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Abstract: Creation and transformation of visual specifications is driven by modeler’s design decisions. After a design
decision has been made, the modeler needs to adjust the specification to maintain its correctness. The number
of adjustments might make the design process tedious for large specifications. We are interested in techniques
that will reduce the modeler’s obligation to control specification correctness.

Every single transformation of the visual specification can be captured by the notiefirefmentused in

formal methods. In this work we present the technique that supports a stepwise refinement of visual specifica-
tions based on calculations. We uséinement calculuas a logic for reasoning about refinement correctness.
When a design decision is made by the modeler, the necessary adjustments are calculated based on rules of
refinement propagationRefinement propagation can automate the specification adjustment and enforce its
correctness.

1 INTRODUCTION higher-order logic and Refinement Calculus (Back
and von Wright, 1998). Based on this semantics, we
It is well accepted by now that visual models play define a refinement propagation technique that sup-
an important role in the information system develop- ports a stepwise refinement of visual specifications.
ment. With the growth of system complexity, auto- We constrained our discussion to the deterministic
mated refinement, and refinement verification of vi- specifications. The refinement propagation technique
sual models is of particular interest. is grounded on the following observatiosn arbi-
Stepwise refinement is a well-known paradigm for trary refinement may cause a conflict between model
semantic program constructions originally proposed elements. To resolve such a conflict and maintain cor-
by Dijkstra (1971) and Wirth (1971). It is based on rectness, model adjustment (also considered as a re-
the idea that a program can be developed through afinement) is usually requiredVhen the initial refine-
sequence of refinement steps starting from an abstraciment can be identified with a design decision that is
specification. proposed by a modeler, the adjustment of the entire
In contrast to techniques where a refinement is specification can be calculated based on ruleseof
first proposed and theprovedto be correct, some finement propagatianPropagation means a sequen-
techniques allovealculationof refinement step based tial application of these rules until saturation. We
on the refinement laws (Morgan and Gardiner, 1990). show that sufficient part of calculations can be done
The refinement calculus is an underlying theory. This without modeler’s involvement. We also specify the
calculation assures refinement correctness 'by con-situations when modeler’s decision is required to ac-
struction’, and enables the reduction of proof obliga- complish the calculation.
tions. We believe that refinement by calculation can  This paper is organized as follows. In Section 2
be beneficial for the practical application in the con- we present SEAM visual language and classify re-
text of visual modeling. finements accepted by this language. In Section 3
In this work we introduce a formal semantics for we define a formal semantics for SEAM using higher-
SEAM visual specifications (Wegmann, 2003) using order logic and refinement calculus. This formaliza-



tion allows for reasoning about visual specifications Other refinements are used in visual modeling (e.g.

with mathematical precision. In Section 4 we intro- substitution of one property (or group of properties)

duce the refinement propagation technique. This tech-by another property (or group), property renaming,

nigue is formulated as eight rules of refinement prop- etc.). It is not difficult to show that these refinements

agation. In Section 5 we discuss related works. Sec-can be represented by a combination of extensions

tion 6 presents our conclusions. and reductions. Refinement of the system state space
is illustrated in Figure 2.

2 REFINEMENT IN 'SEAM’

SpecA Design decision:
VISUAL MODELING orenan e |\ T
1in 9
LANGUAGE e
. . . forAlli cl[il.n # new_n new Client(new_n,
SEAM (Systemic Enterprise Architecture Methodol- Post:
. . 9© Existsi | cl[i].n = new_n,
ogy)(Wegmann, 2003) is an approach for modeling |/
general systems, including information systems and S
. . . . . Adjustments ¥gq [new_fn:FName; Rule2: refinement of
enterprises. SEAM epistemological principles are e event £
based on General SyStem Thlnklng (GST) (Welnberg' ::ijn#null , new_In # null, Rules 3-4: syntactic and
1975) and L|V|ng Systems Theory (LST) (Mi”er’ LorA(:h(cl[i].fn#new_ln orcl[il.In # nelv_In) izrgé:t;treﬁnememof
. ostl:
1995). SEAM ontology is grounded on the second Exists i (I = new_fn and clflin Jnew_n)
part of RM-ODP (1995) specification. Based on this U1z Add(new Clent(new_in, new_n) g Folnemensie
standard, the main modeling concepts such as object, ShecAT
state, action are defined (Wegmann and Naumenko, - [ FName (Name
. . . . ’—{ Clent 1jin | {String[15) | | {String[20]}
2001). Figure lillustrates the SEAM visual notation. ' o

{Pre1, U1, Post1}

AddClient ®
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Figure 2: Propagation of refinement of the system
state space. Design decision: to substithiteme with
{FNameLNameg. Required adjustments made by refine-
ment propagation. A correct SpecAl is calculated as a re-
sult of the refinement step.
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Figure 1: SEAM visual notation.
. : Refinement of the behavior
Any system or system component in SEAM is mod- _ _ _ _
eled as aworking object The working object may ¢ Syntactic Refinement: a number of action’s in-

communicate with an environment leyents Work- put and output parameters and their types are
ing objectS is modeled as a collaboration of two changed.
componentsSl and & (also considered as working o Semantic Refinement: a precondition, an update
objects). Sl is described by itwbservable proper- statement, and/or a postcondition of an action are
ties P1,P2, and abehavior Properties constitute the changed.

data structure of working obje&i and define its state
space. The behavior is represented by a sattibns
a,b organized withiractivity AC.

e Extension: new behavior (action or activity) is in-
troduced into the system.

We focus on the refinement oftdack boxsystem e Reduction: some behavior (action or activity) is
specification. eliminated.
Refinement of the state space ( see also data e Behavior distribution: transition from an action
refinement (Brger, 2003; Woodcock and Davies, view to an activity (Figure 3).

1996; Back, 1989) or data structure refinement (Broy, Aforementioned refinements specify thasisre-
1993)) deals with the transformation of system data finement types for SEAM visual specifications. Any
structure. We recognize the following ways to refine arpitrary refinement can be represented as a combina-
a state space: tion of the basis refinement types. Refinement of the

e Extension: new property is introduced into the state space and refinement of the behavior can appear

system. . . . " .
y 1This version of behavioral refinement is also called re-

e Reduction: some property is eliminated. finement of a syntactic interface (Broy, 1993).
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Figure 3: Propagation of behavior distribution refinement.
SpecA2 refines SpecAl (Figure 2) providing a realization
of action AddClient.

together in a specification. Also the former denply
the latter or vice versa. This effect we caltefine-
ment propagation

3 FORMAL SEMANTICS FOR
'SEAM’

The set of all predicate transformers frémo I' is
denoted by .
> = PX—Pr 3

Predicate transforme(f) is called afunctional
update It applies the functiorf to a stateo to yield a
new statef.o. For all statew, defined by the precon-
dition p, the functional update will produce the state
f g, for which the postconditioq holds:

VvoeZ|pe (f).go= q(fo) 4)
Program statementén refinement calculus are
identified with predicate transformers.

For asequential compositionf statementsS T,
and predicategp,q,r:

P{STHa=@r e p{ISirAr{T}a (5

A refinement orderingn the predicate transform-
ersis defined as follows. F&T : X —T:

SCT=(Vq: Pl e Sq CT.q) (6)
For refinement ordering the following holds:

To reason about refinement with mathematical preci- SIESI A CS = (Sx$)E(SxS) (7)

sion, we formalize SEAM modeling concepts using
a higher-order logic and refinement calculus (Back,
1978; Back and von Wright, 1998).

In our work, we were inspired by the ideas pre-
sented by Mikhajlova and Sekerinski (1997), Back et
al. (2000), and Michajlova (1998). In these works,
refinement calculus is used for the formalization of
object-oriented program development.

sCcsScY = sc¢

3.2 Formalization of SEAM Modeling
Concepts

(8)

We distinguish between the following views of
working objects in SEAM:
- Working object as a whol®/ Qynole - @ black box

We find it necessary to introduce some concepts system specification;

of refinement calculus in this section.

3.1 Introduction of Refinement
Calculus

In this paper we restrict our study to deterministic

- Working object as a composit®/ Ocomposite - &
white box system specification.

In this paper, we focus on the black box specifica-
tions.

specifications. Nondeterminism will be addressed in Working object as a whole describes the system by a

our future work.
A program statén refinement calculus is modeled

number of propertieB; ... Py, that specify data types,
and a behavios.

as a tuple of values of all program components. A pro- We declare the working obje®¥ Qunole as follows:

gramstate spac€a type) Z is defined as a cartesian
product > =23 x 25 X ... x X where 21,35,...,2,
are state spaces of all program components.

A predicateover a state spacE is a boolean func-

tion. The set of all predicates defined over the state

space is denoted by
P> = X — {true, false} 1)

A relation between two state spacEsandrl is a
function that maps each state3ninto a predicate in
. The set of all relations fror to I' is denoted by

ol =X-Pr (2)
It is equivalent to another, more familiar definition:
ST = (ZxT)—{true false

A predicate transformefrom Z to I is a function

that maps each predicate Ininto a predicate i .

V\/Q/\/holeé

pl]_? ~-pn1 . Plv

- 9

p1m7 -~pnm : Pm)

B
wherepy,,..py, are instances of a proper.
Working objects may interact with the environment
by receiving inputsly,...Ix and sending outputs
04,..0;, also modeled as a part of the system.

We distinguish betwegprimitive andcompound
properties. The former can be considered as an alias
for an operational data type (elgt, String, Boolean,
etc.); the latter is defined by a set@imponent prop-
erties and referencesto properties using property-
property relations.



Example 1. SpecAin Figure 2 specifies a work-
ing objectSpecAiynole With its propertiesClient and
Name PropertyClient is compound, it has a com-
ponent propertyName Nameis primitive - an alias
for strings of length 30. This representation unifies a
declarative specification style:

"..client is identified by hisher namg30 symbols..”

and an imperative style, intrinsic to programming:
class Client {
name: String[30]; } // String of length 30
m: Int; /I number of clients
cl: Array(m) of Client;// list of clients
0
A state of the primitive property denotes a
value of the corresponding operational type (e.g.
1,”ABC’,true); a state of the compound property is

defined by the states of its components and references.

A tuple of property instancesy, .. pny,, iNPUtSiy, ..in,,
outputsoy, ..on, and their corresponding states defines

asystem stateo € 2.
> specifies aystem state spacea set of all pos-
sible states of the working object:

Z = Zp X ZIn X Zout
Sp=(2p X...xZp) X...x (Zp, X ... X Zp,)
—_— (S S——

where

ng

In=(Zy X...xZ) X...x (I, X...x %))
N——— S————

Nm
ni1 Niy
Zout=(Zo, X...XZo,) X ... X (Zg X ... x Zq)
T/ N————
>p, 20, 2oyt denote state spaces of system proper-
ties, inputs, and outputs respectively.

Example2. State space of the working objegpecA
in Figure 2:

no

2Client X - -+ X ZClient X ZIn =
m

(String15] x String20]) x ... x (..) O

2Speca

2g pecA

m+1

Behavior B of a working object can be seen as an ac-
tion or as an activity.
Action A is defined by a three-tupl&Pre,U, Post}.
Pre-conditionPre and post-conditiofPost define the
states of the system, ¢’ € X before and after the ac-
tion respectively. An update specifies a transition
from pre- state to post- state.

If this action describes a communication with the
environment, the input and output evertig,, Eoyt
also make part of the action specificafion

2Broy (1993) defines input and output channels and the

sort of messages for each channel as a syntactic interface

of the black box system view. The causal relationship be-

II>

(10)
Ein(l1,..,1k), Eou(O1,..,0),
Pre: P(Zp x Zin),
uU: (Zp X Zm) — (Zp X ZOut)
Post: P(Zp X Zou),

For the deterministic specifications, we consider a
functional updatgU) : = — Z. U is a function that
calculates a post-state from the pre-state. Using the
definition of functional update from (4), we can write:

VoeXZ|Pree (U).Postoc = Post(U o) (11)

We specify actiomA with its preconditionPre, func-
tional update(U) and postconditiofPost as follows:

Pre {|A} Post=
Pre{|(U)|} Post =Pre C (U) LPost (12)

Example3. SpecAin Figure 2 defines an action
AddClient
AddClient=

Ein(Name,

Pre=3newn: NameA Vcl e cl.n# newn

U : Zclient — Zclient = Add(newClientnewn))

Post=3 cl | cl.n= new,
Pre states that there exists an input paramagn
and that there is no client with the attribute- newn
presented in the systemJ denotes that a new in-
stance of clienhewClientnewn) is added into the
system. The postconditidPostspecifies the fact that
after AddClientis carried out, the client with the at-
tributen = new.n does exist in the syster,(Name
specifies the input eveR, that transmits a parameter
newn. [J
Activity Accan be considered as a detailed specifica-
tion of actionA: it describeshowthe transition from
pre- state to post- state is performést defines a set
of component actions and the way they are composed
to carry out the transition:

Ac=A0A0...OA (13)
where () stands for component action ordering, de-
fined by a corresponding action-action relation.

PreconditionPre, updateU, and postcondition
Post of A are related to those of component actions:
Prea = ppre(Pren, ,..Prea );
Ua = pu(Uz,... Uy);
Posh = ppost(POSh,, - - ., POSh, );
Ppre; Pu, Ppost are defined by the component action or-
dering ().
Input and output eventsn, Eoy: Of the activity
Ac, are related to the input and output events of com-
ponent actiong\, .. A; :

2in/out © zIn/Out1 XX ZIn/OutI

(14)

(15)

tween input messages and output messages is defined as &xample4. SpecAn Figure 3 defines an activity

semantic interface of this view.

AddClientthat specifies the realization of the action



AddClientfrom SpecAlFigure 2. Parameters of an XE X' A WOyhote(X) Z W Qpnole(X")

input eventE are distributed between input evens To resolve this conflict, and to preserve monotonicity,
E>1 and E;» of component action&etFNameand refinement)é{ of some other substatemex is usu-

GetLNamesuch that: ally required. This assertion formalizes our definition
of refinement propagation. Within a final number of
E(FNameLNamg = {E>1(FNamg, Ez2(LNamg} steps, refinement propagation either results in correct
and Zjn = (ZFNameX ZLName) U refinement of specificatioW Oyhole
/ / /!
4 REFINEMENT PROPAGATION XEX) = 0AEX) .. = (LX) =

. . . . WQNhO|e(X7X17“7xn) E WQNhoIe(Xlixiiuier)
In this section we introduce the refinement propa- _ _ _
gation technique for visual specifications. Explor- ©F indicates such a refinement impossible.
ing the basis refinement types, specified in sec- Resolving Conflicts between Properties
tion 2, we found relations between them in the we distinguish between compound and primitive

form “refinementX implies refinementY"This im-  properties. The elimination of a compound prop-

plication we call gpropagation of refinement erty may cause 'free-floating’ properties and make the

4.1 Definition of Refinement for Visual specification confusing. .
Specifications RuLe 1: If R(R,,..,R,,R,,.P,) is acompound

] N . property with componentB;,..R, and references on

Refinement calculus specifies the correct re“nementpropertiesﬂk ...P,, and, by reduction of the state
. . -+ ) 1

between program statements as a refinement orderingspacep, is eliminated, then its component properties

on the predicate transformefBhe program statement  p_ R, have to be also eliminated. Reduction of the

Sis said to be correctly refined by the program state- state space must be correct.

mentT, iff T satisfies any specification statement sat-
iSfied byS, (6) y p WQNhO|e(~-aPI—1’PIaPI17“7PI|7P|—i-la~-) E—P,
The specification statemenéxpresses require- W Quhotel-+;R-1, P15 P Pya, ) (19)

ments program has to meet in a given state. Defini- we formulate the correctness oéfinement of the
tion of refinement for the programm statements (or gtate space

programs) can be generalized for visual specification pefinition 2. Let W Ounole be a system specification

statements (or visiigl specifications) as iollows: as defined in9); WQ,,, . is its refinement, where
Definition 1. SpecificatiodN O (abstract) is correctly  some properties have been introduced, eliminated, or
refined by specificatioW O (concrete) WVOLWO ,  gypstituted; and is an abstraction relation connect-

if WO satisfies any requirement satisfied\iyD. ing old’ and ‘new’ states:

4.2 Propagation Rules M 2Zwo < Zwo

The refinement of the state space is correct with re-
spect ta, if any state of the abstract specification has

a corresponding state (or group of states) of the con-
crete specification (i.e.is a total surjective function).

In refinement calculus, refinement orderingrisno-
tonic with respect to the sequential statement con-
struction. It means that Bis a statement an§; oc-

curs as a substatemeBt= §(S,) then The notion ofr can be generalized. Considering
S =SS)CSS) @) Resarelalonbemeen predcates of ihe absractand
We can writeWW Qunoe @S @ compound statement: R: Ty — Zwo (20)
W Ophote(P1, -, P, 11, -, 1k, O1,.., O, B) - (17) WOLCRWO = WOCWO;R
For the substatements, the following can be written: Example5. SpecAin Figure 2 is refined byspecAl
P =R(.,P,.), li=h(.1j,..),0i=(..,0j,..) where the propertiameis substituted with two other
whereP., I;, O; may be compound properties; and: properties=NameandLName To maintain the refine-
B =A(En,Eou, PreU,Post) | Ac(Ar,...A), ment correctness, we have to define an abstraction re-
Ein = Ein(...li,.), Eout = Eou(... O, -.) (18) lation between ‘old’ and 'new’ data types as a total
Pre=Pre(..,lj,..,Pj,..), Post=Post(..,R,..,Oj,..) surjective function:

I 2Zclient — 2Client < (Z X 2 — 2
U:U(..,li,..,Pj,..,Ok,.i) Client Client ( FName LName) Name

for example:
Properties, events, actions, and activities are related 1. n := substr(fn + In, 30)
within specification. Thereby a basis refinementofan 2. n :=In //in in "old’ = In in 'new’ spec
arbitrary substatemedt from (17), (18) may cause a 3 ...
conflict between certain elements, such that considering the second expressiontipwe define:



Client_old = {n:Name},
Client_new = {fn:FName, In:LName};
r(x:FName, y:LName):Name = (Name)y;

This relation can be generalized as a predicate trans-

former:
R: (Zclient — {true, false}) — (Zcjient — {true, false})

= (ZFName>< ZLNamz—‘) — ZName

pred_old(x:Name): Boolean;
pred_new(x:FName, y:LName): Boolean;
R(pred_new(x,y)) = pred_old(r(x,y));

This refinement step causes a conflict between re-

fined propertyClient’ and the input evenE where
the ’eliminated’ propertyNameoccurs as a parame-

Rin andRoy; are total and surjective.
For the propagation Rule 3 we write;

Ein C B, & RinA(E) CAE)
Eout C Eout & A(E) CAE'); Rout

(22)
(23)
Exampleé6. For the actiorAddClientin Figure 2, syn-

tactic refinement is correct if predicate transformer
Rin is defined:

Rin: zSpecﬁi — 2Client = (ZFName>< zLName) — ZName

The definition ofR, is a modeler’s choice. Here we
takeRy = R, as it was specified in Exampleb.

E(Name C E1(FNameLNamg =

ter. Thus the event specification has to be adjustedr ,; AddClien(E(Name) C AddClien(E1(FNameLName)

(refined):
Client CClient = ECFE’
We generalize this observation as a propagation rule.

Resolving Conflicts between Properties and
Events

RULE 2: If P is a refinement of a property, and
E(..,P..)=E(P) is an event, wher® occurs as a pa-
rameter type, i.exp C >g, then the following holds:

PC P = Einjou(P) E Einjou(P)

Example5 (continue): The following elaboration of
specificatiorSpecAls deducible:

Client C Client’, where
2Client = ZName 2Client = 2FNameX ZLName ZNameC Zin

4
E(Namg C E;(FNameLNamg O

Resolving Conflicts between Events and Actions:
Syntactic Refinement

RULE 3: If E is an input (output) event of an action
A, then a refinement d& is asyntactic refinemeruf
the actionA (by definition of syntactic refinement).
Syntactic refinement must be correct.

ECE < AE)Csn AE)
Definition 3. Let A’ be asyntactic refinementf an
actionA, andr, andrgy; are abstraction relations
for connecting 'old’ input and output parameters with
the 'new’ ones:

Mn/out * Zwd — Zin/Out

wherez,,y is a state space of the refined working ob-
ject. Rin, Royt are the corresponding predicate trans-
formers:

Rin: (Zwo — Zin) — {true, false} = g — Zipn
Rout : (Zwg — Zout) — {true, false} = Zyy — Zout
Ais correctly refined by with respect tdR, Royt if
ACRpRou A Rin; AC A'; Rout (21)

(]

Resolving Conflicts between Events and Actions:
Semantic Refinement

RULE 4: If E is an input (output) event of an action
A, andE or some of its parametefs(O;) occurs in
Pre, U, or Postof A, then a refinement d& implies a
semantic refinememif the actionA. Semantic refine-
ment must be correct.

A|Pre(E) VU(E)V PostE) =
ECE = ACsem A

Definition 4. Let A be an action, defined by the tu-
ple {E,Pre,U,Post} ; A : {E',Pré,U’ Post} is its
semantic refinemenwherePre/, Post are new pre-
and postconditions, ard’ is a new updateA is cor-
rectly refined by’ if:

- Al is applicable at least on every state whaiis ap-
plicable;

- starting at the corresponding initial stat@$andA
produce equivalent results.

Providing abstraction relatiolRR, which relates
'old’ and 'new’ predicates (Definition 2), and using
action specification from (12} is said to be correctly
refined byA’ with respect tR if

RPre C (U)~1.Post and PreC ((U’)"1;R).Post (24)
For the propagation Rule 4 we write:

ECE = RAC (E//E)AR (25)

where (E’/E)A stands for a substitution of each oc-
currence ofE or one of its parameters by, or its
corresponding parameter.

Example7. SpecAlillustrates the semantic refine-
ment of the actiolAddClient specified in Example3:

AddClient =
E;(FNameLNamg,
Pre; = 3new fn: FNamenewln : LNamea
vcl e (cl.fn#newfn Vv cl.In # newln)
U1 : Zclient — Zclient = Add(newClientnew fn, newIn))
Post =3cl | (cl.fn=newfn A cl.In = newln)



New preconditiorPre; and postconditiofPost have
been calculated by propagation:

E(Namg C E;(FNameLName =- (rule 4)
AddClien{E) Cserp. AddClien(E;)

Pre = Pre(Namg, Post= Post(Nameg =- (rule 5)
AddClientPre, Post) Cserp. AddClien{Pre;, Post ), and
Pre; = 3 new.fn: FName newlIn : LNameA

Vel o (cl.fn#newfn Vv cl.In # newln)
Post =3cl | (cl.fn=newfn A cl.In = newln)

This refinement is correct by Definition 4. For the
sake of brevity, the proof of correctness is omitted.
The specification adjustment is finished and the re-
finement propagation is complete.
(ClientC Client') = (EC E;) = (AddCL.C AddCL.) =
SpecANameE,AddClient C

SpecA({FNameLNamg,E;,AddClient) O

Resolving Conflicts between Properties and
Actions: Semantic Refinement

RuULE 5: If property P occurs inPre, U, or Post of
action A, then a refinement d?P implies asemantic
refinementbf A. Semantic refinement must be correct.

A|Pre(P) v U(P)V PostP) =
PCP = ACsmA

By definition of correct semantic refinement (Defini-
tion 4), we write;

PCP = RAL (P/P)AR (26)
where (P//P)A stands for a substitution of each
occurrence oP by P’ in the statements df, andR s
an abstraction relation.

Resolving Conflicts between Events and the Sys-

tem State Space

RULE 6: If E is an input (output) event of working

objectW Qunole then an extension dE by some pa-

rameter of typel' implies anextension of the system

state spacéy introduction of a property .
E(..)CE(.,T,.) =

W Opuhole E+ Wq/vhole AN Zwg =2Zwo X 21 (27)

Note: If g/ C 2g (a reduction) - there is no conflict
with the system state space.

Resolving Conflicts between Pre-, Post-conditions,
and Updates

A semantic refinemertakes place when pre-, post-
condition, or update statement of an action is
changed. The equation (12) relates pre-, post-
condition, and update. PreconditiBne can be calcu-
lated as aveakespreconditionwp(A, Post) that guar-
antees termination of any executionAf(U)) in the
final state that satisfieBost PostconditiorPost can

be calculated as a strongest postcondisp(A, Pre)
respectively. An update cannot be resolved by cal-
culation and requires a modeler’s decision.

Conflicts between pre-, post-conditions, and up-
dates indicate that semantic refinemeninisorrect
Correctness of semantic refinement is formulated in
Definition 4.

Resolving Conflicts between an Activity and its
Component Actions

Behavior distribution refinemestands for an activity
definition (Figure 3). This requires a set of compo-
nent actions and action ordering provided by modeler.

RULE 7: If an activity Acis a behavioral distribution
refinement of an actiod, andAs,..A; - are compo-
nent actions, see (13), then:

1. EventsEj,, andEgy; of component actions are de-
fined based on the modeler’s decision, providing (15)
holds;

2. Preconditiondre of component actions are de-
fined either by propagation or based on modeler’s de-
cision, providingppre for the given action ordering
(14) is defined;

3. UpdatedJ; and/or postconditionBost are defined
based on modelers decision, providipg, Ppost for
the given invocation order (14) are defined, and (12)
holds for each component action;

Example8. Figure 3 illustrates the propagation of a
behavior distribution refinemenComponent actions
GetFNameGetLNameandSaveDatatheir ordering,
and set of input events are provided by a modeler. By
refinement propagation, we define the preconditions
for AddFNameand AddLNamecomponent actions.
Specification of the postcondition is the modeler’s de-
cision (hereSaveData [

Without loss of generality, any action in SEAM
specification can be seen as a component action of
some abstract activit)9\cparem.3 Thus, the refinement
of the behavior by arextensionis considered as an
introduction a new component to this abstract activity,
whereas aeductionstands for elimination of some
component from it. Rule 6, applied for tH&parent,
specifies the propagation of these refinements.

Both extensiorandreductionof the system’s be-
havior have to preserve the semantics of the rest of the
specification. Put it in other terms, modeler needs to
guarantee that the system will work 'at least as well as
before’ in presence of new actions/activities or after
removing any of them. This follows from the Defini-
tion 1.

3systemlife cycleis the most abstract activity system
performs from the moment of putting in operation (startup)
till the end of functioning (shutdown). Any action or activ-
ity is a part of the life cycle.



Incorrectness Refactoring can be considered as a specific form of re-

RULE 8: Refinement propagation is impossible if the finement. We believe that the refinement propagation
correctness of initial refinement is not provable. technique can be equally used to support automated
Summary refactoring of SEAM specifications. In our work, ac-
. . . . . tion constraints in SEAM (pre-, post- conditions, and

In this section we provide definitions for the refine- updates) are specified using some meta-language. Al-
ment correctness and fprmulate eight rules of refine- ternatively, they can be expressed in OCL.
ment propagation. _Reflnement steps often represent 5o (2006) presents the OCL-based technique
c;)mblgagozslgf refinements. For such a combination and a tool support for UML and OCL model refine-
(7)an é ) hold. h ianifi ¢ i ment. Object-Z is an underlying theory for refine-

We lerkr;ons.trate t aLa Z'Qn' |ct:)ant plartlo_ SPECIN- - ment verification. The authors discuss the refinement
c?tlon ela or?]uon. can be oge y calcu a}tlon.f VrYe patterns and formulate the refinement conditions for
aS(()j slpe<_:|fyt € sﬂuaﬂgns, WI en |]rc1tefrvent|(()jn ort edthese patterns in OCL language(OCL, 2003). Simi-
MOAEEr IS Necessary. rormal proot of soundness an larly, our technique considers several standard refine-
completeness of the refinement propagation techniquey, o ynes that can be identified with patterns. In ad-
is an important issue. This makes a topic of our cur- giion “we define conflict situations, caused by these

rent research. , , , refinement types and explore the idea of refinement
For the sake of brevity, some technical details have propagation.

been omitted. For more explanations, please, contact

the authors. 6 CONCLUSION

5 RELATED WORK In this work we formalize the notion of refinement
and its correctness for visual specifications using
The foundations in mathematical logic are extensively refinement calculus (Back and von Wright, 1998).
used to formalize specifications and refinement tech- gased on this formalization, we define the refinement
niques for program constructions. Woodcock and propagation technique for semiautomated specifica-
Davies (1996) present the method of software specifi- tion construction. Initiated by modeler’s design de-

cation development called ZdBger and Sirk (2003)  ¢isjon, correct refinement of the visual specification
introduce the Abstract State Machine method of ab- ¢5n pe:

stract refinable system specifications. Refinement for-
malization for object-oriented programs using refine-
ment calculus is presented by Mikhajlova and Sek-
erinski (1997), Back et al. (2000), and Michajlova e calculated based on supplementary information
(1998). Back(2005) proposes a method of incremen-  from the modeler,

tal software construction using refinement diagrams.
Here refinement calculus is used as a logic for reason-
ing about software systems and their evolution. Eight rules of refinement propagation address pos-

In the domain of visual languages, evolutionary sible conflicts between SEAM specification elements,

specifications of ADORA are provided with refine- caused by refinements. Figure 4 summaries the appli-
ment calculus semantic (Xia and Glinz, 2004). The

e automatically calculated, based on refinement
propagation,

e recognized as impossible to calculate.

transition between model views requires a represen- Property |_____ AN Aciy
tation consistency that is guaranteed by the applica- 1 iwoaucion [propeny [V |, v v v
tion of refinement calculus. Muskens, in (Muskens *°"™""" 2 18-t T
- syntactic ref. -

et al., 2005), focuses on the problem of consistency **"™* el [v :‘j ° [Eara (R [(Eadra|V

. . re- ?|D4 ?
checking between software views, expressed as UML 4 semanicret 0 v v EEEY o
diagrams. The approach in (Muskens et al., 2005) Post |V ___ |V 2|04 2
. . . . . . 5 distribution Activity Ac —V—A-— R7 R7 R7 R7
is based on verification of obligation and constraint sinvoducion [Behavior oy =~ — -~ b~ — = - — 2 |- Aquan 5 R7 D1

il W ) M 3 W =

rules using relation partition algebra. In contrast to 7*"™""
these approaches, refinement propagation technique Y b hermiion
for SEAM black box specifications focuses on preser-
vation of semantic correctness for visual specifica-
tions. cability of our technique. The leftmost column enu-
Baar and Marcow (2006) introduce a proof tech- merates the refinements. Each row denotes conflicts
nique for the semantic preservation of refactoring between elements, caused by the respective refine-
rules for UML class diagrams and OCL constraints. ment, and solutions for these conflicts. For example,

Figure 4: Refinement propagation rules. Summary.



an introduction of a property (row 1) causes no con- Mikhajlova, A. and Sekerinski, E. (1997). Class refinement
flict with action preconditions (column 3), whereas ?ngl\l/rl]éegic? fc;?flne_ml?t lrll_ obJ_ect-on%néed pf?lgran;&
iminati - '97: trial Applications and Stengthene
property elimination (row 2) may cause such a con n 27 Inaus
flict (column 3). This conflict can be resolved apply- gﬂggit'gﬁigg?rmm Metohdsolume 1313, pages
ing a propagation rule 5. _ o _
Refinements may cause conflicts by breaking Mlllerl,DJ. (1995). Living Systems University of Colorado
. : S ress.
property-property and action-action relationgn _ _
SEAM (Figure 1). Formalization, refinement, and re- Morggn, CI' ar|1d.Gard|ner, F- H. B. (1590)'_ Data refinement
finement propagation for these relations is out of the y calcu at'_on'ACta Informatica 27(6):481-503.
zope of i pper. e put & uestionmarin e WS 0 ) TG ML 000
summary table to specify these cases. :
. . . . views. INWICSA pages 169-180.
We consider the refinement propagation technique Ap_ g o
as an efficient step towards computer-aided construc-9CL (2003).0CL 2.0 F'_na'l Adopted Spe_c'_f"cat'omMG'
tion of visual specifications. Application of this tech- Pons, C. (2006). Heuristics on the definition of UML re-
nique in the form of a modeling tool is one of our finement patterns. IBOFSEMpages 461-470.

on-going projects. RM-ODP (1995).Reference model of open distributed pro-

cessing part 1. Draft International Standard (DIS)
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