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Alignment of Multiple Configurations
Using Hierarchical Models

Yann RUFFIEUX and Peter J. GREEN

We describe a method for aligning multiple unlabeled configurations simultane-
ously. Specifically, we extend the two-configuration matching approach of Green and
Mardia (2006) to the multiple configuration setting. Our approach is based on the in-
troduction of a set of hidden locations underlying the observed configuration points.
A Poisson process prior is assigned to these locations, resulting in a simplified formu-
lation of the model. We make use of a structure containing the relevant information on
the matches, of which there are different types to take into account. Bayesian inference
can be made simultaneously on the matching and the relative transformations between
the configurations. We focus on the particular case of rigid-body transformations and
Gaussian observation errors. We apply our method to a problem in chemoinformatics:
the alignment of steroid molecules. Supplementary materials are available online.

Key Words: Chemoinformatics; Markov chain Monte Carlo; Matching; Rigid-body
transformation; Shape analysis; Steroids.

1. INTRODUCTION

In many scientific disciplines one is confronted with the problem of comparing objects.
Typically, the scientist locates a number of characteristic points, called landmarks, which
correspond on the objects of a given population. For example, a landmark might be a recog-
nizable location on a given organism, such as the corner of an eye, the tip of a finger, or the
meeting of two sutures on a skull. Numerous techniques have been studied over the years
for the geometrical comparison of objects when the landmarks are labeled, that is, when
the point correspondences between the objects under study have been established. Now if
the landmark configurations are unlabeled, so that the correspondences between the points
of each configuration are unknown, then our problem also becomes one of matching: iden-
tifying and labeling corresponding landmarks.
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A number of methods have been developed for the alignment of unlabeled point configu-

rations, in various contexts. In image analysis, for instance, Cross and Hancock (1998) and,

more recently, Lin, Zhu, and Wang (2007) used graph theory techniques for the matching

of point sets representing two-dimensional images, whereas Chui and Rangarajan (2000)

considered the use of non–rigid-body transformations. The alignment problem has also

attracted a great deal of interest from the chemoinformatics community (Lemmen and

Lengauer 2000). In this field it is a common assumption that structurally similar mole-

cules have similar activities. This assumption has led to the development of quantitative

structure-activity relationship (QSAR) analysis which seeks to quantify the link between

the chemical structure and the observed properties of a molecule. In drug design, for ex-

ample, a subject of prime interest is the local interaction between a small molecule (the

ligand) and a given protein receptor. If the geometrical structure of the receptor is known,

then established methods such as docking can be applied to specify the protein-ligand in-

teraction. However, in most cases this structure is unknown, meaning the drug designer

must rely on a study of the similarity (or diversity) in available ligands. The alignment of

the molecules is a first important step toward such a study.

We focus specifically on generalizing the approach of Green and Mardia (2006), who

described a Bayesian methodology for aligning two point configurations. We wish to ex-

tend this methodology to deal with an arbitrary number of configurations. Independent

pairwise comparison of the configurations could be an option, but would be somewhat

cumbersome and incoherent. Unless all of the configurations are treated simultaneously

in a single model, there is loss of information, for example about the “noise-free” loca-

tions of the matched points. In Section 3.4 we see some evidence of the empirical impact

of this. The elegance of the pairwise model makes this extension natural and relatively

straightforward. The problem of matching multiple configurations has also been addressed

by Dryden, Hirst, and Melville (2007); see the Discussion section of our article for further

details.

This article is organized as follows. In Section 2 we treat the simultaneous alignment of

multiple point configurations. We describe a hierarchical Bayesian model for this task, and

propose a Markov chain Monte Carlo algorithm for making inference on the model in the

case of rigid-body transformations between the configurations. In Section 3 we consider an

application of our approach to the matching of three steroid molecules. Finally in Section 4

we make an assessment of our methods and suggest directions for future work.

2. HIERARCHICAL MODELING OF MULTICONFIGURATION
ALIGNMENT

In this section we consider a hierarchical model for matching multiple configura-

tions simultaneously. We closely follow the approach of Green and Mardia’s (2006) two-

configuration method, though we must now allow for the possibility of many types of

matches.
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2.1 THE ALIGNMENT PROBLEM

Suppose we are given C configurations x(1), x(2), . . . , x(C), whose points are recorded
in d-dimensional real space: for c = 1,2, . . . ,C, write x(c) = {x(c)

j , j = 1,2, . . . , nc},
where x

(c)
j ∈ R

d and nc is the number of points in configuration x(c). The labeling is
assumed to be arbitrary, thus providing no initial information on the correspondences be-
tween points. We wish to align the C configurations simultaneously by establishing these
correspondences and filtering out the relative transformations between the configurations.

We introduce a set of hidden locations μ = {μi} ⊂ R
d . These can be interpreted as the

“true” locations of the configuration points, so that the latter are noisy observations of the
former. Specifically, define the labeling arrays ξ (1), ξ (2), . . . , ξ (C), which link the index of
an observation to that of its corresponding hidden point. In particular, ξ

(c)
j is the index of

the μ-point underlying the observation x
(c)
j . Assume that a hidden location is observed at

most once in each configuration, and that it may remain unobserved. Thus the elements
within each ξ (c) are distinct, and a μ-point may generate anywhere between zero and C

configuration points.
Now suppose each configuration goes through some transformation before being ob-

served. For c = 1,2, . . . ,C, let A(c) be the transformation bringing the points of the x(c)

configuration back to the reference frame defined by the μ-points. Our C-configuration
alignment model can be written as

A(c)x
(c)
j = μ

ξ
(c)
j

+ ε
(c)
j for j = 1,2, . . . , nc, c = 1,2, . . . ,C. (2.1)

The random error vector ε
(c)
j is assumed to have density f (c) and to be independent of the

μ-points and of all the other errors.
Our primary objective with this model is to match observations of the same μ-point.

Formally we wish to find maximal sets of configurations {x(i1), x(i2), . . . , x(ik)} and indices
{j1, j2, . . . , jk} such that ξ

(i1)
j1

= ξ
(i2)
j2

= · · · = ξ
(ik)
jk

. There is an abuse of language here in
that a match may involve points taken from more than two configurations.

Later we will assume that each A(c) is an affine transformation, made up of a linear
transformation matrix A(c) ∈ R

d×d and a translation vector τ (c) ∈ R
d so that A(c)x

(c)
j =

A(c)x
(c)
j + τ (c) for j = 1, . . . , nc and c = 1, . . . ,C. We will require constraints on the A(c)

to ensure identifiability of the model; we discuss this in Section 2.5.

2.2 HIERARCHICAL MODELING: PRELIMINARIES

We will regroup the matches in a parameter M. How these matches are represented is
irrelevant for the moment; one might wish to use binary matrices, as did Dryden, Hirst,
and Melville (2007) and Green and Mardia (2006), or write each match as an index array
containing the labels of the matched points and those of the configurations involved. For M

to be consistent with the model described in Section 2.1, we must in particular ensure that
a given point is involved in exactly one (maximal) match, with the convention that an
unmatched point is itself a trivial match of size 1. In this sense M can be seen as a partition
on the set of all observed configuration points, under the constraint that no two points from
a given configuration be in the same subset. We stress the fact that the elements of M
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Figure 1. Directed acyclic graph of the hierarchical model.

refer to the indices of the matched points and give no information about their position. The
directed acyclic graph (DAG) of our hierarchical model, including this new parameter M,
is displayed in Figure 1.

We categorize the matches contained in M according to their “type.” Consider a generic
set I ⊂ {1,2, . . . ,C} of configuration indices, with I �= ∅. This set corresponds to a type
of match: for example, if C = 3, then I = {2,3} refers to a match involving a point from
the x(2) configuration and a point from the x(3) configuration but none from the x(1) con-
figuration. We call I -match a match involving exactly the configurations whose index is
included in I . If I = {i1, i2, . . . , iK }, an I -match can be represented by an index array

(j1, j2, . . . , jK) such that ξ
(i1)
j1

= ξ
(i2)
j2

= · · · = ξ
(iK)
jK

and such that c /∈ I implies ξ
(c)
l �= ξ

(ik)
jk

for all l = 1,2, . . . , nc and all k = 1,2, . . . ,K . We write |I | as the number of configuration
indices in I . If |I | = 1, our I -match is in fact an unmatched point; as stated above this will
also be treated as a type of match.

2.3 POISSON PROCESS ASSUMPTION AND PRIOR DISTRIBUTION FOR THE

MATCHES

We make the prior assumption that the μ-points follow a multivariate Poisson process
with constant rate λ over a region V ⊂ R

d of volume v. Recall that each μ-point generates
a number of observations or remains unobserved. For I as defined in the previous section,
let qI be the probability that a given hidden location generates an I -match. For instance,
if C = 3, then q{1,3} is the probability that a particular μ-point is observed in the x(1)

and x(3) configurations but not in the x(2) configuration. Thus the probability of a hidden
location remaining unobserved is 1 − ∑

I qI . Assume also that the matches are generated
independently from μ-point to μ-point, based on the same probabilities qI . A very useful
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consequence of these assumptions is that our global Poisson process can be partitioned
into 2C thinned Poisson processes: for fixed I , the set of μ-points which have generated
an I -match is itself a Poisson process with rate λqI ; furthermore, this process will be
independent of the other processes of the partition.

We define the parameterization

qI = ρI ·
∏
c∈I

q{c}, (2.2)

where ρI = 1 if |I | = 1. This type of parameterization has been treated in other contexts,
such as that of regression with binary response (Ekholm, Smith, and McDonald 1995) and
genetic map functions (Speed 2005). The parameter ρI is sometimes called the dependence
ratio or coincidence coefficient. Here it can be seen as a relative measure of how likely an
I -match is to occur a priori.

Now we wish to assign a prior distribution to the match structure M, based on the Pois-
son process assumptions described earlier. Let LI be the number of I -matches contained
in M. Given {nc, c = 1,2, . . . ,C}, we must have

L{c} = nc −
∑

{I : |I |≥2,I�c}
LI for c = 1,2, . . . ,C. (2.3)

The prior distribution for M can be written as

p(M) = p(M | {LI }) · p({LI }). (2.4)

From the Poisson process assumption on the μ-points, the counts LI are independent Pois-
son variables with means λvqI . Using (2.2) and (2.3), we find that the prior distribution for
the match counts has the form

p({LI }) ∝
∏
I

(λvqI )
LI

/∏
I

LI !

∝
∏
I

{
ρI

(λv)|I |−1

}LI /∏
I

LI !, (2.5)

so the qI parameters conveniently cancel.
Now make the prior assumption that, conditional on the match counts {LI }, the distrib-

ution for M is uniform. In other words, consider as equally likely each match arrangement
which is consistent with the counts. The number of such arrangements is

C∏
c=1

nc!
/∏

I

LI !,

as can be seen using a recursion argument. Using (2.4) and (2.5), it follows that the prior
distribution for M has the form

p(M) ∝
∏
I

{
ρI

(λv)|I |−1

}LI

. (2.6)

The case C = 2 matches with Green and Mardia’s (2006) expression for the prior distribu-
tion of their “matching matrix.”
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2.4 JOINT MODEL

We now seek to compute the joint likelihood of M and A = {A(1),A(2), . . . ,A(C)}
given the set of configurations X = {x(1), x(2), . . . , x(C)}.

Fix I = {i1, i2, . . . , iK } and let {x(i1)
j1

, x
(i2)
j2

, . . . , x
(iK)
jK

} be the points of a given I -match
in M, where of course K = |I |. From (2.1), we find that

p
(
x

(i1)
j1

, x
(i2)
j2

, . . . , x
(iK)
jK

| A,μ, ξ (1), ξ (2), . . . , ξ (C)
) =

K∏
k=1

∣∣A(ik)
∣∣f (ik)

(
A(ik)x

(ik)
jk

− μ
ξ

(i1)

j1

)
,

where |A| denotes the absolute value of the determinant of the matrix A. Now consider
the set of μ-points which have generated an I -match—we mentioned that this set follows
a Poisson process. Given M, and therefore given LI , the points of this set are uniformly
distributed over the region V . As a result the contribution of the matched points defined
earlier to our likelihood is

p
(
x

(i1)
j1

, x
(i2)
j2

, . . . , x
(iK)
jK

| A,M
) = v−1

∫
V

K∏
k=1

∣∣A(ik)
∣∣f (ik)

(
A(ik)x

(ik)
jk

− μ
)
dμ.

The above integration will be carried out over R
d . We are thus ignoring the edge effects

from the boundary of V ; this is valid if V is taken large enough relative to the support of
the error densities f (c).

Suppose I = {i1, i2, . . . , i|I |} and let SI be the set of I -matches contained in M. The
elements of SI are written as index arrays of the form (j1, j2, . . . , j|I |), with the convention

that {x(i1)
j1

, x
(i2)
j2

, . . . , x
(i|I |)
j|I | } is the corresponding set of matched points. The contribution of

the I -matches to the likelihood is

v−LI
∏

(j1,...,j|I |)∈SI

∫
Rd

|I |∏
k=1

∣∣A(ik)
∣∣f (ik)

(
A(ik)x

(ik)
jk

− μ
)
dμ.

Multiplying over all match types, the full likelihood of A and M can be seen to be

p(X | A,M) =
(

v−∑
I LI

C∏
c=1

∣∣A(c)
∣∣nc

)

×
∏
I

∏
(j1,...,j|I |)∈SI

∫
Rd

|I |∏
k=1

f (ik)
(
A(ik)x

(ik)
jk

− μ
)
dμ. (2.7)

We introduce prior distributions p(A(c)) and p(τ (c)) for the transformation parameters,
for c = 1,2, . . . ,C. These priors are left undefined for the time being. The parameters λ, v,
and ρI are treated as fixed. From (2.6) and (2.7), the joint posterior distribution has the
form

p(A,M | X) ∝
C∏

c=1

{
p
(
A(c)

)
p
(
τ (c)

)∣∣A(c)
∣∣nc

}

×
∏
I

∏
(j1,...,j|I |)∈SI

ρI

λ|I |−1

∫
Rd

|I |∏
k=1

f (ik)
(
A(ik)x

(ik)
jk

− μ
)
dμ. (2.8)
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Here and elsewhere, the “∝” symbol indicates proportionality with respect to the variables
to the left of the conditioning sign. Thus the μ-points and labeling arrays have been effec-
tively integrated out; the relevant information contained in these parameters is captured by
the structure M. Note also that the volume v plays no role in our posterior distribution.

Now assume the error densities f (c) are centered Gaussian densities with covariance
matrices all equal to σ 2Id . In this case the integrals in (2.8) can be written in closed form:
for a given set of points {x(i1)

j1
, x

(i2)
j2

, . . . , x
(i|I |)
j|I | }, define

γA
(
x

(i1)
j1

, x
(i2)
j2

, . . . , x
(i|I |)
j|I |

) =
|I |∑

k=1

∥∥A(ik)x
(ik)
jk

− c
∥∥2

,

where

c = 1

|I |
|I |∑

k=1

A(ik)x
(ik)
jk

and ‖ · ‖ is the Euclidean norm. Thus γA(x
(i1)
j1

, . . . , x
(i|I |)
j|I | ) is a measure of the deviation in

the transformed points {A(i1)x
(i1)
j1

, . . . ,A(i|I |)x
(i|I |)
j|I | }. With this notation and the Gaussian

assumption for the errors, one finds that∫
Rd

|I |∏
k=1

f (ik)
(
A(ik)x

(ik)
jk

− μ
)
dμ

= |I |−d/2(2πσ 2)−d(|I |−1)/2 × exp

{
− 1

2σ 2
γA

(
x

(i1)
j1

, x
(i2)
j2

, . . . , x
(i|I |)
j|I |

)}
. (2.9)

This identity is also valid if |I | = 1, because γA(x
(i1)
j1

) = 0. Now a prior distribution p(σ 2)

can be introduced and the variance parameter σ 2 incorporated in the model (2.8).

2.5 INFERENCE WITH MARKOV CHAIN MONTE CARLO

We wish to make inference on the parameters of the model (2.8), given the data con-
figurations X. The parameters of interest are the error variance σ 2, the translations τ (c),
the transformation matrices A(c), and the set of matches M. The ratios ρI /λ

|I |−1 will be
considered as fixed hyperparameters, estimated through some other method.

The unwieldy aspect of the joint distribution (2.8) makes it difficult to use conventional
analytic or numerical estimation methods in this context. An attractive possibility here is
to use Markov chain Monte Carlo (MCMC) simulation. We simulate a Markov chain by
updating the parameters in sweeps, in such a way that the underlying transition kernel of
the chain verifies detailed balance, with (2.8) as the stationary, or limiting, distribution. The
sampled chain can be used as a basis for inference, provided it has reached equilibrium.
For an accessible introduction to MCMC methods, see for example Green (2001), whereas
Robert and Casella (2004) gave a more detailed account.

To simplify our method, we will make the assumption that the transformation matri-
ces A(c) are rotation matrices. Thus we are concentrating on rigid-body transformations,
and the point configurations can be seen as elements of a size-and-shape space (Dryden
and Mardia 1998).
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We will use a Gibbs sampling scheme for updating the transformation and error variance
parameters. The matches will be updated with a Metropolis–Hastings jump. The C++
implementation of the algorithm (with R interface), including instructions and functions for
postprocessing, can be found as part of the supplementary material on the JCGS website.

Updating the Continuous Parameters

For the parameters σ 2, τ (c), and A(c), for c = 1,2, . . . ,C, conditionally conjugate priors
can be found which result in full conditional distributions of the same form. This will
make updating these parameters relatively straightforward. The conjugacy assumptions are
not particularly restrictive here: in practice we do not expect to make use of strong prior
information on the continuous parameters.

We assign an inverse gamma prior distribution to σ 2; in particular we set σ−2 ∼ 
(a, b),
where a and b are respectively the shape and rate parameters of the gamma distribution.
From (2.8) and (2.9), the full conditional distribution of σ−2 is

(σ−2 | A,M,X) ∼ 
(ã, b̃),

where

ã = a + d

2

∑
I

LI (|I | − 1)

and

b̃ = b + 1

2

∑
I

∑
(j1,...,j|I |)∈SI

γA
(
x

(i1)
j1

, . . . , x
(i|I |)
j|I |

)
.

Thus the error variance can be updated using a Gibbs sampler step, that is, by simulating
from the full conditional inverse gamma distribution.

Set A(−c) = {A(1), . . . ,A(c−1),A(c+1), . . . ,A(C)}. We choose to assign Gaussian pri-
ors to the translation parameters. For c = 1,2, . . . ,C, suppose a priori that τ (c) ∼
Nd(μ(c), η2

cId). Using (2.8),(
τ (c) | σ 2,A(−c),A(c),M,X

) ∼ Nd

(
1/η2

cμ
(c) + 1/σ 2mc

1/η2
c + 1/σ 2wc

,
1

1/η2
c + 1/σ 2wc

Id

)
,

with

mc =
∑

I : I�c

∑
(j1,...,j|I |)∈SI

1

|I |
{( ∑

k : ik �=c

A(ik)x
(ik)
jk

)
− (|I | − 1)A(c)x

(c)
jk(c)

}
and

wc =
∑

I : I�c

( |I | − 1

|I |
)

LI ,

and where the subindex k(c) is such that x(ik(c)) = x(c). The translation parameters are thus
also updated using a Gibbs move.

We can also find conjugate priors for the rotation matrices A(c), though this is less
obvious. For c = 1,2, . . . ,C, set p(A(c)) ∝ exp{tr(F T

c A(c))} for some d ×d matrix Fc. The
fact that we are concentrating on rotation matrices means that |A(c)| = 1 and (A(c))−1 =
(A(c))T . A somewhat involved calculation yields

p
(
A(c) | σ 2,A(−c), τ (c),M,X

) ∝ exp
[
tr
{
(Fc + Sc)

T A(c)
}]

,



764 Y. RUFFIEUX AND P. J. GREEN

where tr(·) is the trace operator and Sc the d × d matrix

Sc = 1

σ 2

∑
I : I�c

∑
(j1,...,j|I |)∈SI

1

|I |
{( ∑

k : ik �=c

A(ik)x
(ik)
jk

)
− (|I | − 1)τ (c)

}(
x

(c)
jk(c)

)T
.

The conditionally conjugate distribution p(A) ∝ exp{tr(F T A)} is called the matrix Fisher
distribution, and is well known in directional statistics (Mardia and Jupp 2003, p. 289).
Rather than updating the rotation matrices themselves, we will work on the corresponding
rotation angles. For example, if d = 2, we define the angle θ(c), whereas if d = 3, we have
the three generalized Euler angles θ

(c)
12 , θ

(c)
23 , and θ

(c)
13 . Green and Mardia (2006, pp. 241–

242) described how the angles can be updated when assuming a conjugate matrix Fisher
prior for the rotation matrices, in the case where d is 2 or 3.

For simplicity, we consider here only the case where the A(c) are uniformly distributed
and mutually independent a priori. This is achieved by assigning zero matrices to the Fc

earlier. It is then true that the relative rotations (A(c1))T · A(c2) are uniform and mutually
independent for c2 �= c1 and fixed c1. So without loss of generality, we can impose the
identifying constraint that A(1) be fixed as the identity transformation. This is the same as
saying that the first data configuration lies in the same frame as the hidden point locations.
The choice of which configuration to “fix” will not have a material effect on MCMC in-
ference outside of sampling error: with uniform rotation and diffuse translation priors, the
posterior distribution is invariant to this choice.

Updating the Matches

The matches will be updated with a Metropolis–Hastings jump. We write

M = {(t1
1 , t1

2 , . . . , t1
C), (t2

1 , t2
2 , . . . , t2

C), . . . , (tK1 , tK2 , . . . , tKC )},
with K = ∑

I LI . Each C-tuple (tk1 , tk2 , . . . , tkC) represents a match, tkc being the index of
the point from the x(c) configuration involved in the match. If a given configuration is not
involved in the match, a “−” flag is inserted at the appropriate position. For instance, if

C = 3, the 3-tuple (2,4,1) refers to a match between x
(1)
2 , x

(2)
4 , and x

(3)
1 , whereas (−,2,1)

is a match between x
(2)
2 and x

(3)
1 , with no x(1)-point involved. We also include unmatched

points in this list: (1,−,−) indicates that x
(1)
1 is unmatched, for example.

Suppose that M is the current list of matches in the MCMC algorithm. The jump pro-
posal proceeds as follows:

• with probability q we choose to split a C-tuple; in this case we draw an element
uniformly at random in the list M.
– If the C-tuple drawn corresponds to an unmatched point, we do nothing;

– otherwise we split it into two C-tuples; for instance, (2,3,1) can be split into
(2,−,−) and (−,3,1). In general there will be many potential splits: here we
could have chosen to split (2,3,1) into (−,3,−) and (2,−,1). Suppose the match
to be split is an I -match. Then there are BI = 2|I |−1 − 1 ways to split this match.
We select one of these splits uniformly at random.
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• With probability 1 − q we choose to merge two C-tuples; in this case we select two
distinct elements uniformly at random from M.
– If the two C-tuples drawn contain a common configuration, for example, (j1, k,−)

and (j2,−,−), then we do nothing;

– otherwise we merge the C-tuples; for example, (j, k,−) and (−,−, l) become
(j, k, l), whereas (−, k,−) and (−,−, l) become (−, k, l).

The split and merge operations defined above form a complementary reversible pair.
Clearly, all possible match arrangements can be explored using these two operations only.

The acceptance probability of a jump is readily worked out from (2.8). Suppose the
proposal is to split an I -match into an I ′-match and an I ′′-match, such that I = I ′ ∪ I ′′
and I ′ ∩ I ′′ = ∅. Reverting to the algebraic representation, suppose we are splitting

(x
(i1)
j1

, . . . , x
(i|I |)
j|I | ) into (x

(i′1)
j ′

1
, . . . , x

(i′|I ′|)
j ′
|I ′|

) and (x
(i′′1 )

j ′′
1

, . . . , x
(i′′|I ′′|)
j ′′
|I ′′|

). The acceptance probabil-

ity for this proposal is min{1,pS}, where

pS =
(

ρI ′ρI ′′λ

ρI

)
×

(
2πσ 2|I |
|I ′||I ′′|

)d/2

× 2(1 − q)BI

q(K + 1)

×
exp{−1/(2σ 2)γA(x

(i′1)
j ′

1
, . . . , x

(i′|I ′|)
j ′
|I ′|

)} exp{−1/(2σ 2)γA(x
(i′′1 )

j ′′
1

, . . . , x
(i′′|I ′′|)
j ′′
|I ′′|

)}

exp{−1/(2σ 2)γA(x
(i1)
j1

, . . . , x
(i|I |)
j|I | )}

.

This acceptance probability is also valid when at least one of the new matches after the split
is an unmatched point—recall that γA(x

(i1)
j1

) = 0 and that ρI = 1 if |I | = 1. Now suppose

we attempt to merge (x
(i′1)
j ′

1
, . . . , x

(i′|I ′|)
j ′
|I ′|

) and (x
(i′′1 )

j ′′
1

, . . . , x
(i′′|I ′′|)
j ′′
|I ′′|

) into (x
(i1)
j1

, . . . , x
(i|I |)
j|I | ). The

acceptance probability for this jump is min{1,pM}, where

pM =
(

ρI

ρI ′ρI ′′λ

)
×

( |I ′||I ′′|
2πσ 2|I |

)d/2

× qK

2(1 − q)BI

×
exp{−1/(2σ 2)γA(x

(i1)
j1

, . . . , x
(i|I |)
j|I | )}

exp{−1/(2σ 2)γA(x
(i′1)
j ′

1
, . . . , x

(i′|I ′|)
j ′
|I ′|

)} exp{−1/(2σ 2)γA(x
(i′′1 )

j ′′
1

, . . . , x
(i′′|I ′′|)
j ′′
|I ′′|

)}
.

To speed up the exploration of the parameter space, we will typically make several match
jump proposals within each sweep of the MCMC algorithm.

3. APPLICATION ALIGNING STEROID MOLECULES

3.1 THE DATA

For this example we select C = 3 steroid molecules from the CoMFA database, which
can be accessed at http://www2.ccc.uni-erlangen.de/services/steroids. This database has
become a benchmark for testing computer-assisted drug design methods, thanks in large
part to Cramer, Paterson, and Bunce’s (1988) use of it in their Comparative Molecular Field

http://www2.ccc.uni-erlangen.de/services/steroids
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Analysis (CoMFA). Ever since the publication of that paper, these molecules have been
used as a training set for various 3D quantitative structure-activity relationship (QSAR)
methods (see Coats 1998). The three molecules, plus the two used later in this section,
may also be obtained from the supplementary material on the JCGS website.

The three molecules that we have chosen here are aldosterone, cortisone, and pred-
nisolone, which we label x(1), x(2), and x(3), respectively. Each of these molecules con-
tains n1 = n2 = n3 = 54 arbitrarily labeled atoms in d = 3 dimensional space. We wish to
align these molecules using the methodology described in this article.

Here we have seven types of matches to deal with, including the unmatched types: {1},
{2}, {3}, {1,2}, {2,3}, {1,3}, and {1,2,3}. For simplicity we will drop the brackets and
commas from the I sets when appropriate, so that for example L{1,2} and ρ{2,3} are written
as L12 and ρ23, and a 13-match is a match involving the first and third configurations but
not the second.

3.2 RESULTS

The MCMC algorithm was launched without setting any initial matches. We set ρ12/λ =
ρ23/λ = ρ13/λ = 31.25, and ρ123/λ

2 = 3,660; see Section 3.3 for an explanation of how
we chose these values. By convention ρ1, ρ2, and ρ3 are fixed at 1. The error variance pa-
rameters were set to a = 1 and b = 0.1. The transformation priors were rendered largely
noninformative by setting μ(2) = μ(3) = 0 and η2 = η3 = 10 and by assigning the zero ma-
trix to F2 and F3. The sampler was run for 50,000 sweeps, the first 10,000 being discarded
as burn-in; 50 match proposals were made per sweep and we set q = 0.5 as the probability
of choosing a merge in the Metropolis–Hastings step. This run took around 25 seconds
on a Pentium 4 processor. More generally, for a fixed number of iterations, we found the
computing time of the algorithm to increase with C in a roughly linear fashion.

From inspection of the parameter traces and posterior likelihood produced by the
MCMC sampler, we conclude that the chain has reached equilibrium. See the supple-
mentary material on the JCGS website for a graphical representation of some of these
traces. The error variance and translations were estimated using the sample posterior
means based on a subsample of 2000 after burn-in; we found σ̄ 2 = 0.0076, τ̄ (2) =
(−1.224,−0.639,−0.786)T , and τ̄ (3) = (−0.796,−0.444,−0.640)T . The rotation ma-
trices were estimated by taking their respective sampled polar parts (see Green and Mar-
dia 2006, p. 248), giving us the estimates

Â(2) =
⎛⎝ 0.967 0.136 −0.216

−0.166 0.977 −0.131
0.193 0.163 0.968

⎞⎠ , Â(3) =
⎛⎝ 0.888 0.186 −0.420

−0.141 0.980 0.137
0.438 −0.063 0.897

⎞⎠ .

The posterior sample means of the match counts were (L̄12, L̄23, L̄13, L̄123) = (4.46,5.59,

1.14,42.70).
We choose to estimate M by ranking the matches by order of their sample posterior

probability, and selecting the k most frequent, say. We must of course ensure that the
matches in the corresponding estimator M̂ are compatible, that is, that no point is in-
volved in more than one match. Setting a lower threshold of 0.5 for the posterior proba-
bilities of the selected matches will ensure a coherent M̂. However, we may “miss” some
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matches in the process. Indeed, consider a MCMC output in which the matches (l, j,−)

and (−, j, k) both appear with frequency 0.4 and (l, j, k) appears with frequency 0.2. If
we set a lower probability threshold of 0.5, none of these three matches will be selected,
which appears counterintuitive. To avoid this problem one might wish to generalize Green
and Mardia’s (2006) loss function approach to the multiple configuration setting. There are
various ways to do this; however, all seem to lead to an awkward constrained optimization
problem. Such problems can be set up as linear programs, but scale badly with problem
size.

Here we find that 47 matches of size 2 or greater have probability higher than 0.9
and 54 have probability higher than 0.5. Of these 54 matches, 44 are 123-matches, 4 are
12-matches, 5 are 23-matches, and one is a 31-match. The three molecules are aligned
graphically in Figure 2. Notice that in the top right corner of the figure, there appears to be
a nonrandom observation error in the matched points. This might be a result of assigning
too large a value to ρ123/λ

2, as will be seen in Section 3.3. It could also be the consequence
of systematic model error; the assumption of rigid-body transformations might be invalid,
for instance.

To study the vulnerability of the sampler to local modes, the following experiment was
conducted: 100 independent MCMC runs were launched, all with the hyperparameters
fixed at the values given above. After 50,000 sweeps of a run, the posterior likelihood (2.8)
was computed and compared to a threshold value established from earlier runs, such as
the one described above. If the likelihood was lower than this threshold, then the sampler

Figure 2. Aligned molecules from Section 3.2: the full transformations are estimated from a MCMC subsample
of size 2000, and are filtered out from the data. The observations are then projected onto the principal components
plane. The ‘◦’ symbols represent the x(1) configuration (aldosterone), the ‘+’ symbols the x(2) configuration
(cortisone), and the ‘×’ symbols the x(3) configuration (prednisolone). The solid dots correspond to the centers
of the 123-matches (black) and jk-matches (gray).
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was adjudged to have become trapped in a local mode. Of the 100 runs, 91 passed this
test and thus were deemed to have found their way to the main mode of the distribution.
Of course these favorable results might be more a consequence of the nature of the data
than of the robustness of our method. In case of difficulty we might, for instance, locate
the carbon rings of the molecules using a graph-theory-based algorithm (see Dryden, Hirst,
and Melville 2007, p. 246). Then our sampler could be initialized based on the matched
carbon rings and the appropriate shape registration. Another option would be to adapt
Lin, Zhu, and Wang’s (2007) “strong seeds” approach to initialize the matching algorithm.
This involves identifying seeds in the configurations and growing them into composite
candidates for matching, via a branch-and-bound algorithm. The result is a much-reduced
parameter space for the MCMC sampler to explore. It would be an interesting challenge to
transpose this approach to our problem of aligning multiple molecules, but we choose to
leave it for future work.

3.3 PRIOR SETTINGS

We now briefly study the effect of the hyperparameter values on the MCMC inference.
In the case where no prior information on the transformation parameters is available, it
is convenient to set a uniform prior on the rotation matrix and on the directions of the
translations, as specified in Section 3.2. Furthermore, we typically select the variances η2

2
and η2

3 to be large enough so that the resulting translations encompass the configurations.
We study in a little more detail the effect of the hyperparameters a, b, and ρI /λ

|I |−1.
In the above runs we set a = 1, thus assigning an exponential prior distribution to 1/σ 2.

The second hyperparameter b determines the rate of this distribution: larger b should re-
sult in larger variance in the observation errors, and thus more variability in the matching.
Conversely, the smaller the value of b, the closer together a set of (transformed) points
will have to be, to be considered as a candidate for a match. Increasing b = 0.1 by a factor
of 10 will double the posterior mean of σ 2. Inference on the matches is only slightly af-
fected: a few two-way matches are replaced by 123-matches. Also, this increase generates
a local mode problem, as some of the runs become entangled in a minor mode for an in-
definite time. This is to be expected, because by increasing b we are allowing the sampler
to explore additional alignments. Reducing b = 0.1 to b = 0.01 has little effect on either
the matching or the posterior mean of the variance. However, reducing it further seems to
create a second major mode in the posterior distribution, causing the algorithm to switch
continually between two alignments. This new alignment is very similar to the first, except
that approximately 10 of the 123-matches are replaced by 23-matches. The likely explana-
tion for this is that in reducing b, we have become less tolerant toward matching, and thus
have split several “borderline” 123-matches.

Now we study the influence of the ratios rI = ρI /λ
|I |−1 on the matching. Recall that

each hyperparameter rI appears in the prior distribution (2.6) for the matches; we expect
that increasing rI will result in more I -matches being accepted in the algorithm. These
ratios may be estimated by taking advantage of prior “guesses” one might have on the
number of matches of each type. When such information is available, as is often the case
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Table 1. Sample mean of the match counts and estimate of σ 2 in the case C = 3, for four different sets of prior
guesses.

Prior specifications Inference

L̃12 L̃23 L̃13 L̃123 L̄12 L̄23 L̄13 L̄123 σ̂ 2

8 8 8 30 4.46 5.59 1.14 42.70 7.55 × 10−3

25 5 5 20 7.32 4.81 0.74 40.90 7.24 × 10−3

5 25 5 20 5.61 14.99 1.06 32.27 4.72 × 10−3

5 5 25 20 4.21 4.74 2.14 42.70 7.71 × 10−3

in practice, the argument of Green and Mardia (2001, p. 250) can be extended to the mul-
tivariate distribution (2.5). Suppose we have established the guesses {L̃I } for the match
counts; if we set

rI = L̃I · v|I |−1/∏
c∈I

L̃{c},

then the resulting prior distribution for the counts will have a unique mode in {L̃I }. The
value for the volume v must be determined from the data, but this is not usually difficult
to do. For example, the ratios chosen in Section 3.2 are based on the guesses L̃12 = L̃23 =
L̃13 = 8 and L̃123 = 30, with v fixed at 250. In Table 1 we consider four scenarios for
the guesses, including that of Section 3.2. Displayed for each case is the sample posterior
mean of the match counts and the σ 2 estimate. The latter value can be seen as a rough
measure of the deviation in the matched points after transformation; it should not be used
to choose between prior sets of values, however. It is interesting to note that the third set of
guesses, which favors strict 23-matches, brings about a discernible change in the inference.
The “borderline” 123-matches mentioned earlier have been replaced by 23-matches, giving
a more precise alignment.

3.4 MULTIPLE VERSUS PAIRWISE MATCHING

We briefly consider the gain of using our multiple matching approach rather than align-
ing the configurations independently by pairs. For this purpose we add two further steroid
molecules 11-deoxycorticosterone and 17a-hydroxyprogesterone (x(4) and x(5), respec-
tively) to the three described earlier; both contain 54 atoms.

First we treat the pairwise alignment of molecule x(1) to molecules x(2), x(3), x(4),
and x(5), respectively. In Table 2 we display some of the inference obtained when aligning
x(1) and x(2), for different prior scenarios. The pairwise alignments of x(3), x(4), x(5) to x(1)

give mostly similar results in terms of number of inferred matches; we choose not to dis-
play them here. In particular the mean numbers of unmatched points for the case L̃12 = 30
are all between 6 and 10. Table 3 contains the results when aligning the five molecules si-
multaneously using our multiple-configuration method. Once L̃12345 drops below 35, a fair
portion of the first molecule becomes disengaged from the other four (this was already ap-
parent when aligning three molecules; see Section 3.3). From Table 2 we see that in the
pairwise case one would have to set L̃12 to be as low as 10 to obtain an alignment similar
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Table 2. Sample match count means and estimate of σ 2 for five different sets of prior values, in the context of
matching x(2) to x(1) .

Prior specifications Inference

L̃12 L̃1 L̄12 L̄1 σ̂ 2

30 24 47.48 6.52 9.01 × 10−3

25 29 45.72 8.28 8.36 × 10−3

20 34 42.23 11.77 6.99 × 10−3

15 39 36.55 17.45 4.77 × 10−3

10 44 35.07 18.93 4.33 × 10−3

to the multiple one. This suggests that, in this context at least, the pairwise approach has
a proclivity for overmatching. For reference the five-way alignment with L̃12345 = 30 is
displayed in Figure 3.

The above comparison confirms that the inclusion of two or three additional configura-
tions may have a positive impact on the alignment inference. One might understand this as
a “borrowing of strength” of sorts; further configurations provide further information on
the number and location of implied μ-points, information which can in turn be exploited
in the alignment of the initial configurations. Clearly, there is no way to take advantage of
this information if the molecules are aligned by pairs.

4. DISCUSSION

In this article we have seen that the two-configuration matching approach of Green and
Mardia (2006) generalizes readily to the multiconfiguration context. We believe that our
fully Bayesian approach offers general and flexible inference, and that it can be adapted
to deal with alignment problems in various contexts. The methodology was applied to the
matching of three steroid molecules, with promising results: with this “easy” dataset, the
sampler seemed to have little difficulty avoiding the anticipated local mode problem.

The problem of aligning multiple molecules has also been treated by Dryden, Hirst, and
Melville (2007); their approach is similar to ours, in that a hierarchical model is constructed

Table 3. Sample mean of some of the match counts and estimate of σ 2 in the case C = 5, for five prior sets of
values.

Prior specifications Inference

L̃12345 L̃1 L̄12345 L̄1 σ̂ 2

39.9 0.1 41.44 5.80 4.32 × 10−3

35 1 35.36 10.20 2.98 × 10−3

30 2 22.07 20.96 1.46 × 10−3

25 5 21.55 21.96 1.36 × 10−3

20 10 20.86 22.66 1.29 × 10−3
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Figure 3. Multiple alignment of the five molecules from Section 3.4: the full transformations are estimated
from a MCMC subsample of size 2000, and are filtered out from the data. The points are then projected onto the
principal components plane, and are labeled according to the number of the configuration they belong to.

and a hidden reference molecule defined. However, the hidden points are not integrated
out, and the transformations are maximized out using Procrustean registration techniques.
Furthermore, only C “types” of matches are considered in their model (compared to our
2C − C − 1): the alignment is made pairwise between each observed point configuration
and the hidden molecule. As far as we know, ours is the only available method which mod-
els multiple matchings of different types, in a general and mathematically rigorous manner.
In terms of computation speed, the methodology of Dryden, Hirst, and Melville (2007)
would probably be more efficient than the one proposed in this article when C is large.
So the choice of method might depend upon the number of configurations to be aligned
and the extent to which one wished to retain full statistical efficiency and control the prior
match specifications.

An important aspect of alignment which is not addressed in this article is that of mark-
ing. In many contexts, additional information on the observations is available. For example,
Dryden, Hirst, and Melville (2007) included “marks” on each atom of the molecules to be
aligned; these marks may contain information influencing the matching, such as partial
charge and van der Waals radius. In a similar vein, Green and Mardia (2006) included the
possibility of coloring the observations, to model the possibility that points of the same
color are more likely to be matched a priori. Thus knowledge of amino acid types can be
used advantageously for the matching of active sites in proteins. Incorporating such infor-
mation on the points may make the inference more clear-cut, by reducing multimodality in
the posterior distribution.
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It would be interesting to consider applications that assume nonrigid or even nonlinear
transformations between the configurations. Our model allows for such transformations,
but the implementation would have to be suitably adapted. The same can be said regard-
ing the use of non-Gaussian observation errors and of different prior distributions for the
parameters.

SUPPLEMENTAL MATERIALS

Data Sets: For use with R, a list containing the five steroids treated in the paper, in this
order: aldosterone, cortisone, prednisolone, 11-deoxycorticosterone, 17a-hydroxypro-
gesterone. (five_steroids.RData)

Computer Code: Contains the shared C++ code (main.so), the R code (MultAlign. R),
and instructions for running the program (MultAlign.txt). (MAlign_code.tar.gz)

Supplementary Documents: Three figures complementing the article. (Supp_Figures.
pdf)

ACKNOWLEDGMENTS

The authors thank Kanti Mardia for introducing them to this problem and for stimulating discussions, as well
as Anthony Davison and John “Mac” McDonald for their helpful comments and suggestions.

[Received April 2007. Revised August 2008.]

REFERENCES

Chui, H., and Rangarajan, A. (2000), “A New Algorithm for Non-Rigid Point Matching,” IEEE Conference on

Computer Vision and Patter Recognition, 2, 44–51.

Coats, E. A. (1998), “The CoMFA Steroids as a Benchmark Dataset for Development of 3D QSAR Methods,”
Perspectives in Drug Discovery and Design, 12/13/14, 199–213.

Cramer, R. D., III, Patterson, D. E., and Bunce, J. D. (1988), “Comparative Molecular Field Analysis (CoMFA):
1. Effect of Shape on Binding of Steroids to Carrier Proteins,” Journal of the American Chemical Society,
110, 5959–5967.

Cross, A. D. J., and Hancock, E. R. (1998), “Graph Matching With a Dual-Step EM Algorithm,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 20 (11), 1236–1253.

Dryden, I. L., and Mardia, K. V. (1998), Statistical Shape Analysis, Chichester: Wiley.

Dryden, I. L., Hirst, J. D., and Melville, J. L. (2007), “Statistical Analysis of Unlabelled Point Sets: Comparing
Molecules in Chemoinformatics,” Biometrics, 63, 237–251.

Ekholm, A., Smith, P. W. F., and McDonald, J. W. (1995), “Marginal Regression Analysis of Multivariate Binary
Response,” Biometrika, 82 (4), 847–854.

Green, P. J. (2001), “A Primer on Markov Chain Monte Carlo,” in Complex Stochastic Systems, eds.
O. E. Barndorff-Nielsen, D. R. Cox, and C. Klüppelberg, London: Chapman & Hall, pp. 1–62.

Green, P. J., and Mardia, K. V. (2006), “Bayesian Alignment Using Hierarchical Models, With Applications in
Protein Bioinformatics,” Biometrika, 93 (2), 234–254.

Lemmen, C., and Lengauer, T. (2000), “Computational Methods for the Structural Alignment of Molecules,”
Journal of Computer-Aided Molecular Design, 14, 215–232.



ALIGNMENT OF MULTIPLE CONFIGURATIONS 773

Lin, L., Zhu, S.-C., and Wang, Y. (2007), “Layered Graph Match With Graph Editing,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 1–8.

Mardia, K. V., and Jupp, P. E. (2003), Directional Statistics, Chichester: Wiley.

Robert, C. P., and Casella, G. (2004), Monte Carlo Statistical Metods (2nd ed.), New York: Springer.

Speed, T. P. (2005), “Genetic Map Functions,” in Encyclopedia of Biostatistics (2nd ed.), New York: Wiley.


	Introduction
	Hierarchical Modeling of Multiconfiguration Alignment
	The Alignment Problem
	Hierarchical Modeling: Preliminaries
	Poisson Process Assumption and Prior Distribution for the Matches
	Joint Model
	Inference With Markov Chain Monte Carlo
	Updating the Continuous Parameters
	Updating the Matches


	Application Aligning Steroid Molecules
	The Data
	Results
	Prior Settings
	Multiple versus Pairwise Matching

	Discussion
	Supplemental Materials
	Acknowledgments
	References

