
REFINEMENT PROPAGATION
Towards Automated Construction of Visual Specifications

Irina Rychkova, Alain Wegmann
School of Communication and Computer Science,École Polytechnique F́ed́erale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

irina.rychkova@epfl.ch, alain.wegmann@epfl.ch

Keywords: visual specification, model transformation, stepwise refinement, refinement calculus, refinement propagation.

Abstract: Creation and transformation of visual specifications is driven by modeler’s design decisions. After a design
decision has been made, the modeler needs to adjust the specification to maintain its correctness. The number
of adjustments might make the design process tedious for large specifications. We are interested in techniques
that will reduce the modeler’s obligation to control specification correctness.
Every single transformation of the visual specification can be captured by the notion ofrefinementused in
formal methods. In this work we present the technique that supports a stepwise refinement of visual specifica-
tions based on calculations. We userefinement calculusas a logic for reasoning about refinement correctness.
When a design decision is made by the modeler, the necessary adjustments are calculated based on rules of
refinement propagation. Refinement propagation can automate the specification adjustment and enforce its
correctness.

1 INTRODUCTION

It is well accepted by now that visual models play
an important role in the information system develop-
ment. With the growth of system complexity, auto-
mated refinement, and refinement verification of vi-
sual models is of particular interest.

Stepwise refinement is a well-known paradigm for
semantic program constructions originally proposed
by Dijkstra (1971) and Wirth (1971). It is based on
the idea that a program can be developed through a
sequence of refinement steps starting from an abstract
specification.

In contrast to techniques where a refinement is
first proposed and thenproved to be correct, some
techniques allowcalculationof refinement step based
on the refinement laws (Morgan and Gardiner, 1990).
The refinement calculus is an underlying theory. This
calculation assures refinement correctness ’by con-
struction’, and enables the reduction of proof obliga-
tions. We believe that refinement by calculation can
be beneficial for the practical application in the con-
text of visual modeling.

In this work we introduce a formal semantics for
SEAM visual specifications (Wegmann, 2003) using

higher-order logic and Refinement Calculus (Back
and von Wright, 1998). Based on this semantics, we
define a refinement propagation technique that sup-
ports a stepwise refinement of visual specifications.
We constrained our discussion to the deterministic
specifications. The refinement propagation technique
is grounded on the following observation:An arbi-
trary refinement may cause a conflict between model
elements. To resolve such a conflict and maintain cor-
rectness, model adjustment (also considered as a re-
finement) is usually required.When the initial refine-
ment can be identified with a design decision that is
proposed by a modeler, the adjustment of the entire
specification can be calculated based on rules ofre-
finement propagation. Propagation means a sequen-
tial application of these rules until saturation. We
show that sufficient part of calculations can be done
without modeler’s involvement. We also specify the
situations when modeler’s decision is required to ac-
complish the calculation.

This paper is organized as follows. In Section 2
we present SEAM visual language and classify re-
finements accepted by this language. In Section 3
we define a formal semantics for SEAM using higher-
order logic and refinement calculus. This formaliza-

tion allows for reasoning about visual specifications
with mathematical precision. In Section 4 we intro-
duce the refinement propagation technique. This tech-
nique is formulated as eight rules of refinement prop-
agation. In Section 5 we discuss related works. Sec-
tion 6 presents our conclusions.

2 REFINEMENT IN ’SEAM’
VISUAL MODELING
LANGUAGE

SEAM (Systemic Enterprise Architecture Methodol-
ogy)(Wegmann, 2003) is an approach for modeling
general systems, including information systems and
enterprises. SEAM epistemological principles are
based on General System Thinking (GST) (Weinberg,
1975) and Living Systems Theory (LST) (Miller,
1995). SEAM ontology is grounded on the second
part of RM-ODP (1995) specification. Based on this
standard, the main modeling concepts such as object,
state, action are defined (Wegmann and Naumenko,
2001). Figure 1 illustrates the SEAM visual notation.

S
S2

S1

P1 P2

a b H

AC

Property

Activity

Action

System (Working Object)Event

Pre:<expr > U:<expr> Post:<expr>

D
at

a
S

tr
u

ct
ur

e
B

eh
av

io
r

Figure 1: SEAM visual notation.

Any system or system component in SEAM is mod-
eled as aworking object. The working object may
communicate with an environment byevents. Work-
ing object S is modeled as a collaboration of two
componentsS1 and S2 (also considered as working
objects). S1 is described by itsobservable proper-
ties P1,P2, and abehavior. Properties constitute the
data structure of working objectS1 and define its state
space. The behavior is represented by a set ofactions
a,b organized withinactivity AC.

We focus on the refinement of ablack boxsystem
specification.

Refinement of the state space: (see also data
refinement (B̈orger, 2003; Woodcock and Davies,
1996; Back, 1989) or data structure refinement (Broy,
1993)) deals with the transformation of system data
structure. We recognize the following ways to refine
a state space:

• Extension: new property is introduced into the
system.

• Reduction: some property is eliminated.

Other refinements are used in visual modeling (e.g.
substitution of one property (or group of properties)
by another property (or group), property renaming,
etc.). It is not difficult to show that these refinements
can be represented by a combination of extensions
and reductions. Refinement of the system state space
is illustrated in Figure 2.

Client
0..m|cl[1]..cl[m]

SpecA

AddClientH H

Post:

Exists i | cl[i].n = new_n,

Pre :

new_ n ≠ null ,

forAll i cl [i].n ≠ new_ n

U:

Add(new Client(new_n))

Name
{String[30]}1|n

FName
{String[15]}

LName
{String[20]}

Design decision:

E1 [new_ fn:FName;

new_ln :LName]

Adjustments:

Pre1 :

new_fn ≠ null , new_ln ≠ null ,

forAll i (cl[i].fn ≠ new _fn or cl[i].ln ≠ new_ln)

Post1:

Exists i | (cl [i].fn = new_fn and cl[i].ln = new_ln)

U1: Add(new Client (new_fn , new_ln))

E [new_n:Name]

1|fn

1|ln

Client
...

SpecA1

AddClientH H

{Pre1, U1, Post1}

FName
{String[15]}

LName
{String[20]}

E1

1|fn

1|ln

Rule2: refinement of
event E

Rules 3-4: syntactic and
semantic refinement of
AddClient

Refinement step

Figure 2: Propagation of refinement of the system
state space. Design decision: to substituteName with
{FName,LName}. Required adjustments made by refine-
ment propagation. A correct SpecA1 is calculated as a re-
sult of the refinement step.

Refinement of the behavior:

• Syntactic Refinement: a number of action’s in-
put and output parameters and their types are
changed1.

• Semantic Refinement: a precondition, an update
statement, and/or a postcondition of an action are
changed.

• Extension: new behavior (action or activity) is in-
troduced into the system.

• Reduction: some behavior (action or activity) is
eliminated.

• Behavior distribution: transition from an action
view to an activity (Figure 3).

Aforementioned refinements specify thebasisre-
finement types for SEAM visual specifications. Any
arbitrary refinement can be represented as a combina-
tion of the basis refinement types. Refinement of the
state space and refinement of the behavior can appear

1This version of behavioral refinement is also called re-
finement of a syntactic interface (Broy, 1993).

AddClient

GetFNameH H

E2.1 [new_fn: FName]

GetLName SaveData

Pre:

new_ln ≠ null

Client

SpecA2

Pre:

new_ fn ≠ null

FName
{String[15]}

LName
{String[20]}

m|cl[1]..cl[m]

1|fn

1|ln

Post:

Exists i | (cl[i]. fn = new_fn

and cl[i].ln = new_ln)

Pre :

forAll i (cl[i].fn ≠ new_fn or

cl[i].ln ≠ new _ln)

E2.2 [new _ln: LName]

Design decision:

AddClientH H

E1

{Pre1, U1, Post1}

U: Add(new Client (new_fn, new_ln))

User decision

required

Adjustments :

Figure 3: Propagation of behavior distribution refinement.
SpecA2 refines SpecA1 (Figure 2) providing a realization
of action AddClient.

together in a specification. Also the former canimply
the latter or vice versa. This effect we call arefine-
ment propagation.

3 FORMAL SEMANTICS FOR
’SEAM’

To reason about refinement with mathematical preci-
sion, we formalize SEAM modeling concepts using
a higher-order logic and refinement calculus (Back,
1978; Back and von Wright, 1998).

In our work, we were inspired by the ideas pre-
sented by Mikhajlova and Sekerinski (1997), Back et
al. (2000), and Michajlova (1998). In these works,
refinement calculus is used for the formalization of
object-oriented program development.

We find it necessary to introduce some concepts
of refinement calculus in this section.

3.1 Introduction of Refinement
Calculus

In this paper we restrict our study to deterministic
specifications. Nondeterminism will be addressed in
our future work.

A program statein refinement calculus is modeled
as a tuple of values of all program components. A pro-
gramstate space(a type) Σ is defined as a cartesian
product Σ = Σ1×Σ2× ...×Σn where Σ1,Σ2, ...,Σn
are state spaces of all program components.

A predicateover a state spaceΣ is a boolean func-
tion. The set of all predicates defined over the state
spaceΣ is denoted by

P Σ =̂ Σ→{true, f alse} (1)
A relation between two state spacesΣ andΓ is a

function that maps each state inΣ into a predicate in
Γ. The set of all relations fromΣ to Γ is denoted by

Σ↔ Γ =̂ Σ→ P Γ (2)
It is equivalent to another, more familiar definition:
Σ↔ Γ =̂ (Σ×Γ)→{true, f alse}

A predicate transformerfrom Σ to Γ is a function
that maps each predicate inΣ into a predicate inΓ.

The set of all predicate transformers fromΣ to Γ is
denoted by

Σ 7→ Γ =̂ P Σ→ P Γ (3)

Predicate transformer〈 f 〉 is called afunctional
update. It applies the functionf to a stateσ to yield a
new statef .σ. For all statesσ, defined by the precon-
dition p, the functional update will produce the state
f σ, for which the postconditionq holds:

∀σ ∈ Σ | p • 〈 f 〉.q.σ =̂ q (f σ) (4)

Program statementsin refinement calculus are
identified with predicate transformers.

For a sequential compositionof statementsS,T,
and predicatesp,q, r:

p {|S;T|} q≡ (∃ r • p {|S|} r ∧ r {|T|} q (5)

A refinement orderingon the predicate transform-
ers is defined as follows. ForS,T : Σ 7→ Γ:

Sv T =̂ (∀q : P Γ • S.q ⊆ T.q) (6)

For refinement ordering the following holds:
S1 v S′1 ∧ S2 v S′2 ⇒ (S1×S2)v (S′1×S′2) (7)

Sv S′ v S′′ ⇒ Sv S′′ (8)

3.2 Formalization of SEAM Modeling
Concepts

We distinguish between the following views of
working objects in SEAM:
- Working object as a wholeWOwhole - a black box
system specification;
- Working object as a compositeWOcomposite - a
white box system specification.
In this paper, we focus on the black box specifica-
tions.

Working object as a whole describes the system by a
number of propertiesP1 . . .Pm that specify data types,
and a behaviorB.
We declare the working objectWOwhole as follows:

WOwhole=̂
p11, ..pn1 : P1,
. . . ,
p1m, ..pnm : Pm,
B

(9)

wherep1i , ..pni are instances of a propertyPi .
Working objects may interact with the environment
by receiving inputs I1, .., Ik and sending outputs
O1, ..Ol , also modeled as a part of the system.

We distinguish betweenprimitive andcompound
properties. The former can be considered as an alias
for an operational data type (e.g.Int, String, Boolean,
etc.); the latter is defined by a set ofcomponent prop-
erties and referencesto properties using property-
property relations.

Example 1. SpecAin Figure 2 specifies a work-
ing objectSpecAwhole with its propertiesClient and
Name. PropertyClient is compound, it has a com-
ponent propertyName. Nameis primitive - an alias
for strings of length 30. This representation unifies a
declarative specification style:

” ..client is identified by his/her name(30 symbols)..”

and an imperative style, intrinsic to programming:
class Client {

name: String[30]; } // String of length 30
m: Int; // number of clients
cl: Array(m) of Client;// list of clients

¤
A state of the primitive property denotes a
value of the corresponding operational type (e.g.
1, ”ABC” , true); a state of the compound property is
defined by the states of its components and references.
A tuple of property instancesp11..pnm, inputsi11..ink,
outputso11..onl and their corresponding states defines
asystem stateσ ∈ Σ.

Σ specifies asystem state space- a set of all pos-
sible states of the working object:

Σ =̂ ΣP × ΣIn × ΣOut where

ΣP = (ΣP1 × . . .×ΣP1︸ ︷︷ ︸
n1

)× . . .× (ΣPm× . . .×ΣPm︸ ︷︷ ︸
nm

)

ΣIn = (ΣI1 × . . .×ΣI1︸ ︷︷ ︸
ni1

)× . . .× (ΣIk × . . .×ΣIk︸ ︷︷ ︸
nik

)

ΣOut = (ΣO1 × . . .×ΣO1︸ ︷︷ ︸
no1

)× . . .× (ΣOl × . . .×ΣOl︸ ︷︷ ︸
nol

)

ΣP,ΣIn,ΣOut denote state spaces of system proper-
ties, inputs, and outputs respectively.
Example2.State space of the working objectSpecA1
in Figure 2:

ΣSpecA1 = ΣClient× . . .×ΣClient︸ ︷︷ ︸
m

×ΣIn ⇒

ΣSpecA1 = (String[15]×String[20])× . . .× (..)︸ ︷︷ ︸
m+1

¤

Behavior B of a working object can be seen as an ac-
tion or as an activity.
Action A is defined by a three-tuple{Pre,U,Post}.
Pre-conditionPre and post-conditionPost define the
states of the systemσ,σ′ ∈ Σ before and after the ac-
tion respectively. An updateU specifies a transition
from pre- state to post- state.

If this action describes a communication with the
environment, the input and output eventsEIn,EOut
also make part of the action specification2.

2Broy (1993) defines input and output channels and the
sort of messages for each channel as a syntactic interface
of the black box system view. The causal relationship be-
tween input messages and output messages is defined as a
semantic interface of this view.

A =̂ (10)

EIn(I1, .., Ik), EOut(O1, ..,Ol),
Pre : P (ΣP×ΣIn),
U : (ΣP×ΣIn)→ (ΣP×ΣOut)
Post: P (ΣP×ΣOut),

For the deterministic specifications, we consider a
functional update〈U〉 : Σ 7→ Σ. U is a function that
calculates a post-state from the pre-state. Using the
definition of functional update from (4), we can write:

∀σ ∈ Σ | Pre • 〈U〉.Post.σ =̂ Post(U σ) (11)

We specify actionA with its preconditionPre, func-
tional update〈U〉 and postconditionPost as follows:

Pre{|A|} Post=̂

Pre{|〈U〉|} Post ≡ Pre ⊆ 〈U〉−1.Post (12)

Example3. SpecAin Figure 2 defines an action-
AddClient:

AddClient=
EIn(Name),
Pre= ∃ newn : Name∧ ∀ cl • cl.n 6= newn
U : ΣClient → ΣClient = Add(newClient(newn))
Post= ∃ cl | cl.n = newn

Pre states that there exists an input parameternewn
and that there is no client with the attributen= newn
presented in the system.U denotes that a new in-
stance of clientnewClient(newn) is added into the
system. The postconditionPostspecifies the fact that
after AddClientis carried out, the client with the at-
tributen= newndoes exist in the system.EIn(Name)
specifies the input eventE, that transmits a parameter
newn. ¤
Activity Accan be considered as a detailed specifica-
tion of actionA: it describeshow the transition from
pre- state to post- state is performed.Ac defines a set
of component actions and the way they are composed
to carry out the transition:

Ac=̂ A1©A2© . . .©At (13)
where© stands for component action ordering, de-
fined by a corresponding action-action relation.

PreconditionPre, updateU , and postcondition
Post of A are related to those of component actions:

PreA = ρpre(PreA1, ..PreAt);
UA = ρu(U1, . . . Ut);
PostA = ρpost(PostA1, . . . ,PostAt);

(14)

ρpre,ρu,ρpost are defined by the component action or-
dering (©).

Input and output eventsEIn,EOut of the activity
Ac, are related to the input and output events of com-
ponent actionsA1, ..At :

ΣIn/Out ⊆ ΣIn/Out1
× . . .×ΣIn/Outt

(15)

Example4. SpecA2in Figure 3 defines an activity-
AddClientthat specifies the realization of the action

AddClientfrom SpecA1, Figure 2. Parameters of an
input eventE are distributed between input evens
E2.1 and E2.2 of component actionsGetFNameand
GetLNamesuch that:

E(FName,LName)≡ {E2.1(FName), E2.2(LName)}
and ΣIn ≡ (ΣFName×ΣLName) ¤

4 REFINEMENT PROPAGATION
In this section we introduce the refinement propa-
gation technique for visual specifications. Explor-
ing the basis refinement types, specified in sec-
tion 2, we found relations between them in the
form ”refinementX implies refinementY”. This im-
plication we call apropagation of refinement.

4.1 Definition of Refinement for Visual
Specifications

Refinement calculus specifies the correct refinement
between program statements as a refinement ordering
on the predicate transformers.The program statement
Sis said to be correctly refined by the program state-
mentT, iff T satisfies any specification statement sat-
isfied byS, (6).

The specification statementexpresses require-
ments program has to meet in a given state. Defini-
tion of refinement for the programm statements (or
programs) can be generalized for visual specification
statements (or visual specifications) as follows:
Definition 1. SpecificationWO(abstract) is correctly
refined by specificationWO′ (concrete)WOvWO′ ,
if WO′ satisfies any requirement satisfied byWO.

4.2 Propagation Rules

In refinement calculus, refinement ordering ismono-
tonic with respect to the sequential statement con-
struction. It means that ifS is a statement andS1 oc-
curs as a substatement,S= S(S1) then

S1 v S′1 ⇒ S(S1)v S(S′1) (16)

We can writeWOwhole as a compound statement:

WOwhole(P1, ..,Pm, I1, .., Ik,O1, ..,Ol ,B) (17)

For the substatements, the following can be written:

Pi = Pi(..,Pj , ..), Ii = Ii(.., I j , ..),Oi = (..,O j , ..)

wherePi , Ii ,Oi may be compound properties; and:
B = A(EIn,EOut,Pre,U,Post) | Ac(A1, ..,At),
EIn = EIn(.., Ii , ..),EOut = EOut(..,Oi , ..), (18)

Pre= Pre(.., Ii , ..,Pj , ..), Post= Post(..,Pi , ..,O j , ..)
U = U(.., Ii , ..,Pj , ..,Ok, ..)

Properties, events, actions, and activities are related
within specification. Thereby a basis refinement of an
arbitrary substatementX from (17), (18) may cause a
conflict between certain elements, such that

X v X′ ∧ WOwhole(X) 6vWOwhole(X′)
To resolve this conflict, and to preserve monotonicity,
refinementX′1 of some other substatementX1 is usu-
ally required. This assertion formalizes our definition
of refinement propagation. Within a final number of
steps, refinement propagation either results in correct
refinement of specificationWOwhole:

(X v X′) ⇒ (X1 v X′1) . . .⇒ (Xn v X′n) ⇒
WOwhole(X,X1, ..,Xn)v WOwhole(X′,X′1, ..,X

′
n)

or indicates such a refinement impossible.

Resolving Conflicts between Properties
We distinguish between compound and primitive
properties. The elimination of a compound prop-
erty may cause ’free-floating’ properties and make the
specification confusing.
RULE 1: If Pi(Pi1, ..,Pik,Pik+1, ..,Pi l) is a compound
property with componentsPi1..Pik and references on
propertiesPik+1..Pi l , and, by reduction of the state
space,Pi is eliminated, then its component properties
Pi1, ..,Pik have to be also eliminated. Reduction of the
state space must be correct.

WOwhole(..,Pi−1,Pi ,Pi1, ..,Pi l ,Pi+1, ..)v−Pi

WOwhole(..,Pi−1,Pik+1, ..,Pi l Pi+1, ..) (19)

We formulate the correctness ofrefinement of the
state space:
Definition 2. Let WOwhole be a system specification
as defined in(9); WO′whole is its refinement, where
some properties have been introduced, eliminated, or
substituted; andr is an abstraction relation connect-
ing ’old’ and ’new’ states:

r : Σwo′ ↔ Σwo

The refinement of the state space is correct with re-
spect tor, if any state of the abstract specification has
a corresponding state (or group of states) of the con-
crete specification (i.e.r is a total surjective function).

The notion ofr can be generalized. Considering
R as a relation between predicates of the abstract and
concrete specifications, we can write:

R : Σwo′ 7→ Σwo (20)

WOvR WO′ =̂ WOvWO′;R
Example5. SpecAin Figure 2 is refined bySpecA1
where the propertyNameis substituted with two other
propertiesFNameandLName. To maintain the refine-
ment correctness, we have to define an abstraction re-
lation between ’old’ and ’new’ data types as a total
surjective function:

r : ΣClient′ → ΣClient ⇔ (ΣFName×ΣLName)→ ΣName

for example:
1. n := substr(fn + ln, 30)
2. n := ln //n in ’old’ = ln in ’new’ spec
3. . . .

considering the second expression forn, we define:

Client_old = {n:Name};
Client_new = {fn:FName, ln:LName};
r(x:FName, y:LName):Name = (Name)y;

This relation can be generalized as a predicate trans-
former:
R : (ΣClient′ →{true, f alse})→ (ΣClient →{true, f alse})

⇔ (ΣFName×ΣLName) 7→ ΣName

pred_old(x:Name): Boolean;
pred_new(x:FName, y:LName): Boolean;
R(pred_new(x,y)) = pred_old(r(x,y));

This refinement step causes a conflict between re-
fined propertyClient’ and the input eventE where
the ’eliminated’ propertyNameoccurs as a parame-
ter. Thus the event specification has to be adjusted
(refined):

Client vClient′ ⇒ E v E′

We generalize this observation as a propagation rule.

Resolving Conflicts between Properties and
Events

RULE 2: If P′ is a refinement of a propertyP, and
E(..,P, ..)=̂E(P) is an event, whereP occurs as a pa-
rameter type, i.e.ΣP ⊆ ΣE, then the following holds:

Pv P′⇒ EIn/Out(P)v EIn/Out(P
′)

Example5 (continue): The following elaboration of
specificationSpecA1is deducible:

ClientvClient′, where

ΣClient = ΣName, ΣClient′ = ΣFName×ΣLName, ΣName⊆ ΣIn

⇓
E(Name)v E1(FName,LName) ¤

Resolving Conflicts between Events and Actions:
Syntactic Refinement

RULE 3: If E is an input (output) event of an action
A, then a refinement ofE is asyntactic refinementof
the actionA (by definition of syntactic refinement).
Syntactic refinement must be correct.

E v E′ ⇔ A(E)vsynE A(E′)
Definition 3. Let A′ be asyntactic refinementof an
actionA, andrIn and rOut are abstraction relations
for connecting ’old’ input and output parameters with
the ’new’ ones:

rIn/Out : Σwo′ → ΣIn/Out

whereΣwo′ is a state space of the refined working ob-
ject. RIn,ROut are the corresponding predicate trans-
formers:

RIn : (Σwo′ → ΣIn)→{true, f alse} = Σwo′ 7→ ΣIn
ROut : (Σwo′ → ΣOut)→{true, f alse} = Σwo′ 7→ ΣOut

A is correctly refined byA′ with respect toRIn,ROut if

AvRIn,ROut A′ =̂ RIn;Av A′;ROut (21)

RIn andROut are total and surjective.
For the propagation Rule 3 we write:

EIn v E′In ⇔ RIn;A(E)v A(E′) (22)

EOut v E′Out ⇔ A(E)v A(E′);ROut (23)

Example6.For the actionAddClientin Figure 2, syn-
tactic refinement is correct if predicate transformer
RIn is defined:
RIn : ΣSpecA1 7→ ΣClient = (ΣFName×ΣLName) 7→ ΣName

The definition ofRIn is a modeler’s choice. Here we
takeRIn ≡ R, as it was specified in Example5.

E(Name)v E1(FName,LName)⇒
RIn;AddClient(E(Name))v AddClient(E1(FName,LName))

¤
Resolving Conflicts between Events and Actions:
Semantic Refinement

RULE 4: If E is an input (output) event of an action
A, andE or some of its parametersIi (Oi) occurs in
Pre, U, or Postof A, then a refinement ofE implies a
semantic refinementof the actionA. Semantic refine-
ment must be correct.

A | Pre(E) ∨ U(E)∨ Post(E) ⇒
E v E′ ⇒ AvsemE A′

Definition 4. Let A be an action, defined by the tu-
ple {E,Pre,U,Post} ; A′ : {E′,Pre′,U ′,Post′} is its
semantic refinement, wherePre′, Post′ are new pre-
and postconditions, andU ′ is a new update.A is cor-
rectly refined byA′ if:
- A′ is applicable at least on every state whereA is ap-
plicable;
- starting at the corresponding initial states,A′ andA
produce equivalent results.

Providing abstraction relationR, which relates
’old’ and ’new’ predicates (Definition 2), and using
action specification from (12),A is said to be correctly
refined byA′ with respect toR if

R.Pre′ ⊆ 〈U〉−1.Post and Pre⊆ (〈U ′〉−1 ;R).Post′ (24)

For the propagation Rule 4 we write:

E v E′ ⇒ R;Av (E′/E)A;R (25)

where(E′/E)A stands for a substitution of each oc-
currence ofE or one of its parameters byE′, or its
corresponding parameter.
Example7. SpecA1illustrates the semantic refine-
ment of the actionAddClient, specified in Example3:

AddClient′ =
E1(FName,LName),
Pre1 = ∃ new f n : FName,new ln : LName∧

∀ cl • (cl. f n 6= new f n ∨ cl.ln 6= new ln)
U1 : ΣClient → ΣClient = Add(newClient(new f n,new ln))
Post1 = ∃ cl | (cl. f n = new f n ∧ cl.ln = new ln)

New preconditionPre1 and postconditionPost1 have
been calculated by propagation:

E(Name)v E1(FName,LName)⇒ (rule 4)

AddClient(E)vsemE AddClient(E1)
Pre= Pre(Name),Post= Post(Name) ⇒ (rule 5)

AddClient(Pre,Post)vsemE AddClient(Pre1,Post1), and

Pre1 = ∃ new f n : FName, new ln : LName∧
∀ cl • (cl. f n 6= new f n ∨ cl.ln 6= new ln)

Post1 = ∃ cl | (cl. f n = new f n ∧ cl.ln = new ln)

This refinement is correct by Definition 4. For the
sake of brevity, the proof of correctness is omitted.
The specification adjustment is finished and the re-
finement propagation is complete.

(ClientvClient′)⇒ (EvE1)⇒ (AddCl..vAddCl..′)⇒
SpecA(Name,E,AddClient)v

SpecA1({FName,LName},E1,AddClient′) ¤

Resolving Conflicts between Properties and
Actions: Semantic Refinement

RULE 5: If property P occurs inPre, U, or Post of
actionA, then a refinement ofP implies asemantic
refinementof A. Semantic refinement must be correct.

A | Pre(P) ∨ U(P)∨ Post(P) ⇒
Pv P′ ⇒ AvsemP A′

By definition of correct semantic refinement (Defini-
tion 4), we write:

Pv P′ ⇒ R;Av (P′/P)A;R (26)

where (P′/P)A stands for a substitution of each
occurrence ofP by P′ in the statements ofA, andR is
an abstraction relation.

Resolving Conflicts between Events and the Sys-
tem State Space
RULE 6: If E is an input (output) event of working
objectWOwhole then an extension ofE by some pa-
rameter of typeT implies anextension of the system
state spaceby introduction of a propertyT.

E(..)v E(..,T, ..) ⇒
WOwholev+ WO′whole ∧ Σwo′ = Σwo×ΣT (27)

Note: If ΣE′ ⊆ ΣE (a reduction) - there is no conflict
with the system state space.

Resolving Conflicts between Pre-, Post-conditions,
and Updates

A semantic refinementtakes place when pre-, post-
condition, or update statement of an action is
changed. The equation (12) relates pre-, post-
condition, and update. PreconditionPrecan be calcu-
lated as aweakestpreconditionwp(A,Post) that guar-
antees termination of any execution ofA (〈U〉) in the
final state that satisfiesPost. PostconditionPost can

be calculated as a strongest postconditionsp(A,Pre)
respectively. An updateU cannot be resolved by cal-
culation and requires a modeler’s decision.

Conflicts between pre-, post-conditions, and up-
dates indicate that semantic refinement isincorrect.
Correctness of semantic refinement is formulated in
Definition 4.

Resolving Conflicts between an Activity and its
Component Actions

Behavior distribution refinementstands for an activity
definition (Figure 3). This requires a set of compo-
nent actions and action ordering provided by modeler.
RULE 7: If an activityAc is a behavioral distribution
refinement of an actionA, andA1, ..At - are compo-
nent actions, see (13), then:
1. EventsEIni andEOuti of component actions are de-
fined based on the modeler’s decision, providing (15)
holds;
2. PreconditionsPrei of component actions are de-
fined either by propagation or based on modeler’s de-
cision, providingρpre for the given action ordering
(14) is defined;
3. UpdatesUi and/or postconditionsPosti are defined
based on modelers decision, providingρu,ρpost for
the given invocation order (14) are defined, and (12)
holds for each component action;
Example8. Figure 3 illustrates the propagation of a
behavior distribution refinement. Component actions
GetFName, GetLName, andSaveData, their ordering,
and set of input events are provided by a modeler. By
refinement propagation, we define the preconditions
for AddFNameand AddLNamecomponent actions.
Specification of the postcondition is the modeler’s de-
cision (hereSaveData). ¤

Without loss of generality, any action in SEAM
specification can be seen as a component action of
some abstract activityAcparent.3 Thus, the refinement
of the behavior by anextensionis considered as an
introduction a new component to this abstract activity,
whereas areductionstands for elimination of some
component from it. Rule 6, applied for theAcparent,
specifies the propagation of these refinements.

Both extensionandreductionof the system’s be-
havior have to preserve the semantics of the rest of the
specification. Put it in other terms, modeler needs to
guarantee that the system will work ’at least as well as
before’ in presence of new actions/activities or after
removing any of them. This follows from the Defini-
tion 1.

3Systemlife cycle is the most abstract activity system
performs from the moment of putting in operation (startup)
till the end of functioning (shutdown). Any action or activ-
ity is a part of the life cycle.

Incorrectness
RULE 8: Refinement propagation is impossible if the
correctness of initial refinement is not provable.
Summary
In this section we provide definitions for the refine-
ment correctness and formulate eight rules of refine-
ment propagation. Refinement steps often represent
combinations of refinements. For such a combination
(7) and (8) hold.

We demonstrate that a significant part of specifi-
cation elaboration can be done by calculation. We
also specify the situations, when intervention of the
modeler is necessary. Formal proof of soundness and
completeness of the refinement propagation technique
is an important issue. This makes a topic of our cur-
rent research.

For the sake of brevity, some technical details have
been omitted. For more explanations, please, contact
the authors.

5 RELATED WORK

The foundations in mathematical logic are extensively
used to formalize specifications and refinement tech-
niques for program constructions. Woodcock and
Davies (1996) present the method of software specifi-
cation development called Z. Börger and Sẗark (2003)
introduce the Abstract State Machine method of ab-
stract refinable system specifications. Refinement for-
malization for object-oriented programs using refine-
ment calculus is presented by Mikhajlova and Sek-
erinski (1997), Back et al. (2000), and Michajlova
(1998). Back(2005) proposes a method of incremen-
tal software construction using refinement diagrams.
Here refinement calculus is used as a logic for reason-
ing about software systems and their evolution.

In the domain of visual languages, evolutionary
specifications of ADORA are provided with refine-
ment calculus semantic (Xia and Glinz, 2004). The
transition between model views requires a represen-
tation consistency that is guaranteed by the applica-
tion of refinement calculus. Muskens, in (Muskens
et al., 2005), focuses on the problem of consistency
checking between software views, expressed as UML
diagrams. The approach in (Muskens et al., 2005)
is based on verification of obligation and constraint
rules using relation partition algebra. In contrast to
these approaches, refinement propagation technique
for SEAM black box specifications focuses on preser-
vation of semantic correctness for visual specifica-
tions.

Baar and Marcovíc (2006) introduce a proof tech-
nique for the semantic preservation of refactoring
rules for UML class diagrams and OCL constraints.

Refactoring can be considered as a specific form of re-
finement. We believe that the refinement propagation
technique can be equally used to support automated
refactoring of SEAM specifications. In our work, ac-
tion constraints in SEAM (pre-, post- conditions, and
updates) are specified using some meta-language. Al-
ternatively, they can be expressed in OCL.

Pons (2006) presents the OCL-based technique
and a tool support for UML and OCL model refine-
ment. Object-Z is an underlying theory for refine-
ment verification. The authors discuss the refinement
patterns and formulate the refinement conditions for
these patterns in OCL language(OCL, 2003). Simi-
larly, our technique considers several standard refine-
ment types that can be identified with patterns. In ad-
dition, we define conflict situations, caused by these
refinement types and explore the idea of refinement
propagation.

6 CONCLUSION

In this work we formalize the notion of refinement
and its correctness for visual specifications using
refinement calculus (Back and von Wright, 1998).
Based on this formalization, we define the refinement
propagation technique for semiautomated specifica-
tion construction. Initiated by modeler’s design de-
cision, correct refinement of the visual specification
can be:

• automatically calculated, based on refinement
propagation,

• calculated based on supplementary information
from the modeler,

• recognized as impossible to calculate.

Eight rules of refinement propagation address pos-
sible conflicts between SEAM specification elements,
caused by refinements. Figure 4 summaries the appli-

Property ∑ Pre- U Post-E in/out

Action A Activity
Ac

Property ∑ R5 R5 R5
R2

R7 R7R7R7

R7 – D1

R7 – D1

Acparent

Acparent

Activity Ac

Behavior
B

5 distribution

1 introduction

2 elimination

6 introduction

7 elimination
? ?

- no conflict between elements
? - relations have to be considered

Eve
nt E

R6
R3 – D3

(E in) R4 (Eout) R4
3 syntactic ref.

+
- R4

D4

D4 D4

D4

4 semantic ref.
Pre-

U

Post-

??

??

?

Ai

?

R - rule
D - definition

R1 – D2

Figure 4: Refinement propagation rules. Summary.

cability of our technique. The leftmost column enu-
merates the refinements. Each row denotes conflicts
between elements, caused by the respective refine-
ment, and solutions for these conflicts. For example,

an introduction of a property (row 1) causes no con-
flict with action preconditions (column 3), whereas
property elimination (row 2) may cause such a con-
flict (column 3). This conflict can be resolved apply-
ing a propagation rule 5.

Refinements may cause conflicts by breaking
property-property and action-action relationsin
SEAM (Figure 1). Formalization, refinement, and re-
finement propagation for these relations is out of the
scope of this paper. We put a question mark in the
summary table to specify these cases.

We consider the refinement propagation technique
as an efficient step towards computer-aided construc-
tion of visual specifications. Application of this tech-
nique in the form of a modeling tool is one of our
on-going projects.

REFERENCES

Baar, T. and Markovíc, S. (2006). A graphical approach to
prove the semantic preservation of UML/OCL refac-
toring rules. InErshov Memorial Conference, Lecture
Notes in Computer Science.

Back, R.-J. (1978).On the Correctness of Refinement Steps
in Program Development. PhD thesis, bo Akademi,
Department of Computer Science, Helsinki, Finland.
Report A–1978–4.

Back, R.-J. (1989). Changing data representation in the re-
finement calculus. In22nd Hawaii International Con-
ference on System Sciences, pages 231–242. IEEE.

Back, R.-J. (2005). Incremental software construction with
refinement diagrams. In Broy, Gunbauer, H. and
Hoare, editors,Engineering Theories of Software In-
tensive Systems, NATO Science Series II: Mathemat-
ics, Physics and Chemistry, pages 3–46. Springer,
Marktoberdorf, Germany.

Back, R.-J., Mikhajlova, A., and von Wright, J. (2000).
Class refinement as semantics of correct object substi-
tutability. Formal Aspects of Computing, 12(1):18–40.

Back, R.-J. and von Wright, J. (1998).Refinement Calculus:
A Systematic Introduction. Springer-Verlag. Graduate
Texts in Computer Science.

Börger, E. (2003). The asm refinement method.Formal
aspects of computing.

Börger, E. and Stärk, R. (2003).Abstract State Machines:
A Method for High-Level System Design and Analysis.
Springer-Verlag.

Broy, M. (1993). Interaction refinement—the easy way.
In Program Design Calculi: Proceedings of the
1992 Marktoberdorf International Summer School.
Springer-Verlag.

Dijkstra, E. W. (1971). Notes on structured programming.
In Structured Programming. Academic Press.

Mikhajlova, A. (1998). Consistent extension of compo-
nents in presence of explicit invariants. InWorkshop
on Component-Oriented Programming (WCOP’98),
ECOOP’98. TUCS General Publication Series.

Mikhajlova, A. and Sekerinski, E. (1997). Class refinement
and interface refinement in object-oriented programs.
In FME ’97: Industrial Applications and Stengthened
Foundations of Formal Metohds, volume 1313, pages
82–101. Springer.

Miller, J. (1995). Living Systems. University of Colorado
Press.

Morgan, C. and Gardiner, P. H. B. (1990). Data refinement
by calculation.Acta Informatica, 27(6):481–503.

Muskens, J., Bril, R. J., and Chaudron, M. R. V. (2005).
Generalizing consistency checking between software
views. InWICSA, pages 169–180.

OCL (2003).OCL 2.0 Final Adopted Specification.OMG.

Pons, C. (2006). Heuristics on the definition of UML re-
finement patterns. InSOFSEM, pages 461–470.

RM-ODP (1995).Reference model of open distributed pro-
cessing part 1. Draft International Standard (DIS).
Helsinki, Finland.

UML (2007). Unified Modeling Language (UML), version
2.1.1. OMG, www.omg.org.

Wegmann, A. (2003). On the systemic enterprise architec-
ture methodology (seam). InInternational Conference
on Enterprise Information Systems (ICEIS).

Wegmann, A. and Naumenko, A. (2001). Conceptual mod-
eling of complex systems using an rm-odp based on-
tology. InEDOC, pages 200–211.

Weinberg, G. M. (1975).An Introduction to General Sys-
tems Thinking. New York: Wiley & Sons.

Wirth, N. (1971). Program development by stepwise refine-
ment.Communications of the ACM, 14:221–227.

Woodcock, J. and Davies, J. (1996).Using Z. Prentice Hall.

Xia, Y. and Glinz, M. (2004). Extending a graphic modeling
language to support partial and evolutionary specifica-
tion. apsec, 00:18–27.

