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We investigate the charge current that is optically injected by interference between one- and two-photon
excitation in the presence of excitonic effects. We consider a realistic V-shaped quantum wire excited slightly
below the band gap by two simultaneous femtosecond laser pulses of frequency 2� and � that interact,
respectively, with the lowest B1 and A1 excitons. Using effective multiband Bloch equations for two-photon
transitions, including the Coulomb interaction within the Hartree-Fock approximation, we show that, because
of the different symmetry properties of the involved excitons, the generated charge current displays oscillations
due to the quantum interference between the excitonic coherences.
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I. INTRODUCTION

Coherent control of charge current generated by quantum
interference between one- and two-photon absorption has at-
tracted considerable interest, since the first measurements in
semiconductors.1,2 In this context, various questions have
been addressed, such as the relaxation due to electron-
phonon interaction,3 the effect of strain on the degree of spin
polarization of the current,4 or the contribution of intersub-
band coherence on the THz emission.5 However, it remains
an open question how such processes may be affected by the
Coulomb interaction. Interesting phenomena may be ex-
pected, as it will be shown in this paper.

In the following, we apply the effective multiband Bloch
equations introduced in Refs. 5 and 6 to the case of optical
injection of current in the presence of excitonic effects. This
first investigation concentrates on a one-dimensional system,
a realistic V-shaped AlGaAs/As quantum wire �QWR�. We
give first results concerning the charge current generated in
the QWR, and the associated terahertz emission, when the
lowest B1 and A1 excitonic resonances are excited simulta-
neously by one- and two-photon transitions. Because of the
different symmetry properties of the involved excitons, the
injected charge current displays oscillations due to the quan-
tum interference between the excitonic coherences. The os-
cillation frequency is given by the energy spacing between
the excitons. This phenomenon has the same origin as the
polarization interference between excitons with different en-
ergy, observed in quantum wells by four-wave mixing.7–9

However, the excitation scheme described in this study
makes the resulting modulation of the interband coherence
also appear as oscillations in the charge current, which is
directly related to the occupation of the bands.

The text is organized as follows. In Sec. II we introduce
the theory and detail of the excitation scheme that is consid-
ered. Then, in Sec. III we show and discuss the numerical
results. The conclusions are drawn in Sec. IV.

II. THEORY

We consider a QWR simultaneously excited by two laser
pulses polarized along the wire—i.e., along the symmetry

axis x �Fig. 1�. The two fields of frequency �1=2� close to
the band gap and �2=� close to the half of the band gap
induce, respectively, quasiresonant one- and two-photon in-
terband transitions. It must be pointed out that the excitation
scheme is slightly different from the one usually used for
coherent control of current injection,1–5 where a large num-
ber of carriers are injected through resonant valence-to-
conduction band transitions. Here we choose optical frequen-
cies �1 and 2�2 slightly below the band gap energy in order
to build up essentially the lowest excitonic coherences. Let
us first describe the QWR we consider �Sec. II A�. We shall
then summarize the involved excitonic selection rules �Sec.
II B� and introduce the equations of motion of the system
�Sec. II C�. Further details about the excitation scheme are
finally given in Sec. II D.

A. V-shaped quantum wire

The QWR is a V-shaped AlxGa1−xAs/GaAs QWR �x
=0.337� orientated with respect to the crystal main symmetry
axes, as shown in the inset of Fig. 1. Since the inversion
asymmetry in GaAs has only very small effects on the va-
lence band structure, it is neglected here. Within this ap-
proximation, the QWR point group is C2v with the two sym-
metry planes �x and �y defined by their normal axes x

��11̄0�� and y ��110��, respectively, and the little group of k is
Cs �classification adopted in Ref. 10�.

For the band-structure computations, the exact contour is
extracted from a transmission electron microscope �TEM�
picture �inset in Fig. 1�. The confined electronic states in the
GaAs/AlGaAs QWR and the related momentum matrix ele-
ments were calculated as in Refs. 10 and 11 with k ·p theory,
the bulk conduction band is a doubly degenerate S-like band,
and the bulk valence band is described by the four-band Lut-
tinger Hamiltonian. The bulk momentum matrix elements
between a conduction band and a valence band are given by
the two-by-four Kane matrices,12 whereas the elements be-
tween two conduction bands or two valence bands are equal
to zero due to symmetry. The bulk band-structure parameters
are shown in Table I, and the energy subbands of the QWR
are displayed in Fig. 1. The bands are labelled as follows: ci
denotes the ith pair of conduction subbands, starting from the
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bottom, and vi denotes the ith pair of valence subbands, start-
ing from the top.

B. Excitonic selection rules

Excitonic quantum numbers may be defined from the ir-
reducible representations �irreps� of product states of single
particles, since the Coulomb interaction always belongs to
the invariant representation and thus mixes only product
states with a given representation. Insofar as the wave vector
of the electromagnetic field is neglected, only the excitons
with center-of-mass wave vector equal to zero are optically
active. As a consequence, all optically active excitons exhibit
the zone center symmetry and can be labelled by the irreps of
the point group of the QWR.10 Furthermore, excitons being
product states of two particles with half-integer spin, their
total spin is an integer. By contrast to the single particle case,
excitons therefore belong to the irreps of the single group.10

In QWRs with C2v symmetry, the optically active excitons
can consequently be classified according to the four one-
dimensional irreps denoted by A1, B1, A2, and B2 �notations
of Ref. 15�.

Let �n ,k� be the electronic state of wave vector k in the
subband n. In the dipole approximation, the optical coupling
between a state in the conduction subband c and a state in the
valence subband v is described by the linear interaction term
�cv,k

x for resonant one-photon transitions and by the effective
quadratic interaction term �n�cn,k

x �nv,k
x / ��nv,k−�� for reso-

nant two-photon transitions.5,6 The matrix elements of the
momentum operator �x including spin-orbit coupling are de-
fined by �mn,k

x = �m ,k��x�n ,k� and �mn,k denotes the interband
frequency between the bands m and n at wave vector k.
Under the spatial symmetry operations, the linear operator �x

transforms like the Cartesian component x, whereas the qua-
dratic operator �n�x�n ,k��n ,k��x / ��nv,k−�� transforms like
the product of two Cartesian components xx. Taking into
account these symmetries, the excitonic selection rules can
be derived. We conclude that for one-photon excitation the
light polarized along the QWR interacts with the class of
excitons B1, whereas by two-photon excitation with light po-
larized along the symmetry axis x, only excitons of the type
A1 are accessed.

C. Equations of motion and charge current

The dynamics is described by the effective multiband
Bloch equations introduced in Refs. 5 and 6, which include
nonlinear processes such as two-photon transitions or AC
Stark shifts. They are extended here to account for the Cou-
lomb interaction within the Hartree-Fock approximation. In-
deed, we need an equation of motion for the reduced density
matrix, including both the quasiresonant effective two-
photon transitions and the Coulomb repulsion. However, we
neglect the cross terms between the electromagnetic field and
the Coulomb interaction that result from the perturbative ex-
pansion. Each interaction is treated separately and the result-
ing effective interactions are eventually added. In the follow-
ing, we thus give only the equation of motion, and the
involved approximations, in the absence of electromagnetic
field. When expressed in the same rotating frame, the Cou-
lomb interaction terms can then simply be added to the ef-
fective multiband Bloch equations �Eq. �23� in Ref. 5, see
also Ref. 6�.

First, we disregard the Hartree �or direct� term. Note that
it cancels exactly16 if one neglects the Coulomb-induced
transitions between different bands and the wave function
dependence of the Coulomb matrix element. Second, we ne-
glect the transitions between conduction and valence bands
induced by Coulomb scattering. Finally, as we restrict our-
selves to the low density regime, we also neglect the Cou-
lomb coupling between electrons in the conduction subbands
or between electrons in the valence subbands. To summarize,
keeping only the Fock �or exchange� term, we are left with
the equation of motion,

FIG. 1. Band structure of a V-shaped AlGaAs/GaAs quantum
wire. Two bands that are degenerate at zone center are mutually
conjugate by time reversal and belong to the irreps 1E1/2 �solid line�
and 2E1/2 �dashed line� of the group Cs �the little group of k�. The
QWR is excited by two optical pulses of frequency � and 2� with
2� slightly below the band gap. The inset shows a TEM picture of
the quantum wire considered in this study.

D. H. MARTI, M.-A. DUPERTUIS, AND B. DEVEAUD PHYSICAL REVIEW B 72, 075357 �2005�

075357-2



�t�mm�,k = − i�mm�,k�mm�,k

+
i

�
�

nn�n�
�

q

�Vq�k,k−q;k−q,k
m,n�;n�,n �n�n�,k−q�nm�,k

−
i

�
�

nn�n�
�

q

�mn,k�n�n�,k−q�Vq�k,k−q;k−q,k
n,n�;n�,m� , �1�

restricted to the Coulomb matrix elements �Vq�. . .
c,c�;v,v� and

�Vq�. . .
v,v�;c,c� �the band indices c and v denote conduction and

valence bands, respectively�. The notations are identical to
the one used in Refs. 5 and 6, �mm�,k and �mm�,k are, respec-
tively, the reduced density matrix element and the bare �non-
renormalized� interband frequency between the electronic
states of band m and m� with wave vector k. Band-gap renor-
malization is included in the remaining terms in Eq. �1�, and
the exchange energy is taken into account. However we ne-
glect screening and the so-called “Coulomb-hole” correction,
which restricts the validity to a relatively low-density re-
gime. The Coulomb matrix elements are given by

�Vq�k−q,k;k�+q,k�
m,n;m�,n� =

e2

�0L
	 	k−q

m �r�†	k
n�r�eiq�x−x��Gq�r�,r�� �


	k�+q
m� �r��†	k�

n��r��d3rd3r�, �2�

where the 	k
n�r�’s are electronic wave functions and is the

real Green’s function of the equation


����r�� � � − q2��r���Gq�r�,r�� � = ��r� − r�� � , �3�

which is the Fourier transform �in the unconfined direction�
of the 3D Poisson equation. L is the length of the QWR and
r�= �y ,z� designates the projection of the position r
= �x ,y ,z� on the plane perpendicular to the QWR. The posi-
tion dependent dielectric function ��r�� accounts for the ma-
terial variation in the heterostructure. In the bulk case, � is
constant and the solution of Eq. �3� reduces to the well-
known function Gq=−1/ ��q2�.

It is reasonable to assume that the Coulomb contribution
of filled bands is already taken into account by the effective
bulk parameters �band energies, effective masses, etc.�. The
occupation numbers �vv,k of the electrons in the valence
bands arethus replaced by �vv,k−1 in the Coulomb terms.

The resulting Coulomb interaction terms �restricted to the
bands described by the reduced density matrix� can now be
added to the effective multiband Bloch equations, insofar
they are expressed in the same rotating frame. The required
Coulomb matrix elements were calculated following Ref. 17
by solving the Poisson equation with position dependent di-
electric function.

The effective equations of motion are solved for a reduced
density matrix describing the three lowest pairs of conduc-
tion bands and the four highest pairs of valence bands �Fig.
1�. The two bands defining a pair are conjugate by time-
reversal symmetry. In order to correctly describe the two-
photon transitions, one should in principle take into account
a complete set of intermediate states �the sum over n in Eqs.
�25� and �26� of Ref. 5, see also Ref. 6�. In practice however,
we restrict ourselves to the 12 lowest pairs of conduction
bands and the 24 highest pairs of valence bands.

The optically generated charge current is given by the
“low frequency” part of the polarization current �Eq. �31� of
Ref. 5, see also Ref. 6�,

j =
1

L
�

k
��

cc�

�cc�,k�c�c,k + �
vv�

�vv�,k�v�v,k . �4�

Note that the wave vector k is here one dimensional and the
polarization current is normalized by the length L of the
QWR.

The decoherence and the thermalization of the carrier dis-
tributions are described by a unique phenomenological relax-
ation time � �Eqs. �27� and �28� in Ref. 5�. This is a simple
and convenient way to model complex microscopic relax-
ation mechanisms such as electron-phonon and electron-
electron scattering. A detailed description of these processes
in the case of current injection would be of great interest.
This issue certainly deserves further investigations, but it is
also a challenging task from the computational point of view.

D. Excitation scheme

The two simultaneous laser pulses are described by the
vector potentials A1 cos�2�t+� and A2 cos��t�. With re-
spect to the notations used in Ref. 5, the frequencies and
phases of these fields correspond to 1=, 2=0, and �1
=2�2=2�. The two pulses have a duration of 100 fs at half-

TABLE I. Bulk band-structure parameters �Ref. 14� of AlxGa1−xAs used in this study.

Symbol Parameter AlxGa1−xAs Unit

mc Effective mass of the
conduction band

0.0665+0.0835x �m0�

�1 Luttinger parameter 6.790−3.000x ���
�2 Luttinger parameter 1.924−0.694x ���
�3 Luttinger parameter 2.681−1.286x ���
EP Kane parameter 28.8 �eV�
Eg Energy gapa 1.519+1.247x �eV�
�Ec /�Ev Band offsets 68/32 ���
aFor future calculations we suggest to use the better formula Eg�x�=1.5194+1.36x+0.22x2 �Ref. 13�.
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maximum �of intensity� and are copolarized along the QWR
�x axis�. The optical frequency 2��=1.57 eV corresponds to
an excitation energy in the middle between the two lowest
excitonic resonances for light polarized along the x axis,
namely the lowest B1 exciton in the one-photon absorption
spectrum and the lowest A1 exciton in the two-photon ab-
sorption spectrum �Fig. 2�. The absorption spectra are calcu-
lated by solving the same effective multiband Bloch equa-
tions, when the QWR is excited only by the A1 or A2 pulse,
they are extracted from the Fourier transform of the high-
frequency part of the polarization current. The dominant con-
tribution to both excitonic resonances is given by the lowest
conduction band and the highest valence band denoted by c1
and v1, respectively. The spectral widths of the pulses are
sufficiently large to cover both resonances. The peak inten-
sities are chosen to get a high contrast in the interference,
7 MW/cm2 and 10 GW/cm2 for the A1 and A2 pulse, re-
spectively. The calculations are essentially done for a long
relaxation time �=1 ps. A detailed discussion of complete
one- and two-photon absorption spectra in QWRs is given in
Ref. 18.

III. RESULTS AND DISCUSSION

A. Oscillating charge current

In Fig. 3, we show the charge current �4�—i.e., the low-
frequency part of the polarization current—injected along the
QWR for two values of the phase difference between the
pulses, =0 and =� /2. The results are displayed for a
long relaxation time ��=1 ps�, and compared to the values
obtained in the same configuration but without Coulomb in-
teraction. The power spectrum P���� ��−�

+���tj�ei2��tdt�2 of
the associated terahertz emission is displayed in Fig. 4.

When the Coulomb interaction is taken into account
within the Hartree-Fock approximation, a strongly oscillating
charge current appears. First, we note that the oscillations
disappear, when the Coulomb interaction is neglected. This

clearly indicates that excitonic resonances are involved. Sec-
ond, the oscillations subsist even after the optical pulses van-
ished. We also checked that the oscillation frequency does
not depend on the pulse frequencies, insofar as the same
resonances are excited. Note that the current is enhanced by
the Coulomb interaction, because the optical pulses �with
frequency below the band gap� mainly excite excitonic reso-
nances. Finally, as expected there is no current injected when
only one beam is present.

B. Charge current injection: Two contributions

The oscillating current is present in both phase configura-
tions �=0 and =� /2�. However, as it can be seen from
the terahertz spectra, an additional �broader� contribution ap-
pears for =0.

To investigate this phase dependence, let us first remind
the phenomenon of current injection by interference between

FIG. 2. Lowest B1 and A1 excitonic resonances in the one-
photon absorption �1PA� and two-photon absorption �2PA�, respec-
tively. The absorption spectra are calculated for thermalized carrier
distributions that correspond approximatively to the carrier densi-
ties excited in the configuration for current injection used in this
paper. Decoherence time, �=1 ps. Eg, energy gap of the QWR.

FIG. 3. �Color online� Charge current along the V-shaped quan-
tum wire for two different optical phases, =0 �solid line� and 
=� /2 �dashed line�. Thick lines, the Coulomb interaction is taken
into account within the Hartree-Fock approximation. Thin lines, the
Coulomb interaction is neglected. Relaxation time �=1 ps. The
shaded curve on the bottom of the figure shows the time depen-
dence of the optical pulses in the QWR.

FIG. 4. Power spectrum of the far-field THz emission for two
different optical phases, =0 �solid line� and =� /2 �dashed line�.
Relaxation time �=1 ps.
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one- and two-photon transitions. As discussed in Ref. 5, the
same initial and final states are coupled by two coherent
electromagnetic fields of frequency 2� and �. The interfer-
ences between the two processes induce a charge current,
whose amplitude can be controlled by the relative phase be-
tween the two pulses, the current is maximal for the phase
=0 and zero for the phase =� /2.

The oscillating charge current in Fig. 3 separates into two
contributions. The amplitude of one part of the current can
be controlled by the relative phase between the beams. In
particular, it vanishes for =� /2. By contrast, the rest of the
current cannot be switched off by tuning the phases of the
pulses. The oscillations we are interested in appear in this
second contribution. Figure 5 shows that the amplitude of the
oscillating current �after the pulses vanished� is not affected
by the optical phase . Nevertheless, the phase of the oscil-
lations can still be controlled.

In the terahertz emission, the oscillations of the current
appear in both spectra as a sharp peak centered around
2 THz. In the case where an additional current is injected by
tuning the phase to =0, a broader contribution with higher
frequency tail is superimposed on the peak.

We emphasize that in the present case, the optical fre-
quencies are detuned with respect to the interband transition
frequencies, as the QWR is excited slightly below the band
gap. The injected charge current �and carrier densities� for
=0 would be much higher, if the subbands of the QWR
were excited resonantly. However, in this paper, we focus on
the excitonic contributions below the band gap.

In order to isolate and analyze the current oscillations, we
concentrate now on the situation where no additional current
is injected by interference between one- and two-photon
transitions—i.e., =� /2. In this case, the peak in the power
spectrum of the far-field terahertz emission is centered at
�2.13 THz �or �8.8 meV�.

C. Analysis: Interference between B1

and A1 excitonic coherences

The low-frequency oscillations in the polarization current
are generated by interferences between B1 and A1 excitonic

coherences stimulated, respectively, by the A1 and A2 elec-
tromagnetic fields. Indeed, the selection rules introduced in
Sec. II B imply that the effective one- and two-photon inter-
actions excite only excitons belonging to the irreps B1 and
A1, respectively. The strong peak of the excitonic ground
state in the one-photon absorption spectrum �Fig. 2� indicates
that the A1-pulse primarily builds up the lowest B1 excitonic
coherence related to the subbands c1 and v1. On the other
hand, the A2 pulse stimulates the A1 excitonic resonances
associated with the same subbands, that appear close to the
band edge in the two-photon absorption spectrum �Fig. 2�.
The statement that this process involves mainly excitons re-
lated to the subbands c1 and v1 is confirmed by the small
amount of current injectedin the other subbands. Indeed, Fig.
6 shows that the essential contribution to the charge current
is given by the electrons in the subband pairs c1 and v1. The
oscillatory motion of the electrons in the lowest conduction
band c1 is illustrated in Fig. 7, where we have plotted the
carrier distribution—i.e., a diagonal element of the reduced
density matrix—in reciprocal space, at different times during
the evolution.

FIG. 5. Charge current along the V-shaped quantum wire for
different optical phases . Relaxation time �=1 ps.

FIG. 6. Charge current in the different subbands. Relaxation
time, �=1 ps. Optical phase, =� /2.

FIG. 7. Carrier distribution in the lowest pair of conduction
subbands c1 at different times �0.7, 0.8, and 0.9 ps�. The distribution
is shown for the subband belonging to 1E1/2. The distribution in the
conjugate subband belonging to 2E1/2 is similar. Optical phase, 
=� /2.
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To get a better insight into the underlying physical pro-
cess, let us illustrate this phenomenon by a simple two-band
model. For this purpose, we consider an undoped semicon-
ductor described by the occupation number nk=�cc,k=1
−�vv,k and the interband coherence pk=�cv,k. The semicon-
ductor Bloch equations �SBE� that govern the dynamics can
be written as

d

dt
nk = −

2

�
Im��A�k + �

q

Vqpk+qpk
*� ,

d

dt
pk = − i�kpk +

i

�
�1 − 2nk��A�k + �

q

Vqpk+q , �5�

where �k is the renormalized interband frequency and �k
= �−e /m0��cv,k is proportional to the interband momentum
matrix element. After mixing the two equations, one is left
with

d

dt
�pk�2 = �1 − 2nk�

d

dt
nk. �6�

Let us assume initial conditions that correspond to an unex-
cited system, nk�0�= pk�0�=0. One finds the relation

nk = 1
2 �1 − �1 − 4�pk�2� , �7�

valid for all times. For weak excitation, it reduces to nk
��pk�2. Following the perturbative scheme described in Refs.
5 and 6, the dipole interaction in the SBE �5� can easily be
replaced by two effective interaction terms, which are linear
in the field of frequency �1��k and quadratic in the field of
frequency �2��k /2, and which describe, respectively, reso-
nant one- and two-photon transitions. Thus, the relation �7�
remains valid for the interference process we want to discuss
here.

Let us now assume that we excite simultaneously two
excitonic resonances at frequencies �1 and �2, associated
with the same two subbands. The corresponding coherence is
given by

pk = p̄1,ke
i�1t + p̄2,ke

i�2t, �8�

where, in the case of quasiresonant optical excitation, the
functions p̄i,k are slowly varying in time. The squared mod-
ule of this coherence becomes

�pk�2 = �p̄1,k�2 + �p̄2,k�2 + 2 Re�p̄1,kp̄2,k
* ei��1−�2�t� . �9�

For weak excitation, this expression is almost equal to the
carrier distribution nk. As a consequence, the occupation
number nk oscillates with frequency �1−�2. Now, if the
coherences p̄1,k and p̄2,k are, respectively, even and odd as
functions of the wave vector k, and of comparable magni-
tude, then the resulting carrier distribution is asymmetric in k
space, leading to a macroscopic charge current. The impor-
tant point here, is that the excitonic frequencies do not de-
pend on the wave vector k. Thus, all occupation numbers nk
oscillate in phase. It follows that the related charge current
oscillates with frequency �1−�2 given by the energy spac-
ing between the involved excitonic resonances. This is what
we observe in Figs. 3–7. First, the lowest B1 and A1 excitonic

coherences excited by the A1 and A2 pulses display, respec-
tively, an �even� S-like and �odd� P-like shape in reciprocal
space �not shown�. Second, the central frequency of the peak
in the THz power spectrum ��8.8 meV� corresponds ap-
proximatively to the energy spacing between the B1 and A1
excitons related to the bands c1 and v1 ��8.6 meV� shown in
Fig. 2. The small discrepancy is discussed in Sec. III D.

To summarize, the two pulses of frequency 2� and �
build up two interband coherences, which interfere. This re-
sults in an asymmetric carrier distribution in the bands. The
key point is that the beams excite two excitonic resonances
of different energies. As a consequence, the corresponding
coherences oscillate with different frequencies. This leads to
an injected current that oscillates with frequency given by
the energy spacing between the excitons.

D. Discrepancy between the THz frequency
and the B1−A1 energy spacing

First, we note that the energies of the excitonic resonances
shift with higher carrier density and that these shifts may not
be fully physical since we have neglected screening and the
Coulomb-hole correction. However there are also other com-
pelling reasons for the main discrepancy at hand. At zero
density, the lowest B1 and A1 excitons are separated by
�9.7 meV. The absorption spectra shown in Fig. 2 are cal-
culated for finite thermalized carrier distributions corre-
sponding to the densities of energy and densities of carriers
that are injected by the two laser pulses in the configuration
for current generation, �2
2
104 electrons/cm at �75 K
in the lowest pair of conduction bands and �2
2

104 holes/cm at �18 K in the highest pair of valence
bands �the temperature is given by the average energy of the
excited carriers�. Nevertheless, these thermalized carrier dis-
tributions are not exactly equal to the optically injected dis-
tributions. The latter increase while the current is building
up, and evolve during the subsequent oscillations and ther-
malization �see Fig. 7�. This affects the excitonic energies.

Second, the A2 laser pulse excites also excitonic reso-
nances at higher energy. Indeed, the two-photon absorption
spectra in Fig. 2 shows that the absorption near the band gap
and the one due to the lowest A1 exciton are of comparable
magnitude. These �bound or unbound� excitons also interfere
with the B1 exciton, and affect the current.

Finally, if one wishes to identify precisely the energy
spacing between the excitons in the terahertz emission, then
all contributions that come from the build-up and decay of
the current should first be deconvoluted from the power
spectrum.

E. Coherent control of the oscillations

Concerning the coherent control of the injected current,
we note that the optical phases of the beams cannot be used
to tune the amplitude of the oscillating current. This is
related to the fact that, even in the stationary regime, there
is no constant phase relation between the interfering coher-
ences. However, one can modify the phase of the oscilla-
tions. By contrast, if the two beams would excite two
resonances with identical energies, then the associated coher-
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ences would oscillate in phase �with same frequency�. In
such a case, the current would not oscillate. However, the
constant relative phase between the coherences could be
shifted by the optical phases of the beams, which would
allow to control the current injection rate for all times. This
is the mechanism governing the coherent control of current
injection1–5 where the two optical fields resonantly excite
two coherences between the same pair of conduction and
valencebands, which oscillate both with the interband fre-
quency.

F. Dependence on the relaxation time

In Fig. 8, we show the calculated time evolution of the
optically injected charge current for different relaxation
times �1 ps, 0.5 ps, and 0.2 ps� and =� /2. The power
spectrum of the corresponding terahertz emission is dis-
played in Fig 9. One sees that the relaxation time must be
sufficiently long, for the current oscillations to be observ-
able. This implies low carrier densities, and thus weak exci-
tation. On the other hand, the oscillations appear in the
charge current, since the latter is directly related to carrier
distribution in the bands. Therefore, from the experimental

point of view, a stronger signal requires higher carrier den-
sities, which accelerates the decay of the current. This trade-
off deserves further investigations.

IV. CONCLUSION

Using the effective multiband Bloch equations5,6 includ-
ing the Coulomb interaction within the Hartree-Fock ap-
proximation, we evidenced new oscillations in the charge
current injected in a V-shaped AlGaAs/GaAs QWR, when
excited slightly below the band gap by two phase-related
femtosecond laser pulses of frequency � and 2�. The origin
of these oscillations could be attributed to the fact that the
two optical beams excite independently the lowest B1 and A1
excitonic resonances. We have shown that the interferences
between these excitonic coherences result in terahertz oscil-
lations in the low-frequency polarization current, that subsist
after the laser pulses vanished. For a long decoherence time
�1 ps�, these oscillations appear as a distinct peak in the
power spectrum of the far-field terahertz emission. By con-
trast to the current injected by resonant one- and two-photon
interband transitions discussed in Ref. 5, this oscillating cur-
rent cannot be switched off by tuning the relative phase be-
tween the two pulses.
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