
Temporal Streaming of Shared Memory

Thomas F. Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim,

Anastassia Ailamaki and Babak Falsafi

Computer Architecture Laboratory (CALCM)

Carnegie Mellon University

http://www.ece.cmu.edu/~puma2

Abstract

Coherent read misses in shared-memory multiprocessors

account for a substantial fraction of execution time in many

important scientific and commercial workloads. We propose

Temporal Streaming, to eliminate coherent read misses by

streaming data to a processor in advance of the corresponding

memory accesses. Temporal streaming dynamically identifies

address sequences to be streamed by exploiting two common

phenomena in shared-memory access patterns: (1) temporal

address correlation—groups of shared addresses tend to be

accessed together and in the same order, and (2) temporal stream

locality—recently-accessed address streams are likely to recur.

We present a practical design for temporal streaming. We

evaluate our design using a combination of trace-driven and

cycle-accurate full-system simulation of a cache-coherent

distributed shared-memory system. We show that temporal

streaming can eliminate 98% of coherent read misses in scientific

applications, and between 43% and 60% in database and web

server workloads. Our design yields speedups of 1.07 to 3.29 in

scientific applications, and 1.06 to 1.21 in commercial workloads.

1. Introduction

Technological advancements in semiconductor fabrication

along with microarchitectural and circuit innovation have led to

phenomenal increases in processor speed over the past decades.

During the same period, memory (and interconnect) speed has not

kept pace with the rapid acceleration of processors, resulting in an

ever-growing processor/memory performance gap. This gap is

exacerbated in scalable shared-memory multiprocessors, where a

cache-coherent access often requires traversing multiple cache

hierarchies and incurs several network round-trip delays.

There are a myriad of proposals for reducing or hiding the

coherence miss latency. Techniques to relax memory order [1,10]

have been shown to hide virtually all of the coherent write miss

latency. In contrast, prior proposals to mitigate the impact of

coherent read misses have fallen short of effectively hiding the

read miss latency. Techniques targeting coherence optimization

(e.g., [13,15,18,19,21,22,29]) can only hide part of the read

latency.

Prefetching [26] or forwarding [17] techniques seek to hide the

entire cache (read) miss latency. These techniques have been

shown to be effective for workloads with regular (e.g., strided)

memory access patterns. Unfortunately, memory access patterns in

many important commercial [3] and scientific [23] workloads are

often highly irregular and not amenable to simple predictive and

prefetching schemes. As such, coherent read misses remain a key

performance-limiting bottleneck in these workloads [2,23].

Recent research [3] advocates fetching data in the form of

streams—i.e., sequences of cache blocks that occur together—

rather than individual blocks. Streaming not only enables accurate

data fetching through correlating a recurring sequence of

addresses, but also significantly enhances fetch lookahead

commensurately to the sequence length. These results indicate that

streaming can hide the read miss latency even in workloads with

long chains of dependent cache misses (e.g., online transaction

processing, OLTP). Unfortunately, the prior proposal [3] for

generalized streaming requires a sophisticated hierarchical

compression algorithm to analyze whole program memory address

traces, which may only be practical when run offline and is

prohibitively complex to implement in hardware.

In this paper, we propose Temporal Streaming, a technique to

hide coherent read miss latency in shared-memory multiproces-

sors. Temporal streaming is based on the observation that recent

sequences of shared data accesses often recur in the same precise

order. Temporal streaming uses the miss history from recent

sharers to extract temporal streams and move data to a subsequent

sharer in advance of data requests, at a transfer rate that matches

the consumption rate. Unlike prior proposals for streaming [3] that

require persistent stream behavior throughout program execution

to enable offline analysis, temporal streaming can exploit streams

with temporal (but not necessarily persistent) behavior by identi-

fying streams on the fly directly in hardware.

Through a combination of memory trace analysis and cycle-

accurate full-system simulation [12] of a cache-coherent distrib-

uted shared-memory system (DSM) running scientific, OLTP

(TPC-C on DB2 and Oracle) and web server (SPECweb on

Apache and Zeus) workloads, we contribute the following.

• Temporal address correlation & stream locality: We inves-

tigate the inherent properties of our workload suite, and show

that (1) shared addresses are accessed in repetitive sequences,

and (2) recently followed sequences are likely to recur system-

wide. More than 93% of coherent read misses in scientific

applications and 40% to 65% in commercial workloads follow

precisely a recent sequence.

• Temporal streaming engine: We propose a design for tempo-

ral streaming with practical hardware mechanisms to record

and follow streams. Our design yields speedups of 1.07 to

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147931656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3.29 in scientific applications, 1.11 to 1.21 in online transac-

tion processing workloads, and 1.06 in web server work-

loads.

The rest of this paper is organized as follows. We introduce

temporal streaming in Section 2, and show how to exploit it to

hide coherent read latency. Section 3 presents the Temporal

Streaming Engine, our hardware realization of temporal stream-

ing. We describe our evaluation methodology in Section 4, and

quantitatively evaluate the temporal streaming phenomena and

our hardware design in Section 5. We present related work in

Section 6 and conclude in Section 7.

2. Temporal Streaming

In this paper, we propose Temporal Streaming, a technique to

identify and communicate streams of shared data dynamically in

DSM multiprocessors. The objective of temporal streaming is to

hide communication latency by streaming data to consuming

nodes in advance of processor requests for the data. Unlike

conventional DSM systems, where shared data are communi-

cated throughout the system individually, temporal streaming

exploits the correlation between recurring access sequences to

communicate data in streams. While temporal streaming applies

to generalized address streams, in this paper we focus on coher-

ent read misses because they present a performance-limiting

bottleneck in many workloads and their detrimental effect is

aggravated as cache sizes increase [2].

Temporal streaming exploits two properties common in

shared memory access patterns: (1) temporal address correla-

tion, where groups of shared addresses tend to be accessed

together and in the same order, and (2) temporal stream locality,

where recently-accessed address streams are likely to recur. In

this paper, we use the term temporal correlation to encompass

both properties.

Temporal address correlation arises primarily from shared

data access patterns. When data structures are stable (although

their contents may be changing), access patterns repeat, and

coherence miss sequences exhibit temporal address correlation.

Thus, temporal address correlation can be found in accesses to

generalized data structures such as linked-data structures (e.g.,

lists and trees) and arrays. In contrast, spatial or stride locality,

commonly exploited by conventional prefetching techniques,

rely on a data structures’ layout in memory which is only charac-

teristic of array-based data structures.

Temporal stream locality arises because recently accessed

data structures are likely to be accessed again; therefore address

sequences that were recently followed are likely to recur. In

applications with migratory sharing patterns—most commercial

and some scientific applications—this type of locality occurs

system-wide as the migratory data are accessed in the same way

by all nodes.

Figure 1 illustrates an example of temporal streaming in a

DSM. Node i incurs coherent read misses and records the

sequence of misses {A,B,C,D,E}, which we refer to as its coher-

ence miss order. We define a stream1 to be a sub-sequence of

addresses in a node’s order. Node j later misses on address B, and

requests the data from the directory node. The directory node

responds to this request through the baseline coherence mecha-

nism, and additionally requests a stream (following B) from the

most recent consumer, Node i. We call the initial miss address, B,

a stream head. Node i looks up address B in its order and

assumes that requests to the subsequent addresses {C,D,E} are

likely to follow. Thus, it forwards the stream {C,D,E} to Node j.

Upon receipt of the stream, Node j retrieves the data for each

block. Subsequent accesses to these addresses hit locally and

avoid long-latency coherence misses.

Temporal streaming requires three capabilities: (1) recording

the order of a node’s coherent read misses, (2) locating a stream

in a node’s order and (3) streaming data to the requesting proces-

sor at a rate that matches its consumption rate.

3. The Temporal Streaming Engine

We propose the Temporal Streaming Engine (TSE), a hard-

ware realization of temporal streaming, to stream cache blocks to

consuming nodes in advance of processor requests. TSE exploits

temporal correlation in coherent read misses to reduce or elimi-

nate processor stalls that result from long-latency coherent reads.

 Figure 2 shows a diagram of a DSM node enhanced with

TSE. The components marked with a grayscale gradient are

added or modified by TSE to furnish the baseline node with the

three capabilities required for temporal streaming.

To record a node’s order, each node stores the sequence of

coherent read miss addresses in a circular buffer, called the

coherence miss order buffer (CMOB). Because the order may

grow too large to reside on chip, the CMOB is placed in main

memory. To locate streams in a node’s order, TSE maintains a

CMOB pointer corresponding to the most recent miss for each

cache block in the block’s directory entry. The stream engine

fetches and manages both stream addresses and data. The

streamed value buffer (SVB) is a small fully-associative buffer

that stores streamed cache blocks. On an L1 cache miss, the SVB

is examined in parallel with the L2 cache to locate data.

The following subsections present the TSE components in

detail. In Section 3.1, we present the process for recording the

orders. Section 3.2 describes the process of looking up and

1. Throughout this paper, we use “stream” as a noun to refer to a

sequence of addresses, and “stream” as a verb to refer to moving a

sequence of either addresses or data.

Node j

Find B

Directory NodeNode i

Miss B

Hit C
Hit D

Req B

Stream { , }C D,E

Miss A

Miss B

Miss C
Miss D

Locate B

Miss E

Fetch C,D,E
D
E

O
rd

e
r

Retrieve

stream

FIGURE 1: Temporal streaming.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

forwarding streams upon a coherent read miss. Finally, we detail

the operation of the stream engine in Section 3.3.

3.1 Recording the Order

To record the coherent read miss order, each node continu-

ously appends the miss addresses, in program order, in its

CMOB. Useful streamed blocks (i.e., resulting in accesses that

hit in the SVB) are also recorded in the CMOB, as they replace

coherent read misses that would have occurred without TSE.

Much like prior proposals for recording on-chip generated meta-

data in memory (e.g., [9]), TSE packetizes the miss addresses in

the form of cache blocks and ships them off chip to the CMOB.

In Section 5.4, we present results indicating that because the

CMOB entries are small relative to cache block sizes and

CMOBs only record coherent read misses, this approach has a

negligible impact on traffic through a node.

As misses are recorded, the recording node sends the corre-

sponding CMOB pointer to the directory node for the block. The

CMOB pointers stored in the directory allow TSE to find the

correct CMOB locations efficiently given a stream head. While

basic temporal streaming requires that only one CMOB pointer is

recorded for each block, the TSE may choose to record pointers

from the CMOBs of a few recent consumer nodes to enhance

streaming accuracy (see Section 3.3).

Figure 3 illustrates the recording process. (1) The processor at

the recording node issues an off-chip read for address X. (2)

When the read request arrives at the protocol controller on the

directory node, the directory identifies the miss as a coherent

read miss. The directory node annotates the fill reply to indicate

that the miss is a coherent read miss. (3) When the load instruc-

tion that incurred the coherence miss retires, the recording node

appends the miss address to its CMOB. TSE appends addresses

only upon retirement to ensure that the CMOB is properly

ordered and does not contain addresses for wrong-path specula-

tive reads. (4) Finally, the recording node informs the directory

of the CMOB location of the newly appended address. This

pointer update requires a separate message (as opposed to piggy-

backing on the original read request) because the recording node

does not know if or where each address will be appended until

the load instruction retires.

The required CMOB capacity depends on the size of the

application’s active shared data working set, and may be quite

large. Therefore, we place the CMOB in a private region of main

memory which also allows us to tailor its capacity to fit an appli-

cation’s requirements. TSE can tolerate the resulting high access

latency to CMOB in memory because write accesses (to append

the packetized blocks of addresses to the order) occur in the

background and are off the processor’s critical path and read

accesses (to locate or follow streams) are either amortized (on the

initial miss) or overlapped through streaming lookahead. We

report CMOB capacity requirements for our application suite in

Section 5.4.

3.2 Finding and Forwarding Streams

TSE uses the information in each node’s CMOB to identify

candidate addresses for streaming. When a node incurs a coher-

ent read miss, TSE locates one or more streams on CMOBs

across the system, and forwards them to the stream engine at the

requesting node.

Figure 4 illustrates the procedure to find and forward a

stream. (1) A load to address X causes Node i to request the

corresponding cache block from the directory node. (2) When the

read request message arrives, the directory node detects that the

miss is a coherent read miss, and retrieves the CMOB pointer for

X from the directory. The CMOB pointer identifies that Node j

recently appended X to its CMOB, and where on the CMOB X

was appended. The directory node sends a stream request,

including the corresponding CMOB pointer, to the streaming

Node j indicated by the directory. (3) The protocol controller at

Node j reads a stream of subsequent addresses from its CMOB

starting at the entry following X (the contents of cache block X

have already been sent to Node i by the baseline coherence

mechanism), and forwards this stream to Node i. (4) When

Node i receives the stream, the addresses are delivered to the

stream engine.

There are several advantages to sending streams of addresses

across nodes, rather than streaming data blocks directly. First,

TSE does not require race-prone modifications to the baseline

FIGURE 2: The TSE hardware.

Interconnect

Directory

SVB

L2

Stream

Engine

Protocol

Controller

L1

 Memory

DSM node

with TSE

CMOB

Recording Node Directory Node

Load miss X Read X

Detect miss

is coherence

X

Coherence Fill X

Append

to CMOB

X

CMOB ptr update Update CMOB

pointer in

directory

1

2

3

4

FIGURE 3: Recording the order.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

cache coherence protocol. Second, streams of addresses do not

incur any coherence overhead, whereas erroneously-streamed

data blocks incur additional invalidation messages. Finally,

sending streams of addresses allows the stream engine to identify

temporal streams (i.e., consisting of temporally-correlated

addresses) which are likely to result in hits.

The directory management mechanisms in DSM offer a

natural solution for CMOB pointer storage and lookup. By

extending each directory entry with one or more CMOB pointers,

TSE enables random-access lookups within a CMOB; each

CMOB pointer in the directory includes a node ID and an offset

within the CMOB where the address is located, with the storage

overhead of (number of CMOB pointers) × (log2(nodes) +

log2(CMOB size)) bits. As such, CMOBs can be relatively large

structures (e.g., millions of entries) residing in main memory. In

contrast, prior proposals for prefetching based on recording

address sequences in uniprocessors (e.g., [25]) resort to complex

on-chip address hashing schemes and limited address history

buffers.

3.3 The Stream Engine

The stream engine manages and follows the streams that

arrive in response to coherent read misses. The stream engine

plays a role similar to stream buffers in prior proposals (e.g.,

[28]). Unlike these proposals, however, TSE’s stream engine

locates, compares and follows more than one stream (i.e., from

multiple recent consumers of the same addresses) for a given

stream head simultaneously. Comparing multiple streams helps

significantly to enhance streaming accuracy.

Figure 5 (left) depicts the anatomy of the stream engine. The

stream engine contains groups of FIFO queues that store streams

(with a common stream head), and comparators for checking if

FIFO heads within a group match. We call each group of FIFOs a

stream queue. Each stream queue also tracks the CMOB pointers

for the streams it stores to facilitate requesting additional

addresses when following a stream.

The stream engine continuously compares the FIFO heads in

each group. In the common case, the FIFO heads will match,

indicating high temporal correlation (i.e., the stream is likely to

recur), in which case the stream engine proceeds to retrieve

blocks. Upon retrieving the blocks, the corresponding address

entries in the FIFO queues are removed. When the FIFO heads

disagree, indicating low temporal correlation, the stream engine

stalls further data requests to avoid wasting bandwidth. However,

the engine continues to monitor all off-chip memory requests to

check for matches against the stalled FIFO heads. Upon a match,

the processor is likely repeating the miss sequence recorded in

the matching FIFO. Therefore, the stream engine discards the

contents of all other (disagreeing) FIFOs and resumes fetching

data using only the selected stream. We have investigated

complex schemes that examine more than just the FIFO heads,

but found they provide no advantage.

When a stream queue is half empty, the stream engine

requests additional addresses from the source CMOB. The ability

to follow long streams by periodically requesting additional

addresses distinguishes TSE from prefetching approaches that

only retrieve a constant number of blocks in response to a miss

[25]. Without this ability, the system will incur one miss for each

group of fetched blocks, even if the entire miss sequence exhibits

temporal address correlation.

Figure 5 (right) depicts the anatomy of the SVB, a small

fully-associative buffer for storing streamed data. Each SVB

entry includes a valid bit, address, data, and the identity of the

queue from which it was streamed. When a processor access hits

in the SVB, the entry is moved to the L1 data cache, and the

stream engine is notified to retrieve a subsequent cache block

from the corresponding stream queue. The SVB entries contain

only clean data, and are invalidated upon a write to the corre-

sponding block by any (including the local) processor. SVB

entries are replaced using an LRU policy.

The SVB serves a number of purposes. First, it serves as

custom storage for stream data to avoid direct storage in, and

inadvertent pollution of, the cache hierarchy when the addresses

are not temporally correlated. Second, it allows for direct book-

keeping and management of streamed data and obviates the need

for modifications to the baseline cache hierarchy. Finally, it

serves as a window to mitigate small (e.g., a few cache blocks)

deviations in the sequence of stream accesses (e.g., due to control

flow irregularities in programs) by the processor. By presenting

multiple blocks simultaneously from a stream in a fully-associa-

tive buffer, SVB allows the processor to skip or request cache

blocks slightly out of stream order.

The SVB size dictates the maximum allowable stream looka-

head—i.e., a constant number of blocks outstanding in the

SVB—for each active stream. Ideally, the stream engine retrieves

blocks such that they arrive immediately in advance of consump-

tion by the processor. Therefore, effective streaming requires that

1

Node i

Read

Stream

from CMOB

 Miss X

Directory Node Node j

Address Stream

Detect coh.

miss, read

CMOB pointer

2

3

Insert in

stream

queue

4

FIGURE 4: Locating and forwarding address streams.

addrv

Stream Engine

..
.

..
.

data Q id

Streamed Value Buffer

addr data Q idv

addr data Q idv

Stream queue

=
XYZ.

XYZ.

=
ABC.

ABC.

...

FIGURE 5: Stream engine and streamed value buffer.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

the SVB holds enough blocks (i.e., allows for enough lookahead)

to satisfy a burst of coherent read requests by the processor while

subsequent blocks are being retrieved. We explore the issues

involved in choosing the lookahead throughout Section 5. We

show that in practice a small (e.g., tens of entries) SVB allows

for enough lookahead to achieve near-optimal coverage while

enabling quick lookup.

4. Methodology

We quantify temporal address correlation and stream locality,

and evaluate our proposed hardware design across a range of

scientific and commercial applications. We collect our results

using a combination of trace-driven and cycle-accurate full-

system simulation of a distributed shared-memory multiproces-

sor using SIMFLEX [12]. SIMFLEX is a simulation framework

that uses modular component-based design and rigorous statisti-

cal sampling to enable the development of complex models and

ensure representative measurement results with fast simulation

turnaround. SIMFLEX builds on Virtutech Simics [20], a full

system simulator that allows functional emulation of unmodified

commercial applications and operating systems. SIMFLEX

furnishes Simics with cycle-accurate models of an out-of-order

processor core, cache hierarchy, microcoded coherence protocol

engine, multi-banked distributed memory, and 2D torus intercon-

nect. We implement a low-occupancy directory-based NACK-

free cache-coherence protocol.

We simulate a 16-processor distributed shared-memory

system with 3 GB of memory running Solaris 8. We implement

an aggressive version of the total store order memory consistency

model [1]. We perform speculative load and store prefetching as

described by Gharachorloo et al. [8], and speculatively relax

memory ordering constraints at memory barrier and atomic read-

modify-write memory operations [10]. We list other relevant

parameters of our system model in Table 1.
Table 2 describes the applications and parameters we use in

this study. We target our study at commercial workloads, but

include a representative group of scientific applications for

comparison. We choose scientific applications which are (1) scal-

able to large data sets, and (2) maintain a high sensitivity to

memory system performance when scaled. We include em3d [6],

an electromagnetic force simulation, moldyn [23], a molecular

dynamics simulation and ocean [30] current simulation.

We evaluate two database management systems, IBM DB2

v7.2 EEE, and Oracle 10g Enterprise Database Server, running

the TPC-C v3.0 online transaction processing workload.1 We use

an optimized TPC-C toolkit provided by IBM for DB2. For

Oracle, we developed and optimized our own toolkit. We tuned

the number of client processes and other database parameters in

our detailed timing model and chose the client and database

configuration that maximized baseline system performance for

each database management system. Client processes are config-

ured with no think time, and database data and log files are

striped across multiple disks to eliminate I/O bottlenecks.

We evaluate the performance of WWW servers running the

SPECweb99 benchmark on Apache HTTP Server v2.0 and Zeus

Web Server v4.3. We simulate an 8-processor client system that

sustains 16,000 simultaneous web connections to our 16-proces-

sor server via a simulated ethernet network. We run the client

processors at a fixed IPC of 8.0 with a 4 GHz clock and provide

sufficient bandwidth on the ethernet link to ensure that neither

client performance nor available network bandwidth limit server

performance. We collect memory traces and performance results

on the server system only.

Our trace-based analyses use memory access traces collected

from SIMFLEX with in-order execution, no memory system

stalls, and a fixed IPC of 1.0. We analyze traces of at least ten

iterations for scientific applications. We warm commercial appli-

cations for at least 5,000 transactions (or completed web

requests) prior to starting traces, and then trace at least 500 trans-

actions. We use the first iteration of each scientific and the first

100 million instructions (per processor) of each commercial

application to warm trace-based simulations prior to measure-

ment.

Our timing results for the scientific applications are derived

from measurements of a single iteration started with warmed

cache, branch predictor, and CMOB state. We use iteration

runtime as our measure of performance.

Table 1. DSM system parameters.

Processing Nodes UltraSPARC III ISA

4 GHz 8-stage pipeline; out-of-order execution

8-wide dispatch / retirement

256-entry ROB, LSQ and store buffer

L1 Caches Split I/D, 64KB 2-way, 2-cycle load-to-use

4 ports, 32 MSHRs

L2 Cache Unified, 8MB 8-way, 25-cycle hit latency

1 port, 32 MSHRs

Main Memory 60 ns access latency

64 banks per node

64-byte coherence unit

Protocol Controller 1 GHz microcoded controller

64 transaction contexts

Interconnect 4x4 2D torus

25 ns latency per hop

128 GB/s peak bisection bandwidth

1. “Solaris”, “TPC”, “Oracle”, “Zeus”, “DB2” and other trademarks

are the property of their respective owners. None of the results pre-

sented in this paper should be construed to indicate the absolute or

relative performance of any of the commercial systems used.

Table 2. Applications and parameters.

Scientific Applications

em3d 400K nodes, degree 2, span 5, 15% remote

moldyn 19652 molecules, boxsize 17, 2.56M max interactions

ocean 514x514 grid, 9600s relaxations, 20K res., err. tol. 1e-07

Commercial Applications

Apache 16K connections, fastCGI, worker threading model

DB2 100 warehouses (10 GB), 64 clients, 450 MB buffer pool

Oracle 100 warehouses (10 GB), 16 clients, 1.4 GB SGA

Zeus 16K connections, fastCGI

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

For the commercial applications, we use a systematic

sampling approach developed in accordance with SMARTS [31].

SMARTS is a rigorous statistical sampling methodology, which

prescribes a procedure for determining sample sizes, warm-up,

and measurement periods based on an analysis of the variance of

target metrics (e.g., IPC), to obtain the best statistical confidence

in results with minimal simulation. We collect approximately 100

brief measurements of 400,000 cycles each. We launch measure-

ments from checkpoints with warmed caches, branch predictors,

and CMOBs, then run for 200,000 cycles to warm queue and

interconnect state prior to collecting statistics.

We use the aggregate number of user instructions committed

per cycle (i.e., user IPC summed over the 16 processors) as our

performance metric. We exclude system commits from this

metric because we cannot distinguish system commits that repre-

sent forward progress from those that do not (e.g., the idle loop).

We have independently corroborated Hankins et al.’s [11] results

that the number of user instructions per transaction in the TPC-C

workload remains constant over a wide range of database config-

urations (whereas system commits per transaction do not). Thus,

aggregate user IPC is proportional to database throughput.

5. Results

In this section, we investigate the opportunity for temporal

streaming and the effectiveness of the Temporal Streaming

Engine. Throughout our results, we report the effectiveness of

TSE at eliminating consumptions, which we define as read

requests that incur a coherence miss but are not a spin on a

contended lock or barrier variable. We exclude coherent read

misses that occur during spins because there is no performance

advantage to predicting or streaming them.

5.1 Opportunity to Exploit Temporal Correlation

Temporal streaming relies on temporal address correlation

and temporal stream locality to build and locate repetitive

streams. We begin our evaluation by quantifying the fraction of

consumptions that exhibit these phenomena.

When a stream of consumptions starting with address X

precisely matches the sequence of consumptions at the most

recent occurrence of X, there is perfect temporal address correla-

tion and stream locality. In practice, because the stream looka-

head keeps the streaming engine several blocks ahead of the

processor’s requests, TSE can also exploit imperfect correlation,

where there is a small reordering of addresses between the

current stream and the preceding order.

In this section, we investigate the fraction of consumptions

that occur in temporally-correlated streams as a function of the

degree of reordering between the processor’s consumption order

and that of the most recent sharer. We express reordering in terms

of temporal correlation distance, which we define as the distance

along the most recent sharer’s order between consecutive proces-

sor consumptions. For example, if an order is {A,B,C,D} and a

node has incurred miss C, then a subsequent miss to D yields a

temporal correlation distance of +1 (i.e., perfect correlation),

whereas a miss to A would correspond to a distance of -2.

Figure 6 shows the fraction of consumptions that exhibit

temporal correlation, for temporal correlation distances (which

corresponds roughly to stream lookahead) of up to ±16. All

scientific applications in our suite exhibit near-perfect correla-

tion, as they repeat the same data access pattern across all itera-

tions. The commercial applications access data structures that

change over time. Nevertheless, more than 40% of all consump-

tions in commercial applications are perfectly correlated, indicat-

ing that a significant portion of data structures and access

patterns remain stable. Allowing for reordering of up to eight

blocks increases the fraction to 49%–63% of consumptions.

These results indicate that temporal streaming has the potential to

eliminate nearly all coherent read misses in scientific applica-

tions, and almost half in commercial workloads.

5.2 Streaming Accuracy

Whereas accurate streaming improves performance by elimi-

nating consumptions, inaccurate streaming may degrade perfor-

mance, as a large proportion of erroneously streamed blocks can

saturate available memory or interconnect bandwidth. TSE

enhances stream accuracy by comparing several recent streams

with the same stream head. When the streams match, TSE

streams the corresponding blocks, whereas when they diverge,

TSE conservatively awaits an additional consumption to select

among the stream alternatives.

Figure 7 demonstrates the effectiveness of this approach for a

stream lookahead of eight cache blocks and no TSE hardware

restrictions (unlimited SVB storage, unlimited number of stream

queues, near-infinite CMOB capacity). Coverage is the fraction

of all consumptions that TSE correctly predicts and eliminates.

Discards are cache blocks erroneously forwarded, also presented

as a fraction of all consumptions. When TSE uses only a single

stream, and therefore has no mechanism to gauge stream accu-

racy, commercial applications suffer very high discard rates.

Although the commercial workload results in Figure 6 show that

the majority of consumptions exhibit temporal address correla-

tion, there remains a fraction that does not. Streaming on these

non-correlated addresses produces many discards, but yields

little coverage.

When TSE uses multiple streams, discards drop drastically to

40%–50% of total consumptions with minimal reduction in

coverage. Further increasing the number of compared streams

does not yield significant additional improvements, and does not

warrant the increase in complexity. We configure TSE to

compare two streams throughout the remainder of our results.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Temporal Correlation Distance (+/-)

C
u

m
.
%

 C
o

n
s

u
m

p
ti

o
n

s

Apache em3d
DB2 moldyn
Oracle ocean
Zeus

FIGURE 6: Opportunity to exploit temporal correlation.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

Effective streaming requires a stream lookahead sufficiently

high to enable the SVB to satisfy consumption bursts by the

processor. However, a stream lookahead higher than the required

for effective streaming may erroneously stream too many blocks

(i.e., discards) and degrade streaming accuracy. Figure 8 shows

the effect of the stream lookahead on discards. For the scientific

applications, which all exhibit near-perfect temporal correlation,

even a high stream lookahead results in few discards. For the

commercial applications, discards grow linearly with lookahead.

In contrast, TSE coverage grows only slightly with increasing

stream lookahead, as Figure 6 suggests. Thus, the ideal stream

lookahead is the minimum sufficient to satisfy consumption

bursts by the processor. We describe how to determine the value

for the stream lookahead in Section 5.6.

5.3 Sensitivity to SVB Size and Stream Queues

Figure 6 suggests that an application typically follows only a

single stream at a time. Were an application to interleave

consumptions from two different streams, our temporal correla-

tion measurement would classify them as uncorrelated accesses.

Intuitively, we do not expect interleaved streams, as they imply

the current consumer is interleaving the data access patterns of

two previous consumers, or from two moments in time. We

tested our intuition experimentally, and found no sensitivity to

the number of stream queues.

Nevertheless, providing multiple stream queues in a TSE

implementation compensates for the delays and event reorder-

ings that occur in a real system. Most importantly, additional

stream queues are necessary to avoid stream thrashing [28],

where potentially useful streams are overwritten with useless

streams from a non-correlated miss.

Our results show that applications typically follow one

perfectly correlated stream at a time. Thus, the required SVB

capacity in number of blocks is equal to the stream lookahead.

For a stream lookahead of eight, the required SVB capacity is

512 bytes. Figure 9 confirms that there is little increase in cover-

age when moving from a 512-byte to an infinite SVB. The small

increase in coverage results from the rare case of blocks that are

accessed long after they are retrieved. We choose a 32-entry

(2 KB) SVB because it offers near-optimal performance and is

easy to implement a low-latency fully-associative buffer of this

size.

5.4 CMOB Storage and Bandwidth Requirements

Effective streaming requires the CMOB on each node to be

large enough to record all the consumptions incurred by that

node until a subsequent sharer begins following the sequence. In

the worst case, for a system with 64-byte cache blocks and 6-byte

physical address entries in the CMOB, the CMOB storage over-

head is 11% of the aggregate shared data accessed by a node

before the sequence repeats. The directory overhead for CMOB

pointers grows logarithmically with CMOB size.

Figure 10 explores the CMOB storage requirements of our

applications. The figure shows the fraction of maximum cover-

age attained as the CMOB ranges in size up to 6 MB. TSE

achieves low coverage for the scientific applications until the

CMOB capacity matches the shared data active working set for

the problem sizes we simulate. For the commercial applications,

TSE coverage improves smoothly with increasing CMOB capac-

ity, reaching its peak at 1.5 MB. We also quantify the additional

processor pin bandwidth due to recording the order off chip to be

4%-7% for the scientific and less than 1% for the commercial

workloads.

0%

50%

100%

150%

200%

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

em3d moldyn ocean Apache DB2 Oracle Zeus

Benchmark & Number of Compared Streams

%
 C

o
n

s
u

m
p

ti
o

n
s

Discards

Coverage

220% 224% 239% 238%

FIGURE 7: TSE sensitivity to the number of compared streams.

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20 25
 Stream Lookahead

D
is

c
a

rd
s

(n
o

rm
.
to

 c
o

n
s

u
m

p
ti

o
n

s
)

Apache DB2 Oracle Zeus
em3d moldyn ocean

FIGURE 8: Effect of stream lookahead on discards.
Discards are normalized to true consumptions.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

Figure 11 shows the interconnect bisection bandwidth over-

head associated with TSE. Each bar represents the bandwidth

consumed by TSE overhead traffic (correctly streamed cache

blocks replace processor coherent read misses in the baseline

system one-for-one). The annotation above each bar indicates the

ratio of overhead traffic to traffic in the base system. The domi-

nant component of TSE’s bandwidth overhead arises from

streaming addresses between nodes.

The bandwidth overhead of TSE is a small fraction of the

available bandwidth in current multiprocessor systems. The HP

GS1280 multiprocessor system provides 49.6 GB/s interconnect

bisection bandwidth in a 16-processor 2D-torus configuration

[7]. Thus, the interconnect bandwidth overhead of TSE is less

than 7% of available bandwidth in current technology, and less

than 3% of bandwidth available in our DSM timing model.

5.5 Competitive Comparison

We compare TSE’s effectiveness in eliminating consumptions

against two previously-proposed prefetching techniques. We

compare TSE against a stride-based stream buffer [28], as stride

prefetchers are common in commercial microprocessors avail-

able today (e.g., AMD Opteron, Intel Xeon, Sun UltraSPARC

III). We implement an adaptive stride predictor that detects

strided access patterns if two consecutive consumption addresses

are separated by the same stride, and prefetches eight blocks in

advance of a processor request. Prefetched blocks are stored in a

small cache identical to TSE’s SVB. We also compare against the

Global History Buffer (GHB) prefetcher proposed by Nesbit and

Smith [25]. GHB was recently shown to outperform a wide

variety of other prefetching mechanisms on SPEC applications

[26]. In GHB, consumption misses are recorded in an on-chip

circular buffer similar to the CMOB, and are located using an on-

chip fully-associative index table. GHB supports several index-

ing options. We evaluate global distance-correlation (G/DC) as

advocated by [26], and global address correlation (G/AC), as this

is more similar to TSE. We use a 512-entry history buffer and

fetch eight blocks per prefetch operation. We compare to TSE

with a 1.5 MB CMOB and other parameters as previously

described. Because TSE targets only consumptions, we configure

the other prediction mechanisms to train and predict only for

consumptions.

Figure 12 shows that TSE outperforms the other techniques

by eliminating 43%-100% of consumptions. Because none of the

applications exhibit significant strided access patterns, the stride

prefetcher rarely prefetches, resulting in both low coverage and

low discards. Address-correlating GHB (G/AC) outperforms

distance correlation (G/DC) in terms of discards across commer-

cial applications, but falls short of TSE coverage because its 512-

entry consumption history is too small to capture repetitive

consumption sequences.

0%

50%

100%

150%

200%

5
1
2 2
k

8
k

in
f

5
1
2 2
k

8
k

in
f

5
1
2 2
k

8
k

in
f

5
1
2 2
k

8
k

in
f

5
1
2 2
k

8
k

in
f

5
1
2 2
k

8
k

in
f

5
1
2 2
k

8
k

in
f

em3d moldyn ocean Apache DB2 Oracle Zeus

Benchmark & SVB Size (in bytes)

%
 C

o
n

s
u

m
p

ti
o

n
s

Discards

Coverage

FIGURE 9: Sensitivity to SVB size. ‘inf’ indicates infinite storage.

FIGURE 10: CMOB storage requirements.

0%

20%

40%

60%

80%

100%

0

1
2

4
8

1
9
2

7
6
8 3
k

1
2
k

4
8
k

1
9
2
k

7
6
8
k

3
M

CMOB capacity per node (bytes)

%
 o

f
P

e
a

k
 C

o
v

e
ra

g
e

Apache DB2 Oracle Zeus

em3d moldyn ocean

29%

21%

57%

34%

41%

55%

 16%

0

1

2

3

4

e
m

3
d

m
o
ld

y
n

o
c
e
a
n

A
p
a
c
h
e

D
B

2

O
ra

c
le

Z
e
u
s

B
W

 O
v

e
rh

e
a

d
 (

G
B

/s
)

FIGURE 11: Interconnect bisection bandwidth
overhead. The annotation above each bar indicates the
ratio of overhead traffic to traffic in the base system.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

5.6 Streaming Timeliness

To eliminate consumptions effectively, streaming must both

achieve high coverage—to stream the needed blocks—and be

timely—so that blocks arrive in advance of processor requests.

Timeliness depends on the stream lookahead, the streaming rate

and the delay between initiating streaming and receiving the first

data. TSE matches the consumption rate to the streaming rate

simply by retrieving an additional block upon an SVB hit. Thus,

in this section we focus on the effects of the streamed data delay

and the stream lookahead.

Long temporally-correlated streams are insensitive to the

delay of retrieving their first few blocks, as TSE can still elimi-

nate most consumptions. Figure 13 shows the prevalence of

streams of various lengths for our applications. The scientific

applications are dominated by very long streams, hundreds to

thousands of blocks each. Timely streaming for scientific appli-

cations requires configuring a sufficiently high stream looka-

head. As Figure 8 shows, scientific applications exhibit low

discard rates, allowing us to configure very high lookaheads

without detrimental effects.

The commercial workloads obtain 30%-45% of their cover-

age from streams shorter than 8 blocks. Thus, the timely retrieval

of the beginning of streams may impact significantly the overall

performance. However, the data-dependent nature of the

commercial workloads [27] and instruction window constraints

may restrict the processor’s ability to issue multiple outstanding

consumptions. Whereas the processor may quickly stall, TSE can

retrieve all blocks within a stream in parallel, thereby eliminating

consumptions despite short stream lengths.

To verify our hypothesis, we measure the consumption

memory level parallelism (MLP) [4]—the average number of

coherent read misses outstanding when at least one is outstand-

ing—in our baseline timing model, and report the results in

Table 3. Our results show that, in general, the commercial appli-

cations issue consumptions serially. The latency to fill the

consumption miss that triggers the stream lookup is approxi-

mately the same as the latency to retrieve streams and initiate

streaming. Thus, streaming can begin at the time the processor

requests the first block on the stream without sacrificing timeli-

ness.

We determine the appropriate stream lookaheads for em3d

and moldyn by first calculating the rate at which consumption

misses would be issued in our base system if all coherent read

latency was removed. We then divide the stream retrieval round-

trip latency (i.e., 3-hop coherence miss latency) by the no-wait

consumption rate. For ocean, this simple approach fails because

all coherence activity occurs in bursts, as evidenced by its high

consumption MLP in the baseline system. To improve cache

locality, ocean blocks its computation, which, as a side effect,

groups consumptions into bursts. We set the stream lookahead to

a maximal reasonable value of 24 for ocean based on the number

of available L2 MSHRs in our system model.

There is relatively little sensitivity to stream lookahead in

commercial applications because of their low consumption MLP.

We found that a lookahead of eight works well across these

applications.

Table 3 shows the effect of streaming timeliness on TSE

coverage using both trace analysis and cycle-accurate simulation.

Trace Cov. indicates consumptions eliminated by TSE as

reported by our trace analysis. Full Cov. indicates consumptions

eliminated completely by TSE in the cycle-accurate simulation.

Partial Cov. indicates consumptions whose latency was partially

0%

50%

100%

150%

200%

250%

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

S
tr

id
e

G
/D

C

G
/A

C

T
S

E

em3d moldyn ocean Apache DB2 Oracle Zeus

Benchmark & Forwarding Technique

%
 C

o
n

s
u

m
p

ti
o

n
s

Coverage Discards

FIGURE 12: TSE compared to recent prefetchers. G/DC refers to distance-correlating Global History Buffer,
G/AC refers to address-correlating Global History Buffer.

0%

20%

40%

60%

80%

100%

0 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

Length (# of streamed blocks)

C
u

m
.
%

 o
f

A
ll
 H

it
s

Apache DB2 Oracle Zeus
em3d moldyn ocean

FIGURE 13: Stream length.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

covered by TSE—the processor issued a request while a

streamed value was still in flight.

TSE on the cycle-accurate simulator attains lower coverage

relative to the trace analysis because streams may arrive late—

after the processor has issued requests for the addresses in the

stream. With the exception of ocean, most of the trace-measured

coverage is timely (the consumptions are fully covered) in the

cycle-accurate simulation of TSE, while the remaining consump-

tions are partially covered. We measured that partially covered

consumptions hide on average 40% of the consumption latency

in commercial workloads, and 60%-75% in scientific applica-

tions. In the case of ocean, partial coverage is particularly high.

Even a stream lookahead of 24 blocks is insufficient to fully hide

all coherent read misses, as the communication bursts in ocean

are bandwidth bound.

5.7 Performance

We measure the performance impact of TSE using our cycle-

accurate full-system timing model of a DSM multiprocessor.

Figure 14 (left) illustrates the opportunity and effectiveness of

TSE at eliminating stalls caused by coherent read misses. The

base and TSE time breakdowns are normalized to represent the

same amount of completed work. Figure 14 (right) reports the

speedup achieved by TSE, with 95% confidence intervals for the

sample-derived commercial application results.

TSE eliminates nearly all coherent read stalls in em3d and

moldyn. TSE provides a drastic speedup of nearly 3.3 in commu-

nication-bound em3d. Despite high coverage, TSE eliminates

only ~40% of coherent read stalls in ocean, as the majority of

coherent read misses are only partially hidden. Although

partially covered consumptions in ocean hide on average 60% of

the consumption latency, much of the miss latency is overlapped

in the baseline case as well because of the high MLP.

The commercial applications spend between 30%-35% of

overall execution time on coherent read stalls. The TSE’s perfor-

mance impact is particularly large in DB2 because coherent read

stalls are more prevalent in user (as opposed to OS) code than in

the other commercial applications. User coherent read stalls have

a disproportionately large impact on database throughput

because misses in database code form long dependence chains

[27], and are thus on the critical execution path. DB2 spends 43%

of user execution time on coherent read stalls. TSE is particularly

effective on these misses, eliminating 53% of user coherent read

stalls.

As cache sizes continue to increase in future processors,

coherence misses will become a larger fraction of long-latency

off-chip accesses [2], and the performance impact of TSE and

similar techniques will grow.

6. Related Work

Prior correlation-based prefetching approaches (e.g., Markov

predictors [14] and Global History Buffer [25]) only considered

locality and address correlation local to one node. In contrast,

temporal streaming finds candidate streams by locating the most

recent occurrence of a stream head across all nodes in the system.

Thread-based prefetching techniques [5] use idle contexts on

a multithreaded processor to run helper threads that overlap

misses with speculative execution. However, the spare resources

the helper threads require (e.g., idle thread contexts, fetch and

execution bandwidth) may not be available when the processor

executes an application exhibiting high thread-level parallelism

(e.g., OLTP). TSE, on the contrary, does not occupy processor

resources.

Huh et al., [13] split a traditional cache coherence protocol

into a fast protocol that addresses performance, and a backing

protocol that ensures correctness. Unlike their scheme, which

relies on detecting a tag-match to an invalidated cache line, TSE

directly identifies coherent read misses using directory informa-

Table 3. Streaming timeliness.

Benchmark
Trace

Cov.

Cycle-accurate Simulation

MLP Lookahead Full Cov. Partial Cov.

em3d 100% 2.0 18 94% 5%

moldyn 98% 1.6 16 83% 14%

ocean 98% 6.6 24 27% 57%

Apache 43% 1.3 8 26% 16%

DB2 60% 1.3 8 36% 11%

Oracle 53% 1.2 8 34% 9%

Zeus 43% 1.3 8 29% 14%

-

0.2

0.4

0.6

0.8

1.0

b
a
s
e

T
S

E

b
a
s
e

T
S

E

b
a
s
e

T
S

E

b
a
s
e

T
S

E

b
a
s
e

T
S

E

b
a
s
e

T
S

E

b
a
s
e

T
S

E

em3d moldyn ocean Apache DB2 Oracle Zeus

N
o

rm
a
li
z
e
d

 T
im

e

Busy Other Stalls Coherent Read Stalls

FIGURE 14: Performance improvement from TSE. The left figure shows an execution time breakdown. The right figure
shows the speedup of TSE over the base system, with 95% confidence intervals for commercial application speedups.

3.3

1.0

1.1

1.2

1.3

e
m

3
d

m
o

ld
y
n

o
ce

a
n

A
p

a
c
h

e

D
B

2

O
ra

cl
e

Z
e

u
s

S
p

e
e

d
u

p

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

tion, thus ensuring independence from the employed cache size.

Moreover, coherent reads in [13] are still speculative for the

entire length of a long-latency coherence miss and therefore

stress the ROB, while our scheme allows coherent read refer-

ences that hit in the SVB to retire immediately.

Keleher [16] describes the design and use of Tapeworm, a

mechanism implemented as a software library that records

updates to shared data within a critical section, and pushes those

updates to the next acquirer of the lock. While tapeworm can be

efficiently implemented in software distributed shared-memory

systems, a hardware-only realization requires either the introduc-

tion of a race-prone speculative data push operation in the coher-

ence protocol, or a split performance/correctness protocol as in

[13]. Instead, our technique relies on streaming to communicate

shared data to consumers, without changes to the coherence

protocol or application modifications.

Recent research has also aimed at making processors more

tolerant of long-latency misses. Mutlu et al. [24] allow MLP to

break past ROB limits, by speculatively ignoring dependencies

and continuing execution of the thread upon a miss to issue

prefetches. However, their method is constrained by branch

prediction accuracy and hides only part of the latency, as the

runahead thread may not be able to execute far enough in

advance during the time it takes to satisfy a miss. Techniques

seeking to exceed the dataflow limit through value prediction or

to increase MLP at the processor (e.g., SMT) or the chip level

(e.g., CMP) are complementary to our work.

7. Conclusion

In this paper, we presented temporal streaming, a novel

approach to eliminate coherent read misses in distributed shared-

memory systems. Temporal streaming exploits two phenomena

common in the shared memory access patterns of scientific and

commercial multiprocessor workloads: temporal address correla-

tion, that sequences of shared addresses are repetitively accessed

together and in the same order; and temporal stream locality, that

recently-accessed streams are likely to recur. We showed that

temporal streaming has the potential to eliminate 98% of coher-

ent read misses in scientific applications, and 43% to 60% in

OLTP and web server applications. Through cycle-accurate full-

system simulation of a cache-coherent distributed shared-

memory multiprocessor, we demonstrated that our hardware real-

ization of temporal streaming yields speedups of 1.07 to 3.29 in

scientific applications, and 1.06 to 1.21 in commercial work-

loads, while incurring overhead of less than 7% of available

bandwidth in current technology.

Acknowledgements

The authors would like to thank Sumanta Chatterjee and Karl

Haas for their assistance with Oracle, and the members of the

Carnegie Mellon Impetus group and the anonymous reviewers

for their feedback on earlier drafts of this paper. This work was

partially supported by grants and equipment from IBM and Intel

corporations, the DARPA PAC/C contract F336150214004-AF,

an NSF CAREER award, an IBM faculty partnership award, a

Sloan research fellowship, and NSF grants CCR-0113660, IIS-

0133686, and CCR-0205544.

References
[1] S. V. Adve and K. Gharachorloo. Shared memory consisten-

cy models: A tutorial. IEEE Computer, 29(12):66–76, Dec.

1996.

[2] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory

system characterization of commercial workloads. In Pro-

ceedings of the 25th Annual International Symposium on

Computer Architecture, pages 3–14, June 1998.

[3] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream

prefetching for general-purpose programs. In Proceedings of

the SIGPLAN ’02 Conference on Programming Language

Design and Implementation (PLDI), June 2002.

[4] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture opti-

mizations for exploiting memory-level parallelism. In Pro-

ceedings of the 31st Annual International Symposium on

Computer Architecture, June 2004.

[5] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dy-

namic speculative precomputation. In Proceedings of the

34th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO 34), December 2001.

[6] D. E. Culler, A. Dusseau, S. C. Goldstein,

A. Krishnamurthy, S. Lumetta, T. von Eicken, and

K. Yelick. Parallel programming in Split-C. In Proceedings

of Supercomputing ’93, pages 262–273, Nov. 1993.

[7] Z. Cvetanovic. Performance analysis of the alpha 21364-

based hp gs1280 multiprocessor. In Proceedings of the 30th

Annual International Symposium on Computer Architecture,

pages 218–229, June 2003.

[8] K. Gharachorloo, A. Gupta, and J. Hennessy. Two tech-

niques to enhance the performance of memory consistency

models. In Proceedings of the 1991 International Confer-

ence on Parallel Processing (Vol. I Architecture), pages I–

355–364, Aug. 1991.

[9] C. Gniady and B. Falsafi. Speculative sequential consistency

with little custom storage. In Proceedings of the 10th Inter-

national Conference on Parallel Architectures and Compila-

tion Techniques, Sept. 2002.

[10] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP =

RC? In Proceedings of the 26th Annual International Sym-

posium on Computer Architecture, pages 162–171, May

1999.

[11] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eri,

H. Nueckel, and J. P. Shen. Scaling and characterizing data-

base workloads: Bridging the gap between research and

practice. In Proceedings of the 36th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO 36),

Dec. 2003.

[12] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderli-

ch, S. Chen, J. Kim, B. Falsafi, J. C. Hoe, and A. G. No-

watzyk. Simflex: A fast, accurate, flexible full-system

simulation framework for performance evaluation of server

architecture. SIGMETRICS Performance Evaluation Re-

view, 31(4):31–35, April 2004.

[13] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence de-

coupling: making use of incoherence. In Proceedings of the

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

11th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS

XI), October 2004.

[14] D. Joseph and D. Grunwald. Prefetching using Markov Pre-

dictors. In Proceedings of the 24th Annual International

Symposium on Computer Architecture, pages 252–263, June

1997.

[15] S. Kaxiras and C. Young. Coherence communication predic-

tion in shared memory multiprocessors. In Proceedings of

the 6th IEEE Symposium on High-Performance Computer

Architecture, January 2000.

[16] P. Keleher. Tapeworm: High-level abstractions of shared ac-

cesses. In Proceedings of the 3rd Symposium on Operating

Systems Design and Implementation (OSDI), February 1999.

[17] D. A. Koufaty, X. Chen, D. K. Poulsena, and J. Torrellas.

Data forwarding in scalable shared-memory multiproces-

sors. In Proceedings of the 1995 International Conference

on Supercomputing, July 1995.

[18] A.-C. Lai and B. Falsafi. Memory sharing predictor: The key

to a speculative coherent DSM. In Proceedings of the 26th

Annual International Symposium on Computer Architecture,

May 1999.

[19] A.-C. Lai and B. Falsafi. Selective, accurate, and timely self-

invalidation using last-touch prediction. In Proceedings of

the 27th Annual International Symposium on Computer Ar-

chitecture, June 2000.

[20] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,

G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and

B. Werner. Simics: A full system simulation platform. IEEE

Computer, 35(2):50–58, February 2002.

[21] M. K. Martin, M. D. Hill, and D. A. Wood. Token coher-

ence: Decoupling performance and correctness. In Proceed-

ings of the 30th Annual International Symposium on

Computer Architecture, June 2003.

[22] S. S. Mukherjee and M. D. Hill. Using prediction to acceler-

ate coherence protocols. In Proceedings of the 25th Annual

International Symposium on Computer Architecture, June

1998.

[23] S. S. Mukherjee, S. D. Sharma, M. D. Hill, J. R. Larus,

A. Rogers, and J. Saltz. Efficient support for irregular appli-

cations on distributed-memory machines. In 5th ACM SIG-

PLAN Symposium on Principles & Practice of Parallel

Programming (PPOPP), pages 68–79, July 1995.

[24] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead

execution: an effective alternative to large instruction win-

dows. IEEE Micro, 23(6):20–25, November/December

2003.

[25] K. J. Nesbit and J. E. Smith. Data cache prefetching using a

global history buffer. In Proceedings of the 10th IEEE Sym-

posium on High-Performance Computer Architecture, Feb.

2004.

[26] D. G. Perez, G. Mouchard, and O. Temam. Microlib: a case

for the quantitative comparison of micro-architecture mech-

anisms. In Proceedings of the 3rd Annual Workshop on Du-

plicating, Deconstructing, and Debunking (WDDD04), June

2004.

[27] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A.

Barroso. Performance of database workloads on shared-

memory systems with out-of-order processors. In Proceed-

ings of the 8th International Conference on Architectural

Support for Programming Languages and Operating Sys-

tems (ASPLOS VIII), pages 307–318, Oct. 1998.

[28] T. Sherwood, S. Sair, and B. Calder. Predictor-directed

stream buffers. In Proceedings of the 33rd Annual IEEE/

ACM International Symposium on Microarchitecture (MI-

CRO 33), pages 42–53, December 2000.

[29] S. Somogyi, T. F. Wenisch, N. Hardavellas, J. Kim,

A. Ailamaki, and B. Falsafi. Memory coherence activity pre-

diction in commercial workloads. In 3rd Workshop on Mem-

ory Performance Issues, June 2004.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.

The SPLASH-2 programs: Characterization and method-

ological considerations. In Proceedings of the 22nd Annual

International Symposium on Computer Architecture, July

1995.

[31] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe.

Smarts: Accelerating microarchitecture simulation via rigor-

ous statistical sampling. In Proceedings of the 30th Annual

International Symposium on Computer Architecture, June

2003.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:20 from IEEE Xplore. Restrictions apply.

