overnight with 150 µL of protein solution (60 µL of the 

fractions recovered after OFFGEL IEF, adjusted to 150 µL with 2-D sample buffer). IEF was 

carried out with an initial voltage gradient from 200 up to 3500 V during 1h30, followed by 

constant voltage for 1h30, as recommended in the manual from Amersham Biosciences.13 For 

the second dimension, the IPG strips were equilibrated and then laid on a vertical 12% 

polyacrylamide SDS gel plate. The electrophoretic run was performed at 80 V initially and by 

setting a current limit of 30 mA for fifteen minutes. Then the voltage was gradually increased 

with the same current limit, in approx. 2 h to 150 V, until bromophenol blue reached the gel 
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bottom. Gels were then immediately stained by Coomassie blue according to the protocol 

from Bio-Rad. The 2-D gels were scanned with Kodak Scientific Imaging Systems (Eastman 

Kodak Company, New Haven, CT, USA). The first dimension was run with the Multiphor 

flatbed system (Amersham Biosciences) and the power supply EPS 3501 XL. The second 

dimension was run with the Mini-Protean II electrophoresis cell and power supply (Bio-Rad). 

 

3. Results and discussion 

3.1 Description of the OFFGEL homemade device 

Figure 1 shows some drawings of the in-house cell designed for OFFGEL electrophoresis, the 

dimensions are consistent with our previous simulation results and with former prototype 

devices for OGE.11 

Basically, the present device is constituted of two polyoxymethylene (POM) blocks. 

The upper part, in which multiple chambers were machined, having the following size: 6 mm 

length, 2 mm width and 1 mm height, each well capable of containing 100 μL at most. The 

lower part, in which a groove was designed to hold an IPG strip, fits directly under the 

multicompartments (Figure 1A). The cell allows the collection of 20 fractions, but this 

number is variable, depending on the resolution expected, one can design in such a way to 

work with longer strips and/or with narrower pH gradients. Indeed, the resolution of the 

separation depends on the pH gradient and on the length of the IPG gel as well as on the size 

of the compartments and on the number of wells under which the gel is placed. pI resolutions 

between 0.05 and 0.3 units have been reported in other prototype devices.11 



  Chapter IV. Design and characterization of device 
 

 126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1: Drawing of the homemade OFFGEL device. Panel (A) shows the device, constituted of two parts, the 

upper part in which the wells were carved, and the lower part, where the groove for the IPG gel strip lies. Panel 

(B) shows the dimensions of two adjacent chambers. Panel (C) shows a transversal view of the IPG strip placed 

in the groove, under the chamber, and the sealing made by the gel between the different chambers.  
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Figure 1B shows the detailed dimensions of the wells, as well as the distance between 

wells. Typically, if a 13 cm long IPG strip with pH gradient 3–10 is placed under the wells; 

one well covers 0.31 pH unit, the interspace between wells corresponding to 0.04 pH unit.  

Figure 1C is a transversal cut of a compartment, showing the IPG gel strip placed in 

the groove, with the gel side in contact with the chambers. The gel assures the sealing of the 

different compartments during OGE, thus the migration of species takes place in the gel only, 

and liquid fractions are recovered from the chambers at the end. 

 

3.2 Voltage and current monitoring 

The usual online detection methods for analytical IEF instruments are optical or conductivity 

detection.14-16 However, today’s commercial preparative instruments seldom have online 

optical of conductivity detection, thus requiring other methods to monitor the IEF process, 

such as offline analysis of fractions.17  In-gel IEF is usually a long process, and as there is no 

clear way to determine the end of an IEF separation, and operators usually let long time for 

the run, with the justification that the longer the separation, the better the resolution.18 

Determining the end of IEF has become crucial, to avoid long and useless time of focusing. 

Monitoring the current during IEF could be a useful way to detect the end of IEF, because the 

evolution of the current is linked to the migration of species.19  

Monitoring the current and the voltage is also important to understand the resulting 

resolution, thus allowing the optimization of the focusing parameters to improve that 

resolution. Moreover, the evolution of current during IEF can give indications on the kinetics 

of the separation. Thus monitoring of the current during IEF is interesting in terms of practical 

run but as well for optimization and understanding of the process.  
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A LabView program was written, which, in interaction with a Spellman High Voltage 

source, allows doing two things: 

1) Apply a given voltage program, and at the same time set a limit to the current (hundreds of 

microamperes)  

2) Monitor the effective voltage applied and the resulting current. 

 

Figure 2 shows the voltage and current monitored for two IEF runs. The first run 

(Figure 2A) was a test run, where a mixture of three proteins was submitted to different 

increasing steps of voltage from 500 V to 5000 V, every half an hour, and the response in 

current was measured. The current limit was set at 200 μA. For the first three steps (500, 1000 

and 2000 V), it can be observed that the higher the voltage, the higher the current drop. For 

the next steps, the current response reached the limit; the current drop could not be estimated. 

After 3.5 hours, the IEF was not finished, the current continued to drop, meaning that the 

steady-state was not reached yet. 
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Figure 2: Evolution of the voltage and current vs. time. Panel (A) shows the voltage and current during a test 

OGE fractionation of a mixture of three proteins at 0.1 mg/mL. The potential was increased in multiple steps 

from 500 V to 5000 V. Panel (B) shows the voltage and current during the OGE fractionation of an E. coli 

protein extract, with a total initial load of 400 μg. The voltage program was 500 V for 2 h, 1000 V for 1 h, and 

5000 V for 4 h. The current was in both cases limited to 200 μA per IPG strip. 

 

The second run (Figure 2B) shows the voltage and current during the IEF separation of 

E. coli protein extract. The first voltage step (500 V) already results in a limit current. At the 

beginning of the run, it is thus crucial to limit the current, to avoid Joule heating. The sample 

loaded is usually not desalted and for biological samples, it usually contains detergents, salts 

which help solubilize the proteins. After 7.5h of focusing, the current is stabilizing around 30 

μA, and around 5 μA if dropping the voltage to the initial value of 500 V. This residual 

current (approx. 2.5% of the current limit) can be explained by the equilibrium between 

diffusion and migration and reminds that IEF is a dynamic equilibrium method.  

An interesting point is that the integration of the current curve against time gives 

information on the electric charge of the system ( I dq/dt= ). Thus, the surface under the curve 

represents the charge contained in the system, and shows that even at equilibrium, the system 

has a residual charge, mainly due to the reactions at the electrodes and the splitting of water in 

the neutral region.  
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3.3 pH characterization  

The characterization of the pH gradient established during OGE IEF is important, in terms of 

pH and reproducibility, because the precision of the pH of each IEF fraction is crucial, due to 

the increasing use of the pI as a validation tool.18, 20, 21 To do so, 3-10 IPG strips of 13 cm 

were used with the 20 fractions OGE device. In OGE, the pH gradient is established by the 

IPG and more precisely, by the Immobilines present in the polymerized gel. But the 

separation media usually contains a small amount of CAs that are used to increase protein or 

peptide solubility at pH close to their pI,22 as well as help stabilize the pH gradient, because 

proteins and peptides are ampholyte species, therefore, according to their concentration, they 

could act on the buffering capacity of the gel.  

In order to evaluate the reproducibility of the pH gradient and whether the CA 

concentration has an influence on the established pH, we considered two CA concentrations 

(0.5% and 2%) and, for each CA concentration, OGE fractionation of a mixture of three 

proteins (myoglobin, beta-lactoglobulin and alpha-lactalbumin) were repeated three times. 

The concentration of the three proteins was kept constant (0.1 mg/mL per protein) in all the 

experiments. The obtained pH profiles are shown on Figure 3. 
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Figure 3: pH gradient stability and reproducibility during OGE IEF. The influence of the concentration of carrier 

ampholytes on the pH gradient has been evaluated for two CA concentrations (0.5% and 2%). Inset is the 

development of the pH gradient after 30 min (empty circles) and 1 h (full circles) at 500 V. 

 

It first appears that the pH gradient is already well developed after 1h at 500 V, 

confirming the assumptions previously formulated in the numerical calculations (chapter III), 

that the establishment of the pH gradient is faster than the focusing process itself. The 

reproducibility of the pH is very good, given that the fractions pH show a relative standard 

deviation (RSD) comprised between 0.2% and 9% (n = 3). The majority (80%) of the 

fractions also present a RSD below 3%, leading to a maximal theoretical error of 0.3 pH unit. 

Consequently, OGE IEF can not only be considered a useful fractionation technique, but also 
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a relevant characterization tool, justifying the further use of the peptide pI as a validating tool 

for peptide and protein identification.  

It can also be seen that the CA concentration does not play significantly on the fraction 

pH, thus a CA concentration of 0.5% will be used in further experiments.  

The fractions collected after OGE of the mixture of three proteins have been analyzed 

by capillary electrophoresis, in HEPES buffer, ionic strength 100 mM and pH 8.9. At that pH 

the proteins should be negatively charged and thus no adsorption on the capillary wall should 

be observed. The corresponding CE chromatograms are shown in Figure 4. Panel A shows the 

case where α-lactalbumin is found in the same well as β-lactoglobulin, in the fraction pH 5.40, 

and panel B shows that for another OGE run, the two proteins are found in two adjacent wells, 

with pH 5.12 for lactalbumin and pH 5.53 for lactoglobulin. This illustrates quite well how 

the position of the gel, and thus the position of the pI under the well, is important. However, 

this does not influence the reproducibility of the experiment, because in both cases, the 

proteins are found in the fraction having the pH corresponding to their pI.  

In addition, it is relevant to note that the resolution of the separation is not necessarily 

due to the sharpness of the separation in itself, but can also be due to the location of the pI 

relative to the recovery wells. Thus, if sometimes a protein/peptide is found in two wells, it 

might be that their pI location on the gel is exactly under the interspace between two wells. 

This would be relevant in the case of peptide validation based on pI for example.  
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Figure 4: CE chromatograms of OGE fractions of three proteins. Separations were performed in 120 mM 

HEPES buffer, pH 8.9. Fused silica capillary; total/effective length 31/21 cm, ID 50 μm; voltage 12 kV; 

hydrodynamic injection 30 mbar, 5 s; UV absorbance at 214 nm. Panels A and B represent the chromatograms 

for two different series of OGE fractions. 
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3.4 Loading capacity for proteins 

Practically, the loading capacity is the mass of sample/analyte that can be applied on the 

device and effectively separated with a correct resolution. For gel media IEF, maximum 

protein loads were experimentally estimated to be 1–10 mg/component/cm of gel.23 Equations 

for the mass load of a protein zone in density gradient IEF have shown that the capacity rises 

with the square of the resolving power.23 Thus, high resolving power should allow high 

loading capacity, explaining why much work has been done using narrow pH range IEF, 

where the resolution is higher.24 In proteomics, loading capacity is especially crucial when 

searching for low abundance proteins, because the initial protein load then needs to be higher 

to isolate and detect these low abundance proteins. It is thus important to know how much 

amount can be separated under given conditions of voltage and time. 

To roughly estimate the loading capacity of the OGE device using a 3-10 pH range, a 

set of seven proteins was separated. A first fractionation was performed with equimolar 

concentration of the proteins (0.4 mg/mL each protein, resulting in a total protein load of 2.8 

mg), during 6 hours under the following voltage conditions (1 h at 500 V, then 1 h at 1000 V, 

and finally 4 h at 5000 V ). The 20 fractions were collected and analyzed by CE with 

phosphate buffer pH 7.35. A second experiment was performed by doubling the concentration 

of the proteins (0.8 mg/mL for each protein except for myoglobin, the concentration was 1 

mg/mL, resulting in a total protein load of 5.8 mg). The fractions were analyzed by CE in the 

same buffer. The results are shown on Figure 5. 
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Figure 5: CE chromatograms of the fractions recovered after OGE IEF of a mixture of proteins. Separations 

were performed in 100 mM phosphate buffer, pH 7.54. Fused silica capillary; total/effective length 31/21 cm, ID 

50 μm; voltage 15 kV; hydrodynamic injection 30 mbar, 5 s; UV absorbance at 214 nm. Panel A is the initial 

protein mixture before OGE fractionation. Panel B shows the fractions recovered from OGE IEF with initial 

protein load of 0.4 mg/mL for each protein. Panel C shows the fractions recovered from OGE IEF with initial 

protein load of 0.8 – 1 mg/mL for each protein. 

 

Figure 5A shows the initial mixture analyzed by CE, before OGE IEF, to check the 

purity and migration time of the proteins. The phosphate buffer was used for CE, and not the 

HEPES buffer, because the resolution is better concerning some proteins (β-lactoglobulin B, 

bovine serum albumin and trypsin inhibitor). Cytochrom C was added as colored indicator, to 

allow a visual monitoring of the IEF. It was added at the same concentration as the other 

proteins in both experiments. 

Figure 5B shows a good separation for all the proteins at low concentration. Each 

protein is recovered in one well, except for the trypsin inhibitor, which appears already in the 

adjacent fraction. An amount of almost 3 mg of total proteins was loaded, and allows a correct 

separation in 6 h. 

Figure 5C shows that the CE chromatograms of the fractions recovered from the OGE 

fractionation of a more concentrated mixture. The fractionation was performed in exactly the 

same time, however it does not allow to focus each protein in one well. The BSA appears in 

two wells, as well as the β-lactoglobulin B. Myoglobin appears in five wells, due to the higher 

concentration loaded initially. But it is quite interesting to note that two peaks were observed 

for myoglobin (1’ and 1”), peaks that are most likely due to its isoforms. Horse myoglobin is 

known to have a major isoform at pI 7.4 and a minor isoform at pI 6.9, which have been 

separated by gel electrophoresis.25 The two peaks observed in fraction N°13 probably 

correspond to these isoforms, as one peak is mainly present in fractions N°12 and 13 
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(measured pI values 6.7 and 7.0 respectively) and the other mainly isolated in fractions N°13 

and 14 (measured pI values 7.0 and 7.24 respectively). Apparently, the two isoforms of 

myoglobin could be separated by OGE. Each isoform appears in three wells.  

As a conclusion, loading of 0.8 mg for each protein (6 mg total protein load) stills 

allows a correct separation, with each protein recovered in two wells and three for myoglobin. 

It is however relevant to note that the loading capacity depends on the actual number of 

compounds and their solubility at the pI. For complex biological mixtures, the concentrations 

of the different proteins constituting the mixture are not equimolar, a large dynamic range is 

observed. Proteins with a large concentration have higher risk to be recovered in several 

wells, and low abundant proteins in one well.  

The upper limit for the loading capacity can be understood in terms of change in the 

local electric field. The high concentration of a species near its pI should provoke a change in 

the local conductivity, resulting in a change of the apparent electric field seen by the species, 

thus affecting their migration. Thus, the high concentration should result in an apparent lower 

migration term compared to the diffusion. The species cannot focus anymore, resulting in a 

broad unfocused peak, explaining why one protein can be found in several wells.    

In some cases also, the recovery of proteins may be problematic due to the 

precipitation of proteins due to high concentration of globally neutral species near pI. The 

ampholytes mixture is used to improve solubilization near the isoelectric point. But a way to 

load more on the OGE device would be to allow a continuous extraction of the proteins into 

another phase. This would allow the focusing of higher concentrations loaded. Another way 

would be to design a free-flow OFFGEL device, to allow continuous feed of sample and 

continuous outlet of the fractions. A recirculation of the fractions would also concentrate the 

amount of proteins at each step of the recirculation. This approach is currently under 

development in the lab. 
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3.5 OG-IEF of peptides 

To test the high resolving power of the device, as demonstrated by numerical simulations 

(chapter III), we here perform OFFGEL IEF of peptides derived from tryptic digestion of 

proteins.  

One aliquot of BSA tryptic digest was diluted to 1 mL, in water containing 1% DTT 

and the total volume (corresponding to 500 μg initial protein load) was then loaded on the 

OGE cell, with a 13 cm IPG strip with pH range 3–10, to be separated into 20 fractions by in-

solution IEF. After OGE, liquid fractions were withdrawn, and a supplementary step to 

enhance the protein yield was performed. For this purpose, 100 μL of a 

water/methanol/formic acid (49:50:1 by volume) was added per well and incubated for 60 min 

without voltage. Corresponding peptide fractions were pooled and lyophilized by vacuum 

centrifugation prior to LC-MS analysis. Peptide fractions were reconstituted in 25 μL of 2% 

acetonitrile with 0.01% formic acid, and 1 μL was injected on the chromatographic column. 

The summarized workflow is shown on Figure 6. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Workflow for the OGE fractionation of peptides and further analysis by LC-ESI-MS.  
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The resulting chromatograms are shown on Figure 7, the pH values indicated for the 

fractions are calculated based on the sequence of peptides identified in that fraction and using 

an in-house software (chapter III) taking into account the amino acids pKa values from 

Bjellqvist et al.26 Table 1 gives the peptides identified in fraction 9 associated with their LC 

retention times. 

300

250

200

150

100

50

0

m
A

U

403020100

min

f4 (mean pH 4.21)

 

300

250

200

150

100

50

0

m
A

U

403020100

min

f13 (mean pH 7.38)

 

Figure 7: LC chromatograms at 214 nm of OGE fractions after IEF of peptides from protein digest. Elution 

gradient of the LC run is shown in dashed lines.  

 
Table 1: Identified peptides in OGE fraction 9 (mean pH calculated 5.83).  

RT (min) Sequence Monoisotopic mass 
(Da) 

pI (calculated with pK 
values from26) 

3.98 FPKAEFVEVTK 1294.7 6.14279 
5.28 NYQEAK 752.2 6.00076 
6.42 FGER 508.2 6.00235 
15.17 FKDLGEEHFK 1249.5 5.44534 

16 LVTDLTK 789.3 5.83572 
20.15 YLYEIAR 927.4 6.00076 
22.66 LVVSTQTALA 1002.3 5.56992 
24.15 SLHTLFGDELCK 1362.5 5.31998 
24.97 QTALVELLK 1014.5 6.00156 
27.01 LGEYGFQNALIVR 1479.7 6.00156 
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The chromatograms indicate that the distribution of peptides separated by OGE IEF is 

rather heterogeneous. This is in agreement with the in silico tryptic digestion of BSA and 

distribution of peptides as shown in Figure 8.  
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Figure 8: Peptide distribution from experimental results and theoretical predictions. 

 

One way to evaluate the quality of the fractionation is to look at the number of 

fractions in which each distinct peptide was found. As shown on Figure 9A, 81.8 % of the 

identified peptides are found in one fraction and the rest in two fractions. No peptide was 

found in more than two wells, which demonstrates the high resolution of the OFFGEL peptide 

separation. These results are well in line with the simulation results. The final results are 

summarized in Figure 9B, showing the distribution of peptides that are unique to a given 

fraction.  
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Figure 9: (A) Number of peptides found in a given number of fractions. (B) Total number of peptides identified 

in each fraction, the dark shaded area indicates the peptides unique to each fraction.  

 

The explanation for peptides focusing in more than one well can probably be found in 

studying the titration curve of the concerned peptides. For example, peptide LVVSTQTALA 

was found in fractions 9 and 10. Figure 10 (left) shows the titration curve for that peptide. The 

curve displays a particularly flat slope near the pI, this probably accounting for the lower 

resolution of the focusing. In addition, the titration curve of all the peptides found in two 

wells show a flat slope near the pI, except for two peptides, displaying a steep slope at pI 

A 

B 



  Chapter IV. Design and characterization of device 
 

 142 

(Figure 10, right). The steep slope should give a sharp resolution. The only reason accounting 

for the presence in two wells could be the position of the pI, probably situated in the 

interspace between two wells, as already mentioned above. 
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Figure 10: Titration curves of peptides found in two wells. 

 

The prediction of pI values allows validating the peptides identified. Indeed, from the 

peptides identified in a fraction, an average fraction pI value can be calculated as well as the 

standard deviation. These values allow setting a tolerance window and eliminating peptides 

deviating too far from the average value, thus considering these peptides as false positive. But 

this point will be further discussed in detail in the next chapter, concerning enhanced protein 

identification by peptide mass fingerprinting. 

 

3.6 OG-IEF of proteins under denaturing conditions  

To demonstrate that the present OFFGEL device could perform good separation on a more 

complex biological mixture and that the denaturing conditions (presence of urea, thiourea and 

detergent such as CHAPS) do not affect the separation, the fractionation of E. coli protein 

extract was performed. For that, 400 µg of an E. coli protein extract was solubilized in the 

Rabilloud buffer and loaded on the OGE cell with a pH gradient 4-7, and IEF was performed 
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with the following voltages: 1 h at 500 V, then 1 h at 1000 V, and finally 5 h at 5000 V. The 

current limit was set at 200 µA. 

A 1-D IEF was first performed on an IPG strip, to check the pI range of unfractionated 

E. coli proteins (Figure 11), and shows that all proteins are comprised in the range of pI 4–7. 

Thus the OGE fractionation as well as the 2-D maps will further be carried out within that 

range, to allow a better resolution (narrower range of pH).  

 

 

 

 

 

 

Figure 11: 1-D IEF to check the pI range of E. coli proteins 

 

Figure 12 displays the results of the fractionation experiments for E. coli. Panel A 

shows a 2-D map of a control, unfractionated protein extract of E. coli (total protein load 400 

µg). 2-D maps of various fractions are displayed in Figure 12 panels B and C. These maps are 

related to fractions N° 3 (pH 4.32 upper left), and 4 (pH 4.47 bottom left), as well as N°10 

(pH 5.42, upper right) and 11 (pH 5.58, bottom right). It can be appreciated that, even though 

the sample was quite complex before fractionation, narrow pI cuts were obtained and no spot 

overlap was observed between the adjacent fractions, showing the good separation and 

resolution of the device. It can be concluded that the presence of urea and detergents do not 

affect the separation process. 
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Figure 12: OGE fractionation of a total E. coli protein extract on a 4–7 pH gradient. (A) 2-D map of 

unfractionated E. coli sample. (B) 2-D maps of the content of 2 acidic chambers (3 and 4). (C) 2-D maps of the 

content of 2 middle chambers (10 and 11). No spot overlap is experienced in the various chambers. 
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4. Concluding remarks  

The results reported in this chapter demonstrate that the in-house designed device for 

OFFGEL IEF allows a powerful and versatile approach to sample fractionation. With the high 

reproducibility of the pH gradient, a relatively high loading capacity for proteins, a sharp 

focusing for the peptides generated from tryptic digestion of proteins, and a minimal 

overlap/good resolution observed for complex biological mixture, this device is suitable for 

the separation of peptides and proteins. The monitoring of the current evolution during IEF 

allowed the determination of the steady-state of the focusing. The resolution was estimated to 

be approx. 0.3 pH unit and the two isoforms of myoglobin could be separated and recovered 

in solution in a concentrated form, without the need for further extraction steps. In the 

perspective of a more complete approach, each OGE fraction of protein can further be 

amenable to proteolytic digestion, and the resulting peptides could be applied to a second 

round of OGE fractionation on the same device, to perform a two-stage separation strategy, in 

the perspective of bottom up approaches in proteomics. 

As a summary, there is clear evidence that OFFGEL IEF is a powerful, high 

resolution, versatile technology to achieve prefractionation and separation of biological 

samples, and that the present device built in-house allows correct fractionation of 

proteins/peptides in approx. 5 to 8 hours, depending on the complexity of the sample and the 

resolution desired. Another interesting application of OFFGEL IEF combined with chemical 

tagging for the enhanced identification of proteins by their peptides is further presented in the 

next chapter.  
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1. Introduction  

 “Shotgun” proteomics or “bottom up” approaches involve proteolytic cleavage of mixtures of 

proteins, resulting in a very large number of peptides to be analyzed (up to tens of thousands 

for “shotgun” approaches). Separation steps are usually required, followed by mass 

spectrometry (MS) detection, either by electrospray ionization (ESI-MS) or matrix assisted 

laser desorption ionization (MALDI-MS). Identification of proteins is achieved by searching 

for the best match between the experimentally determined masses and those calculated by 

theoretical cleavage of each of the proteins in the sequence database.1-5  

However, complete protein sequence coverage is rarely achieved, giving low level of 

confidence in protein identification, sometimes also leading to ambiguous identifications. 

This occurs for example when the protein mixture is highly complex, or when only very small 

amounts of the proteins are isolated, or when peptides are lost due to inefficient ionization. In 

such cases, it is advantageous to use supplementary information, to constrain the database 

search by limiting the number of candidate proteins and increase the confidence of protein 

identification.6-8 Peptide sequencing by online MS/MS is one way to gain that discriminating 

information. Such additional information improves the level of confidence of the 

identification, but generally requires a more complex and time-consuming analysis than in the 

case of simple peptide mapping,9 not taking into account that a non-negligible amount of 

these automatically generated data often result in false-positive identifications.  

Indeed, false-positive peptide sequence matches in shotgun proteomics, resulting from 

searching large-scale MS/MS data against protein sequence databases, are a challenge in high-

throughput global protein profiling studies.10 The use of physicochemical properties such as 

accurate mass, reverse-phase µ-LC retention time, peptide isoelectric point (pI) has been 

shown to provide more accurate results and increase the confidence of peptide/protein 

identifications. Several groups have demonstrated that highly accurate mass information of 
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peptides can provide more confident sequence database search results.11-15 Smith et al. have 

reported the use of reverse phase µ-LC elution time as a constraint in peptide sequence 

matches demonstrating the ability to partially predict the elution times of peptides from 

reverse-phase columns, and the use of this information in the peptide identification process.16-

18 The use of accurate mass and time tag approach (AMT) was also reported, combining µ-LC 

retention time and accurate mass to identify peptides, and was successfully applied to 

profiling of human plasma proteome, eliminating the need for tandem MS analyses.19, 20 

Recently, Cargile et al., as well as other groups, have reported on the use of peptide pI 

information, obtained by peptide separations using immobilized pH gradient (IPG) gels,21-24 

free-flow electrophoresis (FFE)25-27 or other devices,28-30 to assist in the identification of 

peptides. These studies have demonstrated the utility of peptide pI information in reducing the 

false-positive matches and significantly increasing the confidence of peptide identifications.  

Another way to obtain additional information on peptide sequence, apart from 

performing MS/MS fragmentation, is chemically labeling amino acids of interest in the 

peptides. Chemical tagging reactions have played a major role in MS-based proteomics, 

especially in protein identification. The main application fields of chemical tagging include 

enrichment of subclasses of peptides by affinity tags, and in vitro stable isotope labeling for 

quantification.31 Chemical modifications can be of two types. “Global” approaches target 

common functional groups, i.e. amino groups at the N-terminus of a peptide or protein, and on 

lysine side-chains, or carboxylic acids at C-terminus and on aspartic and glutamic acid 

residues. This type of labeling would ensure the highest possible coverage, since every 

peptide will theoretically carry the tag. More targeted approaches are directed towards 

specific amino acids such as cysteine and tryptophan, particularly in the context of affinity 

tagging. Post-translational modifications (PTMs) such as phosphorylation and glycosylation 
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can also be targeted. An overview of the usual targets of chemical tagging is given in Figure 

1.  

 

 

 

 

 

 

 

 

 

Figure 1: Overview of tagging reactions in peptides or proteins. 
 

Of interest here is the labeling of cysteine residues in peptides. It was observed that 

cysteine residues are present in 89.3% of all proteins in human cells.32 Thus, cysteine is the 

most frequently probed amino acid for peptide enrichment and relative quantification 

purposes. Namely, the isotope-coded affinity tag (ICAT) reagents have been used to label the 

cysteine residues for quantification purposes.33, 34 Combined fractional diagonal 

chromatography (COFRADIC) has been used for the isolation of cysteinyl peptides.35-37 

Concerning protein identification, the modification of cysteine residues by alkylation was 

shown to be a very useful tool for peptide mapping and database interrogation.38, 39 Any 

chemical labelling that gives the knowledge of the presence or absence of cysteine residues in 

peptides highly constrains the number of candidate proteins during the identification step. 

In particular, the adducts formed by cysteinyl peptides with benzoquinone have been 

thoroughly characterized by Mason and Liebler, using ESI-MS.40 The principle of the 1,4-

Michael addition of benzoquinone on the cysteine residue was recently used in our laboratory, 
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to electrochemically label cysteinyl peptides during ESI-MS. This study showed that counting 

the cysteines in peptides gives additional information that results in dramatic increase in the 

level of confidence of protein identification by peptide mass fingerprinting (PMF).41  

In this chapter, we present a methodology combining OFFGEL isoelectric focusing of 

peptides and chemical labeling by benzoquinone of cysteine residues in peptides as an 

effective means to improve the identification of proteins by peptide mass fingerprinting 

(PMF). In the first part, we emphasize the use of pI as validation/filtering tool for the peptides 

identified and its usefulness for the elimination of false-positive identifications, thus ensuring 

more accurate protein identification. In a second part, we describe the implementation of a 

simple workflow that includes OFFGEL fractionation to obtain the useful pI information, and 

the chemical labeling/counting of cysteines residues in peptides, giving additional information 

on the sequence of peptides, thus increasing the level of confidence in identification of 

proteins. The proof of concept of the methodology is demonstrated on a protein digest, and 

with some adjustments, the workflow could easily be applied to more complex digests.  
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2. Experimental 

2.1 Chemicals 

Bovine serum albumin (BSA) was purchased from Sigma-Aldrich (Dübendorf, Switzerland). 

Ammonium hydrogenocarbonate (> 98%), 1,4-dithio-DL-threitol (DTT, > 99.5%), 1,4-

benzoquinone were from Fluka (Buchs, Switzerland). Porcine trypsin was from Promega 

(Madison, WI, USA). Formic acid and acetonitrile (> 99.5%, Fluka, Buchs, Switzerland), 

trifluoroacetic acid (TFA, 99%, Riedel de Haen, Darmstadt, Germany) were used without 

further purification. Synthetic peptides AIKCTKF, M = 810.02 g·mol-1, ALRCTCS, M = 

752.90 g·mol-1, and ACKCTCM, M = 758.98 g·mol-1 (> 70%) were prepared by Catherine 

Servis at the Institut de Biochimie (Faculté de Médecine, Epalinges, Switzerland). Deionized 

water (18.5 MΩ·cm) was prepared using a Milli-Q system from Millipore (Bedford, MA, 

USA). Immobiline Drystrips, linear pH range 3–10 of 13 cm in length were purchased from 

GE Healthcare (Otelfingen, Switzerland), as well as IPG buffer pH 3–10 (carrier ampholytes 

mixtures). 2,5-dihydroxybenzoic acid (DHB, > 98%) for MALDI matrix was from Sigma. 

2.2 Tryptic digestion 

1 mg of BSA was dissolved in 1 mL ammonium hydrogenocarbonate solution (50 mM, pH 

8), and 1.23 mg DTT (8 mM) and 10 µg trypsin (trypsin to protein ratio of 1:100 w/w) were 

added. The digestion was run at 37 °C for 4h. 10 % of formic acid was added to lower the pH 

of the medium and stop the digestion. The solution was then divided in two aliquots of 500 

μL and stored at –20 °C, until used for the experiments.  
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2.3 OFFGEL IEF of peptides (OG-IEF) 

OFFGEL IEF of peptides was performed with the apparatus and setup described in chapter 

IV. The multicompartment device was placed on top of a 13 cm reswelled Immobiline 

Drystrip exhibiting a linear pH gradient over the range of pH 3–10. A platinum electrode was 

placed in each of the two extreme compartments (anode and cathode). The separation was 

performed by dispensing 50 µL of peptide solution in each well (total of 1 mL) and the 

potential was fixed during 1 h at 500 V, then 1 h at 1000 V, and finally 4 h at 5000 V. The 

current limit was set at 200 µA. After OG-IEF, liquid fractions were collected, and a 

supplementary step to enhance the protein yield was performed. For this purpose, 100 μL of a 

water/methanol/formic acid (49:50:1 by volume) was added per well and incubated for 60 min 

without voltage. Corresponding peptide fractions were pooled and lyophilized by vacuum 

centrifugation prior to further analysis. 

2.4 Chemical tagging reaction 

The collected vacuum-dried fractions of peptides were reconstituted in 25 µL of 0.1% TFA 

water. 5 µL of each fraction was modified by addition of 30% (v/v) of BQ reagent at 100 mM 

in acetonitrile. No incubation time was necessary for the reaction. The tagged mixture was 

immediately spotted on the MALDI plate, according to the procedure described below. 

2.5 MALDI-TOF 

Analysis was performed on a MALDI–TOF mass spectrometer (Shimadzu Biotech/Kratos). 

The sample was spotted on stainless Nickel plate with 1 µL of freshly prepared matrix 

solution. 2,5-dihydroxybenzoic acid (DHB) was used as matrix. Signals from 100 to 200 laser 

shots were summed per mass spectrum. Peptide masses were acquired over a range of m/z 500 

to 5000. 
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2.6 LC-ESI-MS 

The capillary HPLC system was an LC Packings (Dionex) Ultimate™ Plus, with a PepMap 

C18, 3 μm, 0.3 × 150 mm capillary column and a pre-column. Sample volume injected was 1 

μL (injection loop). The mobile phase consisted of solvents A (water/ACN 98:2 (v/v) with 

0.1% (v/v) formic acid) and B (water/ACN 20:80 (v/v) with 0.085% (v/v) formic acid). The 

column was developed with a biphasic gradient from 2–50% of solvent B in 40 min, followed 

by an increase from 50–100% of B in 10 min. The column was regenerated with 3 column 

volumes of B followed by 3 volumes of A. Chromatography was run at a flow rate of 4 

μL/min. MS analysis was conducted on an LCQ Duo ion trap from Finnigan (San Jose, CA, 

USA). All experiments were done in full scan mode (m/z 150–2000) without averaging, and 

the heated capillary was kept at 200°C. 

2.7 Database search parameters 

Searches were performed against Swiss-Prot database using MASCOT database search 

software.42 The following parameters were used for the search: oxidation of methionine, 

taxonomy Chordata, 1 missed tryptic cleavage was allowed. Charge states of +1, +2 and +3 

were used for the results from ESI-Ion trap, and single charge state was used for the results 

from MALDI-TOF. The mass tolerance for peptide masses was set to 0.3 Da, respectively 

0.15 Da, when ESI-Ion trap, respectively MALDI-TOF, was used.  
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3. Results and discussion 

3.1 pI as validation information to eliminate false positive 

identifications 

In this section, in order to show that the isoelectric point allows the validation of peptides 

identified and to describe the procedure used for the elimination of false positive peptides, the 

results from experiments of chapter IV are used (section IV.3 – OFFGEL of peptides). BSA 

was digested and the resulting peptides separated by OFFGEL fractionation into 20 liquid 

fractions. Each fraction was further analyzed by LC-ESI-MS. The entire list of peptides 

detected was submitted to Mascot peptide mass fingerprinting,42 for a search in the Swiss-Prot 

database. The search engine then identified the protein based on the peptides mass and 

indicates the score obtained (oppositely related to the probability that the protein match occurs 

at random) and the sequence coverage, as well as the list of peptides identified.  

An in-house program was used to calculate theoretical pI values according to 

computing algorithms with the pKa values set from Bjellqvist et al.43 The experimental pI 

value of each fraction of peptides was calculated by averaging the pI values of the peptides in 

a fraction, knowing their sequence. For wells where there are no or not enough peptides 

identified to calculate a mean pI value, the theoretical mean pH value was taken, and a rather 

large but reasonable pI tolerance window of ± 0.675 was taken (which corresponds to the pH 

difference between two wells, from one end of the first well to the other end of the second 

well). 

The prediction of pI values allows validating the peptides identified. Indeed, from the 

peptides identified in a fraction, an average fraction pH value can be calculated as well as the 

standard deviation (Stdev). These values allow setting a tolerance window and eliminating 

peptides deviating too far from the average value, thus considering these peptides as false-
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positive. In the present case, pI filtering was performed using one to two pI Stdev boundaries, 

as shown in Table 1. Narrow ranges are defined as the pH window set with ± 1 Stdev, middle 

ranges are defined with a window of ± 1.5 Stdev, and wide ranges are defined with a window 

of ± 2 Stdev. 

 

Table 1: Experimentally measured and theoretically calculated pI values in each of the 20 OG fractions. 

Fractions pI_expa pI_calcb Stdev narrow rangec 
(1σ) 

middle ranged 
(1.5σ) 

wide rangee 
(2σ) 

Npep 
(eliminated after 
1σ / 1.5σ / 2σ) 

1 2.47 3.15 - - - - 0 
2 3.30 4.07 - - - - 1 
3 3.65 4.24 0.12 4.12 –  4.36 4,06 – 4,43 3,99 – 4,49 2 
4 4.08 5.43 2.33 3.09 – 7.76 1,93 – 8,93 0,76 – 10,09 8 (1/1/1) 
5 4.46 5.37 1.90 3.47 – 7.27 2,52 – 8,22 1,57 – 9,17 4 (1/1/0) 
6 4.87 4.49 0.09 4.41 –  4.58 4,37 – 4,63 4,32 – 4,67 4 
7 5.21 4.60 0.1 4.50 –  4.70 4,45 – 4,75 4,40 – 4,79 2 
8 5.61 6.44 2.01 4.43 –  8.44 3,43 – 9,45 2,43 – 10,45 5 (1/1/0) 
9 5.94 5.83 0.28 5.55 – 6.11 5,41 – 6,26 5,27 – 6,39 10 
10 6.22 6.68 1.33 5.35 – 8.02 4,69 – 8,69 4,02 – 9,35 3 (1/0/0) 
11 6.47 6.46 0.41 6.05 – 6.87 5,84 – 7,07 5,63 – 7,28 2 
12 6.76 7.03 - - - - 0 
13 7.00 7.38 - - - - 0 
14 7.24 7.73 - - - - 0 
15 7.56 8.08 - - - - 0 
16 7.76 8.43 - - - - 0 
17 8.14 8.48 0.37 8.11 –  8.86 7,93 – 9,04 7,74 – 9,23 2 
18 8.63 8.32 2.16 6.16 – 10.48 5,07 – 11,56 3,99 – 12,65 7 (3/1/0) 
19 8.98 9.49 - -   0 
20 10.27 9.87 0.18 9.71 – 10.05 9,61 – 10,14 9,52 – 10,23 2 

a Measured pH value in each OG well. b Calculated by averaging pI values of all peptides found in the fraction. c 
pH interval calculated from the mean pI of identified peptides in each OG fraction ± 1 Stdev. d pH interval 
calculated from the mean pI of identified peptides in each OG fraction ± 1.5 Stdev. e pH interval calculated from 
the mean pI of identified peptides in each OG fraction ± 2 Stdev. 
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Figure 2: mean pI values (with standard deviations) calculated from averaging peptides pI in the fractions versus 

pI values experimentally measured. The mean pI values have been calculated before (circles) and after 

(triangles) pI filtering using a narrow tolerance window. For reasons of display, the two curves are offset by 4 

pH units. 

 

Figure 2 is the plot of calculated pI values versus measured pI values. It clearly 

illustrates that, before filtering (circles), some fractions show abnormally high values of 

standard deviation, namely the fractions 4, 5, 8, 10 and 18. For these fractions, narrow, middle 

and wide ranges of pI were used to filter out the potential false positive identifications. 

Table 2 shows in details the peptides identified in fraction 4, with the corresponding 

retention times. The mean value for the fraction pH was calculated to be 5.43 with a standard 

deviation of 2.33. The relatively high value of standard deviation for this fraction indicates the 

possible presence of false positive. Indeed, in that fraction, a peptide was discarded, 

considering any tolerance window (± 1 Stdev or ± 2 Stdev). The pH calculated after 

elimination of the false peptide is 4.43, and the standard deviation 0.66. The standard 

deviation is lowered when discarding the suspicious peptides, as shown in Table 3 and in 

Figure 2 (triangles). 
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Table 2: Peptides identified in OG fraction 4 (pH calculated 5.43). Existence of a false-positive: pH calculated 

4.63 after discarding the false peptide  

RT (min) Sequence Molecular weight (Da) pI_theoa 
17,87 YICDNQDTISSK 1386,4 4,21 
21,99 DDPHACYSTVFDK 1497,5 4,65 
22,76 ADEKK 590,8 6,07 
22,76 EYEATLEECCAK 1388,3 4,33 
24,14 SLGKVGTR 817,3 11,00 
24,14 YNGVFQECCQAEDK 1633,3 4,14 
30,64 DAFLGSFLYEYSR 1567,5 4,67 
34,32 TVMENFVAFVDK 1399,4 4,37 

a pI calculated with pKa set from Bjellqvist et al.43  

 

Table 3: Experimentally measured and theoretically calculated pI values before and after filtering, in the 

“suspicious” OG fractions. 

Fractions pI_exp pI_calc Stdev 
pI_calc after 
filtering with 

1σ 
Stdev 

Npep 
(eliminated 
after 1σ ) 

4 4.08 5.43 2.33 4.63 0.66 8 (1) 
5 4.46 5.37 1.90 4.42 0.09 4 (1) 
8 5.61 6.44 2.01 5.55 0.31 5 (1) 

10 6.22 6.68 1.33 5.92 0.12 3 (1) 
18 8.63 8.32 2.16 8.71 0.08 7 (3) 

 

 

With narrow range (± 1 Stdev), a total of 7 peptides could be eliminated as false 

positive identifications considering all the fractions. With wide range (± 2 Stdev), only one 

peptide was eliminated, and with middle range (± 1.5 Stdev), 4 peptides were eliminated. A ± 

1 pI Stdev filter results in better data quality than the ± 2 pI Stdev filter, but there are most 

probably higher risks of losing true positive identifications with a too narrow filter, this 

should be confirmed by further MS/MS data on the “uncertain” peptides. 

In this way, when considering a tolerance window of ± 1 Stdev, a total of seven 

peptides were eliminated, over a number of 44 peptides matched, representing 16% of 

matched peptides. After pI validation/filtering, Mascot PMF of the peptide masses from LC-

MS allowed the identification of BSA with a score of 139 (versus 147 before pI validation) 
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with sequence coverage of 54% (versus 56% before pI validation). The level of confidence 

decreases due to the lower sequence coverage. However, the identification is more correct due 

to the elimination of deviating false positive peptides. As a summary, Figure 3 shows the 

distribution of peptides before and after pI filtering, compared to the predicted distribution. 
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Figure 3: Peptide distribution from experimental results and theoretical predictions. 
 

This study shows that the pI is a powerful tool allowing more correct identifications. 

The algorithm for pI prediction is quite useful in this task. The number of peptides eliminated 

depends on the tolerance window set for the validation. These considerations reflect the need 

to accept a certain error tolerance in order not to discard true positives. However, by applying 

more than one acceptance criteria, it becomes less likely that falsely identified peptides would 

pass all the filters and the choice of larger tolerance windows can be accepted.  
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3.2 Counting cysteines for enhanced protein identification by PMF 

Workflow combining OFFGEL IEF and chemical tagging 

In this section, to simultaneously use the information on the isoelectric point for data 

validation/filtering and the composition in cysteines of peptides to increase the confidence of 

identifications, a simple workflow, as described in Figure 4, was used.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 4: Workflow combining OFFGEL IEF with chemical tagging of cysteines in peptides. 
 

First, proteins are digested with trypsin, according to the protocol, and the resulting 

peptides are then separated by OFFGEL IEF, giving twenty liquid fractions. Finally, each of 
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the fractions is divided in two volumes, one is directly submitted to MALDI-TOF analysis, 

and the other is tagged, by addition of the benzoquinone reagent, and then also submitted to 

MALDI-TOF analysis. Thus, on the MALDI plate, each fraction corresponds to two spots, 

one without tagging and one with tagging. A differential analysis later allows determining 

which peptides contain cysteine residues, and the number of these residues. This workflow is 

fast for simple protein mixtures, but as the complexity of the mixture increases, an 

intermediate step of LC separation just before the MALDI-TOF would be necessary. 

 

Chemical tagging of cysteine residues by benzoquinone in synthetic peptides  

The choice of the tagging reagent is based on previous results concerning the tagging of 

cysteines by benzoquinone reagents.44 The addition of benzoquinone onto the cysteine residue 

proceeds through a 1,4-Michael addition (Figure 5) and the benzoquinone-peptide adducts 

have been thoroughly characterized by Mason and Liebler.40 The study of several 

benzoquinone derivatives showed that 1,4-benzoquinone, one of the most stable 

benzoquinone, guarantees quantitative reactivity and 100% selectivity for cysteine residues in 

acidic medium. Other reagents either reacted incompletely or not selectively with groups 

other than thiols.44 
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Figure 5: Reaction of 1,4-benzoquinone with peptide cysteinyl thiols to form S-cysteinyl-benzoquinol adducts. 
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To test the applicability of the tagging reaction on tryptic peptides, 1,4-benzoquinone 

was first tested on synthetic peptides containing one, two and three cysteines. The reagent was 

added to the peptide dissolved in the digestion medium, and two spots were deposited on the 

MALDI plate, one for the untagged peptide and the other for the tagged peptide. The results 

for the peptides containing one cysteine (AIKCTKF, M = 810.02 g·mol-1) and three cysteine 

residues (ACKCTCM, M = 758.98 g·mol-1) are shown on Figure 6, illustrating that up to three 

cysteines can be tagged and detected in MALDI MS.  
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Figure 6: MALDI mass spectra of peptide AIKCTKF (panel A) and peptide ACKCTCM (panel B) with their 

respective adducts formed by the addition of 1,4-benzoquinone. The mass spectra of the tagged peptides and the 

peptide before tagging are displayed on the same spectrum, but shifted, for presentation reasons. 
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Application to enhanced peptide mass fingerprinting of a protein digest 

To show that the chemical tagging can be applied to tryptic peptides and the additional 

information can be used to increase the level of confidence in peptide mass fingerprinting, a 

tryptic digestion of BSA was performed and fractionated by OFFGEL IEF, according to the 

workflow in Figure 6, then tagged and analyzed by MALDI MS. 

Figure 7 shows a MALDI spectrum of the unfractionated tryptic digest of BSA. Due to 

the differences of ionization efficiency, not all the peptides can be observed in one spectrum. 

The unfractionated tryptic digest allowed identification of the BSA but with low sequence 

coverage only (20%). The sequence coverage is thus not high enough to assure a high level of 

confidence in the identification. A preliminary separation step, such as OFFGEL IEF, would 

allow decreasing the differences of ionization efficiency.  

 

Figure 7: MALDI mass spectrum of the tryptic digest of BSA before OFFGEL fractionation. 
 

Figure 8 displays the MALDI spectra before and after tagging, for OFFGEL fractions 

3 and 5. It illustrates the tagging efficiency even in complex mixture (mixture of digestion) 

containing salts and carrier ampholytes. The low concentration of carrier ampholytes (0.5%) 

obviously does not disturb the chemical tagging process, as well as the MALDI detection, 

proving that MALDI is appropriate and has a higher tolerance according to contaminants than 

ESI-MS for example. The reactivity and quantity of benzoquinone are enough to tag multiple 

cysteinyl peptides in one fraction, and up to two cysteines in one peptide, as observed in 

fraction 3. The tagging of other residues than cysteines was not observed.
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Figure 8: MALDI mass spectra of OFFGEL fractions, before and after tagging of cysteines by the addition of 

1,4-benzoquinone. Circled masses are cysteinyl peptides, which are shifted after the tagging. The number of tags 

is indicated in brackets on the tagged mass spectra.  
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Figure 9 shows a diagonal representation of the tagging of cysteines, representing the 

masses observed after cysteine tagging versus the masses before tagging. Peptides containing 

one or more cysteine residues are not located on the main diagonal, but on parallel lines 

shifted of 108 Da vertically, and corresponding to one cysteine (1C line), two cysteines (2C 

line), etc. This diagonal representation offers a rapid overview: all the peptides that are not on 

the diagonal are tagged, thus contain cysteine residues.  
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Figure 9: Diagram showing peptide masses observed after cysteine tagging vs. peptide masses observed before 

tagging. Peptides containing one or more cysteine residues are not on the diagonal, but on parallel lines shifted 

of 108 Da vertically and corresponding to one cysteine (1C line) and two cysteines (2C line). This type of 

diagram offers a rapid overview of the presence of cysteine-containing peptides.  

 

The validation and filtering of peptides based on predicted pI values is done in the 

same way as described in the previous section (3.1). Unfortunately (or fortunately!), even 

with a narrow pI tolerance window of ± 1 Stdev, only one peptide was eliminated, which was 

identified in fraction 3. Obviously, the data generated from MALDI are less numerous than 

the data from LC-MS on such a simple digest, the risk of identifying a false positive here is 

thus reduced. In addition, the mass accuracies are different (higher mass accuracy for 
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MALDI-TOF), which may explain the low error level. The elimination of false positive would 

be more obvious and relevant on a more complex mixture, generating more true and false 

peptides. However, the aim was rather to show a proof of concept for the workflow allowing 

the use of additional information: the pI as validation tool and the determination of the 

number of cysteines for higher confidence in identification.  

So, the entire list of peptides was submitted to Mascot sequence query for a search in 

the Swiss-Prot database. Without specifying the information on the cysteine content, BSA 

was identified with a score of 166 (157 after pI filtering) and sequence coverage of 32% (31% 

after pI filtering). These scores are slightly higher than in the case of LC-ESI-MS (cf. section 

3.1), probably due to the fact that in LC-ESI-MS, there are more contaminants, even though 

more peptides are recovered, and it was observed that the presence of contaminants can 

decrease the score significantly. When the information on the cysteine content gathered by the 

tagging of peptides was added, the score increased to 247 (237 if pI filtering). This is 

illustrated on Figure 10. When only the 12 tagged peptides were entered with their cysteine 

content, the score was 217 with 19% coverage (9 peptides found), proving that the cysteine 

information is a powerful data, enhancing the level of confidence in the identification. This 

also shows that chemical tagging of peptides, coupled to OFFGEL IEF, would allow the 

selection and isolation of cysteinyl peptides, which is of high interest in bioanalytics. 

 

 

Figure 10: Identification scores without and with cysteine information obtained by chemical tagging for BSA 

using Mascot search engine.  

Without cysteine information With cysteine information 

score 166 score 247 
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The analysis of cysteinyl peptides by chemical tagging and MALDI-MS was done as 

further development of previous work performed in the lab on electrochemical tagging of 

cysteines, and in the perspective of using the new matrix for MALDI-MS recently developed 

in the lab. The new type of matrix for MALDI-MS analysis is constituted of a TiO2 gel and 

was demonstrated to allow an efficient ionization and labeling of cysteinyl peptides by photo-

oxidation of hydroquinone probes.45 Figure 11 illustrates the photo-reactive matrix and the 

principle of on-plate tagging of cysteines. Further work in that direction would be to include 

that matrix in the workflow presented in this chapter. Especially when an additional step of 

LC would be necessary for more complex samples, a spotter can directly deposit the OFFGEL 

fractions separated by LC, on the TiO2 MALDI matrix already containing hydroquinone, thus 

allowing an online and automated workflow, with minimal sample consumption. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Schematic representation of a photo-reactive MALDI plate. The incorporation of TiO2 nanoparticles 

in MALDI matrices allows photo-electrochemical redox reactions of molecules in a sample, namely the 

oxidation of hydroquinone to benzoquinone. The latter then reacts with the cysteine residues selectively.  
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In parallel, another possible workflow is being explored, that includes ESI-MS and 

microspray emitters for online (electro-) chemical tagging of cysteines, as has been shown 

previously.44 By performing OFFGEL IEF of petides, then coupling LC to a chip-MS and 

performing chemical tagging (Figure 12), there is the possibility to analyze complex samples 

and get the information on the pI as well as the number of cysteine residues.  

 

 

 

 

 

 

 

 

Figure 12: Schematic representation of a dual channel microsprayer allowing the chemical tagging of cysteine 

residue in a peptide. 

 
The challenge of this workflow would be the multiply charged peaks inherent to 

electrospray ionization: as the complexity of the sample increases, the complexity of the 

tagging spectra will increase as well, which is not the case for MALDI spectra (singly charged 

peaks). A summary of both approaches is given in Figure 13. 
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Figure 13: Workflow for a two dimensional strategy to analyze complex protein mixtures.  
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4. Concluding remarks 

In the present chapter, the use of OFFGEL IEF to validate peptides identified by mass 

spectrometry and eliminate false positive identifications was first shown. The elimination of 

false-positive identifications leads to a decrease in the score, but allows more accurate 

identifications. This study demonstrates that the pI is a potentially very powerful tool adding 

significance to the identification process. The number of peptides eliminated depends on the 

tolerance window set for the validation. The question of the definition of the pI tolerance 

window is crucial, in order not to eliminate true-positive during filtering.  However, by 

applying more than one acceptance criteria, it becomes less likely that falsely identified 

peptides would pass all the filters and the choice of larger tolerance windows can be accepted.  

The approach was then adapted in order to combine the use of OFFGEL IEF and 

chemical tagging of cysteine residues. This labeling step gives the information on the number 

of cysteine residues, which can be used in the database interrogation, and was shown to 

enhance the level of confidence in protein identification (increase of the score). The chemical 

labeling is a fast and selective step. The advantage of MALDI analysis is also that only small 

amounts of sample are needed. With the development of TiO2 matrices mentioned earlier, as 

well as the use of a MALDI spotter, allowing the direct online deposition and tagging, high-

throughput analyses could be envisaged. This study opens wide perspectives for the analysis 

of more complex biological mixtures, though more complex mixtures need to be studied to 

strongly validate this approach. 
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1. Introduction 
 

In this third millennium, characterized by an exasperate march towards miniaturization 

at all costs (just to have a glimpse at the field, one could consult a number of special issues of 

Electrophoresis devoted to this topic, e.g., Electrophoresis 2000, 21, pp. 1-254; ibid. 2001, 22, 

pp. 185-370 and pp. 3843-4031; ibid. 2002, 23, pp. 3459-3645, ibid. 2003, 24, 3521-3833), 

scientists have forgotten (or perhaps they have never known) that isoelectric focusing (IEF, 

still one of the leading techniques in today’s Separation Science horizon) was born as a 

preparative technique in large size columns (accommodating either 110 or 440 mL sample 

volumes) filled with a density gradient, supporting the pH gradient, for preventing electro-

decantation phenomena (i.e., sedimentation of the denser, focused protein zones that would 

occur in free liquid).1-3 An entire experiment, including column set up, focusing, elution, and 

the analysis of hundreds of fractions, required a minimum of one week of hard labor. 

Notwithstanding the intensive labor involved, the trend towards large-scale preparative 

fractionation devices continued over the years. Thus, in 1975, Rilbe and Petterson described 

two additional types of columns, this time extremely short and thick, one with a column 

volume of 440 mL, the other accommodating 110 mL of sample volume. In such columns, 

more than 1 g of sperm whale myoglobin could be fractionated, the main band containing as 

much as 800 mg protein, an appreciable amount to be carried by a density gradient.4 

Abandoning vertical density gradient columns, Rilbe’s group started developing 

multicompartment electrolyzers still based on the IEF fractionation principle. The first of such 

electrolyzers was built with 20-chambers and could be filled with up to 1000 mL of sample, 

with a load capacity of several grams of protein per day (separations were over in a 24-hour 

period).4 As a last evolutionary step, a mammoth-size apparatus was described,5 containing 46 

separation compartments, accommodating a total volume of 7.6 L and encompassing a length 
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of 1 m. Fourteen grams of whey proteins could be completely separated into its main 

components (i.e. serum albumin, α-lactalbumin and β-lactoglobulin).  

   With the advent of immobilized pH gradients (IPG),6 preparative separations still 

were implemented on a rather large scale. The first preparative attempts contemplated 

focusing in progressively thicker IPG gels (5-mm-thick), first in standard 5%T, 4%C 

matrices,7, 8 and then in progressively diluted polyacrylamide matrices, down to as low as 

2.8%T, cast in horizontal troughs filled with 125 mL total gel volume.3 Upon realizing the 

severe drawbacks of preparative runs in gel matrices, Righetti’s group reverted to the idea of 

multicompartment electrolyzers (MCE), exploiting the fine Immobiline chemistry. Such 

devices exploited the unique idea of isoelectric, buffering, zwitterionic membranes, able to 

confine groups of proteins, according to their pI values, into any compartment delimited by 

two membranes of precise pI value.3 Also these electrolyzers (6 sample collection chambers, 

plus two electrode reservoirs) were meant for processing large sample volumes and sizable 

proteins amounts, since they were connected to external reservoirs from which a continuous 

sample feed was guaranteed via recycling.  

   In recent years, however, due to the development of high sensitivity protein analysis 

techniques, including mass spectrometers (MS) able to handle minute (of the order of pico-

mole) sample levels, the trend has been towards miniaturization even in preparative 

instrumentation. Additionally, due to the extreme complexity of any proteome,9 

prefractionation by any means (chromatographic and electrophoretic) has now become a 

common trend.10 Aware of this new trend, the MCE with isoelectric membranes was 

miniaturized, so as to adapt it to proteome prefractionation with minute sample amounts.11 

The new instrument was shown to perform quite well in collecting proteome sub-fractions of 

very precise pI intervals, void of contamination from adjacent pI species.3, 12, 13 An interesting 

variant of this approach is OFFGEL IEF in multi-compartment devices.14-16 If a series of 
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chambers (up to 20), containing the proteome sample to be sub-fractionated, are placed 

directly on top of an IPG gel, in any desired pH interval, which is subjected to a voltage 

gradient, the sample proteins will move along the IPG migration path till reaching their pI 

value and thus collecting, at null surface charge, into the cup standing directly over the IPG 

gel segment titrating such species to their respective pI value. Just like the original MCE with 

isoelectric membranes, OFFGEL IEF permits collection of proteins in solution, a most 

desirable feature when proteins have to be further analyzed for ascertaining their identity. This 

instrument too was shown to perform quite well for fractionation not only of proteins, but also 

of their tryptic digests.17-19  

   Notwithstanding the advantages of proteome prefractionation in IPG-based 

separation processes (high precision in pH gradient engineering, very high resolution, retrieval 

of sample uncontaminated by carrier ampholytes), separations in conventional IEF in soluble 

amphoteric buffers have also been adopted recently, especially in the Rotofor system (and in 

the mini-Rotofor version).20 The Rotofor is assembled from 20 sample chambers, separated by 

liquid-permeable nylon screens, except at the extremities, where cation- and anion-exchange 

membranes are placed against the anodic and cathodic compartments, respectively, so as to 

prevent diffusion within the sample chambers of noxious electrodic products. At the end of 

the preparative run, the twenty focused fractions are collected simultaneously by piercing a 

septum at the chambers’ bottom via twenty needles connected to a vacuum source. The 

narrow-pI range fractions can then be used for generating conventional 2-D maps. In recent 

times, this methodology has taken another, unexpected turn: the Rotofor is used directly as the 

first dimension of a peculiar 2-D methodology, in which each fraction is further analyzed by 

hydrophobic interaction chromatography, using non-porous reversed-phase HPLC.21 Each 

peak collected from the HPLC column is then digested with trypsin, subjected to matrix 

assisted laser desorption ionization–time of flight (MALDI-TOF) MS analysis and MS-Fit 
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database searching. More recently, Xiao et al.22 have reported an unexpected application of 

the Rotofor, not just for fractionation of intact proteins in presence of carrier ampholytes, but 

for fractionation of peptide digests of an entire proteome (in this case, human serum) in an 

ampholyte-free environment. The peptides themselves would act as CA-buffers and create a 

pH gradient via an “autofocusing” process (with a caveat, though: the pH gradient will be 

quite poor, since only a few peptides have good buffering power and conductivity in the pH 5-

8 range). 

   Due to the fact that the Rotofor is still a complex machine to operate and even in its 

mini-version it handles sizeable amounts of liquids in each chamber (at least 0.5 mL), we 

report here a static apparatus (in that no rotational stabilization is adopted), for proteome 

prefractionation, accommodating minute sample volumes (100 µL per chamber) based on a 

novel design in the chamber construction and in the fraction collection at the end of the IEF 

run.  

 

2. Materials and methods 

2.1 Chemicals and biologicals 

Urea, sodium dodecyl sulphate, thiourea, 3-[3-cholamidopropyl dimethylammonio]-1-

propansulfonate (CHAPS), Tris, acetic acid, sodium hydroxide, Ampholines pH 3-10, the 

visible stain Brilliant Blue G (for colloidal Coomassie blue preparation) and the Escherichia 

coli lyophilized cells were all from Sigma-Aldrich, St Louis, Mo. Tributylphosphine (TBP), 

and acrylamide solution were purchased from Fluka (Buchs, Switzerland). IPG strips pH 3-10 

linear range, Laemmli sample buffer and whatman paper were provided by Bio-Rad 

(Hercules, CA). Pharmalytes pH 2.5-5.0 and 5.0-8.0 were purchased from GE-Healthcare 



                            Chapter VI. Gel-free Isoelectric Focusing 
 

 182

(Chalfont St. Giles, UK). The human cancer cells U2Os were a kind gift from Dr. S. C. 

Righetti, Instituto Nazionale dei Tumori, Milan.  

2.2 Sample prefractionation by IEF in the static chamber 

The human cancer cells U2Os, as well as the E. coli lysates, were directly solubilized in “2-D 

sample buffer” (7 M urea, 2 M thiourea, 3% CHAPS, 5 mM TBP and 10 mM acrylamide) and 

allowed to be alkylated at room temperature for 60 minutes. To stop the alkylation reaction, 

10 mM DTT was added to the solution, followed by 2.5% Ampholine pH interval 3-10 (for 

the U2Os lysate) or 3% Pharmalyte pH interval 2.5-8.0 (for E. coli proteins, obtained by 

mixing 1.5% Pharmalyte 2.5-5.0 and 1.5% Pharmalyte 5.0-8.0). 

The 8-chamber device was loaded with 960 µL of cell lysate (120 µL per trough), 

whereas the anodic and cathodic chambers were filled with whatman paper soaked with 250 

µL of 50 mM free acetic acid (pH 3.0) at the anode and 50 mM free sodium hydroxide (pH 

12.0) at the cathode, respectively. The two electrolytes were dissolved in the same solution as 

the one used for protein solubilisation. The total amount of sample loaded was 1 mg. Focusing 

was continued for up to 3 hrs by setting a limiting power of 1 W, which allowed for a ramp 

voltage going from 300 V to 1000 V at room temperature. At the end of the run, the 8 

fractions were collected and analyzed by SDS-PAGE and by 2-D mapping. 

2.3 SDS–PAGE 

Mono-dimensional SDS-PAGE of the samples collected from the present fractionation 

instrument was performed using 10-well, 1-mm-thick, 13% polyacrylamide glycine gel plates. 

Fifteen µL of each fraction were mixed with Laemmli sample buffer 2X and boiled for 5 

minutes, after that thirty µL of the 8 mixtures were loaded per lane and electrophoretic 

migration performed at 130 volts until bromophenol blue, added as a running marker, reached 
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the gel bottom. Staining and de-staining were performed with Colloidal Coomassie Blue and a 

7% acetic acid water solution, respectively. 

2.4 2–D PAGE analysis 

Seven-cm long IPG strips (Bio-Rad) pH 3-10 were rehydrated with 150 μL of protein solution 

(60 μL of the content of each chamber as per section 2.2, diluted to 150 μL with 2-D sample 

buffer), for 4 hrs. Isoelectric focusing (IEF) was carried out with an initial voltage gradient 

from 100 up to 1000 V, followed by 1000 volts constant for 5 hours. The voltage was then 

increased again rapidly up to 5000 volts in 30 min, and kept at such a value until reaching 30 

kVh. For the second dimension the IPG strips were laid on a 10-20% acrylamide gradient 

SDS-PAGE. The electrophoretic run was performed by setting a current of 5 mA / gel for 1h, 

followed by 10 mA / gel for 1h and 20 mA / gel until the dye front reached the bottom of the 

gel. Gels were then immediately stained in colloidal Coomassie Blue. Destaining was 

performed in 7% acetic acid until the background became completely transparent. The 2-DE 

gels were scanned with a Versa-Doc Imaging System (Model 3000, Bio-Rad, Hercules CA). 

  

3. Results 

3.1 Description of the instrument 

Figure 1 gives drawings of the cell block (A and B) and a photograph (top view, C) of the 

assembled instrument. Basically, the instrument consists of 3 main acetal-polyoxymethylene 

(POM) blocks assembled onto an 8 x 9 cm base. In the fixed block (part A) 8 sample wells are 

machined, having the following size: 7 mm width, 3 mm depth and 10 mm height, each 

accommodating 100 to 120 µL sample volume. At the two extremities, anodic and cathodic 

compartments are carved into the block, having the same width and height as the sample 
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chambers, but with a depth of 6 mm, thus accepting up to 250 µL of electrodic solutions. The 

wells are visible in Figure 1B, in which the mobile block (part B) has been removed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Drawing of the miniaturized gel–free IEF instrument for proteome prefractionation (A and B) and 

photograph of the actual apparatus in operation (C). Automatic fractionation is achieved, at the end of the 

focusing, by pressing the movable block B against the rubber wall (Viton seal). Panel B shows the profile of the 

10 chambers in absence of the movable block B. 

 

The novel idea in this construction is how the content of the various chambers is 

isolated from the neighbouring ones at the end of the IEF run. This is obtained by acting on 

the mobile block (part B), that acts onto a rubber wall (Viton seal). During IEF operation, the 

rubber wall is withdrawn by approximately one millimeter, so that the liquid overflows from 

Viton seal 

Part B Part A 
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C 



                            Chapter VI. Gel-free Isoelectric Focusing 
 

 185

the diaphragms separating the various chambers, thus ensuring liquid continuity and current 

flow. At the end of the IEF run, by turning the black knob, the mobile block B is pressed 

against the rubber wall, thus automatically sealing all the chambers. The content of each 

chamber is then withdrawn with a syringe or directly with an 8-tip pipette. 

3.2 Performance of the instrument 

Figure 2 gives the evolution of current vs. time, for two different applied voltages. It can be 

seen that, in both cases, focusing is obtained in ca. 20 min, not surprisingly, considering that 

the electrode distance is only 7 cm. Figure 3 gives the formation of pH gradient as a function 

of focusing time. It can be appreciated that the pH gradient is already formed after a 15 min 

run and is maintained (and fully developed) after 45 min of focusing. When running the 

multichamber device in presence of proteins, focusing is continued for up to 3 hrs, so as to 

ensure reaching a steady-state for all proteins present in the sample. When measuring the 

conductivity profile of the liquid in the 8 chambers, one obtains a U-shaped function, with a 

minimum at approx. pH 6-7, as is well-known in IEF (not shown).23  
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Figure 2: Evolution of current (I) vs. time for two different voltages applied (300 V, continuous tracing and 100 

V, dotted line) 
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Figure 3: Time course of pH gradient formation. The horizontal line represents the pH prior to focusing. The 

slanted and broken line indicates the theoretical pH predicted for 3-10 ampholytes in an 8-chambers device. The 

circles and squares represent the pH measured after 15 min and 45 min of focusing, respectively. 

 

3.3 Biological results 

In order to assess the performance in proteome prefractionation of this novel instrument, we 

have selected a total cell lysate of the human cancer cells U2Os and the water-soluble protein 

fraction of E. coli. Figure 4 to Figure 6 display the results of these experiments. Panel A of 

Figure 4 shows a 2-D map of a control, unfractionated total human cancer cell lysate, run in 

an IPG pH 3-10 in the first dimension. Panel B shows the mono-dimensional SDS-PAGE 

profiling of the contents of each chamber after fractionation on a 3-10 pH gradient (below the 

fraction Nos. the pH value of each eluted fraction is reported). It can be appreciated that the 

SDS patterns are specific for each isoelectric fraction. In order to see how precise the pI cuts 

are, 2-D maps of some eluted fractions are displayed in Figure 5. These maps are related to 

fractions No. 1 (pH 4.33, upper), No. 3 (pH 5.76, upper middle) and No. 6 (pH 8.84, bottom 

panel). It can be appreciated that they display quite narrow pI cuts, with essentially no spot 

overlaps among the different fractions.  
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In order to prove that steady-state conditions had been reached, the experiment was 

repeated with an E. coli total cell lysate, that was run for 1 and 3 hrs on a 2.5-8.0 pH interval. 

It can be appreciated (Figure 6 A through C) that the two 2-D profiles obtained from the same 

fractions after 1-hour or 3-hour fractionation are quite similar, indicating that even the shorter 

focusing times are adequate for ensuring proper separations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Analysis of a total cell lysate of human cancer cells U2Os. Upper panel: control 2-D map of the cell 

lysate in an IPG pH 3-10 interval. Lower panel: mono-dimensional SDS-PAGE of the content of each chamber 

after focusing in the mini-device using 3% Ampholine pH interval 3-10. Below the fraction No the pH of each 

fraction is reported. 
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Figure 5: Two-dimensional maps of the content of chambers 1 (upper), 3 (intermediate) and 6 (bottom) panels, 

after fractionating the total cell lysate in the device of Fig. 1 for 1 hour on a 3-10 pH interval (2.5% Ampholine). 

No spot overlap is experienced in the various chambers.  
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Figure 6: Time course of a fractionation of a total E coli lysate in the present instrument on a 2.5-8.0 pH 

gradient (3% Pharmalyte 2.5-8.0). Panel A: 2-D map of a control, unfractionated lysate. Panel B. 2-D maps of 

the content of 3 chambers (2, 5 and 8) after 1 hour of focusing. Panel C: 2-D maps of the content of 3 chambers 

(2, 5 and 8) after 3 hours of focusing. 
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4. Discussion 
 

As stated in the introduction, although prefractionation exploiting the IPG 

methodology has been preferred up to the present, more and more reports have appeared in 

the last few years dealing with prefractionation via conventional IEF in soluble carrier 

ampholyte (CA) buffers. Although we have reported only a few, selected applications based 

on the Rotofor, other instruments exist for performing this task, such as continuous flow (CF) 

IEF devices, as epitomized by the Octopus,24 allowing the collection of as many as 96 

fractions. For instance, Hoffman et al.25 have proposed CF-IEF as the first dimension of a 2-D 

map, the eluted fractions being directly analysed by orthogonal SDS-PAGE. In turn, 

individual bands in the second SDS dimension were eluted and analysed by ESI-IT-MS. By 

this approach, they could identify a number of cytosolic proteins of a human colon carcinoma 

cell line. One advantage of CF-IEF (and of course of all focusing techniques in a gel-free 

environment) is immediately evident from their data: large proteins (e.g. vinculin, Mr 116.6 

kDa) could be well recovered and easily identified; on the contrary, recovery of large Mr 

species has always been problematic in IPG gels. In addition to that, it is also known that IPG 

matrices tend to adsorb irreversibly hydrophobic and membrane proteins, rendering thus 

problematic their recovery and identification.  

All these phenomena do not occur when IEF is performed in a plain liquid phase, 

which probably accounts for the popularity of the Rotofor instrument. Our mini-device greatly 

simplifies the approach to gel-free IEF: it is compact, it allows for very small sample volumes 

(as little as 100 µL), for very simple fraction recovery and it disposes of the rotational 

stabilization implemented in the Rotofor. In fact, in our system, we do not experience any 

electro-decantation of proteins at (or in proximity of) their pI value, possibly because, since 

most proteome fractionation and analysis protocols call for a strongly denaturing mixture of 
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urea and thiourea, the density of such solutions would prevent protein sedimentation in a free-

liquid phase.  

   Another way of performing prefractionation for proteome analysis is the well-known 

“Radola technique”,26 already described in the early seventies, consisting in focusing in a 

horizontal trough filled with Sephadex beads. This method has been recently re-introduced by 

Goerg et al..27 However, this last approach again exploits a gel phase, which means scooping 

up segments of the Sephadex bed between anode and cathode and eluting the isoelectric 

fractions for further analysis.  

   Perhaps one of the major drawbacks of IEF in CA buffers is that the fractionation of 

alkaline proteins is not quite so good. This is not due to the short focusing times of 1 h (see 

Figure 5 and Figure 6 B), since experiments run for longer times (see Figure 6 C) still show 

poor focusing in the alkaline region. In fact, while in the acidic region longer prefractionation 

times seem to produce slightly better pI cuts, as it can be appreciated in fraction 2 (Figure 6C), 

which presents a slightly better resolution and a considerable protein enrichment with respect 

to the same fraction displayed in Figure 6B, such an amelioration cannot be observed in the 

alkaline interval (see fraction 8, Figure 6B and 6C, bottom panels). This could possibly be due 

to the onset of electroendoosmotic flow, an ever present hazard in all IEF experiments in 

presence of soluble CA buffers. Righetti’s group recently found out what is the major 

problem: essentially all commercial brands of CAs, in the alkaline region, contain a majority 

of “poor” species, i.e. of carrier ampholytes displaying rather large (pI-pK) values, thus 

unable to focus and properly buffer along the pH gradient28. Thus, an improvement on the 

synthesis of alkaline CA buffers is sorely needed.  
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1. Introduction 
 

Recently, the electrochemical study of the transfer of ionic species across the interface 

between two immiscible electrolyte solutions (ITIES) has gained great significance due to its 

wide applicability in different fields such as ion-selective electrodes for application to 

amperometric sensors, solvent extraction, drug lipophilicity and its consequences on drug 

delivery.1-4 Unlike numerous traditional chromatographic and potentiometric systems 

developed to study the distribution of ionic species and giving an indirect access to partition 

coefficients, voltammetry at the ITIES allowed us to evaluate the standard partition 

coefficient of both the neutral and the ionized forms.5, 6 The four–electrode system initially 

introduced by Samec et al.7 was later used intensively by Reymond et al.2 to study the transfer 

of many ionizable drugs at the interface between water and 1,2-dichloroethane (W/DCE),  and 

the introduction of ionic partition diagrams revealed a most interesting aspect for the study of 

drug lipophilicity.8 Indeed, a partition diagram of a specific drug between two immiscible 

liquids is a representation of the conditions corresponding to the predominance of different 

forms of the compound (basic, neutral, acid) as a function of the Galvani potential difference 

and the pH of the aqueous phase. This representation has been revealed to be a useful tool to 

mimic the passage of a drug through a biological membrane and help understand the action of 

that drug.  

However, the initial systems used to study the distribution of ionic species between 

two immiscible solutions used large ITIES, requiring quite large volumes of each phase2. 

Thus, when only limited amount of species is available, micro-ITIES are more suitable, such 

as liquid/liquid (L/L) interfaces supported at the tip of micropipets9, 10 or systems using a 

droplet of organic phase or aqueous phase.11, 12 For example, Gobry et al.13 reported 

experiments with an aqueous droplet supported at an Ag/AgCl disk electrode covered with an 

organic solution. More recently, Ulmeanu et al.14 have studied the profiling of ionized drugs 
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using a four-electrode system and small volumes of phase in a 96–well  plate, to study transfer 

reactions at a water/2-nitrophenyl octyl ether (NPOE) interface, allowing us to trace ionic 

partition diagrams of lipophilic compounds. Zhang et al.15 recently reported the study of 

ionizable drugs transfer across the water/DCE interface with a three-electrode system, using 

limited amount of drugs.  

Until now, many studies on partition coefficients have been achieved at a water/DCE 

interface and biological interpretations based on cyclic voltammetry measurements have only 

been made for these systems.8, 16, 17 However, the high volatility and the toxicity of DCE limit 

its use and call for its replacement by a more appropriate organic solvent. Given its absence of 

known toxicity and interesting physicochemical properties (low solubility in water, low vapor 

pressure), NPOE has recently been introduced as an alternative for DCE in electrochemistry18, 

19 and medicinal chemistry.5, 20 In addition, solvatochromic analysis have shown NPOE to be 

a good candidate to replace DCE in measurements of lipophilicity.20, 21 Furthermore, it has 

been shown that for a series of small ions the Gibbs energy of ion transfer from water to DCE 

directly correlates with the Gibbs energy of ion transfer from water to NPOE,18, 22 suggesting 

that the standard partition coefficient in NPOE offers a convenient alternative to the one in 

DCE. 

In the present chapter, we describe a two-electrode setup to study the transfer of 

ionizable compounds at a micro interface water/NPOE where a commercial immobilized pH 

gradient (IPG) gel is originally taken as the aqueous phase, with the aim of tracing the ionic 

partition diagrams for two lipophilic compounds. IPG gels, offering linear pH gradients, have 

long been commercialized with the aim to serve proteomics studies and, more precisely, to be 

used in fractionation methods, such as isoelectric focusing and 2D gel electrophoresis.23, 24  

Recently, the use of IPG gel was reported for the size-selective separation of gold 

nanoparticles by IEF.25 Besides, the influence of the presence of a gel in the water phase on 
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the transfer of ionic compounds across a large water/DCE interface was investigated by 

Fantini et al.,26 and the experimental characteristics of the drug transfer were shown to be in 

good agreement with a nongelled water/DCE interface. In addition, it was pointed out that a 

gel/liquid interface has a better mechanical stability than a liquid/liquid interface. With the 

use of an IPG gel in the present setup, there is no need to prepare several aqueous solutions at 

different pH to scan the overall pH domain to obtain the ionic partition diagram of a specific 

drug. Using this method, after few improvements, a high-throughput system to measure the 

partition diagram of a specific drug in one experiment could be obtained. With the proposed 

system using a micro interface, the IR drop effect is not too high, when compared to other 

large ITIES, thus allowing the use of only two electrodes, adding to the simplicity of the 

setup. Another important issue is the use of small amounts of sample (5 µL at most) due to the 

size of the interface and experimental setup.  

The method is validated using simple tetraalkylammonium ions (TBA+, TEA+, TMA+) 

which were already fully investigated by many authors, and can therefore be used as 

calibration for this new method. The present setup is then used to trace the ionic partition 

diagram of two lipophilic compounds: pyridine and 2,4-dinitrophenol. The values of standard 

transfer potential, Gibbs energy of transfer, and partition coefficients are deduced from 

electrochemical studies performed with differential pulse voltammetry. Additionally, in the 

case of lipophilic acids and bases, not only the log (P) of the ionized species can be 

determined from the ionic partition diagram, but also the log (P) of the neutral species can be 

determined from the observed shift in pKa. 
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2. Electrochemistry at the ITIES 

2.1 Thermodynamics of ion transfer at ITIES 

When two immiscible electrolyte phases α and β are in contact with each other, the partition 

of the salts between the two phases occurs due to the difference in their energy of solvation. 

This generates an interfacial region where the electrical field strength differs from zero, so 

that a Galvani potential difference is established across the interface between the two phases:  

  α α β
βΔ φ = φ − φ         (7.1) 

where φ is the inner potential of the respective phase. 

By expressing the electrochemical potential into a chemical and an electrical potential: 

  ( )α 0,α α αlni i i iRT a z Fμ = μ + + φ      (7.2) 

where 0,α
iμ  is the standard chemical potential of phase α, α

ia  the activity of the ion i in the 

phase α, R and T the gas constant and the temperature respectively, iz  the charge of the ion, 

and F the Faraday constant. At thermodynamic equilibrium, the electrochemical potentials of 

a species i in two adjacent phases are equal:  

  
β α
i iμ = μ         (7.3) 

The standard Gibbs energy of transfer being defined as: 

  0,α β 0,β 0,α
,tr i i iG →Δ = μ − μ        (7.4) 

the Galvani potential difference defined in (7.1) can thus be written as:  

  
0,α β β

,α
β αlntr i i

i i i

G aRT
z F z F a

→Δ ⎛ ⎞
Δ φ = + ⎜ ⎟

⎝ ⎠
     (7.5) 

The standard potential of transfer for i is defined as:  

0,α β
,α 0

β
tr i

i

G
z F

→Δ
Δ φ =        (7.6) 
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The Galvani potential difference in (7.5) becomes:  

  
β

α α 0
β β αln i

i i

aRT
z F a

⎛ ⎞
Δ φ = Δ φ + ⎜ ⎟

⎝ ⎠
      (7.7) 

This equation is called the Nernst equation for ion transfer and is analogous to the classical 

Nernst equation for redox reactions. Equation (7.7) can be rewritten in terms of 

concentrations, replacing the standard potential of transfer by the formal potential of transfer, 

α 0'
βΔ φ , which includes the activity coefficients iγ , and gives Equation (7.9):  

  
β

α 0' α 0
β β αln i

i i

RT
z F

⎛ ⎞γΔ φ = Δ φ + ⎜ ⎟γ⎝ ⎠
      (7.8) 

β
α α 0'
β β αln i

i i

cRT
z F c

⎛ ⎞
Δ φ = Δ φ + ⎜ ⎟

⎝ ⎠
      (7.9) 

This relation shows that the Galvani potential is fixed by the ratio of concentrations in both 

phases. If a salt is dissolved in two immiscible phases in contact, the distribution of salt 

induces a polarization of the interface. The resulting Galvani potential is defined by writing 

the Nernst equation for the cation and anion at the interface: 

  
β β

α α 0 α 0
β β βα αln lna aRT RT

F a F a
+ −

+ −
+ −

⎛ ⎞ ⎛ ⎞
Δ φ = Δ φ + = Δ φ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
   (7.10) 

In the case of diluted solutions of similar volumes, this equation simplifies to: 

  ( )α α 0 α 0
β β β

1
2 + −Δ φ = Δ φ + Δ φ       (7.11) 

This demonstrates that when salts are partitioned between two adjacent phases, the interface 

becomes polarized at a fixed potential defined by the standard transfer potentials of the 

different ionic species. Because this potential is fixed, the interface is said to be non-

polarizable: it is not possible to polarize the interface without modifying the chemical 

composition of the two phases. 
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In the case of a hydrophilic salt dissolved in the water phase and a hydrophobic salt dissolved 

in the organic phase, such that the concentration of the hydrophilic salt in the organic phase is 

negligible compared to that of the hydrophobic one, and conversely, the concentration of the 

hydrophobic salt is water is negligible compared to that of the hydrophilic one, the interface is 

said to be ideally polarizable: it is possible to apply an external potential without modifying 

the chemical composition of the adjacent phases, the Galvani potential difference can be 

controlled by an external source of potential, until a certain limit. Electrochemistry at ITIES is 

usually working in the limits of the polarization window, such that it is possible to polarize 

the interface up to a point where the applied Galvani potential difference reaches the transfer 

potential of an electrolyte ion. The electrolyte cation and anion define the potential window. 

 

Figure 1: scheme of the interfacial processes within the polarization range  

 

2.2 Electrochemistry to measure drug lipophilicity  

For an ionized species, the partition coefficient depends on the potential and can be deduced 

from (7.7):  

 ( )
0,α ββ

,α α 0 α
β β βαlog log

ln10 ln10 ln10
tr ii i i

i
i

Ga z F z FP
a RT RT RT

→Δ⎛ ⎞
= = Δ φ− Δ φ = Δ φ−⎜ ⎟

⎝ ⎠
 (7.12) 

which reduces into: 
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  α 0
βlog log

ln10
i

i i
z FP P

RT
= Δ φ+      (7.13) 

where 0log iP  is the standard partition coefficient, which is related to the standard transfer 

potential of the ionized species. 0log iP  represents the proportion of ions present in each phase 

if the interface is not polarized. 

 

2.3 Facilitated ion transfer  

The facilitating effect of ionophores on the ion transfer process has been widely studied since 

the pioneering work of Koryta.27 Assisted ion transfer consists in decreasing the Gibbs energy 

of transfer by combining the complexation of ions and transfer of species. A decrease in the 

0,α β
,tr iG →Δ  means a decrease in the transfer potential, therefore, the presence of the ionophore 

translates in a shift of the potential wave of the cation transfer towards more positive 

potentials. This shift is crucial, because it allows observing transfers that were theoretically 

outside the polarization range.  

Depending on its nature, the ionophore (or ligand to refer to the complexation reaction) can be 

dissolved in the organic or aqueous phase. Four types of mechanisms are then observed and 

were described by Girault et al.28 and are represented in Figure 2.  
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Figure 2: schematic mechanisms of assisted ion transfer, reprinted from 28. ACT: aqueous complexation 

followed by transfer, TOC: transfer followed by organic complexation, TIC: transfer by interfacial 

complexation, TID: transfer by interfacial dissociation. 

 

2.4 Differential Pulse Voltammetry 

Cyclic voltammetry is the most used technique for measures at the ITIES. However, 

differential pulse techniques are more sensitive and differential pulse voltammetry is used for 

electrochemical measurements n this chapter.  

The differential pulse technique is known as a very powerful technique for trace 

determination. Like all pulsed techniques, it is based on the differences of decay of the 

capacitive and faradaic current. The capacitive current decays exponentially and the faradaic 

current decays as 1/(sqrt of time). The rate of decay of the capacitive current is thus much 

faster, and it is negligible at the end of the potential step, therefore only the faradaic current is 

measured. The important parameters are the following: the pulse amplitude (height of the 

potential pulse, constant or not depending on the technique), the pulse width (duration), the 

sample period (time at the end of the pulse during which the current is measured), and the 

pulse period, as illustrated in Figure 3. 

 

Figure 3: potential wave form for differential pulse voltammetry, taken from29 
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The potential wave form consists of small pulses (of constant amplitude) superimposed 

upon a staircase wave form. The current is sampled twice in each pulse period (once before 

the pulse, and at the end of the pulse), and the difference between these two current values is 

measured and plotted versus the applied potential. A voltammetric wave is thus obtained in a 

peak shape, with the height being proportional to the analyte concentration and with the peak 

potential corresponding to the half wave potential of the reaction. 

The discrimination against the capacitive current that is inherent in the pulse techniques 

leads to lower detection limits (when compared to linear sweep techniques), which makes 

these techniques suitable for quantitative analysis. 

 

 

3. Experimental 

3.1 Chemicals 

IPG gels (Immobiline DryPlates, linear pH range 4.0-7.0, 11-cm length and Immobiline 

Drystrips, linear pH range 3.0-10.0, 18-cm lentgh) were purchased from Amersham 

Biosciences. These IPG gels are received in a dried format and reswelled in aqueous solutions 

before use. In the gel, the pH gradient is built by acrylamide derivatives, called Immobilines 

which are covalently fixed in the polyacrylamide gel.30 The general chemical formula of 

Immobilines is CH2=CH–CO–NH–R, where R is either a carboxylic acid or an amino group. 

Lithium chloride (LiCl > 99% purity), tetramethylammonium chloride (TMACl), 

tetraethylammonium chloride (TEACl), tetrabutylammonium chloride (TBACl), NPOE, 

pyridine (PY) and 2,4-dinitrophenol (DNP) were purchased from Fluka and used as received. 

All aqueous solutions were prepared with deionized water from MilliQ System (Millipore) 

with 18.2 MΩ.cm resistivity. The organic supporting electrolyte was prepared by metathesis 

of equimolar quantities of bis-(triphenylphosphoranylidene) ammonium chloride (BTPPACl) 
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and potassium tetrakis(4-chlorophenyl)borate (KTPBCl) providing a BTPPATPBCl 

precipitate which was filtered and recrystallized twice from acetone before use. 

BTPPATPBCl is very lipophilic and therefore gives a wide potential window. 

 

3.2 Setup and electrochemical measurements 

A two-electrode cell with an Ag/AgCl working electrode in contact with the aqueous gel and 

a Ag/AgTPBCl reference electrode in the organic phase were used. A piece of IPG gel of a 

given pH range was reswelled in a 100 mM LiCl aqueous solution. A 12-µm-thick 

polyethylene terephtalate (PET) film was coated with a layer of Ag/AgCl (Ercon) 

screenprinting and the resulting PET/Ag/AgCl electrode was dried for 2 h at 60 °C. In the 

PET/Ag/AgCl film, micro-holes of ~50 µm were drilled by photoablation (UV excimer laser, 

wavelength 193 nm, energy 200 mJ). The drilled PET/Ag/AgCl film electrode was then 

placed on the reswelled piece of gel with the silver/silver chloride side in contact with the gel, 

Ag/AgCl thus acting as the working electrode for the aqueous gel. A droplet of organic phase 

was then used to cover the micro-hole and thus producing a micro-ITIES. A silver wire coated 

with silver tetrakis(4-chlorophenyl)borate (Ag/AgTPBCl), obtained by electrolysis of an Ag 

wire in a KTPBCl solution, was immersed in NPOE acting as the reference electrode for the 

organic phase. The corresponding setup and the image of the film under the optical 

microscope are presented in Figure 4. 
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(a) 

 

 

 

 

 

 

 

  

 

(b) 

 

 

 

 

    Top image φ = 67 µm            Bottom image φ = 60 µm 

(c)  

 

 

 

 

 

 

Figure 4: (a) Schematic presentation of the setup for the ITIES measurement at a single micro- hole at pH = 

5.35, (b) a micro-hole shape obtained after laser photoablation, seen under optical microscope, (c) complete 

setup for lipophilicity measurements. 
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The advantage of the IPG gel in such a setup is that it offers a linear pH gradient, 

which allows scanning overall the pH domain in one experiment and thus could lead to a 

high-throughput setup (Figure 4c) to measure partition coefficients. The linearity of the pH 

gradient has already been verified,31 and the geometric position of the micro-hole on the IPG 

gel strip thus determines, by linearity, the pH of the point where electrochemical 

measurements take place. 

Electrochemical measurements were performed on an Autolab PGSTAT 12 with 

GPES version 4.9, Eco Chemie B.V. (Netherlands). Differential pulse voltammetry (DPV) 

was used as electrochemical technique because for some of the drugs, traditional cyclic 

voltammograms display the peak close to the limit of the potential window, and therefore, it is 

not an easy task to monitor the displacement of peak potential with pH. The use of a 

differential pulse technique allows a better sensitivity, allowing the use of lower amounts of 

drugs for analysis. The presence of a peak instead of a wave also improves the discrimination 

of the transfer process from that of the base electrolytes. Furthermore, DPV also displays the 

experimental curves in a way that can be easily subtracted from the baseline, with a further 

increase in the discrimination against the base electrolytes. 

Differential pulse voltammograms were registered after a 30-s equilibration at –500 

mV, followed by a scan from –400 mV to +500 mV, with a modulation time of 60 ms, an 

interval time of 400 ms, a step potential of 2 mV, and a modulation amplitude of 50 mV. 

 

3.3 Methodology: use of an internal reference ion  

The applied potential difference, E, is theoretically defined as the potential applied between 

the two reference electrodes and is related to the Galvani potential difference w
o φΔ across the 

water/NPOE interface by: 
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w
o refE E= Δ + Δφ        (7.14) 

where refEΔ  depends on the reference electrodes, so that E refers only to the electrochemical 

cell used.  

To calibrate the transfer potential, it is necessary to define a potential scale. The 

“TATB” assumption is most commonly used to define the standard Gibbs energy of transfer 

of an ion through an ITIES.32 Briefly, it states that the cation and anion of 

tetraphenylarsonium tetraphenylborate (TPAsTPB) have equal standard Gibbs energy of 

transfer for any pair of solvents, assuming that the solvation energies for both the cation and 

the anion are equal. On this basis, a scale for standard Gibbs energies of ion transfer and 

therefore for the standard transfer potential or the formal transfer potential can be obtained. 

For instance, the formal transfer potential of tetrabutylammonium (TBA+) at a water/NPOE 

interface can be estimated as 241.5 mV− .22 In the following experiments, TBA+ and 

tetramethylammonium (TMA+) will be used as internal reference ions to transpose the 

potentials measured to the potential scale on the basis of the “TATB” assumption, by the 

following relationship 

+ + + +
peak w 0' peak w 0'
i o i oTBA orTMA TBA orTMA

E E− Δ = − Δφ φ     (7.15) 

where peak
iE is the peak potential measured by DPV for the transfer of compound i, and 

w 0'
o iφΔ is the formal standard transfer potential of compound i. 
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4. Results and discussion 

4.1 Experimental validation of the electrochemical cell based on 

transfer of simple permanent ions 

The following cell I is used to study the transfer of tetrabutylammonium (TBA+), 

tetraethylammonium (TEA+), and TMA+ across the aqueous gel/NPOE interface. 

 

Cell I 
 

 

 

 

Figure 5 dotted line shows the baseline measured by DPV when LiCl is in the aqueous 

gel (pH = 4.8), defining the potential window of this electrochemical system. When the pH of 

the IPG gel is changed, there is no marked effect on the potential window for the differential 

pulse voltammograms (results not shown). This is also an indication that the acid–base buffer 

used in the IPG strip manufacturing does not introduce any transferable species into the 

electrochemical system. The positive side of the voltammogram (water versus organic phase) 

is limited by the transfer of Li+ ( +
w 0'
o Li

576 mVΔ = +φ 33) and the negative side by the transfer of 

Cl- ( w 0'
o Cl-

470 mVΔ = −φ 34). The range of potential window observed is ~700 mV and is similar 

to that obtained with a four-electrode setup or other three-electrode setups.  

The solid line in Figure 5 shows the resulting DPV when all three ions were dissolved 

in the aqueous gel and their transfer across the gel/NPOE interface takes place. A higher 

potential is needed to transfer TEA+ from the aqueous to the organic phase than to transfer 

TBA+. TBA+ is thus a less hydrophilic ion than TEA+, which is less hydrophilic than TMA+. 

Ag AgTPBCl 10 mM BTPPATPBCl 100 mM LiCl           AgCl  Ag 
   ( in NPOE)   0.1mM MCl  
       (M=TEA+,TBA+,TMA+) 
       (in IPG gel) 
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Based on the “TATB” assumption (see Methodology: use of an internal reference ion), 

the standard transfer potentials of TEA+ and TMA+ can be determined, if taking TBA+ as 

internal reference. The value of the standard transfer potential of TBA+ was determined by 

Samec et al. 22 to be –241.5 mV. The relative transfer potentials measured by DPV for TBA+, 

TEA+ and TMA+ are +
peak
TBA

157 mVE = − , +
peak
TEA

E =109 mV , and +
peak
TMA

E =230 mV , respectively. 

The standard transfer potentials of TEA+ and TMA+ can be calculated by Equation (7.15) as 

24.5 mV and 145.5 mV, respectively, values that are quite close to the values reported in the 

literature (see Table 1). 

12

10

8

6

4

2

0

I/n
A

0.40.20.0-0.2-0.4
E/V  

Figure 5: Transfer of TBA+, TEA+, TMA+ (solid line) and potential window (dotted line) seen by differential 

pulse voltammetry (modulation amplitude 50 mV, modulation time 60 ms, interval time 400 ms, step potential 2 

mV). 
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Table 1: Thermodynamic data obtained for the transfer of simple ions at the NPOE/water interface. 

 TBA+ TEA+ TMA+ 

w 0'
o φΔ  / mV (a) -- 24.5 145.5 

0,w o
trG →Δ  / kJ.mol-1 (a) -- 2.4 14.0 

w 0'
o φΔ  / mV  (b) -241.5 27 111 

0,w o
trG →Δ  / kJ.mol-1 (b) -23.3 2.6 10.7 

w 0'
o φΔ  / mV  (c) -- 26 140 

0,w o
trG →Δ  / kJ.mol-1 (c) -- 2.5 13.5 

 
(a) according to this work , (b) according to Samec et al.22 , (c) according to Wilke et al.18 

 

 

The results show that the present two-electrode electrochemical cell is validated and 

can be used, in an easy and fast way, to measure the standard transfer potential for simple 

permanent ions. It also indicates that for simple and permanent ions, the hydration in the 

aqueous gel medium is similar to that in free aqueous solution, and that for these ions, the 

interface between aqueous gel and NPOE behaves like a water/NPOE interface.  

 

4.2 Ionic partition diagram of ionizable compounds 

Ionic partition diagrams were first developed by Reymond et al.8 as a representation of the 

predominance area of the various species of an ionizable compound as a function of the 

Galvani potential difference and the pH and taking into account the thermodynamic 

equilibrium governing the distribution of various acid/base forms of molecules involved. Two 

adjacent areas of predominance are separated by equiconcentration boundary lines. These 

diagrams have shown to be a useful tool to predict and interpret the transfer mechanisms of 

ionizable drugs at the ITIES and their concept is similar to the potential–pH diagrams of 

metals (Pourbaix diagrams). Initial studies were dedicated to drawing ionic partition diagrams 

for hydrophilic ionizable compounds, but more recent studies by Gobry et al.13 have extended 

this partition diagram model to lipophilic species. For lipophilic molecules, the concentration 
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of the neutral form in the aqueous phase is negligible compared to that in the organic phase, 

and ionic partition diagrams displaying the neutral species in water as was the case for 

hydrophilic diagrams, are less relevant in the case of lipophilic molecules. The new model for 

lipophilic compounds takes into account the neutral species in the organic phase when 

deriving the equations defining the boundary lines. 

As shown previously,13 for a lipophilic monobase B partitioned between two 

immiscible phases, the ionic partition diagram is determined by three boundary lines 

(equiconcentration convention): 

Line 1:  
BH+

w w 0'
o oΔ = Δφ φ        (7.16) 

 Line 2:  0
BpH = p log aK P−         (7.17) 

 Line3:  
BH+

w w 0' 0
o o B

2.3 2.3(log  p ) pHa
RT RTP K

F F
φ φΔ = Δ + − +    (7.18) 

For a lipophilic monoacid AH partition between two immiscible phases, the ionic partition 

diagram is determined by the following boundary lines (equiconcentration convention)13: 

Line 1:  w w 0'
o oΔ = Δφ φ -A

        (7.19) 

Line 2:  0
BpH = p + log aK P         (7.20) 

Line3:  w w 0' 0
o o AHA-

2.3 2.3(log  +  p ) pHa
RT RTP K

F F
φ φΔ = Δ − +    (7.21) 

As an illustration of the methodology using the two electrode gel cell described above, 

a monobase, pyridine, and a monoacid, 2,4-dinitrophenol, were investigated by DPV. Cell II 

is used to study the transfer of the two drugs across the IPG gel/NPOE interface at different 

pH values, to evaluate their standard transfer potentials and partition coefficients and draw 

their ionic partition diagrams. 

 

 



           Chapter VII. IPG gel cell to study drug lipophilicity  
 

 213 

Cell II 
 

 

 

and M+ = TBA+ for PY and TMA+ for DNP.  

 

In each case, small amounts of drugs were added to the organic phase, the volume of the 

droplet of organic phase needed was 3 µL. TBA+ was added to the gel phase to work as 

internal reference when pyridine was studied and TMA+ when 2,4-dinitrophenol was studied.  

 

Figure 6 shows the evolution of the voltammograms obtained by DPV for pyridine at 

different pH. For pH values below the pKa, the standard transfer potential remains 

independent of the pH (within experimental error) and represents the transfer of protonated 

pyridine (PyH+). The peak current decreases as the pH approaches the pKa, following the 

decrease in the concentration of PyH+. When the pH is higher than the pKa, the half-wave 

transfer potential observed shifts toward higher values as can be observed in Figure 6. The 

peak current is the result of the transfer of a proton facilitated by the neutral pyridine present 

in the organic phase, and which behaves as an ionophore for the proton. The transfer is 

limited by the proton concentration, which explains the shift of potential toward higher values 

(in theory the potential shifts by 2.3RT/zF mV per pH unit. Here, one proton is transferred, 

thus the slope is 59 mV/pH unit). In this case, the mechanism can be described as a transfer 

by interfacial complexation (TIC).35 In addition, Figure 6 shows that it becomes more difficult 

to monitor the transfer peak at higher pH, as it is shifting toward the limit of the potential 

window. This case proves the relevance of using DPV as the electrochemical technique, as it 

allows subtracting the baseline from the voltammogram measured, thus allowing a better peak 

discrimination against the base electrolytes.  

Ag AgTPBCl 10 mM BTPPATPBCl 100 mM LiCl     AgCl       Ag 
   ( in NPOE)   1 mM MCl 
   0.6 mM PY    (in IPG gel) 

or 1.13 mM DNP   
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Figure 6: Differential pulse voltammograms representing the transfer for pyridine at the IPG gel/NPOE interface 

at pH 4.4, 4.9 and 6.4 (solid lines). All the voltammograms are referenced against TBA+ which was added to the 

gel phase in the electrochemical cell. The dotted line is the baseline measured in presence of TBA+ only. (DPV 

parameters: modulation amplitude 50 mV, modulation time 60 ms, interval time 400 ms, step potential 2 mV). 

 

As shown in Figure 7, the experimental results obtained using DPV at different 

aqueous pHs can be used to draw the ionic partition diagrams for pyridine (Figure 7a) and for 

2,4-dinitrophenol (Figure 7b). For 2,4-dinitrophenol, the processes describing the transfer are 

similar to the ones described above. For pH values below the pKa, 2,4-dinitrophenol is in its 

neutral form (DnpH). Present in the organic phase, it behaves as an ionophore for proton, the 

assisted proton transfer is thus described as a transfer by interfacial dissociation (TID)35, the 

potential shifts by 59 mV/pH unit. For pH values higher than the pKa, the transfer of the 

deprotonated drug (Dnp-) is observed and the transfer potential remains independent of the 

pH. 

 

pH 4.9 

pH 6.4 

pH 4.4 

TBA+ 
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Figure 7: Ionic partition diagrams of (a) pyridine PY (0.6 mM) and (b) 2,4-dinitrophenol DNP (1.13 mM) at the 

IPG gel/NPOE interface. The dotted lines show the aqueous pKa value of each compound under study. Equations 

for lines 1, 2 and 3 are displayed in the text. 

 

For the monobase pyridine, the diagram in Figure 7a shows that, for pH values below 

the pKa, the transfer potential measured for the protonated drug remains constant. We can thus 

obtain the values of the standard transfer potential, the Gibbs energy of transfer, and the 
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standard partition coefficient of the ionized forms from the DPV and Equations (7.22) and 

(7.23). 

0,w o

w 0' tr
o

G
zF

→
ΔΔ =φ        (7.22)

 
0,w o

0 trlog
2.3
GP

RT

→
Δ= −        (7.23) 

For the monoacid 2,4-dinitrophenol (Figure 7b) the values of the standard Gibbs energy of 

transfer and standard partition coefficient of the ionized form can be obtained for pH values 

higher than the pKa and from the DPV and Equations (7.22) and (7.23) as well. The 

thermodynamic data obtained for the two drugs are summarized in Table 2 and are 

comparable to literature values.  

Both diagrams shown in Figure 7 illustrate the shift in pKa for the vertical line (dotted 

lines), as predicted for lipophilic compounds. The effective pKa measured give access to the 

partition coefficient of the neutral species. For 2,4-dinitrophenol, knowing the aqueous acidic 

constant (pKa = 4.10), and measuring an effective pKa of 5.8, the above theory predicts a 

value of 1.7 for AHlog P  of the neutral compound, which is quite close to values measured by 

Ulmeanu et al.14 who used cyclic voltammetry and potentiometry. For pyridine, the Blog P  of 

the neutral compound is estimated to be 0.3, which is comparable to the value measured by 

Liu et al.5 who used potentiometry and the shake flask method. As summarized in Table 2, 

standard transfer potential values and standard partition coefficients for neutral as well as 

ionized species can be easily and rapidly deduced from our voltammetric measurements. One 

problem encountered when performing the measurements was that the reswelled gel would 

dry faster under higher temperatures, thus disturbing the reproducibility of the measurements 

and slightly shifting the potential window compared to the baseline. Thus, measurements had 

to be done in a short time, to avoid the gel drying too much. The conception of a new and 
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closed setup, where water is constantly provided to reswell the gel would be a solution to this 

problem. 

 

Table 2: Thermodynamic data obtained for the transfer of ionizable compounds at the NPOE/water interface. 

 Pyridine 2,4-dinitrophenol 
pKa 5.16 (a) 4.1 (b) 

w 0'
o φΔ  / mV (in NPOE) 190 (*) -200 (*) 

0,w NPOE
trG →Δ  / kJ.mol-1  18.3 (*) -18.4 (*) 

0
NPOElog P  (ionised) -3.2 (*) -3.4 (*)  

-2.23 (b) 
NPOElog P  (neutral) 0.3 (*) 

0.26 (c) 
1.7 (*)  
2.0 (b) 

 
(a) according to Reymond et al.2, (b) according to Ulmeanu et al.14, (c) according to Liu et al.5, (*) according to 
this work 

 
 

5. Conclusions 

The electrochemical behavior of two ionizable drugs has been investigated with a two-

electrode gel cell. This setup offers a fast and easy way to measure standard transfer potential 

for simple permanent ions as well as for ionizable drug compounds, as preparation of the 

electrochemical cell is simple, there is no need to adjust the pH of aqueous phase as it is 

determined by a commercial IPG gel. In addition, results obtained with this two-electrode 

setup are comparable to those obtained with classical L/L systems and it is relevant to notice 

that only small amounts of organic phase, hence of drugs, were needed. The values of the 

standard transfer potential, the Gibbs energy of transfer, and the partition coefficients for the 

ionized and neutral forms of these drugs are evaluated by differential pulse voltammetry. This 

technique has proven to be superior to cyclic voltammetry for monitoring ion transfer, 

especially when the peak is close to the limit of the potential window, as is often the case for 

extreme pH values. The experimental results are presented in the form of ionic partition 

diagrams that allow predicting which form of an ionizable solute will transfer across the L/L 
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interface under given conditions of potential and pH. From the pH–potential diagram, it is 

possible to evaluate the log(P) of the neutral species from the shift of pKa observed. Studies 

on drug transfer mechanisms are of great significance for the understanding of L/L interfaces 

and drug disposition.  

This initial study was done with the perspective to integrate an on-line extraction of 

proteins and peptides during the OFFGEL electrophoresis of proteins or peptides, to allow a 

continuous loading of the sample while avoiding protein precipitation or aggregation. Once 

the micro-electrochemical system validated for ionizable compounds, the next step would be 

to investigate the transfer of proteins and peptides across the liquid-liquid interface. 
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In the present work, two systems have been designed for isoelectric focusing of 

proteins and peptides. The main objectives were to design, characterize and validate these 

devices for the prefractionation of biological samples. 

The first device is a multicompartment unit for OFFGEL IEF, using commercial 

immobilized pH gradient gel strips, with the advantage of allowing the direct recovery in 

solution of fractionated sample. This feature is of high relevance, considering that the 

focusing step is used only as a prefractionation step, and that further analyses require liquid 

fractions, namely liquid chromatography or mass spectrometry. The design of this device was 

inspired from computer simulation results.  

The numerical calculations modeled the isoelectric focusing of peptides in an 

OFFGEL device. The evolution of the peak width and focusing time was studied as a function 

of charge gradient at pI. The trends observed allowed predicting the peak width for focused 

peptides from three proteomes. This allowed drawing a conclusion on the well width in the 

multicompartment device, in order to obtain high resolution separation of peptides: it was 

shown that wells of 6-7 mm width should lead to the recovery of peptides in two wells at 

most. In addition to the design of a separation unit, the simulations allowed a better 

understanding of the kinetics, by visualizing the two processes underlying OFFGEL IEF: the 

separation of peptides in the gel, and the diffusion into the solution. 

The homemade OFFGEL separation cell was then tested in terms of pH 

reproducibility, loading capacity for proteins, resolution of the separation of peptides and 

separation of E. coli protein extract. The pH measured in the liquid fractions showed a good 

reproducibility, thus also demonstrating an efficient buffering of the solution, propitious for 

high resolution IEF. A loading of ~6 mg of proteins was estimated to be the limit of loading 

for this device; decrease in resolution and separation quality should be expected when 
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applying a higher quantity of sample. This value of loading is dependent on the quality of the 

sample, the voltage program and the duration of voltage program. The fractionation of 

peptides with this device was then validated and showed a good resolution, with only few 

peptides being recovered in two fractions. The application of this device for the 

prefractionation of a more complex sample was finally validated.  

One direction also explored in this thesis was the integration of OFFGEL IEF in a 

proteomics workflow. The device was used to separate peptides generated from protein 

digest. Each fraction was then subjected to chemical tagging. The information obtained from 

the OFFGEL IEF (pI) and from the chemical tagging (number of cysteines) could be 

combined to enhance protein identification by peptide mass fingerprinting. Results show that 

the pI is a powerful tool for eliminating false positive identifications, and that OFFGEL IEF is 

thus of high relevance as a first dimension separation. This study also pointed out the need for 

high resolution IEF of peptides, as well as more sophisticated pI calculation algorithms, in 

order to use the pI information to validate/filter peptide identifications. The chemical labeling 

was shown to enhance identification scores. The development of new TiO2 matrices for 

MALDI-MS analysis and chemical labeling opens new possibilities for peptide analysis. 

More experiments on more complex mixtures would show the high-throughput of the method 

proposed. 

The other technical development concerns the design of a completely gel-free 

membrane-sealed device for prefractionation of biological mixture. The original aspect of the 

device is the possibility of double configuration all-in-one device: one configuration for the 

focusing (the membrane allows liquid flowing), and one for the collection of fractions at the 

end of focusing (the membrane seals the compartments, making each of them independent 

from one another). Focusing in this unit necessitates the use of carrier ampholytes to form and 

maintain the pH gradient. The device was characterized in terms of pH formation and 
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stability. The establishment of the pH gradient is fast (15 min), and is a good indication to 

estimate the separation time needed. The separation of human cancer cells and E. coli protein 

extract validates the use of this gel-free device for prefractionation of proteomes. The 

separation is fast (one hour ensures already a good separation) compared to the long time 

required with the OFFGEL device (6 hours at least). However, the quality of the separation is 

probably not comparable: this device is predicted to be more suited for prefractionation of 

proteins than for high resolution fractionation of peptides, though this needs to be confirmed. 

However, both devices require small sample volumes (~1 mL), are compact and easy of use. 

The last part of this work was devoted to the design of an electrochemical cell for the 

study of the transfer of ionizable molecules across the interface between two immiscible 

phases: an aqueous phase (IPG gel reswelled in water) and an organic phase (NPOE). The 

three-electrode cell was validated for the transfer of pyridine and 1,4-dinitrophenol. A future 

work would be to use this cell for the transfer of peptides or proteins, with the ultimate goal to 

perform online extraction of proteins/peptides during IEF, to increase sample loading and 

allow continuous separation. 

One interesting perspective concerning the use of OFFGEL IEF is the isolation and 

detection of post-translational modifications (PTMs), namely phosphorylated peptides and 

acetylated peptides. Indeed, the use of pI for the validation/filtering or peptides has shown to 

be a powerful tool to provide with more accurate identifications. However, this 

physicochemical property has not yet been exploited to its full potential. Some groups have 

already investigated on the fact that a PTM induces pI shifts, which can be used to isolate a 

subpopulation of peptides by IEF, namely phosphopeptides. But this approach could be used 

for any chemical modification of the peptide.  

In the example of phosphopeptides, the phosphorylation (covalent attachment of 

negatively charged phosphate groups mainly on the neutral hydroxyl groups of serines, 
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threonines and tyrosines) inherently decreases the pI of a peptide compared to the non-

phosphorylated peptide, but there is no clear cut off between phosphorylated (PP)-peptides 

and non-phosphorylated (non-PP)-peptides, because of the variable numbers of acidic 

residues D and E in a peptide, which mask this difference. To induce a higher pI difference, 

the methylation reaction is used. Indeed, it transforms the acid residues in a peptide (glutamic 

acid, aspartic acid and C-terminus) into methyl esters. The pI difference between methylated 

PP-peptides (pI < 7.4) and methylated non-PP-peptides (pI > 9) can then be used to isolate 

phosphorylated peptides from others by high resolution IEF. 

 

 

Figure 1: Calculated pI values for BSA tryptic peptides, from Xu et al. (Journal of Proteome Research 2007, 6, 

1153-1157). 
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Appendix I: Buffer capacity of ampholytes 

 

The buffer capacity β is defined as the amount of acid or base necessary to change the pH by 

one unit. If a concentration of base Bc  is added, β is written as: 

  dβ=
d(pH)

Bc         (I.1) 

The higher the buffer capacity of an ampholyte, the better its buffering power (meaning the 

change in pH is not so much affected by the addition of acid or base).  

 

Monovalent ampholytes 

If we consider a monovalent ampholyte: 

AH    +-A + H  

The dissociation constant can be written as follows:  

  1
A H

AH

c c
K

c
− +=         (I.2) 

Noting the total concentration of the ampholyte, tot AH A
c c c −= + , and combining with the 

dissociation constant, we can derive:  

  ( )1 1/totA H
c K c c K− += +       (I.3) 

  ( )1/AH totH H
c c c c K+ += +       (I.4) 

The charge balance of the monoacid, to which a certain amount of base (for example NaOH) 

is added, follows as:  

  +H Na A OH
c c c c+ − −+ = +       (I.5) 

For pH between 4 and 10, the dissociation of water is negligible, with respect to the 

concentration of the monoacid. Equation (I.5) is thus simplified as: 

1K
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  B Na A
c c c+ −= =        (I.6) 

As written in equation (I.3), the concentration of base is thus: 

  1

1

tot
B

H

K cc
c K+

=
+

        (I.7) 

Thus the buffering capacity can be calculated by deriving the previous equation: 

  
( )

1
2

1

dβ= ln10
d(pH)

totB H

H

K c cc

c K

+

+

=
+

      (I.8) 

The maximal buffer capacity is given by the condition dβ 0
d(pH)

= , which gives only one 

solution: 1H
c K+ =  

The maximal buffer capacity for a monovalent ampholyte is thus: 

  mono
ln10β

4
totc=        (I.9) 

And the maximal molar buffer capacity is: 

  mono
ln10B

4
=         (I.10) 

 

Bivalent ampholytes 

If we consider a biprotic ampholyte:  

+
2AH    +AH + H  

AH    +-A + H  

The two dissociation constants associated to these reactions can be written as follows: 

2

1
AH H

AH

c c
K

c
+

+

=          (I.11) 

2
A H

AH

c c
K

c
− +=         (I.12) 

From the dissociation constants, we can derive: 

1K

2K
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2

1/AHAH H
c c c K+ +=        (I.13) 

  2 /AHA H
c K c c− +=        (I.14) 

The total concentration totc of the ampholyte is noted: 

  
2

tot AHAH A
c c c c+ −= + +        (I.15) 

By adding the two equations together with AHc  to obtain the total concentration, the 

concentration of the three species can be deduced: 

  ( )
2

2 2
1 1 2/totAH H H H

c c c c c K K K+ + + += + +     (I.16) 

  ( )2
1 1 1 2/AH totH H H

c c K c c c K K K+ + += + +     (I.17) 

  ( )2
1 2 1 1 2/totA H H

c K K c c c K K K− + += + +     (I.18) 

The charge balance for the ampholyte solution to which a certain amount of base Bc  is added, 

can be written as (if neglecting water dissociation): 

  
2

B AH A
c c c+ −+ =        (I.19) 

Combining Equation (I.16) and Equation (I.18), the base concentration can be expressed as: 

( )2
1 2

2
1 1 2

tot H
B

H H

c K K c
c

c c K K K
+

+ +

−
=

+ +
      (I.20) 

Differentiation of Bc  leads toβ :  

  
( )

( )
( )

2
1 1 2 2

22
1 1 2

ln10 4dβ
d p

tot H H HB

H H

c K c K K c K cc
H c c K K K

+ + +

+ +

+ +
= =

+ +
  (I.21) 

At the isoelectric point, we obtain the following expression for the molar buffer capacity: 

  i
1 2

ln10B
1 / 4K K

=
+

       (I.22) 

The molar buffer capacity for a monovalent ampholyte was shown to be monoB ln10 / 4= . 

Division of Equation (I.22) by Equation (I.10) gives the relative molar buffer capacity at the 
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isoelectric point, i.e. the capacity in units of the maximum molar buffer capacity of a 

monovalent ampholyte: 

  i,rel
1 2

4B
1 / 4K K

=
+

       (I.23) 

This ratio must be smaller than 2, because the bivalent ampholyte cannot be a better buffering 

ampholyte than the monovalent ampholyte. This leads to the conditions: 

  1 24K K≥   and  p log 4 0.6KΔ ≥ ≈     (I.24) 

where 1pK  and 2pK  are the dissociation constants of the acid and basic groups, respectively. 

The buffer capacity of carrier ampholytes at and near their isoelectric point is important, 

because they should exhibit a buffer action stronger than that of the proteins and therefore 

dictate the pH gradient. 
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Appendix II: Table of pKa 

 

Table 1: pKa values of amino acids, C-terminus and N-terminus used in the calculations of peptide isoelectric 

points, taken from1 

Amino acid C-ter Side chain N-ter 
Ala 2.33 NA 9.71 
Arg 2.03 9.00 12.10 
Asn 2.16 NA 8.73 
Asp 1.95 9.66 3.71 
Cys 1.91 10.28 8.14 
Gln 2.18 NA 9.00 
Glu 2.16 4.15 9.58 
Gly 2.34 NA 9.58 
His 1.70 6.04 9.09 
Ile 2.26 NA 9.60 

Leu 2.32 NA 9.58 
Lys 2.15 10.67 9.16 
Met 2.16 NA 9.08 
Phe 2.18 NA 9.09 
Pro 1.95 NA 10.47 
Ser 2.13 NA 9.05 
Thr 2.20 NA 8.96 
Trp 2.38 NA 9.34 
Tyr 2.24 10.10 9.04 
Val 2.27 NA 9.52 

 

 

 
 
1. CRC Handbook of Chemistry and Physics. 87th ed.; CRC Press: 2006-2007. 
 
 



  Appendix II. Table of pKa 
 

 234

 



  Appendix III. Numerical parameters 
 

 235

 

Appendix III: Numerical parameters 

 

Numerical mesh size and Peclet number 

A linear algorithm was used with a time step of 20 s (0.09 % error compared to 0.1 s time 

step). The mesh size ranges from 200 to 300 μm (0.22 % to 0.77 % error respectively, 

compared to 50 µm), it has been reduced to 10 μm at the corners of the wells to take into 

account the edge effects (i.e. the over intensity of the flux at the corners). The migration 

Peclet number, defined as the ratio of the migration rate to the diffusion rate (
  
Pem =

vm
D / δ

), 

ranges from 80 to 120. This value is at the limit of the acceptable range defined previously 53. 

If the Peclet parameter is for example too high, it means that, on a characteristic length, the 

migration term is too high compared to the diffusion term (which is for example the case for 

highly charged species far from the pI). An increasing value of the Peclet above the typical 

value of 100 leads progressively to inaccuracy, and later to instability of the calculations. 
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