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Let k(X) = k(x1, . . . , xn) be a field of rational functions over a fieldk of characteristic0. A
monomial derivation is a derivationd: k(X)→ k(X) such thatd(xi) = xβi1

1 · · ·xβin
n , i = 1, . . . , n,

whereβij ∈ Z. The paper characterizes the field of constantsk(X)d, which is the set of elements
ϕ of k(X) such thatd(ϕ) = 0.

This problem originates in the search of first integrals of ordinary differential equations. Even
in the very simple case of linear ordinary differential equations, there exist rational first integrals
(take for examplėx = x, ẏ =−2x + 2y andż = 2y, then2x−y

x2 is a rational first integral; i.e., it is
constant along a solution curve). Rational integrating functions also appear in the context of total
differentials and Pfaff’s problem. They were initially investigated by Poincaré and Painlev́e.

The existence of first integrals is closely linked to the existence of Darboux polynomialsF
associated with the given derivationd: F is a Darboux polynomial whend(F ) = ΛF , with Λ being
the associated cofactor. For polynomial differential equations, for example, Darboux polynomials
are partial first integrals. In the present context, which uses the language of differential algebra,
Darboux polynomials coincide with generators of principal differential ideals. In this paper, they
help in going from the study ofk[x1, . . . , xn]d (constants of the polynomial ring) to the study of
k(x1, . . . , xn)d (constants of the field of rational functions).

Rather than dealing directly withd, it is sometimes more convenient to use the associated
factorisable derivationδ defined asδ(xi) = xi

∑n
j=1 αijxj, i = 1, . . . , n, whereα = [αij] denotes

the matrixβ− In×n, with β = [βij].
Using the interplay between both of these derivations,d andδ, together with inferences based

on combinatorics and contradiction arguments (e.g. degree compatibility of the Darboux polyno-
mials), the authors propose—apart from general results involvingn variables—a characterization
of the field of rational constants of monomial derivations in three variables (i.e.k(x, y, z)d). These
results are obtained based on:
• the use of groups of invariants of specific automorphisms ofk(x1, . . . , xn). Special emphasis

is put on the diagonal automorphismσu(xi) = uixi, i = 1, . . . , n, whereu = (u1, . . . , un) is
a sequence of elements ofk∗;

• the classification of Lotka-Volterra derivations previously derived in the work [J. Moulin
Ollagnier, Qual. Theory Dyn. Syst.2 (2001), no. 2, 307–358;MR1913289 (2003f:34014);
correction, “Liouvillian integration of the Lotka-Volterra system”, preprint, 2005; per bibl.].
The Lotka-Volterra derivation is defined asD(x) = x(Cy + z), D(y) = y(Az + x), D(z) =
z(Bx + y), with A,B, C ∈ k. Incidentally, this derivation arises from the differential equa-
tions describing predator-pray dynamics, which are complex and often of a chaotic nature.
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The authors relateD to d andδ. For example, consider the monomial derivationd(x) = xyp2zp3,
d(y) = xq1yzq3, d(z) = xr1yr2z, with p2, p3, q1, q3, r1, r2 all belonging toZ and fulfilling p2q3r1 +
p3q1r2 6= 0. The associated factorisable derivationδ together with the diagonal automorphism
σ(x) = q−1

1 x, σ(y) = r−1
2 y, andσ(z) = p−1

3 z then leads to a Lotka-Volterra derivationD =
σδσ−1. Using similar relations betweend, δ, andD, it is possible to recast the classification results
concerning the Lotka-Volterra derivationsD to corresponding properties of specific monomial
derivationsd.

This leads to consequences for other types of derivations as well, and in particular for the
Jouanolou derivativedJ(x) = ys, dJ(y) = zs anddJ(z) = xs with s ∈ Z. The authors show that
k(x, y, z)dJ 6= k if and only if s ∈ {−2, 0, 1}. The proof is purely algebraic, elegant, and short,
notwithstanding that it is a consequence of the Lotka-Volterra classification of [op. cit.]. The result
is a generalization to three variables of the existence of only trivial constants fors ≥ 2, which
was proved for an arbitrary number of variables by many authors. The corresponding proofs
are, however, complicated and rely—apart from algebraic arguments—on algebraic geometry and
dynamical system properties.

Another implication is a full list of all possible homogeneous monomial derivations of three
variables having degree two, three and four, for which the field of constants is trivial. There are
respectively 40 derivations of degree two (divided into 8 parts), 188 derivations of degree three
(divided into 34 parts), and 538 derivations of degree four (separated into 91 parts).

Reviewed byPhilippe A. M̈ullhaupt
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