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ABSTRACT 

Measurements are increasingly used to augment traditional assessments of structural 
state.  Measurements of deflections, rotations and strain provide indications of 
damages as well as changes in the values of parameters such as Young’s modulus. 
Finite element model updating methods have been developed in the 1990s for 
identifying structural state from measurements.  Currently most methods aim to 
determine the values of stiffness coefficients that result in measured responses.  In the 
present work, a model calibration method identifies causes of structural behaviour 
such as support conditions and material properties. Static measurement data is 
employed for model calibration. A case study of the Lutrive bridge in Switzerland 
illustrates the methodology.  Candidate models whose responses reasonably match 
measured data are identified.  These models are then examined in order to determine 
whether the calibrated values are physically possible.  Such examinations lead to 
either model rejection or further measurements.   

1 Introduction 
Traditionally structures are inspected by experts in order to determine whether they 
are capable of satisfying strength and serviceability criteria.  An increasing number of 
structures are being equipped with measurement systems in order to augment 
traditional assessments and to increase understanding of structural behavior. Although 
measurements of deflections, rotations and strain provide indications of damages as 
well as gradual deterioration in the structural state, interpretation of measurements for 
obtaining metrics that directly indicate structural health or damage is not a well-
established science (Housner et al., 1997).  

When a structure is monitored periodically, changes in deflection patterns are 
potentially useful for determining whether material properties change with respect to 
time and also to examine whether there is any damage after critical events.  This 
process is costly since measurements need to be taken several times a year.  Another 
complication is that deflection patterns are influenced by factors such as temperature 
changes.  However, if appropriate corrections to such effects are applied, data from 
continuous monitoring, along with appropriate modeling, help determine gradual and 
sudden changes in the structural state.   
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When it is not possible to take measurements several times a year, modeling 
techniques remain useful for determining the structural state using a limited number 
of tests. Such modeling may employ system identification methods.  These methods 
aim to compute the values of system parameters through a comparison of predicted 
and observed responses. When the form of the relationship between observable 
quantities and system parameters are known, regression techniques can be applied for 
identifying system parameters.  The strategy is to minimize the error between the 
predicted output and measured values. This approach is common in dynamic systems 
that are employed in electrical and mechanical engineering.  Standard techniques exist 
for selecting the model structure (form of the equation) from a set of candidate models 
(Ljung 1999).  However, these techniques are not applicable to structural engineering 
systems because responses are highly non-linear with respect to model parameters.   
 
Structures are usually analyzed by the finite element method for a known set of values 
of parameters such as material properties, geometric properties and loading in order to 
compute deflections and other responses such as mode shapes and frequencies.  
However, there is rarely a reverse procedure that directly computes the material and 
geometric properties from responses such as deflections.  Procedures that aim to 
estimate these quantities through minimizing the error between measured and 
computed responses are known as finite element model updating techniques. 
 
Currently, the most common method of damage detection using measurements is 
through the use of vibration data. This is an active research area. Friswell and 
Mottershead (1995) provide a survey of model updating procedures using vibration 
measurements. Recent papers published in this area include, Brownjohn et al. (2003), 
Castello et al. (2002), Teughels et al. (2002), Modak et al. (2002), Hemez and 
Doebling (2001), Sohn and Law (2001), Hu et al. (2001), Reich and Park (2001), 
Chaudhary et al. (2000), Yu et al. (1999), Abe (1998), Beck and Katafygiotis (1998), 
Katafygiotis and Beck (1998), Park and Felippa, (1998), and Sohn and Law (1997).  
Most work in this area aim to compute the set of stiffness coefficients that produce 
observed vibration modes of structures. Location and extent of damage are inferred 
through a comparison between the stiffness coefficients of the damaged and 
undamaged structures.   
  
Since model-updating procedures are generally developed for specific types of 
responses, these procedures are not applicable to other response types.  For example, 
problem formulations have been developed for computing the set of stiffness 
coefficients that produce observed vibration modes of structures. These formulations 
cannot be used to determine unknown forces when there is uncertainty with respect to 
the loading and environmental factors. Also, most methodologies are not able to 
determine causes of abnormal structural behavior, such as settlement of supports and 
cracking of concrete sections.  
 
There are isolated reports of work involving static measurements to interpret 
structural state.  Model updating procedures using static measurements either use 
deflection data or strain data.  Papers that discuss model updating using deflection 
data include, Hajela and Soeiro (1990), Sanayei and Onipede (1991), Sanayei and 
Scamoli (1991), Banan and Hjelmstad (1994 a,b), Hjelmstad and Shin (1997).  
Sanayei and Saletnik (1996) and Liu and Chian (1997) are examples of work 
involving model updating using strain measurements.  All of this work involves 
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formulation of appropriate optimization problems for the minimization of the error 
between analytical and measured quantities for a given finite element model.  The 
number of unknown variables is fixed in each optimization problem.  Models that 
have varying number of degrees of freedom and consequently, different sets of 
variables are not accommodated in such approaches.   
 
In structural engineering, models cannot always be approximated by closed form 
mathematical expressions and therefore, it is not possible to apply mathematical 
methods for minimization of errors, such as those described in textbooks, for example 
(Ljung 1999). Mathematical methods are not applicable when classes of models 
containing different degrees of freedom (and consequently different forms of 
equations) need to be searched to locate the minimum. In such situations, it is 
necessary to utilize optimization methods that employ a “generate-test” methodology 
(Raphael and Smith, 2003a).  Optimization methods that make use of only the values 
of the objective function and do not require additional information such as gradients 
are generally known as direct search methods (Lewis et al. 2000). Points are 
generated and tested for the satisfaction of objectives and constraints through the 
evaluation of the objective function.  The most widely used direct search techniques 
are simulated annealing (Kirkpatrick et al. 1983, Martin, 1995), and genetic 
algorithms (Holland 1975, Goldberg, 1989).  Koh et al., (2003) use a combination of 
genetic algorithms and local search techniques for the identification of structural 
parameters using vibration measurements.  Sharman and Esparcia-Alcazar (1993) use 
a combination of genetic algorithm and simulated annealing to optimize both the 
model structure and the numerical parameters of the model. Search techniques have 
also been combined with qualitative reasoning for system identification.  Recent 
examples are found in Bradley et al. (2001) and Kay et al. (2000). Dunn (1998) uses a 
combination of genetic algorithm and stochastic hill climbing to compute the stiffness 
coefficients of a mass-spring system.  Cunha et al. (1999) use genetic algorithm to 
estimate the stiffness coefficients by minimizing a residual formed from the Eigen 
solutions.  Another example of the use of genetic algorithm for the determination of 
stiffness reduction is Mares and Surace (1996). The main drawback of the above 
methodologies is that causes of structural behavior cannot be easily determined using 
the values of stiffness coefficients.   
 
This paper describes an approach to making use of measurement data for performing 
diagnostic assessments of structures. The overall project goal is to identify possible 
causes of observed behaviour.  Since it is not often possible to make definite 
conclusions related to causes, the focus of the current study involves identifying 
candidate models of behaviour. Model predictions that match measured values as 
closely as possible are identified. An examination of the characteristics of these 
models leads to explanations of observed behaviour. The outline of this paper is as 
follows:  measurement systems that have been used in the present study are discussed 
in Section 2; the approach based on model identification and calibration is discussed 
in Section 3; results are summarized in Section 4.   
 
2 Measurement systems 
 
Measurements that are useful for making diagnostic assessments of structures are 
examined in this section. Three types of measurement systems have been used in the 
present study.  They are: 
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• Hydrostatic leveling 
• Inclinometers 
• Fiber optic sensors 

Appropriate interpretations of the data that is collected by these systems are necessary 
for structural evaluations.  When applicable, such interpretations are discussed with 
the descriptions given below.  
 

2.1 Hydrostatic leveling 
The hydrostatic leveling system (Burdet 1993, Favre et al. 1995) is based on the 
principle of communicating vessels. The deflection at any point in the structure is 
obtained by computing the sums and differences of measured levels at various points. 
This system has the following advantages: 

• It is easy to install and is inexpensive 
• Discontinuous operations are possible, permitting the reactivation of an 

unused system after years of discontinued service, provided that new tubing is 
installed. 

• Operation is possible even under heavy traffic, as the system exhibits a large 
inertia. 

Among the main disadvantages of most installed systems are: 
• Impossibility to obtain continuous measurements: human intervention is 

necessary for taking measurements 
• The system cannot be used below 0oC since the liquid used is pure 

demineralized water.  
• The accuracy of the measurement is proportional to the number of 

intermediate readings to reach a given point. Typical values for the accuracy 
are 0.5 to 3 mm. 

• A large number of circuits may be needed in bridges with longitudinal slopes. 
• It is easily applicable only to box girder bridges having accessible boxes. 

This system has been successfully installed in more than 10 bridges in Switzerland. In 
some cases, it is operated by the local bridge authority, and in other cases the 
measurements are made by a university research team (Favre et al. 1995). Under 
normal operating conditions, measurements are taken three times a year, in the spring, 
summer and fall.  
 

2.2 Inclinometers 
Inclinometers measure rotations within a structure. A property of measuring a 
structure’s rotations is that, for a given ratio of maximum deflection to span length, 
the maximum rotation is independent of details of the static system (Daverio 1995). 
Inclinometers used in this study are Wyler Zerotronic ± 1° (Wyler 1996). Their 
accuracy is 1 microradian (µrad), which corresponds to a rotation of one millimeter 
per kilometer. For an intermediate span of a continuous beam with a constant depth, a 
mid-span deflection of 1/20,000 would induce a maximum rotation of about 150 µrad, 
or 0.15 milliradians (mrad). Advantages of inclinometers are: 

• The measure is relative only to the initial position. In case of failure of an 
instrument, the information given by the others is still usable. 
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• Inclinometers are electronic instruments that produce electric signals easily 
captured by standard data acquisition systems. The inclinometers used include 
an industrial network interface (RS 485) which reduces the amount of cabling. 

• The amplitude of rotations is essentially independent of the static system or 
the cross section of a bridge. Because of their reliability, inclinometers can be 
located in hard to reach places, and are thus suitable for all kinds of cross 
sections. 

• The high accuracy of inclinometers makes it possible to measure very small 
movements, such as those that occur within a couple of minutes. 

• Inclinometers are very compact instruments that require only a minimal space. 
Some models include automatic temperature compensation. The sensors can 
be easily replaced and are reusable. 

• The cost of inclinometers is competitive with comparable systems, and the 
cost of installation is low. 

 
Figure 1 shows a simple installation of an inclinometer on a fixed support.   
 

2.2.1 Reconstruction of the deflected shape 
Although rotations can give valid indications on the condition of a structure, it is 
generally necessary to reconstruct the deflected shape of the structure from the 
measured rotations to permit an easier interpretation. Once rotation values have been 
acquired, their values are combined to reconstruct the corresponding deflected shape. 
The simplest approach consists of fitting a polynomial through the measured values. 
Three inclinometers define a second order polynomial. Higher order polynomials can 
be fitted with more inclinometers.  By integrating the polynomial, and applying the 
boundary conditions, the deflected shape is obtained.  Even though reconstruction of 
the deflected shape by simple polynomials has been found to be effective, its practical 
application is difficult due to sensitivity to measurement errors since the polynomial is 
forced to pass through all the measured values. Least squares fit might be used to 
reduce the sensitivity to measurement errors. However results are unlikely to be 
accurate since theoretical deflections for structures with continuously varying cross 
section properties cannot be described by simple functions. 
 
Considering these weaknesses another approach was used. Deflected shapes are 
reconstructed by means of linear combinations of a series of pre-calculated deflected 
shapes (Burdet and Zanella, 2000). Structures deflect following smooth “engineer’s 
curves” under standard load cases (Figure 2). A linear combination of a certain 
number of these curves, yields a curve that is also a smooth curve. Each deflected 
shape respects the bridge properties, and can account for discontinuities, such as 
sudden changes of inertia, much better than polynomials. 
 
Figure 3 shows the deflected shape that is reconstructed using pre-calculated deflected 
shapes (base shapes). Also shown in the figure is the shape that is obtained by 
integrating a fourth degree polynomial and applying the boundary condition that there 
are no displacements at both supports. Both curves lie close to deflection data that are 
measured directly.  
 
A feature of the method of using precalculated deflected shapes is that the 
reconstructed deflected shape yields additional information on the way the best 
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deflected shape is obtained. For example, a case where all combinations of two of the 
four loading patterns of Figure 2 are used, the combination that gives the best result is 
10% of uniform loading plus 102% of unit load at 0.75 L, where L is the span. The 
interpretation of these coefficients, and their variation over time provides additional 
information about the behavior of the bridge. It is for example expected that 
significant changes in the structure will lead to significantly different factors used in 
the controlling combination, thus indicating that the structure has changed. 
 
Results obtained by applying this procedure to inclinometer measurements taken 
during a load test on Lutrive bridge (See Section 3.1) are shown in Figure 4.  
Computed deflections have a good match with those that are directly measured using 
optical leveling instruments.   
 

2.3 Fibre optic sensors (SOFO) 
The SOFO (Surveillance d’Ouvrage par Fibre Optique) system is based on low 
coherence interferometry in standard optical fibres that are used in telecommunication 
(Inaudi et al. 1994).  The system measures small deformations and provides a 
resolution of approximately 2 microns.  A significant advantage of the system 
compared with conventional strain gauges is that long gauge lengths are possible and 
therefore, local effects such as cracking do not influence measurements. Also, since 
the system uses light rather than electricity, long term absolute measurements are 
more reliable. The system has been successfully installed in many bridges.   
 
Internal deformations are difficult to interpret. Therefore, the deflected shape of 
bridged are computed from internal deformations measured by SOFO sensors through 
the following procedure (Vurpillot et al., 1998):   

• The bending curvature is computed from strain measurements assuming that 
plane sections remain plane after bending (Bernoulli beam hypothesis). If two 
fibre optical sensors are placed on the upper part and lower parts of a beam 
element, the curvature is computed using this relationship: 

1

supinf

r
1

lY
ll

m ⋅

−
=    (1) 

where,  
rm is the  mean radius of curvature  
l1 is the  initial length of upper and lower sensors 
l sup  is the  final length of upper sensor 
l inf   is the final length of lower sensor 
Y is the distance between upper and lower sensors 

 
• The curvature is integrated twice and appropriate boundary conditions are 

applied to obtain the deflected shape.  
 
Figure 5 shows a comparison between the deflection shape retrieved using this 
procedure and direct measurements using strain gauges.   
 
3 Model identification and calibration 
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Currently, measurements are mostly used for continuously monitoring deflections in 
order to detect changes in structural behavior.  In this work, measurements are used to 
improve understanding of the behavior of the structure.  A strategy that makes use of 
measurements to improve model identification and calibration is described in this 
section.   
 
The main objective of this study is to identify characteristics of behavior models that 
result in measured responses.  Unlike recent work on model updating, the goal is not 
to find values of stiffness coefficients that produce measured responses.  Instead, we 
are interested in identifying reasons for structural behavior such as support 
settlements and cracks. Sets of models are searched and sets of  parameter values are 
computed such that the residual errors between predictions and measurements are 
minimized. 
 

The fundamental strategy is “generate and test” as described in Section 1.  Most 
importantly, this strategy involves searching among diverse models that have varying 
number of degrees of freedom and do not have explicit closed form mathematical 
expressions for responses. A search algorithm called PGSL (Probabilistic Global 
Search, Lausanne) (Raphael and Smith, 2003b) was used for finding sets of 
combinations of values of model parameters that produce close matches to 
measurements. PGSL performs global search by sampling the solution space using a 
probability density function (PDF). At the beginning of search, a uniform PDF is 
assumed for the entire search space so that solutions are generated purely randomly.  
When good solutions are found, probabilities in those regions are increased so that 
more intense sampling is carried out in the neighborhood of good solutions. The key 
assumption is that better sets of points are found in the neighborhood of good sets of 
points. The search space is gradually narrowed down so that convergence is achieved.  

The PGSL algorithm includes four nested cycles (Figure 6a): 

• Sampling cycle 

• Probability updating cycle 

• Focusing cycle 

• Subdomain cycle 

 

In the sampling cycle  (innermost cycle) a certain number of samples, NS, are 
generated randomly according to the current PDF.  Each point is evaluated by the 
user-defined objective function and the best point is selected.  In the next cycle, 
probabilities of regions containing good solutions are increased and probabilities 
decreased in regions containing less attractive solutions (Figure 6b). In the third cycle, 
search is focused on the interval containing the best solution after a number of 
probability updating cycles, by further subdivision of the interval (Figure 6c). In the 
subdomain cycle, the search space is progressively narrowed by selecting a 
subdomain of smaller size centred on the best point after each focusing cycle. This is 
done by multiplying the current width of each axis by a scale factor.  
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During model calibration, PGSL minimizes the root mean square error (RMSE), 
which is calculated using the following equation: 

n

xx
RMSE i

mici∑ −
=

2
,, )(

  (2) 

 
where xi,m is the value measured at the i-th measurement point and xi,c is the 
corresponding value computed using the model. The search routine identifies 
combinations of values of model parameters that produce low values of RMSE.  Since 
PGSL is based on global sampling there is no need to provide initial values to search 
variables.  Bounds of variables are specified based on engineer’s expectations of 
possible variations in values. 
 
As an alternative to the procedures described in Sections 2.2.1 and 2.3, models once 
calibrated may be employed to compute deflected shapes from measured slopes and 
internal deformations.  First, candidate models are identified in which predicted 
slopes and strains match measurements.  Next, these models are analyzed to obtain 
the deflected shape.  Through this procedure, assumptions related to the degree of 
polynomial need not be made and the deflected shapes conform to the laws of 
structural mechanics.  
 
The Lutrive bridge example is taken next to illustrate the model identification and 
calibration strategy. The measurement event that is evaluated is a load test that was 
conducted in 1997. The advantage of this case is that knowledge of the loading, 
including magnitude and position on the structure, is available. 
 

3.1 Lutrive Bridge  
The Lutrive highway bridge was constructed in 1972 using the cantilever method with 
central hinges (articulations). Two bridges, (North and South Lutrive bridges) were 
built (one for each direction of traffic) with a length of 395 m. each and a maximum 
span of approximately 130 m. The longitudinal section is shown in Figure 7.  The 
cross-section of the bridge is a pre-stressed box-girder with variable inertia. The 
maximum height is 8.50 m. at the column and 2.50 m. in the mid-span, at the hinges. 
At the location of the hinge, the deck is reduced to 0.14m, without interrupting the 
continuity of the beam (Figure 7c).  More information about the bridge can be found 
in [Burdet and Badoux, 1999]. A brief history of the bridge is given below: 
 
1971-1972 Construction of the bridge 
1973, 77, 78, 80, 85, 86 Annual optical level meter measurements 
1986 An engineering office was given the contract to survey 

the bridge after large deformations were observed at mid-
span 

December 1988 External pre-stress is added to the two bridges 
1988-1999 Displacement on the south bridge increases. New 

measurement systems are installed on both bridges, 
including a hydrostatic leveling system (1988), and fiber 
optical sensors (1996) 

November 1997 Load tests with fiber optic sensors, inclinometers, and 
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optical level meter 
December 1999 New additional external pre-stress added to the south 

bridge 
 

3.2 Load tests on Lutrive bridge 
Finding a good explanation for abnormal increases in deflections in the Lutrive bridge 
has remained a challenge for several years. Various hypotheses involving parameters 
such as creep, pre-stress and models of joints at mid-span have been made. In order to 
improve understanding of the behavior of the bridge and to find out causes for 
abnormal deflections, load tests were carried out on the bridge in 1997. 
 
One section of the bridge was equipped with instruments (Figure 7a). During the load 
test, a truck was placed on the part of the bridge that was instrumented in order to 
produce maximum deflections at the locations of sensors.  The weight of the truck 
was approximated to be a two-point load placed non-symmetrically (Figure 7b).   
 

3.2.1 Measurement system 
The following measurement systems were used during the load tests. 

• Fiber optic sensors at the following five longitudinal positions (Perregeaux 
1998) from the column in the Lausanne direction: 
8.4m., 20.4 m., 32.5 m., 44.5 m., 56.8 m. 

• Inclinometers at four positions from the same column (Burdet and Fleury, 
1997):  
16.1 m., 29.5 m., 49.3 m., 65.75 m. 

• Optical level meters at four positions from the same column  
(Burdet and Fleury, 1997): 
11.9 m., 29.9 m., 47.8 m., 65.75 m. 

 
The following measurement data are obtained from the measurement systems: 

• Deformations of sensors placed on the top and bottom of the bridge define the 
bending curvature. 

• Inclinometers give the slope of the cross-section. 
• Optical level meters give the vertical displacement of cross-sections.  

 
 
 

3.3 Model identification  
Initially, simple models were used to interpret the measurements from load tests.  
When simple models were found to be inadequate to explain the results, more 
complex models containing additional variables were created.  Values of selected 
variables were determined through identifying low values of the root mean square 
error, see Equation 2. A sample set of models are discussed next.  Only the part of the 
bridge from the column to the mid-span (the part that was equipped with 
measurement instruments) was modeled with models A, B, C, and D (Figure 8). The 
complete bridge excluding the columns was modeled using E.   
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Even though, PGSL is able to search automatically among classes of models that have 
varying numbers of degrees of freedom, in this work, model classes are manually 
selected and PGSL is used only for estimating values of parameters. The goal is to 
study the capability of each model class to explain measured data. Variables have 
been chosen such that there is a unique global minimum for each model class within 
specified variable bounds and the current study is not affected by the influence of 
local minima.    

3.3.1 A sample set of models 

3.3.1.1 Model A: Cantilever  

This is a simple model that was used in a previous study (Perregeaux, 1998). The 
objective of using this model is to evaluate the boundary case of a cantilever bridge 
using expected values of material properties. It was assumed that there is no shear and 
moment transfer through the hinge from the other side.  The structural system is a 
cantilever with parabolic section profile (variable moment of inertia).  The value of 
Young’s modulus (E) is taken to be 38e6 kN/m2. Since there were no unknown 
variables, no calibration was used and the structure was evaluated analytically.  This 
model did not achieve an acceptable correlation with measurements.  There was more 
than 200% error in the mid-span deflection.   
 

3.3.1.2 Model B: Propped cantilever  

In order to investigate the effect of shear transfer from the other side of the hinge, a 
propped cantilever model was used in which a spring is used to support the beam at 
the propped end.  The stiffness of the spring was estimated to be 17’114 kN/m.  No 
calibration was used since all the parameters were assigned constant values. This 
model produced a close match with measured deflections.  However, predictions of 
curvatures did not match the measurements.   
 

3.3.1.3 Model C: Beam with springs 

Since the predictions of curvature using model B did not match measured values, it 
was suspected that the bending moments in the beam did not correspond to what was 
predicted using a propped cantilever model.  Therefore, additional springs were added 
to adjust the boundary conditions of the model. Specifically, a horizontal spring was 
added at the midspan to model the arch effect caused by the variation in the position 
of the neutral axis.  The spring stiffnesses were considered to be variables and 
possible values were identified using PGSL.  Three separate searches were carried out 
to minimize the RMSE between predicted and observed deflections, slopes and 
curvatures respectively.  The search using measured deflections produced a good 
match with respect to deflections.  However, the calibrated model did not produce 
matching slope or curvature.  Similarly, minimization of RMSE in slopes and 
curvatures did not produce a good match with respect to measurements that were not 
used in the calibration.  The values of variables determined through this strategy are 
given in Table 1.   



 11

 

3.3.1.4 Model D: Beam supported on springs with rigid body rotation 

When Model C was calibrated using curvature measurements, slopes were found to 
differ from measured values by a constant value.  Therefore, a variable representing 
rigid body rotation at the left support was added to the model.  Variables of this model 
were then determined through minimizing the RMSE in slope. The values of these 
variables are given in Table 1.  There is a good match with deflections even though 
deflection measurements were not used in the calibration.  Since possible explanations 
for the rigid body rotation (-0.072) could not be accepted this model was discarded.   
 
 

Values of variables in the model found by PGSL Model  Measurements 
used for 
calibration 

E 
[kN/m2] 

k 
[kN/m] 

k1 
[kNm/rad] 

k2  
[kN/m] 

θrig   
[mrad] 

C deflection 50.00e6 28’076 9.99e19 2.8e-8 - 
C slope 28.34e6 15’625 9.96e19 2.64e-4 - 
C curvature 48.64e6 16’300 9.81e19 5.48 e5 - 
D curvature 48.64e6 16’300 9.81e19 5.48 e5 -0.072 

Table 1: Model parameters determined by optimization  
 

3.3.1.5 Model E: Finite element model of the entire structure 

Examination of model D made it clear that boundary conditions are important.  
Therefore, the entire structure was modeled and analyzed using finite element 
method.  Since models C and D highlighted the importance of varying the position of 
the neutral axis in order to produce an arch effect, (especially at the location of the 
hinge), this feature was included in the model.  The hinge was modeled using a beam 
element with reduced value of the stiffness.  The Young’s modulus of concrete was 
calibrated in order to produce a good match with measurements. The final value 
obtained is 30e6 kN/m2. This model produced good match with deflections and 
reasonable match with slope and curvature.  Therefore, this is the most attractive 
candidate model found in this study. 
 

3.3.2 Summary of results 
Values of displacement, slope and curvature that are predicted by models and 
measured on the structure are shown in Figures 9-11. Each curve shows the prediction 
of a candidate model along the length of the beam and is obtained be interpolating 
values computed at measurement points.  For finite element models, values are 
computed at gauss points nearest to measurement points. 
 

3.3.3 Analysis of results 
The results are used to classify models based on the percentage deviation (PD) which 
is computed by dividing the root mean square error by the mean value of data points. 
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Models are classified as good (PD <25%), reasonable (PD 25-50 %) and bad (PD > 
50 %) as shown in Table 2. 

Model  Criteria 
Measurement used for calibration 

is given in brackets 
Displacement Slope Curvature 

A Bad - - 
B Good Reasonable Bad 

C (deflection) Good Bad Reasonable 
C (slope) Bad Good Reasonable 

C (curvature) Bad Reasonable Good 
D (curvature) Good Good Good 

E Good Reasonable Reasonable 

Table 2: Evaluation of models  
 
The following observations are made from this study:  
 

• Selecting models through reference to only one type of observation is not 
sufficient. It is easy to obtain models whose variable values provide a close 
match with one type of measurement through the model calibration strategy.  
However, these models may not be compatible with other types of 
measurements. 

• When finite element models are used, a small change in boundary conditions 
greatly affects the results. When Model E was modified such that the hinge 
position coincides with the neutral axis, results were not satisfactory and 
therefore, they are not presented in this paper. 

• The process of identifying models that are compatible with measurements may 
lead to examining models that have large numbers of variables.  Model D 
contained 5 variables. The number of observation points must be greater than 
the number of parameters. A better match with more parameters does not 
necessarily mean that the quality of the model is better. 

• Model calibration is useful for validating models as well as filtering out bad 
models. For example, Model C did not give good results for all three types of 
calibration attempts.  

• Curvature data measurements show a change in sign near the hinge indicating 
that the mid-span joint transfers shear stress. This is not possible with Model 
A. 

• Quantitative information related to values of parameters is more difficult to 
verify: For instance, Young Modulus of Model E is 30e6 kN/m2 whereas it is 
48.6e6 kN/m2 for Model D.  

• Models can only be accepted if sound physical explanation is found.  Even 
though Model D resulted in a good match with all types of measurements, it 
was not accepted because a physical explanation could not be found for the 
calibrated value of rigid body rotation.   

 
Predictions of Model E match well with all measurements.  Model E is equivalent to 
Model D within the part of the bridge that is instrumented since for Model E, spring 
stiffnesses and rotations are influenced by other parts of the bridge. However, model 
E does not involve arbitrary stiffness coefficients and rigid body rotations as does 
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model D.  Correct modeling of the hinge is necessary to produce good predictions; the 
location of the hinge should be above the neutral axis of the beam and the hinge 
should be capable of transferring both horizontal and vertical forces.  Mid span 
deflection may more than double if the hinge is incapable of transferring these forces.  
Therefore, it is hypothesized that hinge characteristics have changed over time in the 
Lutrive bridge and this has caused mid span deflections to increase.   
 
4 Summary and conclusions 
 
The following conclusions are drawn from this study: 
 

• Measurements of deflections, rotations and internal deformations in concrete 
structures are now more reliable with the development of new equipment such 
as fibre optic sensors and inclinometers.  Periodic monitoring allows detection 
of abnormalities. However, model identification techniques are needed for 
determining likely causes of abnormalities.  

• It is possible to compute deflections from measured rotations and internal 
deformations. Thus, one type of measurement may be validated through the 
use of other types of independent measurements.  Techniques that are 
available for computing the deflected shapes from rotations and internal 
deformations include integration of approximate polynomials, superposition of 
deflected curves and model calibration. 

• Model calibration techniques lead to identification of good candidate models. 
• Models that are identified through calibration have to be carefully studied by 

engineers in order to determine whether they are physically possible.  All 
models should have sound physical support.  When physical justifications 
cannot be found, models should be rejected. Alternately, further observations 
could reveal sufficient support for some candidate models.   

• PGSL is an effective global search algorithm for model calibration tasks.  In 
all the models of Lutrive bridge that were considered, PGSL was able to find 
parameter values that predicted a good match with the measurement data that 
was used in calibration. 

• A plausible explanation for the increased deflection of the Lutrive bridge is a 
change in centre span hinge characteristics. 

Further work is necessary to determine the mechanisms which have lead to changes in 
hinge characteristics.  Possible explanations involved plasticity induced by prestress 
and subsequent stress cycles due to temperature variations.   
 
This work has already been extended to search among multiple model classes using 
PGSL for system identification. A study of the reliability of system identification 
using this procedure is also in progress.   
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Figure 1 Simple support for a fixed inclinometer 
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Figure 2  Load cases used for the pre-calculation of the base shapes 
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Figure 3 Deflected shapes by fitting a polynomial and by combinations of 
base shapes 
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Figure 4 Deflections on Lutrive bridge calculated using superposition of 
deflected shapes 
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Figure 5 Comparison between vertical deflection retrieved from SOFO 
measurements and those measured by dial gauges (Vurpillot et al. 1998).   
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a) Nested cycles in PGSL.  NSDC, NFC, NPUC and NS are the number of iterations 
in the subdomain, focusing, probability updating and sampling cycles respectively. 

 
 
 
 
 
 
 

b) Evolution of the PDF of a variable after several focusing cycles. 
 
 
 
 
 
 
 
 
 
 
 
 
c) Changing the sub-domain after each subdomain cycle.   
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a. Longitudinal section of Lutrive Bridge (values in meters) 
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b.  Load test on the bridge 
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c. Details of the hinge 
Figure 7 Lutrive Bridge  
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Figure 8 Sample set of models examined for the example of the Lutrive 
bridge
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Figure 9 Measured and predicted deflections  
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Figure 10 Measured and predicted curvatures  
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Figure 11 Measured and predicted slopes  
 
 
 
 
 
 
 
 
 
 
 
 




