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Abstract

In this paper we present a surprisingly simple yet pow-

erful method for detecting illumination—determining which

pixels are lit by different lights—in images. Our method

is based on the chromagenic camera, which takes two pic-

tures of each scene: one is captured as normal and the other

through a coloured filter. Previous research has shown that

the relationship between the colours, the RGBs, in the fil-

tered and unfiltered images depends strongly on the colour

of the light and this can be used to estimate the colour of the

illuminant. While chromagenic illuminant estimation often

works well it can and does fail and so is not itself a direct

solution to the illuminant detection problem. In this paper

we dispense with the goal of illumination estimation and

seek only to use the chromagenic effect to find out which

parts of a scene are illuminated by the same lights.

The simplest implementation of our idea involves a com-

binatorial search. We precompute a dictionary of possi-

ble illuminant relations—that might map RGBs to filtered

counterparts—from which we select a small number m cor-

responding to the number of distinct lights we think might

be present. Each pixel, or region, is assigned the relation

from this m-set that best maps filtered to unfiltered RGB. All

m-sets are tried in turn and the one that has the minimum

prediction error over all is found. At the end of this search

process each pixel or region is assigned an integer between

1 and m indicating which of the m lights are thought to

have illuminated the region.

Our simple search algorithm is possible when m = 2
(and m = 3) and for this case we present experiments that

show our method does a remarkable job in detecting illu-

mination in images: if the 2 lights are shadow and non-

shadow, we find the shadows almost effortlessly. Compared

to ground truth data, our method delivers close to optimal

performance.

1. Introduction

Much of computer vision, image processing and imag-

ing in general is predicated on the assumption that there is

a single prevailing illuminant lighting a scene. However,

often there are multiple lights. Common examples include

outdoor scenes with cast and attached shadows, indoor of-

fice environments which are typically lit by skylight and ar-

tificial illumination and the spot-lighting used in commer-

cial premises and galleries. Relative to these mixed lighting

conditions, many imaging algorithms (based on the single

light assumption) can fail. Multiply-lit scenes cause prob-

lems for tracking [14], scene analysis [15], object recog-

nition and illuminant estimation. The latter problem is al-

most always solved under a single light assumption[1] yet

ignoring multiple lights can often lead to very poor image

reproduction[13].

While we are interested in multiply-lit scenes in general,

in this paper shadows will be our primary focus. Indeed,

not only are cast shadows the most commonly encountered

multiple illumination situation they are arguably the most

difficult to deal with: shadow edges are often quite strong

and it is this sudden transition between coloured lights that

causes problems in applications such as tracking. An ex-

ample of a cast shadow is shown in Fig. 1. Alongside we

show the Planckian illuminants corresponding to the color

temperatures of the light we measured inside (bluish) and

outside the shadow (yellowish).

Figure 1. An outdoor image containing a shadow. And the Spectral

Power Distribution of both illuminants: sun+sky light and sky-

light only. Note the difference across the visible spectrum.
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In this paper, we propose a novel method to detect mul-

tiple illuminants present in a scene — using a chromagenic

camera and invoking a simple combinatorial detection strat-

egy. A chromagenic camera captures two images for every

scene: the first is a conventional image and the second is

taken through a coloured filter [7]. Chromagenic theory has

shown that the relationship between filtered and unfiltered

responses depends strongly on, but varies with, illumina-

tion and that this relationship can be exploited in illuminant

estimation. Interestingly, while good estimates are possi-

ble they are not guaranteed and chromagenic theory does

not fully solve the illuminant estimation problem. Here, we

seek to exploit the relationship between filtered and unfil-

tered RGBs not to determine the colour of the light but only

to discriminate between different lights.

Our illuminant detection algorithm is, in spirit, simplic-

ity itself: we assume that a set ofm relations suffices to map

the unfiltered RGBs to filtered counterparts. We assign to

each image region the best relation. We repeat this process

for all m-sets of relations and choose the m relations that

in competition with all possible other sets best account for

the data. At the end of this process each pixel or region

is assigned a number between 1 and m. A pixel or region

that is assigned the same number is deemed to have been

illuminated by the same light.

Experiments on a variety of real images show excellent

results and serve to validate our approach. Illumination de-

tection is shown for both shadow and non shadow images.

While these results are, we believe, compelling in their own

right (see Figure 6) we were anxious to corroborate our

method using ground truth data. Thus, we carried out a

simple psychophysical experiment where observers had to

identify which parts of images were illuminated by the same

light. We could then compare these ‘illuminant maps’ with

the detections delivered by our algorithm. We found that

we are in agreement with the ground truth over 90% of the

time. Moreover, given the variability in the detections made

by the observers this is close to the best that might reason-

ably be achieved.

The rest of this paper is organized as follows: Section 2

reviews the current state of the art in shadow detection and

section 3 introduces the chromagenic theory [7] which is

used in detecting illuminants. Section 4 introduces of our

new illuminant detection algorithm. Experiments validate

our method in section 5. Finally, section 6 concludes the

paper.

2. Background

The prior art in the area of illuminant detection mainly

concerns finding shadows in images. Shadows are found by

loosely exploiting image context: context might be tempo-

ral (video), edge-based (local variation), two lights (before

and after a flash) or the context might be supplied by a user

who can indicate some candidate shadow regions[27].

2.1. Video-based methods

Weiss in [26] observed that given a fixed camera posi-

tion and an outdoor video sequence over a long period of

time, cast shadows (due to objects occluding the sun) move.

It follows that the edges which are constant throughout the

frames are related to the scene structure and not to the shad-

ows. Effectively, Weiss finds non-shadow edges by calcu-

lating the median edge over a sequence of images. Reinte-

grating the median edge field results in a shadow free im-

age (from which the position of shadows is easily calcu-

lated). Other video methods use multiple cameras[19, 20],

assumptions about the illuminant[2] or task specific infor-

mation [12], [22] and [16].

2.2. Single Image Methods

Tappen et al. [24] propose a gradient based approach

where image derivatives are classified as illumination or re-

flectance edges depending on their direction and magnitude

and, in cases of ambiguity, on other edges in the neighbour-

hood. While this simple method can work well, there is no

a priori reason why exactly the same edge cannot be due

to light or material changes. Levine et al. [17], present a

similar method where edges are classified as either shadow

or material changes.insight is incorporated into their classi-

fier: shadows take place where there is an important change

in luminance

Both the Levine and Tappen approaches often work

well. However, there are significant failures which manifest

themselves in images: in part, these methods fail because

some edges can indicate both a shadow and a material edge,

a common occurrence in the case of occlusion shadows.

Finlayson et al. in [9] observed that shadow illumination

is a different colour from non-shadow light and the variation

in light colour in a scene is 2 dimensional (and can be well

characterised by two variables: intensity and colour tem-

perature). Rather surprisingly, they showed that because of

this two dimensionality they could, with an appropriate pho-

tometric calibration step, make a greyscale intrinsic image

from RGB which depended only on reflectance. Shadow

edges could then be found by comparing edges in the in-

trinsic and RGB images (those that appear in the latter but

not the former must be shadows). More recently Finlayson

et al. [8] showed that the greyscale image could be found

by a statistical analysis of the colours in an image and have

proposed a method to find the intrinsic image (and hence

shadows) without any calibration. The Finlayson et al. ap-

proach, which can work well, still suffers from ambiguity

problems: it may wrongly identify the presence (or absence

of a shadow) and like the Levine and Tappen approaches

does not account for occluding shadows.



2.3. Two-Light Methods

Arguably, neither long sequences of video or a sin-

gle RGB image will render the shadow detection problem

tractable. It is reasonable therefore to seek an in-between

solution. Yoon et al. propose that shadows can be found

using an alternate point light source method [28]. One can

also make use of flash/no-flash image pairs, where the com-

bination of these images can be used to either estimate the

illuminant [4, 23] or to remove shadows [5].

These two-light approaches both make the shadow de-

tection problem easier to solve and also they deliver more

accurate detection. However, probing a scene with suffi-

ciently bright flashes to find shadows is not practical (there

is no flash that lightens shadows outdoors).

3. Chromagenic Theory

Consider the simple Lambertian model of image forma-

tion, for a chromagenic camera. Let S(λ) be the descrip-
tor of surface reflectances, E(λ) the scene illuminant SPD,
Qk(λ) the camera sensitivities (we consider here trichro-
matic cameras, so k = {R,G,B}) and F (λ) be the trans-
mittance of the colour filter placed in front of the camera.

The sensor responses of the unfiltered, ρ, and filtered,

ρF , image can be written as:

ρk =

∫
ω

E(λ)S(λ)Qk(λ)dλ (1)

ρF
k =

∫
ω

E(λ)S(λ)F (λ)Qk(λ)dλ (2)

integrating over visible wavelengths ω. Thus for each scene

we recover six responses per pixel, and these will form the

input to our illuminant detection algorithm.

It has been shown in [18] and [6] that when the same sur-

faces are viewed under two lights, the corresponding RGBs

can, to a good approximation, be related by a linear trans-

form, and so we use a 3× 3 matrix to relate the RGBs cap-
tured with and without the coloured filter. We thus write:

ρF = TF
E ρ (3)

where TF
E is a 3 × 3 linear transform that depends on both

the chromagenic filter and the scene illuminant. Equation

(3) implies that, given the chromagenic filter and sensor re-

sponses under a known illuminant, we can predict the fil-

tered responses.

Assuming n training illuminants we can precompute n

transforms: Ti = PF
i P

+
i . Here P denotes the 3 × M

RGB responses for a training set of reflectances; the sub-

script i denotes dependence on illumination and the super-

script F on the filter. The superscript + denotes the Moore-

Penrose (least-squares) inverse of the matrix. Illumination

estimation proceeds as follows: let Q and QF denote the

3×m matrices of unfiltered and filtered RGBs of arbitrary

reflectances under an unknown light. For each plausible il-

luminant we calculate the fitting error, ei, as:

ei = ‖TiQ−QF ‖, i = 1, . . . , n (4)

under the assumption that Ei(λ) is the actual scene illumi-
nant. We then choose the transform that minimizes the error

and surmise that it corresponds to the scene illuminant. The

estimated illuminant is Eest(λ) where

est = arg min
i

(ei) i = 1, . . . , n (5)

Though simple, the chromagenic illuminant estimation

algorithm was found to deliver significantly [21] better per-

formance than all other algorithms tested. Unfortunately,

while on average the illuminant is estimated with good ac-

curacy, the worst case performance was found to be no bet-

ter than the other algorithms. Indeed, neither the chroma-

genic algorithm nor any of its competitors are sufficiently

accurate that they themselves can be used as a vehicle for

illuminant detection.

To illustrate this point we took a multispectral image

from Foster and Nascimento[25] and made a synthetic im-

age where the left half of the image was illuminated by a

yellowish light and the right hand side by a bluish light. We

now, at each pixel, run the chromagenic algorithm and try

to determine which light is present. Remembering that the

chromagenic illuminant estimation algorithm returns an in-

teger index to an illumination in the set (here we assume

a set of 87 standard[1] typical, and representative, lights)

we can code this illumination number in greyscale. The re-

sults of the experiment are shown in Figure 2: the original

2-illuminant image is on the left and the recovered per pixel

illumination map on the right. Ideally, the left and right

sides of the output image should be a single gray value.

Figure 2. Left: One of the reflectance images from Nascimento et

al. dataset; the left and right halves of the image are illuminated by

two different lights. Right: The result of illuminant detection using

the standard chromagenic algorithm. Each pixel of the image has

for value the index of the transform that best maps it to its filtered

counterpart.

This experiment is far from being a complete failure: we

do see an edge in the middle of the image. However, the



edge is not strong and the left and right hand sides of the

image are far from being classified as two distinct classes.

Moreover, this example is perhaps the simplest case we

might encounter: two lights illuminating two distinct and

continuous regions. The pattern of illuminants in images in

general will be much more complex.

4. Chromagenic Illuminant Detection

Of course, it is not surprising that we found it difficult

to estimate illumination colour at a pixel. Illuminant Es-

timation is known to be a hard problem. Moreover the an-

tecedent illuminant detection methods (see section 2) do not

try to estimate light colour but rather to detect when the il-

lumination changes (almost exclusively they set out to iden-

tify shadow edges). Here we similarly set out to solve the

detection problem but in contradistinction to all antecedent

methods attempt to do this at each pixel. As we will see

in the experimental section, the ability to operate pixelwise

allows for (what we believe to be the very first time) the

detection of occluding shadows in images.

Let us begin by carrying out a simple synthetic two-light

experiment. First, we randomly select 10 surfaces from the

1995 standard reflectances compiled by Barnard[1]. We di-

vide this set into two disjoint sets A and B, each of which

has at least 3 reflectances. We then render these sets un-

der two different randomly chosen coloured lights, giving

two sets of RGBs (denoted I) + filtered RGBs (IF ). For A

and B we have corresponding pairs: [IA IF
A ], [IB IF

B ]. For
each response set we calculate the best 3×3 transforms that
maps filtered to unfiltered responses: TA = IA[IF

A ]+ and

TB = IB [IF
B ]+. Because the maps TA and TB are not exact,

it is possible for an RGB response p
A
that ||TAp

A
− pF

A
|| >

||TBp
A
− pF

A
||: the transform that minimises error overall

might be suboptimal for individual surfaces. The likelihood

or otherwise of this circumstance goes to the heart of our

method. As we shall see if we use the wrong transform

often then we will do a poor job of detecting illumination.

Conversely, a small error rate would augur well for our al-

gorithm.

Thus, we calculated the probability that the wrong trans-

form best maps filtered to unfiltered RGB (i.e., that TA best

maps p
B
and TA best maps p

B
. This was true less than

2% of the time. We can distinguish correctly which light

illuminates a given surface more than 49 times out of 50.

Moreover, we repeated the experiment and added Gaussian

noise at the 2% level and found that this result held (clas-

sification was slightly worse but we were still correct about

98% of the time.

4.1. The Algorithm

Let us begin by assuming that for N lights we carry out

the chromagenic preprocessing step and solve for the N re-

lations that best map RGBs to filtered counterparts. Indi-

vidual relations are denoted f i and the set of relations as:

ℜ = {f1, f2, · · · , fN}. Note that here we do not nec-

essarily assume that the relation is a 3 × 3 matrix trans-

form but rather, for generality, assume an arbitrary func-

tion f : ℑ3 → ℑ3, where ℑ is the set of possible inte-

gers in a colour image (for example, for 16-bit colour chan-

nels, ℑ is the set [0..65535]). Possible non-linear relations
include polynomial mapping transforms[11] and Look Up

Tables[10].

Suppose we now select an m-element subset R ⊂ ℜ.
Taking each pixel, or region, in turn we determine which of

the m relations best maps the RGB(s) to the filtered coun-

terpart(s). Once each pixel, or region, is assigned a single

relation it is a simple matter to calculate how well the set

of m relations R accounts for our data. Of course there are

many possible m-element subsets R in ℜ. Mathematically,

the set of all m element subsets of ℜ is denoted ℜ(m). The
R ∈ ℜ(m) which best describes the relation between im-
age and filtered counterpart overall is then found through an

optimisation procedure (which, in this paper, is essentially a

brute-force searching algorithm). This effectively finds the

m best mappings, and thus an m-level labelling of pixels.

E.g., in the case m = 2 this amounts to a binary labelling of
pixels. Ideally, the labelling should identify which parts of

the image are illuminated by different lights. If for example

an image has a cast shadow this binary map should (say)

have a 0 everywhere in the image that is in shadow and 1

elsewhere.

In general we determine which areas are illuminated by

different lights by solving:

General statement of optimisation:

——————————

arg min

R, ik
∑

k ||f
ik(Ik)− IF

k || ,

withR ∈ ℜ(m)

ik ∈ {1, 2, · · · ,m}

(6)

where || · || is an appropriate measure of fit.
——————————

If Ik is a single pixel then ||·|| is some simple scalar func-
tion, e.g. the sum of absolute values of vector components,

or the square root of the sum of absolute values squared.

If Ik is a region there is scope to make || · || a more ro-
bust measure, e.g. the median deviation. Assuming some

colour calibration is carried out then a perceptual measure

of colour error (such as CIE Lab) might be used.

To make our approach slightly more general we allow the

goodness of fit operation to be carried out pixelwise but will

assign lighting labels on a region by region basis. Suppose



we compute an assignment of n regions indexed by k, k =
1, 2, · · · , n in an image. Now, let Ikj denote the jth pixel in

the kth region. We now, initially, assign the relation labels

ikj by minimising:

Region-driven statement of optimisation:

arg min

R, ikj

∑
j,k ||f

ikj (Ikj)− IF
kj || ,

withR ∈ ℜ(m)

ikj ∈ (1, 2, · · · ,m)

(7)

We assign labels to regions based on the fits to the

underlying pixels:

ik = bestlabel({ikj : Ikj ∈ Ik }) (8)

Here, function bestlabel() must choose which label to as-
sign to region k, of all the up to m labels assigned to pix-

els Ikj in region k. An obvious candidate for function

bestlabel(), and the one we use in this paper, is the mode
function. E.g., if Ik has 100 pixels and, of those 100, and

90 have a relation label i, then the mode is also i and the

overall label for the region should be i.

We remark that, implemented naively, minimising (6) or

(7) is computationally laborious. The computational cost

is proportional to the cardinality of the set ℜ(m). If, say,
there are 50 relations in ℜ then the cardinality of the m-

set ℜ(m) is 50!
m!(50−m)! which for m = 2, 3, 4, 5 is equal to

1225, 19600, 230300 and 2118110. A brute force search is

only really possible for small m, i.e. m = 2 or m = 3.
Thus far we have assumed that we have a precomputed

set of relations. If we do not happen to have available

any pre-computed mappings from unfiltered to filtered re-

sponses, then a robust statistical procedure can be used to

find the best mapping from one image to the other provided

that at least half the image (plus 1 pixel) is approximately

associated with that mapping. Pixels not associated cor-

rectly are outliers and belong to the second label.

5. Experiments

Arguably, the m = 2 case is the most interesting and

most common case. Indeed, it is hard to think of normal

circumstances when m is much larger than 2. Thus a brute

force search is tractable (indeed it is fast) and we can use

either of the optimisations we presented in the last section.

In our first experiment we wish to improve upon the re-

sults shown in Figure 2. The poor illuminant detection re-

sults shown on the right hand side of this figure is due to

us allowing all lights to be candidates for the illumination

at each pixel. Here, let us assume that there are just two

lights illuminating the scene: then it follows we should only

consider a single pair of transforms when attempting to de-

termine which parts of the scene are illuminated by which

light. Thus for each pair of transforms, at a pixel, we cal-

culate the RMS error and assign the transform that delivers

the minimum error. We carry out this process for all possi-

ble pairs of transforms: the best pair overall is the one which

when applied pixel-wise across the scene (one transform per

pixel) results in the minimum prediction error. In effect we

implement (6) as a simple combinatorial search. The result-

ing illuminant detection result is shown in Figure 3 below.

Notice that we have (almost perfectly) correctly discovered

which of the two lights is illuminating which parts of the

image.

Figure 3. Left: One of the reflectance images from Nascimento et

al. dataset; the left and right halves of the image are illuminated

by two different lights. Right: The result of illuminant detection

using the chromagenic algorithm set out here. Each pixel of the

image has for value, 1 or 0, the index of the transform that best

maps it to its filtered counterpart.

Now let us implement the algorithm shown in (6) and (7)

and test it on natural images. We begin by creating the set of

all possible illuminant maps ℜ, which in this case consists
of fifty 3×3 matrix transforms. These transforms were cal-
culated by imaging a standard colour reference chart (the

Macbeth ColorChecker ) under 50 lights one at a time,

with and without a coloured filter, using a Nikon D70 cam-

era (which outputs linear raw unprocessed images). The

50 lights were chosen to be representative of typical lights

that are encountered every day and included: bluesky only,

bluesky + sun, overcast sky, fluorescent light and incandes-

cent illumination. The Macbeth ColorChecker has 24 dif-

ferent coloured patches and so we solved for each 3 × 3
transform by regressing the 24 unfiltered RGBs onto the fil-

tered counterparts.

Now, we calculate the 2-set ℜ(2): the set of all subsets
ofℜ with 2 elements. Because there are 50 transforms there

are ‘50 choose 2’ equals 1225 combinations. For a given re-

lation setR containing a particular pair of 3×3matrices, we
test which matrix best maps each image pixel to the filtered

counterpart. As we do so, we calculate the discrepancy, or

error, between the mapped RGBs and the actual filtered re-

sponses. We repeat this process over all 1225 combinations

of two lights (and hence mappings); we determine the pair



of transforms, one of which is applied at each pixel, that

best maps the unfiltered to filtered image overall.

Figure 4 shows typical results of an optimisation Eq. (6)

applied at the pixel level. Figure 4(a) shows the original im-

age: since it has shadows there are clearly two lights present

in the scene. Fig 4b shows the best pixel-wise illuminant

detection results delivered by our algorithm. Note a pixel

value of 1 or 0 is an index for the corresponding 3×3matrix
that best maps the RGB at that pixel to its filtered counter-

part. While the results are somewhat noisy we clearly have

arrived at a reasonable illuminant map.

(a) (b)

Figure 4. Pixel-based illuminant detection: noisy.

(a) (b)

Figure 5. Segmentation, and the result of region-based illuminant

detection: clean determination of shadow areas.

Now let us go on to apply the region-based label assign-

ment given by optimisation Eq. (7) followed by Eq. (8).

Using the Mean Shift algorithm [3], or any similarly edge-

preserving segmentation algorithm, we calculate an initial

segmentation of an image. Figure 5(a) shows the segmenta-

tion arrived at by the standard Mean Shift algorithm where,

so as not to merge regions lit by more than light, we start

with an over segmented the image. Figure 5b shows the re-

sulting illuminant detection map. It is clear that a region

based computation has returned superior detection perfor-

mance.

We have found that our region based illuminant detection

algorithm is remarkably adept at detecting different lights in

images. Figure 5 shows a selection of results. The left im-

age is the input, the 2nd column the output of mean-shift

segmentation then the 3rd column shows pixelwise classi-

fication of the illuminants. Finally the rightmost column

shows the illuminant maps found by our region based algo-

rithm.

Figure 6. From left to right: input image, segmented image, pixel-

wise iluminant detection and the final illuminant map. Top to bot-

tom: a range of multiply lit scenes

We draw the reader’s attention to the 2nd row of Fig-

ure 5. The shadow discovered on the spire of the cathedral

is an occluding shadow. That is, the surface which is in

shadow is not out of shadow anywhere else in the image.

As such, prior art, which assumes that the surface on either

side of a shadow edge is the same, must (and does fail). Yet,

the approach advanced in this paper finds occluding shad-

ows with ease. The 4th row shows an indoor example where

there are two lights. Noticed that there are no sharp edges

and the pixelwise result seems to capture the uncertainty

in determining which light is present where. The final bi-



nary illuminant map represents a good 2-class estimate of

the lights in the scene.

The reader might be interested in what happens when

there is only a single light or indeed when there are more

than 2 lights present. Regarding the former case, we have

found that by assuming 2 lights and solving the optimisation

we generate an illuminant map that classifies almost all re-

gions as belonging to a single light. Similarly, if we assume

there are 3 lights when there are two our algorithm tends to

return an almost binary map of illuminations. One excep-

tion to this was the indoor image shown in Figure 7. The

result of assuming 3 lights, setting m = 3, returns a map
which finds those parts of the image illuminated by outdoor

(grey), indoor (black) and mixed (white).

Figure 7. The left image is an indoor scene and the image on the

right shows the illuminant map recovered: outdoor (gray), indoor

(black) and mixed (white).

5.1. Ground-Truth Data

While visually the results of illuminant detection look

good, we wished to test our algorithm on ground truth data.

Thus we took 5 outdoor images which had both cast and oc-

cluding shadows and segmented them using the mean shift

algorithm. Each segmented image had about 50 segments.

We then asked 5 non expert (but colour-normal) observers

to shade in the image regions in each segmented image that

they thought were in shadow (the observer could see the

original unsegmented image). The unshaded regions are in-

terpreted as being not in shadow. We say an observer judg-

ment agrees with our algorithm if when our algorithm iden-

tifies a shadow (or non shadow) region an observer agrees.

Figure 8 shows two of the images we used. The left im-

age is the original, the middle is the image after mean-shift

segemtation. The observer is then given the edge-map from

the segmentation and shades in where they think the shad-

ows are (right image).

Agreement between the observers and our algorithm was

found to be 91% over all regions. We repeated this calcula-

tion where instead of computing the percentage of regions

in agreement we counted the percentage of pixels. This area

weighted calculation found that our algorithm was in agree-

ment with the observers 95.3% of the time.

Figure 8. Left column: input images, middle column: mean shift

segmentations and right column the shadows found by a human

observer.

We also calculated intra-observer agreement rates and

found these were 90.6% for regions and 96% when

weighted for area. It is evident then that the agreement be-

tween our algorithm and the ground truth is almost as good

as might be expected given the observer variability. In this

sense we say that our algorithm returns close to optimal re-

sults.

6. Conclusion

In this paper, we have introduced a new method to detect

multiple illuminants in images based on the chromagenic

theory. By forcing the lights to be examined pair-wise with-

out insisting on accuracy of the illuminant estimation, and

by processing the results on a region rather than pixel basis,

we obtained very accurate results over a variety of illumina-

tions. Results are remarkably good, especially considering

how simple and fast the method is.
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