
From Business To IT with SEAM: the J2EE Pet Store Example

Irina Rychkova, Gil Regev, Lam-Son Le, Alain Wegmann

School of Communication and Computer Science,
Ecole Polytechnique Fédérale de Lausanne (EPFL),

1015 Ecublens, Switzerland
{Irina.Rychkova, Gil.Regev, LamSon.Le, Alain.Wegmann}@epfl.ch

Abstract

Business and IT alignment demands clear

traceability between the applications to be developed
and the business requirements. SEAM is a systemic
visual approach for modeling systems, including
information systems and organizations. This paper
illustrates how we represent the business role of an
IT application and its platform-specific realization in
SEAM. We use the Java Pet Store sample application
as an example.

1. Introduction

Business and IT alignment is gaining in
importance as organizations expect to earn larger
returns from their IT investments. As a result
management expects explicit traceability between the
applications to be developed and the business
requirements. In this paper we demonstrate how to
represent the business role of an IT application as
well as its platform-specific realization with SEAM
[1], a systemic multi-level modeling method. We
illustrate this technique with the Java Pet Store
application. The Pet Store is a well-known example
proposed as a Java blueprint in 2001. This application
illustrates how distributed web-based applications
can be developed with the Java J2EE platform [2],
[3], [4].

Figure 1 illustrates the Pet Store example:
Customers connect to the Pet Store website, manage
their account, browse the catalog, update their
shopping cart, and place purchase orders. Each order,
placed by a customer, is fulfilled by an Order
Processing Center (OPC) module - a part of the Pet
Store application. Orders can be approved or rejected
by a Pet Store administrator (shown as the Admin
GUI in Figure 1). When an order is approved and
payment is verified with the Credit Card Service, the
supplier ships the product to the customer.

Figure 1. The Pet Store description as
represented in the Java BluePrint, [2].

SEAM is a systemic and systematic modeling
method designed to model business and IT systems.
A system is defined in SEAM as either a
configuration of component entities with
relationships between them – system as composite –
or as one entity in which the component entities are
abstracted – system as a whole. In a system as a
whole, the observer can perceive emergent properties
that are specific to the whole, but that may not be
perceived in the analysis of the parts. In a system as a
composite, the observer can visualize the
construction of the system. SEAM is a systemic
approach because the market segments, the
companies, the IT application, the IT modules, and
the software components can be represented and
modeled as systems. SEAM also makes explicit such
system-related concepts as context, lifecycle, and
system boundary.

SEAM is a systematic method because we employ
the same modeling principles and notations for all
systems regardless of their kind. The pictograms
might change to reflect the difference in nature of the
modeled system (e.g. supply chain style arrow for
business entities, cube for IT applications – see
Figure 2). However, the specification of the system is
done in a same way regardless of the nature of the
system. For example, in all systems, properties are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147931394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

represented with squares and actions with rounded
rectangles.

In the Pet Store example, we identify three
organizational levels that address the structure of the
Pet Store starting from its business context to its
implementation on the J2EE platform:

- the Pet Store segment: customer, PetStore
administrator, supplier companies, credit card
company, and Pet Store application that
mediate their interaction;

- the Pet Store application: the Web Site and
the OPC modules;

- the Web Site module: set of J2EE
components1.

These levels are illustrated in Figure 2. The
decomposition in three levels is a direct consequence
of the Pet Store structure in the original blueprint
example.

Figure 2. SEAM hierarchical representation

of the PetStore example (Figure 1).

In this paper we propose an approach for modeling
systems across multiple organizational levels that
makes explicit the traceability (i.e. the
correspondence) between levels. We use SEAM
modeling notation and define two templates for
SEAM models. The first template specifies the
transition from one organizational level to another
when no technological platform is involved; the
second template specifies how to integrate the
technological platform.

This paper is organized as follows. In Section 2 we
present the SEAM hierarchical modeling method and
its graphical notation. In Section 3 we model the Pet
Store application in its business context and the
website module in the Pet Store application. In
Section 4 we present how the Pet Store website is
realized using J2EE components. Section 5 is an

1 To respect the space limitations, in this paper we focus on the Pet
Store Web Site and omit the OPC.

overview of the related work. In Section 6 we present
our conclusions.

2. The SEAM Approach for Hierarchical
System Modeling

SEAM [1] is a method for modeling general
systems, including information systems and
organizations. The SEAM epistemological principles
are based on General System Thinking (GST) [5] and
Living Systems Theory (LST) [6]. The
epistemological principles are useful to explain why
we perceive reality as hierarchical and how we can
relate the different levels in the hierarchy. The SEAM
ontology is based on the foundations of the RM-ODP
ISO/ITU standard [7]. The ontology defines the
concepts used for modeling, such as object, action,
activity, state [8].

The SEAM approach defines two hierarchies for
its models: the functional and the organizational level
hierarchies.

The functional hierarchy is a set of system
specifications, in which the system is modeled as a
whole whereas its behavior can be modeled as a
whole or as a composite (i.e. an action is decomposed
into multiple actions).

O
rg

an
iz

at
io

na
l l

ev
el

s

Figure 3. SEAM hierarchical approach to

general system modeling.

The organizational hierarchy can be interpreted as
a set of system specifications that makes explicit the
systems’ construction (i.e. a system is decomposed
into multiple systems). In general, modelers can
specify as many functional and organizational levels
as they need. Figure 3 illustrates a typical
organizational hierarchy.

A system is represented in the model as a working
object. A working object can be specified as a. whole
(black box) (e.g. App1 in Figure 4 (a)) or as a
composite (white box) (e.g. App1 in Figure 4 (b)).

A specification as a whole describes the working
object by its observable properties and its localized
actions. For example, App1 in Figure 4 (a) has Data1
and Data2 as observable properties and _DoX is a
localized action that represents the responsibility of
the application App1 in the collaboration DoX.

A specification as a composite describes the
working object as a set of component working objects
participating in a collaboration. App1 in Figure 4 (b)
is represented as a set of modules Mod1, Mod2, and
Mod3 participating in the DoY collaboration. Here
the concept of collaboration stands for an action
performed by more than one system.

Figure 4. SEAM whole/composite template:
from platform-independent to platform-
independent specification.

In Figure 4 the specification of App1 as a whole

is mapped to the specification of App1 as a
composite. The dashed lines show how the properties
and the behavior of the application App1 (black box)
are distributed between the components of
application App1 (white box). For example, Data1 in
App1 as a whole is mapped to Data1 in Mod1,
component of App1. In a similar manner, action

_.DoX is split into actions DoA and DoB and these
actions are assigned to modules Mod2 and Mod3,
components of App1. The transition from whole to
composite also defines behavioral constraints for the
specified components. For example, to guarantee that
the combination of DoA and DoB is behaviorally
equivalent to the localized action _.DoX, a specific
constraint is required. These constraints are captured
in collaborations (here DoY). We define alignment
as the behavioral equivalence between a system
specification as a whole the specification of the same
system as a composite [9].

Figure 5 illustrates the transition from Mod3 as a
whole (Figure 5 (a)) to Mod3 as a composite (Figure
5 (c)), in which Mod3 is implemented on a specific
technological platform. The X-platform architecture
and design patterns are used to specify a generic
Module (Figure 5 (b)) as a set of platform-specific
components operating together. The transformation is
done by a mapping of the properties and localized
actions (namely, Data2 and DoB) of Mod3 as a whole
to the structure, specified by generic _Module_.

Comp1

Comp2
Comp3

Comp4

Comp1

Comp2
Comp3

Comp4

Figure 5. SEAM whole/composite template:

from platform-independent to platform
specific specification.

Using this approach, traceability (or
correspondence) between system specifications at
different organizational levels is established.

Figure 6. Pet Store Application modeled as a whole.

Figure 7. Pet Store Application modeled as a composite; the Web Site and the OPC modules

modeled as wholes.

In the next sections we illustrate the SEAM

modeling technique on the example of the Pet Store.
First, we specify the PetStore application and then we
model the Web Site and OPC modules using the
template illustrated in Figure 4 Then we present a
mapping of this model to the J2EE platform using the
template illustrated in Figure 5. Note that this work
does not aim to discuss or criticize the J2EE
architecture of the Pet Store but to focus on the
traceability, defined above.

3. From the Pet Store Application to Pet
Store Web Site and OPC Modules.

Based on the Pet Store description illustrated in
Figure 1-2 we introduce a model of the Pet Store
Application as it is shown in Figure 6. Properties are
defined based on the specification in [2]. We define the
most general behavior of the PetStore Application: a
MultipleSessionForMultipleCustomers. As the sessions
can be interleaved, the actions (e.g. AccountMgt,
OrderMgt, etc) can appear in any order. This is why no
control flow is visible in the specification. SEAM
allows the modeler to focus on one session for one

customer (OneSessionForOneCustomer, not shown) in
which case the execution constraints become visible.

As described in the Java blueprint, the Pet Store
application is composed of a WebSite and an OPC
module. Using the template, represented in Figure 4,
the modeler can define the PetStore application as a
composite (Figure 7) from the specification of the Pet
Store as a whole (Figure 6). The OrderPreparation
action is distributed between the Web Site and OPC
modules. This is why it appears as a localized action in
both modules as well as a collaboration in the PetStore
application. We define the actions for the Pet Store
Web Site as follows:

- Account management – to create or delete an
account, to update customer details;

- Order management – to browse the product
catalog, place, and track customer orders;

- Session management – to provide user
authorization (sign in and out) and to maintain a
shopping cart;

- Order preparation – to collect and verify the
customer and order data;

For the Order Processing Center (OPC) the actions
are:

- Order preparation – to receive the order from the
website and to initialize the order transaction;

- Order processing – to contact suppliers, approve
orders, verify payments, manage the inventory,
and organize shipping.

From now on we will focus on the Pet Store website
and omit the OPC.

4. Pet Store Web Site: J2EE Platform-
Specific Model

The Pet Store website is designed following the
Model-View-Controller (MVC) architecture [2] and
implemented using J2EE multi-tier model.

<s
yn

c>

<s
yn

c>

<s
yn

c>

<s
yn

c>
<a

sy
nc

>

Figure 8. J2EE specification of the MVC architecture pattern for a generic _WebSite_.

ScreenFlowManager

SignOnEJB
<< SessionStateless >>

CatalogEJB
<< SessionStateless >>

ShoppingCartEJB
<< SessionStatefull >> ProductCatalog

OrderPreparation Command
<< JavaClass >>

Order
Preparation

Account ShopingCart

OrderMgt . Command
<< JavaClass >>

OrderMgt .

Account

Order

*

SessionMgt . Command
<< JavaClass >>

SessionMgt .

Account

ShopingCart

0 ..1

Product

*

Order*

Product
Catalog

*

PetStoreDB
<< DataBase >>

contactInfo
profileInfo
creditCardInfo
address
telepfone

Account
<< Table >>

AccountEJB
<< Entity >>

CreditCardEJB
<< Entity >>

ShopingCart

1sessionID

UserSession

sessionID

UserSession

*

JMS

JMS

AsyncSenderEJB
<< SessionStateless >>

AccoundMgt . Command
<< JavaClass >>

AccountMgt .

Account

*
ConvertToXML

Account ShopingCart Order
<< XML >>

1

SendToOPC

OPC

Pet Store WebSite

J 2 EE Pet Store Application

status

Order
<< Table >>*

price

Product
<< Table >>

amount

LineItem
<< Table >>

userName
password

SignOn
<< Table >>

1

*

amount

Inventory
<< Table >>

1

*

UserEJB
<< Entity >>

EIS Tier

Cart
<< JSP >>

Create _ customer
<< JSP >>

Item
<< JSP >>

Edit _ customer
<< JSP >>

Order _ completed
<< JSP >>

Product
<< JSP >>

SignOn
<< JSP >>

SignOff
<< JSP >>

<< JSP >>

Items
<< JSP >>

Web Tier

Order
Preparation

Main
<< JSP >>

*

*

*

*

*

*

*

*

*

*

*

EJB Tier

AddressEJB
<< Entity >>

AccountMgt

SessionMgt .

O
rderM

gt.

(1)

(2) (2) (2) (2)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(4)

(2)

(4)

(4)

Figure 9. Platform-specific model of the Pet Store Web Site: design using MVC architecture on

top of multi-tier J2EE model. Web Site communicates with a customer using an interface (1);
customer can invoke a command (2) that is identified with a SEAM action the command operates
with a specific Java Bean (3) to access the corresponding data stored in the database (4).

MVC architecture is beneficial for the Pet Store

Web Site module, where a user interacts with a web
site by multiple request-response iterations.

The J2EE platform provides a multi-tier distributed
model for its applications. It defines the following
tiers:

 - A client tier - to implement the user interface and
the user communication with the server;
- A Web tier - to implement the client services
through Web containers;
- An EJB tier - to implement the business logic
through Enterprise Java Bean (EJB) containers.
- A EIS (back-end) tier - to implement the
persistence through the Enterprise Information
Systems (EIS) using standard APIs.

Each tier contains tier-specific components that
provide specific features (such as scalability,
transactions, security, etc.). The client tier supports a
variety of client types, e.g. web browsers (thin clients),
Java applets, and Java applications (thick clients). Web
tier handles client requests, invokes business logic, and
transmits data in response to incoming requests. These
functionalities are implemented using Java Server
Pages (JSP) and Java Servlets. The EJB tier hosts
application-specific business logic and provides
system-level services (i.e. data transaction
management, concurrency control, security) using
Enterprise Java Beans. Three types of beans are
defined: Entity Beans, Session Beans, and Message
Driven Beans. The EIS tier hosts a database. For more
detailed information on the J2EE platform

specification, please see [2]In the previous Section, the
SEAM business specification of the Pet Store
application and Pet Store website as a whole have been
presented. We now illustrate how the J2EE
specification of the Pet Store website can be
developed.

Using the template, illustrated in Figure 5, the J2EE
pattern for generic _WebSite_ is defined (Figure 8).
This pattern shows how exactly a website is
implemented using J2EE and makes explicit the
traceability relations between the specifications
illustrated in Figure 7 and Figure 9. For example, the
Odrer property of the WebSite as a whole (Figure 7)
corresponds to the Order properties of the
OrderManagementClass, Order of the
OrderPreparationCommand, Order (XML) of JMS and
then eventually a table in the PetStoreDB, all visible in
the Pet Store Web Site as a composite (Figure 9).
Similarly, behavior specified for the PetStore WebSite
as a whole is mapped to the PetStore as a composite.
For example, OrderMgt (Figure 7) is equivalent to
OrderMgt in OrderMgtCommand (Figure 9).

5. Related Work

Model Driven Architecture (MDA) [10] is a design
approach that promotes the separation of system
functionality specification from its implementation on
any technology-specific platform. MDA structures
specifications as three different types of models: CIM
(computation-independent model), PIM (platform-
independent model), and PSM (platform-specific
model). The SEAM organizational levels have
analogies with these different kinds of models.
However, SEAM is based on its own ontology,
different from UML. The relation between SEAM and
MDA was addressed in more detail in [11].

QVT (Queries/Views/Transformations) [12] is a
standard for model transformation in the model-driven
architecture (MDA). The abstract syntax of QVT is
defined by MOF (Meta-Object Facility). SEAM
proposes a relational approach (according to the
classification in [16]) for model transformation that
targets model alignment [9].

Almeida et. al [17] define a model-driven design
trajectory for context-aware services. Their approach
defines three modeling levels that differ by their degree
of abstraction and platform-independence. Models on
the highest level describe a service behavior from the
external perspective, abstracting out the environment –
that corresponds to the black box specification in
SEAM; the lowest level represents a service realization
on the concrete platform; the middle level specifies the
service realization on the abstract platform called A-

MUSE. In this level, service behavior is described
from the internal perspective that corresponds to
SEAM white box specification. The transformation of
a high-level service specification into the middle-level
platform-independent service design in [17] requires
that the behavior of the assembly of abstract
components, defined by A-MUSE, corresponds to the
behavior defined by service specification. The
alignment of the SEAM models is defined in a similar
way.

RM-ODP [7] defines five viewpoints which are
based on the ontology defined in Part 2 of the standard.
SEAM specifies systems that are also defined using the
Part 2 concepts. However, we do not have viewpoints
and use organizational and functional levels instead.
SEAM models are traceable (or aligned) across
hierarchical levels.

Catalysis [18] is a development process that
analyzes and designs in three levels: business, IT
system and software components. It uses its own
UML-inspired notation. SEAM was inspired by
Catalysis. The goal for SEAM is to provide a design
method analogous to Catalysis, but with a broader
scope (from business down to IT) and based on RM-
ODP.

KobrA [19] proposes a recursive model that
describes IT systems/components. KobrA is based on
UML. KobrA differs from SEAM by its tight link to
the UML meta-model (as opposed to RM-ODP). Even
if this method can model multiple systems, it is
designed to focus mainly on one system of interest.
J2EE Pet Store is also used as a modeling example to
demonstrate the KobrA method [tbd].

6. Conclusions

This paper introduces the SEAM hierarchical
method for modeling applications from business
requirements to their platform-specific implementation.
We define two main modeling templates to relate the
specification of a system as a whole and the
specification of a system of a composite. One of the
templates is applicable when no technological platform
is involved. The second template specifies how to
integrate the technological platform. The main benefits
of SEAM hierarchical method is the traceability
between the application to be developed on a concrete
platform and its business requirements. This is
especially useful for teaching.

Significant work is needed to provide tool support
for platform-independent to platform-specific
transformation. Currently, we provide tool support for
modeling systems as whole and as composite,
independently of any technological platform. Further

work also involves developing patterns for different
platforms, such as .NET. Examples of the .NET Pet
Store can be found in [20], [21].

We believe that this systematic and systemic visual
approach can be beneficial for representing and
comparing different platforms as well as for reasoning
on business and IT alignment.

References

[1] A.Wegmann, “On the systemic enterprise architecture
methodology (SEAM)”, Proceedings of International
Conference on Enterprise Information Systems (ICEIS)
(2003)

[2] I., Singh, B., Stearns, M., Johnson, and the Enterprise
Team: “Designing Enterprise Applications with the J2EETM
Platform”, Second Edition. Addison-Wesley, (2002).

[3] Java BluePrints, “Sample Application Design and
Implementation”, http://java.sun.com/blueprints/guidelines
[4] SUN Microsystems, “Java Pet Store Sample application.”
http://java.sun.com/developer/releases/petstore

[5] G.M.,Weinberg, “An Introduction to General Systems
Thinking”, Wiley & Sons (1975)

[6] J.G., Miller, “Living Systems”. University of Colorado
Press, (1995)

[7] OMG, “Reference model of open distributed
processing”, Draft International Standard (DIS) (1995)

[8] A., Wegmann, A., Naumenko, “Conceptual Modeling
of Complex Systems Using an RM-ODP Based Ontology”,
Proceedings of 5-th IEEE International Enterprise
Distributed Object Computing Conference (EDOC) (2001)

[9] A., Wegmann, P., Balabko, L.S., Le, G., Regev, I.,
Rychkova, “A Method and Tool for Business-IT Alignment
in Enterprise Architecture”, Proceedings of CAiSE Forum
(2005)

[10] MG, “MDA Guide”, Version 1.0.1 (2003)
http://www.omg.org/docs/omg/03-06-01.pdf

[11] O., Preiss, A., Wegmann, “MDA in Enterprise
Architecture? The Living System Theory to the Rescue…”,
Proceedings of 7th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2003)
p.2-13 , 2003

[12] OMG, Meta object facility (MOF) 2.0
Query/View/Transformation Specification. (2005)

[13] C., Atkinson, B., Paech, J., Reinhold, T., Sander,
“Developing and applying component-based model-driven
architectures in KobrA”. Proceedings of 5th International
EDOC Conference, IEEE. (2001)

[14] Unified Modeling Language (UML), v. 2.1.1. OMG
(2007)

[15] D.F., D'souza, A.C., Wills, “Object, Components and
Frameworks with UML, The Catalysis Approach”, Addison-
Wesley (1999)

[16] K., Czarnecki, S., Helsen, “Classification of Model
Transformation Approaches”, Proceedings of OOPSLA’03
Workshop on Generative Techniques in the Context of
Model-Driven Architecture (2003)

[17] J.P.A., Almeida, M.-E.., Iacob, H., Jonkers, D.,
Quartel, “Model-Driven Development of Context-Aware
Services”, Proceedings of DAIS 2006, LNCS 4025, pp. 213 –
227, (2006)

[18] D. F., D'souza, A.C., Wills, Object, Components and
Frameworks with UML, The Catalysis Approach, Addison-
Wesley, isbn 0-201-31012-0 (1999)

[19] C., Atkinson, B., Paech, J., Reinhold, T.,Sander,.
Developing and applying component-based model-driven
architectures in KobrA. Proceedings of 5th International
EDOC Conference, Seattle, USA, 212-223, IEEE. (2001)

[20] Microsoft, “Using .NET to Implement Sun
Microsystems' Java Pet Store J2EE BluePrint Application”,
Version 2.0, (2002),: http://msdn.microsoft.com/library/

[21] G., Leake, J., Duff, “Microsoft .NET Pet Shop 3.x:
Design Patterns and Architecture of the .NET Pet Shop”,
(2003) http://msdn.microsoft.com/library/

