
22

Recent studies suggest that the soft-
error rate in microprocessor logic is likely to
become a serious reliability concern by 2010.
Detecting soft errors in the processor’s core
logic presents a new challenge beyond what
error-detecting and correcting codes can han-
dle. Currently, commercial microprocessor
systems that require an assurance of reliabili-
ty employ an error-detection scheme based on
dual modular redundancy (DMR) in some
form—from replicated pipelines within the
same die1 to mirroring of complete proces-
sors.2 These solutions, however, typically
require drastic modifications in hardware
and/or software to detect and recover from
errors. Moreover, current designs rely on tight
hardware integration of the DMR processor
pair and high interprocessor communication
bandwidth, which preclude cost-effective and
scalable server architectures.

The TRUSS (Total Reliability Using Scal-
able Servers) project, is building a cost-effec-
tive, reliable server architecture from a tightly
coupled cluster of rack-mounted server blades.

The TRUSS architecture adds support for reli-
ability with minimal changes to the com-
modity hardware and no changes to the
application software. By enforcing distributed
redundancy at all processing and storage levels,
the TRUSS system can survive any single com-
ponent failure (memory device, processor, or
system ASIC). In the TRUSS architecture, a
DMR processor pair is split across different
nodes in a system area network. This distrib-
uted redundancy provides greater reliability
but requires implementing DMR error detec-
tion under the limited communication band-
width and nonnegligible communication
latency of the system area network.

To detect errors across a distributed DMR
pair, we developed fingerprinting, a technique
that summarizes a processor’s execution history
into a cryptographic signature, or “fingerprint.”
More specifically, a fingerprint is a hash value
computed on the changes to a processor’s archi-
tectural state resulting from a program’s execu-
tion. The mirrored processors in a DMR pair
exchange and compare a small fingerprint to

Jared C. Smolens
Brian T. Gold

Jangwoo Kim
Babak Falsafi
James C. Hoe

Andreas G. Nowatzyk
Carnegie Mellon

University

FINGERPRINTING SUMMARIZES THE HISTORY OF INTERNAL PROCESSOR STATE

UPDATES INTO A CRYPTOGRAPHIC SIGNATURE. THE PROCESSORS IN A DUAL

MODULAR REDUNDANT PAIR PERIODICALLY EXCHANGE AND COMPARE

FINGERPRINTS TO CORROBORATE EACH OTHER’S CORRECTNESS. RELATIVE TO

OTHER TECHNIQUES, FINGERPRINTING OFFERS SUPERIOR ERROR COVERAGE AND

SIGNIFICANTLY REDUCES THE ERROR-DETECTION LATENCY AND BANDWIDTH.

FINGERPRINTING: BOUNDING
SOFT-ERROR-DETECTION

LATENCY AND BANDWIDTH

Published by the IEEE Computer Society 0272-1732/04/$20.00 2004 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:05 from IEEE Xplore. Restrictions apply.

corroborate each other’s correctness over the
instruction sequence. Fingerprints tightly
bound error-detection latency and greatly
reduce the required interprocessor communi-
cation bandwidth. Relative to two popular
DMR error-detection approaches, fingerprint-
ing is the only mechanism that simultaneously
allows high error coverage, low error detection
bandwidth, and high I/O performance.

Backward-error recovery
We evaluated DMR error detection within

the context of a backward-error recovery
(BER) framework that restarts execution from
a checkpoint when the error-detection mech-
anism detects an error. A checkpoint/recov-
ery mechanism forms the basis of all BER
schemes. Figure 1 shows the sequence of
actions we assume for checkpointing and error
detection. We assume that the mirrored DMR
processors execute redundantly in lockstep
and that the processor microarchitecture is
fully deterministic. Thus, because the two
processors behave identically in an error-free
scenario, an error in one manifests as a behav-
ioral difference between the two.

Checkpointing
A checkpoint logically comprises a complete

snapshot of architectural registers and memo-
ry values. Although the checkpoint can con-
tain a copy of the entire architectural register
file, the prohibitively large complete memory
image means that the checkpoint records only
changed memory values, using a copy-on-
write mechanism (similar to SafetyNet).3 Roll-
back consists of restoring register and memory
values from the checkpoint. The time between
checkpoints defines the checkpoint interval.
For short intervals (hundreds to tens of thou-
sands of instructions), checkpoints are small
enough to fit in on-chip structures.3,4

Error recovery requires synchronized check-
point and error-detection mechanisms. As Fig-
ure 1 shows, immediately before an operation
with irreversible effects (such as an uncached
load or store in I/O operations), the error-
detection mechanism must observe any errors
that have occurred since the last checkpoint. If
the mechanism detects an error, program exe-
cution reverts to the last checkpoint; otherwise,
if the mechanism does not detect an error, it
releases the irreversible operation, discards the

old checkpoint, and takes a new checkpoint to
begin a new checkpoint interval. System state
becomes unrecoverable if the error-detection
mechanism fails to detect all errors before
advancing into the next checkpoint interval.
When the mechanism eventually detects a
latent error in a subsequent checkpoint inter-
val, it is not possible to recover the correct pro-
gram state by reverting to an earlier checkpoint.

The interval between two I/O operations
places a maximum bound on the distance
between checkpoints. In commercial database
workloads, I/O activity occurs frequently. Fig-
ure 2 shows the cumulative distribution of SCSI
command interarrival times in a full-system
TPC-C-like workload simulated for 100 billion
instructions (50,000 database transactions). We

23NOVEMBER–DECEMBER 2004

Irreversible
operation
requested

Irreversible
operation
released

Error
detection

Checkpoint n Checkpoint n +1

Time

Figure 1: The error detection and checkpoint timeline for a single processor.
Both processors in a DMR pair follow the same timeline.

100 102 104 106
0

0.2

0.4

0.6

0.8

1.0

I/O command interarrival time (instructions)

C
D

F
 o

f I
/O

 c
om

m
an

ds

Figure 2: Cumulative distribution of SCSI command inter-
arrival times during a TPC-C like workload.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:05 from IEEE Xplore. Restrictions apply.

derived the times from a trace of reads and
writes over the interval. Even though, on aver-
age, about 14,000 instructions separate each
command, over half of all SCSI commands are
within a few hundred instructions of each other.
Therefore, a viable combination of checkpoint
and error-detection mechanisms must be effec-
tive and efficient at checkpoint intervals as short
as hundreds to thousands of instructions.

Current error-detection techniques
To evaluate fingerprinting’s efficiency, we

compared it with two current DMR error-
detection techniques. The chip-external
approach compares a DMR processor pair
only at their chip-external interfaces. The full
state approach compares all architectural state
updates before each checkpoint creation.

Chip-external detection
The least intrusive DMR approach moni-

tors and compares the two processors’ external
behaviors at the chip pins. We abstract the chip-
external interface as address and data-bus traf-
fic resulting from off-chip memory requests.
The effect of an error originating in the execu-
tion core might not appear at the external pins
for some time because of buffering internal to
the processor, such as the registers and cache
hierarchy. The exact error-detection latency
depends on the program and the detailed
microarchitecture. Detecting an error at the
pins is sufficient in a fail-stop system, but the
substantial and unbounded delay in error
detection makes it difficult to recover and con-
tinue from an earlier known-good checkpoint.

Full state comparison
In a full state comparison between the mir-

rored DMR processors, the error-detection
mechanism compares the entire register-file
contents and all cache lines modified since the
last checkpoint. This approach guarantees that
the new checkpoint is error free (assuming the
previous checkpoint is also error free). Unfor-
tunately, full state comparison also requires
substantially higher bandwidth than chip-
external comparison.

Fingerprinting
Fingerprinting provides a complete and

concise view of a processor’s architectural state
so as to detect differences in execution

between two DMR processors. The result is
high error coverage, little comparison band-
width, and the ability to accommodate a wide
range of checkpoint intervals.

How it works
Fingerprinting summarizes the history of

architectural state updates as a cryptographic
signature. Designers can add simple, non-
intrusive fingerprinting hardware to a state-
of-the-art processor core by passively
monitoring the in-order architectural state
updates in the pipeline’s commit stage. An
error-detection mechanism that uses finger-
printing detects errors by having the DMR
processor pair exchange and compare finger-
prints at the end of each checkpoint interval.
A matching fingerprint indicates that the mir-
rored executions by two DMR processors
remained in agreement during the last check-
point interval. At this point, it is safe to replace
the old checkpoint with a new one to begin a
new checkpoint interval.

The fingerprinting hash function should be
a well-constructed, linear block code that is
compact and easy to generate and that has a
low probability of undetected errors. A com-
monly used coding scheme is the cyclic redun-
dancy code (CRC). Encoding the state updates
in an interval in a p-bit CRC signature bounds
the probability of an undetected error by fin-
gerprint comparison to at most 2−p.5 For a soft
error rate of 104 failures per billion hours, which
future high-performance processors may exhib-
it,6 a 16-bit CRC yields a mean-time-to-failure
(MTTF) of more than 300,000 years.

Implementation
In a speculative, superscalar, out-of-order

processor pipeline, the fingerprint computa-
tion monitors the committing instruction
results, in program order, from the reorder
buffer (ROB) and the load-store queue. If the
microarchitecture has a physical register file,
the fingerprint can also be computed by hash-
ing the instruction results written into the reg-
ister file in completion order. In this case, the
fingerprint would include state updates by
both committed and speculative instructions,
possibly from the wrong path of a branch mis-
prediction. Such a fingerprint is, nonetheless,
effective in ensuring agreement between two
DMR processors because the fingerprint

24

MICRO TOP PICKS

IEEE MICRO

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:05 from IEEE Xplore. Restrictions apply.

necessarily includes state updates from all com-
mitted instructions, and the processors also
agree on the results of wrong-path instructions.

Evaluation results
To evaluate chip-external error detection, full

state comparison, and fingerprinting, we sim-
ulated the execution of all 26 SPEC CPU 2000
benchmarks using SimpleScalar sim-cache and
two commercial workloads using Virtutech
Simics. The simulated processor executes one
instruction per cycle at a clock frequency of 1
GHz. The only microarchitecture parameter
relevant to our evaluation is the level-two (L2)
cache configuration. The simulated processor
has an inclusive 1-Mbyte four-way-set associa-
tive cache with 64-byte lines.

In SimpleScalar, we simulated the first ref-
erence input set for each SPEC CPU 2000
benchmark. Using the prescribed procedure
from SimPoint,7 we simulated up to eight pre-
determined 100-million instruction regions
from each benchmark’s complete execution
trace. In Simics, we ran two commercial work-
loads on Solaris 8: a TPC-C-like online trans-
action processing (OLTP) workload with
IBM DB2 and SPECWeb. The 100-client
OLTP workload consists of a 40-warehouse
database striped across five raw disks and one
dedicated log disk. (We have calibrated this
scaled-down database configuration to repre-
sent a full-scale system.) The SPECWeb work-
load services 100 connections with Apache
2.0. We warmed both commercial workloads
until the CPU utilization reached 100 percent
and the transaction rate reached steady state.
Once warmed, the commercial workloads exe-
cuted for 500 million instructions.

State-comparison bandwidth
We first evaluated the three error-detection

mechanisms according to their requirements
for state-comparison bandwidth between mir-
rored processors. For chip-external detection,
we calculate this bandwidth requirement as
the sum of the address and data-bus traffic
from off-chip memory requests. The average
chip-external bandwidths generated by the
three application classes—SPEC CPU 2000
integer (SPEC CInt), SPEC CPU 2000 float-
ing-point (SPEC CFP), and commercial—are

• SPEC CInt: 3.8 Mbytes per second (MB/s)

• SPEC CFP: 45.6 MB/s
• Commercial: 121.0 MB/s

Traditional DMR systems can easily handle
these required bandwidths, since the mirrored
DMR processors are on the same mother-
board. However, except for SPEC CInt appli-
cations, whose working sets fit almost entirely
within the L2 cache, the required bandwidth
places a considerable burden on the system-
area network when the mirrored DMR proces-
sors are on different nodes.

Full state comparison examines the entire
register file contents and all cache lines modi-
fied since the last checkpoint. As the check-
point interval increases, the spatial locality of
memory references dictates that the number
of updated cache lines grows at a slower rate.
Assuming the full-state-comparison band-
width amortizes over the entire checkpoint
interval, the required bandwidth decreases as
the checkpoint interval increases. In Figure 3,
the average bandwidth requirement decreases
sharply as the checkpoint interval increases.
However, for the range of intervals compati-
ble with I/O interarrival times of commercial
workloads (hundred to thousands of instruc-
tions), the required bandwidth remains above
several hundred megabytes per second.

Fingerprinting provides a compressed view
of architectural state changes. Instead of com-
paring every instruction result, fingerprinting

25NOVEMBER–DECEMBER 2004

C
om

pa
ris

on
 b

an
dw

id
th

 (
G

by
te

s/
s)

102 104 106
0

0.5

1.0

Checkpoint interval (instructions)

SPEC CInt
SPEC CFP
Commercial workloads

Figure 3. Required bandwidth for full state comparison as a
function of the checkpoint interval.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:05 from IEEE Xplore. Restrictions apply.

compares only two bytes per checkpoint inter-
val. The bandwidth overhead for fingerprint
comparison is orders of magnitude less than
that for full state comparison. Assuming a
1,000-instruction checkpoint interval on a
1,000-MIPS processor, fingerprinting con-
sumes just 2 MB/s.

Error coverage
In a BER scheme, if a checkpoint contains

an undetected error, the system can no longer
recover when the error-detection mechanism
later finds that error. Therefore, we define
error coverage as the probability that an error
occurring in a given checkpoint interval is
detected by the end of that interval. Under
this definition, full state comparison has per-
fect error coverage, since it compares all state
updates explicitly before taking a new check-
point. Fingerprinting’s error coverage is not
quite perfect because two different update
sequences could result in the same CRC sig-
nature. (For a 16-bit CRC, the likelihood for
signature collision is at most 2−16.) With
nonzero detection latency, chip-external
detection is likely to miss errors near the end
of a checkpoint interval, especially in the last
L instructions where L is the expected chip-
external detection latency. The achievable cov-
erage with chip-external detection varies
directly with the relative magnitude of the
checkpoint interval and detection latency.

Detection distance. To evaluate chip-external
detection’s error coverage, we used a dataflow-
analysis tool to measure the minimum distance
(in instructions) from each instruction to its
first possible error-detection opportunity at
the chip-external interface (outside the cache
hierarchy). To simplify the analysis, we disre-
garded the effect of fault masking (conserva-
tively in favor of chip-external detection
coverage). We also conservatively assumed that
the chip-external detection mechanism can
immediately observe erroneous branch targets
and load/store effective addresses because these
errors are likely to cause cache misses.

Figure 4a presents the resulting cumula-
tive distribution function, which shows the
probability of detecting an error within a
given distance from an instruction’s execu-
tion. All the benchmarks keep some values
buffered in the cache for extended periods—
a significant fraction of instruction results
remain unobserved for millions of instruc-
tions. In particular, the periodic replacement
patterns of the floating-point benchmarks
result in poor coverage up to the L2 cache
replacement period.

Mean time to failure. From the cumulative dis-
tribution of detection distance, we determined
processor reliability in a DMR system. For an
anticipated raw fault rate (λ = 104 failures per
billion hours) in the logic circuits of high-

26

MICRO TOP PICKS

IEEE MICRO

1,000 years

(a) (b)

C
D

F
 o

f e
rr

or
 d

et
ec

tio
n

100 104102 102106
0

0.5

1.0

Detection distance (instructions)

SPEC CInt average
SPEC CFP average
Commercial average

M
T

T
F

 (
bi

lli
on

s
of

 h
ou

rs
)

100

100

10−2

10−4

10−6

104 106

Checkpoint interval (instructions)

Fingerprinting CRC-16
SPEC CInt average
SPEC CFP average
Commercial average

Figure 4. The cumulative distribution of error detection distances (a) and the mean time to failure, as a function of checkpoint
interval (b).

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:05 from IEEE Xplore. Restrictions apply.

performance processors early in the next decade,6

the MTTF is a function of error coverage, C:

For chip-external detection, we determine
error coverage for a checkpoint interval, t, as

Figure 4b is a plot of the MTTF for differ-
ent workloads using chip-external detection.
The same figure also reports the MTTF of fin-
gerprinting, which is based on a 16-bit CRC.
The MTTF target of 1,000 years for the IBM

C
CDF i

t
i

t

=
()

=∑ 1

MTTF
C

=
−()

1

2 1λ

27NOVEMBER–DECEMBER 2004

Hewlett Packard’s NonStop Himalaya is an example of a dual modu-
lar redundant (DMR) system with chip-external error detection.1 When
the detection mechanism observes a difference within the DMR proces-
sor pair, it shuts down both processors to prevent memory or disk cor-
ruption. Because of chip-external detection’s unbounded detection latency,
fine-grained, application-transparent recovery is not possible. Recovery
requires coarse-grained software checkpointing and operating system
intervention or a failover to a hot spare processor pair.

The IBM z900’s G5 processor is a DMR design that duplicates instruc-
tion pipelines in the same core.2 The detection mechanism corroborates
the replicated pipelines’ outputs before committing each instruction. The
IBM G5’s full-state detection mechanism allows fine-grained, automatic
recovery after error detection, but the required comparison bandwidth is
sustainable only by two pipelines on the same die.

For fault analysis, microprocessor designs incorporate scanout logic
that can shift out the internal state of select flip-flops serially through an
external pin, without disturbing the microprocessor’s normal operation.3

Signature-generation logic continuously scans flip-flops and, in every
cycle, incorporates each flip-flop’s new value into a scanout stream using
XORs. Akin to fingerprinting, the signature stream at the scanout pin is a
compressed summary of the history of all scanned flip-flops. Thus, the
scanout signature can serve the same function as the fingerprint for DMR
error detection.4 Unlike fingerprinting, however, scanout signatures intro-
duce a detection latency that could affect error coverage, and signature
comparison cannot tie an error to a specific instruction interval.

SafetyNet incorporates a coherence-level invariant checker to detect
errors in message generation and reception in shared-memory multi-
processors.5 The SafetyNet checker computes signatures of coherence
activity at each processor and memory controller. The checker verifies that
for each cache-coherence upgrade message, there are corresponding
downgrade messages at the sharer nodes. In contrast, fingerprinting imple-
ments error detection at the computation level and is orthogonal to schemes
that target error detection in the memory system and/or interconnect.

With design goals ranging from increasing performance to improving
reliability, many recent studies use architectural checkpointing. The rewind
window on current out-of-order microarchitectures is only a few hundreds
of instructions, but Akkary et al. have proposed using checkpointing in
conjunction with an out-of-order microarchitecture scalable to windows
of a few thousand instructions.6 Gniady and Falsafi have proposed SC++,
which aims to relax memory order speculatively and store the speculative

state in the processor’s register file and on-chip cache hierarchy, while
maintaining a history of the prior architectural values in a custom queue.7

Others have proposed hardware checkpointing techniques with a gran-
ularity of hundreds of thousands to millions of instructions. SafetyNet aug-
ments on-chip caches with checkpoint buffers to hold old cache line values
on the first write to a cache line in each checkpoint interval.8 ReVive takes
global checkpoints in main memory by flushing all caches and enforcing a
copy-on-write policy for changed cache lines during the checkpoint interval.9

References
1. D. McEvoy, “The Architecture of Tandem’s Nonstop System,”

Proc. ACM ’81 Conf., ACM Press, 1981, p. 245.
2. T.J. Slegal et al., “IBM’s S/390 G5 Microprocessor Design,”

IEEE Micro, vol. 19, no. 2, March–April 1999, pp. 12-23.
3. Y.E. Hong et al., “An Overview of Advanced Failure Analysis

Techniques for Pentium and Pentium Pro Microprocessors,”
Intel Technology J., 1998, pp. 2-10.

4. E. Sogomonyan et al., “Early Error Detection in Systems-on-
Chip for Fault-Tolerance and At-Speed Debugging,” Proc. VLSI
Test Symp., IEEE CS Press, May 2001, pp. 184-189.

5. D.J. Sorin, M.D. Hill, and D.A. Wood, “Dynamic Verification
of End-to-End Multiprocessor Invariants,” Proc. Int’l Conf.
Dependable Systems and Networks, IEEE CS Press, 2003,
pp. 281-290.

6. H. Akkary, R. Rajwar, and S.T. Srinivasan, “Checkpoint
Processing and Recovery: Towards Scalable Large Instruction
Window Processors,” Proc. Int’l Symp. Microarchitecture
(Micro 36), IEEE CS Press, 2003, pp. 423-434.

7. C. Gniady, B. Falsafi, and T.N. Vijaykumar, “Is SC + ILP =
RC?,” Proc. Int’l Symp. Computer Architecture, IEEE CS
Press, 1999, pp. 162-171.

8. D.J. Sorin et al., “SafetyNet: Improving the Availability of
Shared Memory Multiprocessors with Global
Checkpoint/Recovery,” Proc. Int’l Symp. Computer
Architecture, IEEE CS Press, 2002, pp. 123-134.

9. M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-
Effective Architectural Support for Rollback Recovery in
Shared-Memory Multiprocessors,” Proc. Int’l Symp.
Computer Architecture, IEEE CS Press, 2002, pp. 111-122.

Work in error detection and checkpointing

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:05 from IEEE Xplore. Restrictions apply.

Power4 system8 serves as a reference. As the
figure shows, in all the benchmarks, chip-
external detection requires checkpoint inter-
vals of at least 10 to 25 million instructions
to achieve the target reliability. This require-
ment is incompatible with the practical upper
bound on the checkpoint interval that I/O-
intensive workloads demand. In contrast, fin-
gerprinting maintains high error coverage,
regardless of the checkpoint interval.

Traditional DMR error-detection schemes
are not well-suited for the requirements

of both detecting and recovering from soft
errors. When used in conjunction with a
checkpoint-recovery framework, the tradi-
tional chip-external error-detection approach
requires checkpoint intervals greater than tens
of millions of instructions to maintain the ref-
erence MTTF of 1,000 years.8 This operating
mode is incompatible with I/O-intensive
workloads such as commercial OLTP appli-
cations, which demand checkpoint intervals
in the thousands of instructions. On the other
hand, brute-force solutions such as full state
comparison require unacceptably high inter-
processor bandwidth. Fingerprinting over-
comes both obstacles. MICRO

Acknowledgments
We thank the anonymous ASPLOS 2004

reviewers for their valuable feedback on early
drafts of this article. We also thank the Sim-
Flex team at Carnegie Mellon for their simu-
lation infrastructure.

This research was supported in part by NSF
awards ACI-0325802 and CCF-0347560 and
Intel Corp. An Intel equipment grant pro-
vided the computers we used in our research.
Brian Gold’s work was supported by graduate
fellowships from NSF, Northrop Grumman,
and the US DoD (NDSEG/HPCMO).

References
1. T.J. Slegal et al., “IBM’s S/390 G5 Micro-

processor Design,” IEEE Micro, vol. 19, no.
2, March–April 1999, pp. 12-23.

2. D. McEvoy, “The Architecture of Tandem’s
Nonstop System,” Proc. ACM ’81 Conf.,
ACM Press, 1981, p. 245.

3. D.J. Sorin et al., “SafetyNet: Improving the
Availability of Shared Memory Multiproces-
sors with Global Checkpoint/Recovery,”

Proc. Int’l Symp. Computer Architecture,
IEEE CS Press, 2002, pp. 123-134.

4. C. Gniady, B. Falsafi, and T.N. Vijaykumar,
“Is SC + ILP = RC?” Proc. Int’l Symp. Com-
puter Architecture, IEEE CS Press, 1999, pp.
162-171.

5. V. Pless, Introduction to the Theory of Error-
Correcting Codes, 2nd ed., John Wiley &
Sons, 1989.

6. P. Shivakumar et al., “Modeling the Effect
of Technology Trends on the Soft Error Rate
of Combinational Logic,” Proc. Int’l Conf.
Dependable Systems and Networks, IEEE
CS Press, 2002, pp. 389-398.

7. T. Sherwood et al., “Automatically Charac-
terizing Large-Scale Program Behavior,”
Proc. Int’l Conf. Architectural Support for
Programming Languages and Operating
Systems, IEEE CS Press, 2002, pp. 45-57.

8. D. Bossen, “CMOS Soft Errors and Server
Design,” IEEE 2002 Reliability Physics Symp.
Tutorial Notes, Reliability Fundamentals,
IEEE Press, 2002, pp. 121-07.1–121-07.6.

Jared C. Smolens is a PhD student in electri-
cal and computer engineering at Carnegie
Mellon University, where his research inter-
ests include reliable computer systems and
multiprocessor system design. He received an
MS in electrical and computer engineering
from Carnegie Mellon University and is a stu-
dent member of the IEEE.

Brian T. Gold is a PhD student in electrical
and computer engineering at Carnegie Mellon
University, where his research interests are reli-
able computer systems and multiprocessor
system design. He received an MS in com-
puter engineering from Virginia Tech and is
a student member of the IEEE.

Jangwoo Kim is a PhD student in electrical
and computer engineering at Carnegie Mellon
University. His research interests include reli-
able computer architecture, multiprocessor
architecture, and full computer system simu-
lation. Kim received an MEng in computer
science from Cornell University and is a stu-
dent member of the IEEE.

Babak Falsafi is an associate professor of elec-
trical and computer engineering at Carnegie

28

MICRO TOP PICKS

IEEE MICRO

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:05 from IEEE Xplore. Restrictions apply.

Mellon University. His research interests are
computer architecture with emphasis on high-
performance memory systems, nanoscale
CMOS architecture, and tools to evaluate
computer system performance. He received a
PhD in computer science from the Universi-
ty of Wisconsin and is a member of the IEEE
and ACM.

James C. Hoe is an assistant professor of elec-
trical and computer engineering at Carnegie
Mellon University. His research interests are in
computer architecture and high-level hard-
ware description and synthesis. He received a
PhD in electrical engineering and computer
science from MIT and is a member of the
IEEE and ACM.

Andreas G. Nowatzyk is an associate profes-
sor of robotics at Carnegie Mellon Universi-
ty. His research interests are in shared-memory
multiprocessor architectures and interconnect
structures. He received a PhD in computer
science from Carnegie Mellon University and
is a member of the IEEE and ACM.

Direct questions and comments about this
article to Babak Falsafi, Electrical and Com-
puter Engineering Dept., Carnegie Mellon
University, 5000 Forbes Ave., Pittsburgh, PA
15213; babak@ece.cmu.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

29NOVEMBER–DECEMBER 2004

SET
INDUSTRY

STANDARDS

computer.org/standards/

HELP SHAPE FUTURE TECHNOLOGIES • JOIN A COMPUTER SOCIETY STANDARDS WORKING GROUP AT

Computer Society members work together to define standards like
IEEE 1003, 1394, 802, 1284, and many more.

Posix

FireWire
token rings

gigabit Ethernet

wireless
networks

enhanced parallel ports

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:05 from IEEE Xplore. Restrictions apply.

