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Abstract—Aggregate scheduling is one of the most promising
solutions to the issue of scalability in networks, like DiffServ
networks and high speed switches, where hard QoS guarantees
are required. For networks of FIFO aggregate schedulers, the
main existing sufficient conditions for stability (the possibility to
derive bounds to delay and backlog at each node) are of little
practical utility, as they are either relative to specific topologies,
or based on strong ATM-like assumptions on the network (the
so-called ”RIN” result), or they imply an extremely low node
utilization. We use a deterministic approach to this problem. We
identify a nonlinear operator on a vector space of finite (but large)
dimension, and we derive a first sufficient condition for stability,
based on the super-additive closure of this operator. Second, we
use different upper bounds of this operator to obtain practical
results. We find new sufficient conditions for stability, valid in an
heterogeneous environment and without any of the restrictions
of existing results. We present a polynomial time algorithm to
test our sufficient conditions for stability. We show that with
leaky bucket constrained flows the inner bound to the stability
region derived with our algorithm is always larger than the one
determined by all existing results. We prove that all the main
existing results can be derived as special cases of our results.
We also present a method to compute delay bounds in practical
cases.
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I. INTRODUCTION

We study networks of FIFO nodes, where flows are con-
strained by arrival curves. A crucial issue in these networks is:
Can we derive a bound to the maximum delay that a packet can
experience when traversing the network, and to the maximum
queue size at each node? For a generic FIFO network these
are still open questions: instability in FIFO networks is an old
problem (see [1], [2] and references therein for a review). A
recent result by Andrews [2] shows that, contrary to common
sense, no matter how low the maximum node utilization is in
the network, it is possible to build an example of an unstable
FIFO network. An open issue in these networks is therefore
the determination of sufficient conditions for stability, defined
as the possibility to derive bounds to delay and backlog at all
nodes.
We tackle this problem using a deterministic approach based
on worst-case behavior, because in order to enable QoS
guarantees on networks we need to derive hard bounds on
packet delay and queue size.

The focus of this work is on networks of aggregate schedulers.
In these networks, the scheduling decision at each node does
not take into account to which flow the packets belong. As this
implies that nodes do not need to store per-flow information,
aggregate scheduling allows for a better scalability of the
scheduling policy. Its applications can be found in high speed
switches, in Differentiated Services networks, in network-
on-chip systems, and in all cases in which the need for
QoS guarantees has to comply with a large network size.
Some existing positive results regarding stability are related
to specific network topologies: It is the case of unidirectional
ring networks [3] and of feed-forward networks, which are
stable for any value of node utilization inferior to one .
The determination of good sufficient conditions for stability in
FIFO networks with a generic topology and in heterogeneous
settings appears still to be an open issue. A result by Charny
and Le Boudec [4], states that a network with leaky bucket
constrained flows is stable if the maximum node utilization in
the network is inferior to (h−1)−1, where h is the maximum
flow hop count in that network. The main limit of such a
result is that in realistic scenarios it leads to very low values
of node utilization, as in practical cases h can take quite
large values (more than 20 [5]). However, as of today this
constitutes the best available result for networks with leaky
bucket constrained flows, with packets of different size, and
nodes of different service rates. In the rest of the paper, we
will refer to this result as the “DiffServ bound”.
A second result that does not depend on network topology
is the one by Chlamtac et al. [6], [7], which is based on
strong, ATM-like assumptions on the network: Flows are
constrained by staircase arrival curves, packets are all equal-
sized, nodes have all the same service rate, all packet arrival
and departure times are synchronous at all nodes (we call this
model the homogeneous network model). This work introduces
a sufficient condition for stability, in terms of lower bounds to
the time between the emission of two consecutive packets at
each flow’s source: For each flow, this time must be not smaller
than RIN+1, where RIN is the route interference number for
that flow (that is, the total number of flows that the considered
flow meets along its path, counted with multiplicity if a flow
interferes more then once). It also derives simple formulas for
backlog and delay bounds at all nodes. The main drawback of
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this result is its non-applicability to a generic, heterogeneous
network, because its derivation relies on assumptions that
make it not useful in many practical cases.
Our aim is to derive good sufficient conditions for stability
in heterogeneous network settings and for a generic topology,
which are as general as possible, without making any sim-
plifying assumption on the network model. We consider flows
constrained by generic arrival curves, with packets of different
sizes, and nodes with different service rates. We define two
types of variables: the maximum packet delay at each node,
and the maximum number of bytes present in a super chain,
relative to a given flow and to a given sequence of nodes
traversed by that flow. The concept of super chain, introduced
in [6], is used to model packet interactions and their effect
on packet delay. We assume the variation over time of these
variables to be clocked by events (packet departures). At first,
we derive an operator Π (given in detail in Section III) that
upper bounds the value of the variables at a given time tp,
in function of their values at tp−1. The first contribution of
this work consists in showing how the problem of stability
can be reduced to properties of the super-additive closure of
this operator. Our second main contribution consists in the
derivation of a polynomial time algorithm for testing some
sufficient conditions on stability, based on a linear operator that
upper bounds Π. Using an example, we show that when flows
are leaky bucket constrained, the inner bound to the stability
region derived with our algorithm is much larger than those
derived with all existing results, thus allowing for radically
better performances than before. We demonstrate how the
two main existing results (the “RIN result” and the “DiffServ
bound”) can be derived as special cases from our approach.
Finally, we show how an extension of the algorithm can be
used to derive bounds to delay at all nodes.
The paper is organized as follows: In Section II we introduce
the network model and the main concepts used in the present
paper, and we define the variables in the system. In Section III
we describe the operator Π, and we show how stability
properties of the network are associated to the super-additive
closure of this operator.
In Section IV we describe an algorithm that can be used to test
sufficient conditions for stability. In Section V we discuss the
tightness of the new sufficient conditions for stability, and in
Section VI we relate them to other existing results. Finally, in
Section VII we numerically assess the algorithm and compare
the performance of the new sufficient stability conditions to
existing results.

II. MODEL AND ASSUMPTIONS

A. Network Model

We model a network as a directed graph, where each
vertex (hereafter called also ”node”) n models a buffer at
the input of a physical link. We assume the traffic in the
network is organized in flows: Every flow is represented by
an integer f , and to each flow it is associated an ordered
sequence of traversed nodes. For any couple of nodes n1

and n2 in the graph, we assume a directed edge is present
from n1 to n2 if at least one flow traverses the two nodes
in this order. We assume no losses are present at buffers in

the network (buffers of infinite capacity). Using a standard
terminology from graph theory, we assume that in general
the graph associated to the network can be partitioned in a
set of strongly connected components. We assume each flow
f is constrained by an arrival curve αf (t), and in general it
has packets of different size. We assume for each flow there
exists a finite set of possible packet sizes. We consider a
network whose nodes are store-and-forward FIFO schedulers
that perform aggregate scheduling. Each node n offers to the
aggregate of flows a service curve of the rate-latency type1

βrn,Tn
(t) = rn(t−Tn)+ with service rate rn and latency Tn,

generally different for each node. We assume service curves
are strict (i.e. during a busy period of duration u, the output
of the system is at least βr,T (u))[8]. This is a very general
node model, encompassing many scheduling disciplines (e.g.
priority schedulers, or FIFO constant rate schedulers).
With Δn we denote the propagation delay of the physical
link at the output of the buffer at node n, and rn is also the
capacity of that link.
We define a relevant network event as the dequeuing of
a packet at a node. Starting from t = 0, we consider the
(ordered) succession of time instants tp, p ∈ N associated to
relevant network events in the considered network: therefore
tp denotes the time instant of the p-th network event. When
two or more network event take place at the same time, we
label them in an arbitrary order.
We assume that at time 0 at each node n and for each flow
f passing from that node there are an

f ≥ 0 packets from flow
f in the queue. Table I describes our notation.

B. Definition of Stability

The definition of stability we use is the following:
Definition 2.1: Consider a network, with each fresh flow f

constrained by αf (t), where at t = 0 in the buffer at each
node n are present an

f bytes from flow f . We say that this
network is totally stable if ∃Γ > 0 such that, for any array
of input sequences R(t) = (R1(t), ..., RF (t)) relative to fresh
flows, and compatible with the given arrival curve constraints,

sup
t>0

S(t) < Γ

where S(t) is the total number of bytes in the network at time
t, with S(0) =

∑
n∈N

∑
f∈Fn an

f .
Note that this definition of stability is stronger than the
following, commonly adopted in the literature:

Definition 2.2: With the same assumptions as in the pre-
vious definition, a network is stable when for any array of
input sequences R(t) = (R1(t), ..., RF (t)) relative to fresh
flows, and compatible with the given arrival curve constraints,
∃Γ > 0 such that,

sup
t>0

S(t) < Γ

We can see that the total stability of a network implies its
stability, but the converse is not true. In this paper we focus
on total stability.

1In what follows we use the notation x+ for max(x, 0).



C. Definition of the Variables

Our choice of variables is based on the concept of super
chain, first defined in [6]. Before describing in detail our
choice, we recall here some definitions from [6], [9]:

Definition 2.3: Given two packets c and d, and a node n,
we say that c �n d if c and d are in the same busy period at
n, and c leaves n before d.

Definition 2.4: Consider a sequence of packets c =
(c0, ..., cK) and a sequence of nodes n = (n1, ..., nK) (all
different). We say that (c,n) is a super chain if

• nodes n1, ..., nK are all on the path of packet c0;
• cj−1 �nj

cj , j = 1 ÷ K;
• the path of packet cj from nj to nj+1 is a subpath of the

path of c0.

We call the path of packet c0 from n1 to nK the path of the
super chain.
We now introduce some more definitions: We define a super
chain (c,n) in which the first packet c0 belongs to flow f as
a super chain relative to flow f .

Definition 2.5: We say that a packet c is included in a
super chain (c,n) if either c = cj , j = 0÷K, or there exists
an index l = 1 ÷ K, for which it holds cl−1 �nl

c �nl
cl.

For any couple of ordered node sequences n, n′, we say
that n′ is included in n, and we indicate it with n′ ⊆ n,
when there exist two sequences of nodes n1, n2 such that
n = (n1,n′,n2).

The choice of variables is the following:

• for any flow f in the network, and for any subpath n of
the path of flow f , for any time instant tp, mn

f [p] is the
maximum number of bytes belonging to f included in
any super chain (c,n′) relative to flow f , up to time tp,
and with n′ ⊆ n;

• for any node n, for any time instant tp, the variable dn[p]
is the maximum packet delay at node n up to time tp.

With B we indicate the total number of variables in the
network.

III. THE STABILITY OF THE NETWORK IS RELATED TO

THE SUPER-ADDITIVE CLOSURE OF THE UPPER BOUNDING

OPERATOR

A. Derivation of the Upper Bounding Operator

Our choice of variables is such that, if it exists a finite
bound to their value then the network is stable. The first step
is therefore the derivation of an operator that upper bounds
the value of the variables at a given time tp, in function of the
values of the variables at time tp−1:

Theorem 3.1: For any integer p > 0, we have:⎧⎨
⎩

(m[p],d[p]) ≤ Π(m[p − 1],d[p − 1])
m[0] ≤ m0

d[0] ≤ d0

(1)

where Π : (IR+ ∪ +∞)B → (IR+ ∪ +∞)B is the operator

TABLE I
NOTATION USED IN THE PAPER.

Symbol Definition

e Index of the e-th strongly connected component
p ∈ IN Index of the p-th relevant network event
Fn, F n Set of all flows passing through node n, of

cardinality F n

F (Fe), F (F e) Set of all flows in the network (resp. in the e-th
strongly connected component), of cardinality F
(F e)

N (N e), N (Ne) Set of all nodes in the network, (resp. in the e-th
strongly connected component), of cardinality N
(Ne)

Un
f Set of those nodes belonging to path(f) that

precede node n on the path of flow f
Qn

f (Qn
f ) Set of all the flows that arrive at node n from the

same node as flow f , of cardinality Qn
f

path(f) Ordered sequence of nodes, constituted by all the
nodes traversed by flow f

Pf Set of all the possible subsequences of path(f)
dn[p] Maximum delay at node n up to time tp
d[p] Array of dn[p] over all n

mn
f [p] Maximum amount of bytes included in any super

chain (c,n′) relative to flow f , up to time tp,
and with n′ ⊆ n;

m[p] Array of mn
f [p] over all f and n ∈ Pf

I(n) Set of all the nodes in the ordered sequence of
nodes n;

αf Arrival curve for flow f at the input to the
network

an
f Amount of flow f ’s bytes present in the queue at

node n at time 0.
rn Service rate of node n
Tn Latency of node n
Δn Propagation delay of the physical link at the

output of node n
prec(n, f) Node that precedes node n on the path of flow f

Lf Maximum packet size for flow f
B Total number of variables

We make dependency over the index p of relevant network events visible
through square brackets. For instance, dn[p] is the maximum packet
delay at node n, up to time tp.

defined by Π(m,d) = (m′,d′), with ∀f ∈ F , ∀n ∈ Pf ,

m
′n
f =

∑
n∈I(path(f))

an
f + αf

⎛
⎜⎝ ∑

n∈Un1
f

(bn ∧ dn) +

+
∑
f ′

∑
n′∈G(f,f ′,n)

mn′
f ′S(n′)+

+
∑

n∈I(n)

{
maxf ′∈Qn

f
Lf ′ +

∑
f ′∈Fn an

f ′

rn
+ 2Tn + Δn

}⎞⎠
(2)



d
′n =

∑
f ′∈Fn

an
f ′

rn
+ Tn + Δn + min

f∈Fn

⎧⎨
⎩

∑
f ′∈Fn\Qn

f

mn
f ′

rn
+

+
maxf ′∈Fn Lf ′

rn
+
∑

f ′∈Qn
f

mn
f ′

(
1
rn

− 1
rprec(n,f)

)+
⎫⎬
⎭∧

∧ sup
τ≥0

⎡
⎢⎣
∑

f ′∈Fn αf ′
(∑

n′′∈Un
f′

dn′′
+ τ
)

rn
− τ

⎤
⎥⎦
(3)

with

bn = min
f ′∈Fn\H(f,n,n1)

⎧⎪⎨
⎪⎩

∑
f ′′∈Fn\(Qn

f′∪H(f,n,n1))

mn
f ′′

rn
+

+
maxf ′′∈Fn Lf ′

rn
+

∑
f ′′∈Qn

f′

mn
f ′′

(
1
rn

− 1
rprec(n,f ′)

)+
⎫⎬
⎭∧

∧ sup
τ≥0

⎡
⎣
∑

f ′∈Fn\H(f,n,n1)
αf ′(

∑
n′′∈Un

f′
dn′′

+ τ)

rn
− τ

⎤
⎦+

+
∑

f ′∈Fn

an
f ′

rn
+ Tn + Δn (4)

where:

• m0 is an array such that ∀f ∈ F , ∀n ∈ Pf , (m0)nf = Lf ,
with Lf the maximum packet size for flow f ;

• d0 is such that ∀n ∈ N , (d0)n = maxj∈Fn Lj

rn
+Tn +Δn;

• ∀f ∈ F , ∀n = (n1, ..., nK) ∈ Pf , S(n) = 1
rn1

+∑K
j=2

(
1

rnj
− 1

rnj−1

)+

• H(f, n, n′) is the set of those flows �= f that join the
path of flow f at node n, and follow the path of flow f
up to (at least) node n′, with n, n′ belonging to the same
strongly connected component;

• ∀f, f ′ ∈ F and ∀n ∈ Pf , consider the set {n′ =
(n′

0, ..., n
′
k) : n′ ∈ Pf ∩ Pf ′ , ∃e : I(n′) ⊆ N e, n′

k ∈
I(n)}. Then G(f, f ′,n) is the subset of all the maximal
elements of that set.

Proof: see Appendix A.

B. A First Sufficient Condition for Stability

In this section we show how from the properties of the
operator Π defined by the upper bounds to variables in
Theorem 3.1 we can derive sufficient conditions for the total
stability of a network. These conditions are based on the
concept of super-additive closure:

Definition 3.1 (Super-additive Closure): Let E be a par-
tially ordered set such that, for any enumerable subset of it, the
supremum is well defined, and let Φ be an operator E → E .
Denote with Φ(l) the operator E → E obtained by composing
l times the operator Φ with itself. By convention, ∀x ∈ E ,
Φ(0)(x) = x. Then the super-additive closure of Φ, indicated

with Φ∗, is defined by

∀x ∈ E , Φ∗(x) = sup
l∈IN

Φ(l)(x)

By applying this definition to the operator Π defined in
Theorem 3.1, we derive a first sufficient condition for total
stability:

Theorem 3.2: Let (m∗,d∗) = Π∗(m0,d0), where Π∗ is
the super-additive closure of Π. If either m∗ or d∗ are finite,
then

• the network is stable, and
• delay bounds at all nodes can be derived from d∗ and

m∗.

Proof: see Appendix B.

IV. CHECKING STABILITY CONDITIONS IN POLYNOMIAL

TIME FOR LEAKY BUCKET CONSTRAINED FLOWS

A. A Bounding Methodology

A negative aspect of Theorem 3.2 is that in general we do
not know how to compute the super-additive closure of Π. We
also note that Π has a nonlinear expression. Then in order to
derive practical results we use the following procedure: We
first derive an operator Π′ that upper bounds Π for any x ∈
(IR+ ∪ +∞)B , and which is linear and monotonic. Then we
show that if the fixed point problem Π′(x) = x admits a
finite solution larger than (m0,d0), this solution is a finite
upper bounds the variable values, and therefore the network is
totally stable. Therefore, sufficient conditions for the existence
of a finite solution for this fixed point problem are sufficient
conditions for the total stability of the network.
The result at the basis of our procedure is the following:

Theorem 4.1: If Φ is a monotonic operator Φ : (IR+ ∪
+∞)B → (IR+ ∪ +∞)B such that ∀x ∈ (IR+ ∪
+∞)B , Φ(x) ≥ Π(x) (where Π is the operator described in
Theorem 3.1), if the fixed point problem Φ(m,d) = (m,d)
admits a solution (ms,ds) larger than (m0,d0), and if either
ms or ds are finite, then the network is stable.

Proof: Theorem 4.1 derives from the following two
lemmas:

Lemma 4.1: If Φ1 and Φ2 are two operators E → E such
that ∀x ∈ E , Φ1(x) ≥ Φ2(x), and if Φ1 is monotone, then
we have that Φ∗

1(x) ≥ Φ∗
2(x).

Proof (Lemma 4.1): By the definition of super-additive
closure, for any integer l ≥ 0, and ∀x ∈ E , Φ∗

1(x) ≥ Φ(l)
1 (x) ≥

Φ(l)
2 (x), and by definition of supremum, this implies that

Φ∗
1(x) ≥ Φ∗

2(x). ��
Lemma 4.1 implies that in Theorem 3.2 we can use the

super-additive closure of an operator that upper bounds Π.
Lemma 4.2: If Φ is a monotonic operator E → E , and xs ∈

E is a solution (finite or not) of the fixed point problem x =
Φ(x) such that xs ≥ x0 with x0 ∈ E , then we have that
xs ≥ Φ∗(x0).

Proof (Lemma 4.2): As xs ≥ x0, we have by the monotonic-
ity of Φ, that for any integer l ≥ 0, Φ(l)(xs) ≥ Φ(l)(x0).
Again, as Φ(xs) = xs, we get that supl≥0 Φ(l)(xs) = xs ≥
supl≥0 Φ(l)(x0) = Φ∗(x0). ��

��



By carefully choosing the operator that upper bounds Π, we
can derive different results in terms of sufficient conditions
for total stability of the network. The operator that is used to
derive the main practical results in this paper is described in
the following lemma:

Lemma 4.3: For any (m,d) ∈ (IR+∪+∞)B , we have that
Ψ(m,d) ≥ Π(m,d), where

Ψ : (IR+∪+∞)B → (IR+∪+∞)B is a monotone operator
defined by Ψ(m,d) = (m�,d�), where:

• for any flow f and any subpath n of path(f), for m�n
f

it holds the upper bound obtained from the one in (2),
by replacing for any interfering flow f ′, any variable mn′

f ′

with the variable mn′′
f ′ (with n′ included in n′′), where n′′

is the maximal path of flow f ′ in the strongly connected
subnet to which n′ belongs, and by replacing at any node
n, bn ∧ dn with dn.

• For any node n, for d�n it holds the upper bound obtained
from the one in (3), by using only variables d.

Proof: By the same definition of the variables in the
network, for any flow f and any two sequences of node n,
n′ such that n ⊆ n′, for any p > 0 it holds mn

f [p] ≤ mn′
f [p].

We then observe that in (2) and (3) (m′,d′) is a function of
variables which are each relative to a single strongly connected
subnet. Then Lemma 4.3 is derived from Theorem 3.1, by
using this property, and taking into account that any arrival
curve α(t) is a nondecreasing function of t. ��

We consider in what follows the case in which flows are
leaky bucket constrained. Leaky bucket constrained traffic
represents a case of particular interest in applications: for
example, the network model on which DiffServ framework
is based assumes leaky bucket constrained flows. We can see
that in this case, the operator Ψ defined in Lemma 4.3 is linear.

B. A Polynomial Time Algorithm

We introduce here one of our main results, which consists
in an algorithm that allows us to decide in polynomial time
if a network, with leaky bucket constrained flows and with
nodes performing aggregate scheduling, satisfies some suffi-
cient conditions for total stability.
The basis of the algorithm is in the following result, which
defines a new set of sufficient conditions for total stability:

Theorem 4.2: For any strongly connected component e,
let’s consider the matrix V e

1 , of dimension ≤ F 2,

∀f, f ′ ∈ Fe, (V e
1 )f,f ′ = ρf

∑
n∈G(f,f ′,path(f)),I(n)∈N e

S(n)

and the matrix V e
2 , of dimension ≤ N2, whose elements are

∀n, n′ ∈ N e (V e
2 )n,n′ =

{ ∑
f∈M(n′,n)

ρf

rn
n �= n′

0 n = n′ (5)

where M(n′, n) is the set of flows passing through node n′
and n (in the order). If for all e the spectral radius of either
V e

1 or V e
2 is inferior to one, then the network is stable.

Proof: see Appendix C.

We note that neither the burstiness of arrival curves nor the
amount of buffer content at nodes at t = 0 are involved in the
sufficient condition for total stability in Theorem 4.2.
Based on Theorem 4.2, we outline an algorithm that can be
used to test the new sufficient conditions for total stability.
We note that Algorithm 1 can be also applied to flows with
staircase arrival curves, because we can always find a leaky
bucket arrival curve that constrains the flow, derived from its
staircase arrival curve, as described in [8].

Algorithm 1 Total Stability in networks with leaky bucket
constrained flows

INPUT:

• for any node n: rn; and
• for any flow f : path(f), σf and ρf .

1: compute the strongly connected components of the net-
work;

2: for any strongly connected component e do
3: for any flow f in the e-th strongly connected compo-

nent do
4: for any flow f ′ in the e-th strongly connected

component do
compute G(f, f ′,path(f))
compute

(V e
1 )f,f ′ = ρf

∑
n∈G(f,f ′,path(f)),I(n)∈N e

S(n)

5: end for
6: end for
7: for any node n in the e-th strongly connected compo-

nent do
8: for any node n’ in the e-th strongly connected

component do
compute M(n′, n)
compute (V e

2 )n,n′ =
∑

f∈M(n′,n)
ρf

rn

9: end for
10: end for
11: compute spectral radius of V e

1 and V e
2

12: if spectral radius of V e
1 and of V e

2 is ≥ 1 then
return the network may be not totally stable

13: end if
14: end for

return network is stable

Let us analyze now the worst-case time complexity of the
various parts that compose the algorithm:

• computation of the strongly connected components:
O(FN + N2);

• computation of matrices V1 and V2: O(N(F 2N2 +
FN2)); and

• spectral radius computation (with a relative error
bound of 2−b[10]): O(N [N3 + log(b)N log2 N + F 3 +
log(b)F log2 F ]).

We have therefore a polynomial time complexity. We finally
observe that when a network is stable according to Algorithm
1, an extension of the same algorithm ([11]) allows to derive



delay bounds at all nodes.

C. Comparison to the “DiffServ bound” and to the ”Gener-
alized RIN Result”

We observe how the “DiffServ bound” [4] can be derived
from Theorem 4.2:

Theorem 4.3: In a network with leaky bucket constrained
flows, if the maximum node utilization in the network is
inferior to (h − 1)−1, where h is the maximum hop count
for a flow in the network, then the network is stable.

Proof: If h is the maximum hop count in the network, ∀n
the sum of the elements in the row relative to node n of
matrix V e

2 , ∀e in Theorem 4.2 is upper bounded by (h −
1)(
∑

f∈Fn ρf )/rn, that is by h− 1 times the node utilization
of node n. By imposing maxn∈N (

∑
f∈Fn ρf )/rn < (h−1)−1

we have that the network is stable. ��
Moreover, we can verify how the ”Generalized RIN result”

in [9] can be derived as a special case from Theorem 4.2:
Theorem 4.4 (Generalized Source Rate Condition [9]):

With the given assumptions on the network, when flows are
leaky bucket constrained, if for any flow f , indicating with
(ne

1, ..., n
e
Ke) its path in the e-th strongly connected subnet,

its rate ρf satisfies the condition ρf < mine he, with:

he =

⎡
⎣Fne

1

rne
1

+
Ke∑
j=2

Fne
j − Q

ne
j

f

rne
j

+ Q
ne

j

f

(
1

rne
j

− 1
rne

j−1

)+
⎤
⎦
−1

(6)
then the network is stable.

Proof: The result derives from imposing that for all e the
row sums of all matrices V e

1 in Theorem 4.2 be smaller than
one. ��

V. DISCUSSION OF TIGHTNESS

For a generic network, determining the tightness of the
sufficient conditions for total stability, tested by Algorithm
1, is an open issue. However, we can get an idea of how
those sufficient conditions perform by applying them to some
network examples for which we know their stability behavior.
One example is given by feed-forward networks, which
are known to be always stable, provided that the natural
condition (sum of flow rates is inferior to node service rate)
is satisfied [12]. For those networks, each node represents a
strongly connected component of the network: In this case,
by imposing that the spectral radius of each of the matrices
in Theorem 4.2 be smaller than one we can easily see that
we derive the natural condition.
Another example of network that is known to be always
stable is the ring [3], provided that node utilization is strictly
smaller than one. In these networks, Algorithm 1 performs
differently according to the number of flows in the ring and
to their path, and in general its outcome is that the ring is not
totally stable for any value of flow rates satisfying the natural
condition at all nodes. As an example, consider the network
in Fig. 1: with ρb = 0, the maximum value of ρa for which
the nework is stable is ρa ≤ 0.0909, that leads to a maximum
node utilization of 0.5454.

VI. DISCUSSION ON STATE OF THE ART

In [13] Otel derives a set of sufficient conditions for total
stability which extend the “RIN result” to heterogeneous
networks, but are in the form of a minimum packet inter-
arrival time for each flow. This way of shaping input traffic in
a network is not compatible with constraints given in the form
of arrival curves, which are the most commonly used in the
majority of network models. That is, this sufficient condition
cannot be mapped into an arrival curve constraint. This makes
the result not useful in practical cases. Moreover, in these
sufficient conditions the minimum packet inter-arrival time for
each flow scales linearly with the maximum packet size (or
burst size) among all flows in the network, leading to a very
poor performance in terms of node utilization. As an example,
in a network where all flows satisfy the sufficient condition
in [13] with a maximum packet size of 60 bytes, increasing
the maximum packet size to 1500 bytes would decrease the
maximum node utilization by a factor of 25.
In [9], following the same approach as in the “RIN result” and
using the concept of super chain, sufficient conditions for
total stability are derived (called ”Generalized RIN result”
or GRIN), which extend the “RIN result” to leaky bucket
constrained flows and to heterogeneous networks. The lower
bound to the period of staircase arrival curve of the “RIN
result” becomes, in this work, an upper bound to the rate for
each flow, which is a function of an extension of the concept of
”route interference number”. The sufficient conditions derived
in the present paper are less tight than those in the GRIN
result: indeed, as shown in Section IV-C, GRIN can be derived
from the new sufficient conditions through an approximation
that brings to more conservative sufficient conditions. Numer-
ically, we can verify in Fig. 2 that the inner bound to the
stability region obtained by Algorithm 1 in Section IV-B is
much larger than the one derived with the GRIN conditions,
as well as the ones derived with any of the other existing
results.

VII. NUMERICAL ASSESSMENT OF THE RESULTS

In order to evaluate the performance of the algorithm in
Section IV-B, we applied it over the network example in Fig. 1.
The network is composed of N = 6 nodes in a ring structure,
labeled from 1 to N . For simplicity, we assume all flows are of
two types, ”a” and ”b”, and that all flows of the same type have
the same rate (respectively ρa and ρb) and the same burstiness
σa = σb. At any node n ∈ [1, N ] a fresh flow of ”type a”
enters the network, traverses clockwise all nodes on the ring,
and exits the network at node (n+N−1)mod(N). At any node
n we also have a fresh flow of ”type b”, that traverses nodes
n and (n + N/2)mod(N) and then exits the network.

Definition 7.1: The stability region of a network with leaky
bucket constrained flows, is the closure of the set of all those
vectors of flow rates for which the network is totally stable.
By using Algorithm 1, we derived an inner bound to the
stability region of the network in Fig. 1, with all service rates
equal to 1, with flow burstiness equal to 1, with link capacities
equal to 1, and with all buffers in the network empty at t = 0.
In Fig. 2, the dash-dotted line represents the inner bound to
the capacity region obtained by Algorithm 1 in Section IV-B;



Fig. 1. An example of the symmetric network on which Algorithm 1 in
Section IV-B was run, with N = 6 nodes. The nodes are disposed on a ring.
At each node n (n ∈ [1, N ]) there is a ”type a” fresh flow, with rate ρa,
that traverses clockwise all nodes on the ring, and exits the network at node
(n + N − 1)mod(N), and a ”type b” flow, that that traverses nodes n and
(n+N/2)mod(N), and then exits the network. Only the paths of fresh flows
at node 1 are shown in the figure.

Fig. 2. Inner and outer bounds to the stability region of the network in
Fig. 1, with N = 6 nodes, with all service rates equal to 1, σa = σb = 1,
link capacities equal to 1, and buffers at all nodes empty at t = 0. The straight
line is the border of the region in which the natural condition (sum of flow
rates is inferior to node service rate) is satisfied, and therefore it represents
an outer bound to the stability region of the network. The dashed line is the
inner bound to the stability region obtained by iterative application of the
upper bound in Theorem 3.1, with a maximum number of iterations equal to
100, and considering the iterations to have converged when the increase in the
upper bounds between steps n and n + 1 is inferior to 1%. The dash-dotted
line represents the inner bound derived by using Algorithm 1 in Section IV-B;
the dotted line and the one with triangles represent the inner bounds derived,
respectively, through the the Generalized RIN condition [9] and through the
“DiffServ bound” [4].

the dotted line and the one with triangles represent the inner
bounds derived through the the generalized RIN condition
in [9], and the “DiffServ bound” [4] respectively. The blue
dashed line is the inner bound obtained as follows: We

considered the quantity sup0≤l≤n Π(l)(x0) for increasing
values of n, stopping when the increase in the value of this
quantity between two consecutive values of n is inferior to
1%. We limited the maximum value of n to 100, and we
computed the region of values for which the iterations stop.
The resulting region gives an idea of what we could gain if
we were able to derive Π∗(x0). Finally the straight line limits
the region in which the natural condition is satisfied, and it
represents therefore an outer bound to the stability region of
the considered network.
We can observe how with Algorithm 1 we have an inner
bound that is much larger than the one derived by applying
any of the previously available sufficient conditions.

VIII. CONCLUSION

In this paper we consider the problem of deriving good
sufficient conditions for stability in networks of FIFO
aggregate schedulers. We use an algebraic approach. First, we
identify a nonlinear operator on a vector space of finite (but
large) dimension and show that the problem can be reduced
to properties of the super-additive closure of this operator.
Second, we use different upper bounds of this operator to
obtain practical results. We find new sufficient conditions for
stability, which are valid without any of the restrictions of
the “RIN result”. We derive a polynomial time algorithm to
test our sufficient conditions for stability. We show that in
the case when flows are leaky bucket constrained, the inner
bound to the stability region derived with our algorithm is
always larger than the one determined by all existing results.
We prove that both the “DiffServ bound” and the ”RIN
result” can be derived as special cases of our result. We also
present a method to compute delay bounds in practical cases.
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APPENDIX

A. Proof of Theorem 3.1

Definition A.1: The super chain time is the time at which
the last packet in the super chain is served at the last node of
the super chain.
Also, with reference to Definition 2.4, at each node nj on
the path of the super chain we call the packets cj−1 and cj ,
respectively, open packet and close packet for that node.

Lemma A.1: The delay of a packet of flow f that arrives at
a node n with service rate rn and latency Tn on a link with
rate r′ is upper bounded by the quantity

Θ
rn

+ Γ
(

1
rn

− 1
r′

)+

+
A + maxf ′∈Qn

f
Lf ′

rn
+ Tn + Δn (7)

where Γ, Θ and A represent the sum of packet sizes for
packets served in the same busy period as the considered
packet and before this packet. Γ and Θ refer to packets arrived
at the node, respectively, on the same link as the considered
packet and from other nodes or sources, while A refers to
packets present at the node at t = 0.

Proof: The delay of the considered packet is the same it
would experience in the case in which no packet arrives at the
node before the beginning of the considered busy period and
after the arrival of the considered packet: hence we consider
this case. Then the bound in (7) derives from computing the
maximum horizontal distance between an aggregate arrival
curve for all input flows of the form Θ + maxf ′∈Qn

f
Lf ′ +

min(Γ, r′t), and the service curve rn(t − Tn − A/rn), and
including the constant delay Δn. ��

Proof (Theorem 3.1): We proceed by induction on the
index p of relevant network events.
Base case: p=1. In order to upper bound the quantities mn

f [1],
for any flow f , the worst case to consider is the one in
which the first two relevant network events in the network
are relative, respectively, to the first and the second packet
served in the same busy period at a given node n ∈ I(n).
Therefore we put in this case, and we consider the busy period
that starts at node n at t = 0, in which the first and the
second packets served belong respectively to flows f and f ′.
We have in this case a super chain relative to f formed by
two packets and a single node, n. t1 is the time at which
the second packet in the busy period is served: As it must
be in the same busy period as the one served at t0, then it
must have arrived at the node by time t0 (t0 is the time after
which the node starts serving the second packet, which should
then be already at the node). As a consequence, also taking
into account those packets present at the node at t = 0, we
have for flow f that mn

f [1] ≤ αf (t0) + an
f . Now we have that

t0 ≤ (mf [0]+mf ′ [0]+Lf )/rn +Δn +Tn, as the first packet
of the considered super chain belongs to flow f , so inequality
in (2) holds.

For packet delay at node n, as the node has a strict service
curve, we have that dn[1] ≤ (mf [0]+mf ′ [0]+Lf )/rn+Δn+
Tn. For all the variables mn′

f [1] for which n ∈/I(n′), as well
as for all variables dn′

[1] with n′ �= n the bound we derived
here is clearly conservative.
Induction step. ∀n ∈ N , the upper bound to dn[p] derives
from Lemma A.1, where for each flow f ′ traversing node n
we use mn

f ′ [p−1] to upper bound the contribution of this flow
to delay, and from computing the horizontal distance between
the aggregate arrival curve at node n, and the service curve at
the node.
We derive now an upper bound to the variable mn

f [p]. Let us
define the duration of a super chain with time t as the time
interval from the emission time of the first packet of the super
chain up to time t.
Let us consider a given super chain (c,n) relative to flow f
and with time tq, q ≤ p. The maximum number of flow f ’s
bytes that can be included in this super chain is upper bounded
by all the flow f ’s packets present at t = 0 in the network,
plus the maximum number of bytes from flow f that can be
emitted from the emission time of packet c0 (the first packet of
the super chain) up to time tq−1 (and not up to time tq, as in
order to be served by time tq or before at the last node of the
super chain, a packet must arrive at that node by time tq−1).
This time interval is upper bounded by the maximal duration
of a super chain relative to flow f and to the sequence of
nodes n, with time ≤ tp−1. In what follows we derive an
upper bound to this maximal duration. If n1 is the first node
in n, we indicate with n∗ the sequence of nodes on the path
of flow f that precede n1. For each node n′

k, k = 1, ...,K
in the sequence (n∗,n) we indicate with Δtint,k the delay
experienced at node n′

k by the open packet at that node (for
nodes ∈ I(n∗) we consider the open packet to coincide with
the close packet). We denote with Γk and Θk the sum of
packet sizes for packets served in the same busy period as
the open packet and before it, and coming, respectively, from
node n′

k−1 (or from the same source as flow f ) and from
other nodes (or from fresh flows different than f ). Then using
Lemma A.1 we have for k ≥ 1

Δtint,k ≤ Θk

rn′
k

+ Γk

(
1

rn′
k

− 1
rprec(n′

k,f)

)+

+

+
A′

k + max
f ′∈Q

n′
k

f

Lf ′

rn′
k

+ 2Tn′
k

+ Δn′
k

= Bk + 2Tn′
k

+ Δn′
k

(8)
where A′

k is relative to packets present at the node at t = 0.
If Δtk is the time interval between the departure of the open
packet and of the close packet, using the definition of strict
service curve, we write

Δtint,k + Δtk ≤ Bk + Tn′
k

+ Δn′
k

+
γk + θk + Ak

rn′
k

(9)

γk and θk represent the sum of packet sizes for packets
included in the considered super chain and arrived at node
n′

k, respectively, from node n′
k−1 (or from the same source as



flow f ) and from other nodes (or from fresh flows different
than f ). Ak represent the sum of packet sizes for packets
present at the node at t = 0 and served between the open
and the close packet at the node. Therefore the duration of
a generic super chain relative to flow f , to the sequence of
nodes n and with time ≤ p− 1 is upper bounded by the sum
of bounds (9) over all the nodes in the path of flow f . At
each node n′

k, each of the terms γk, θk, Γk, Θk, Ak, A′
k

can be written as a sum of the contributions from all the
input flows at the node: for instance, for Θk we can write
Θk =

∑
f ′∈Nn′

k
Θk

f ′ . For any flow f ′ (not necessarily distinct
from f ), ∀n′ = (n′

l, ..., n
′
l+K′) ∈ G(f, f ′,n), the contribution

to the upper bound to the super chain duration is

Θl
f ′ + θl

f ′

rn′
l

+
l+K′∑
k=l

⎡
⎣Γk

f ′

(
1

rn′
k

− 1
rn′

k−1

)+

+
γk

f ′ + a
n′

k

f ′

rn′
k

⎤
⎦
(10)

By definition of the variables mn′
f [p], we have that ((...(Θl

f ′ +
θl

f ′ +Γl
f ′ +γl

f ′+)∨Γl+1
f ′ +γl+1

f ′ )∨Γl+2
f ′ +γl+2

f ′ )∨ ...∨Γl+K′
f ′ +

γl+K′
f ′ ≤ mn′

f ′ [p − 1]. Therefore, the quantity in (10) is upper
bounded by

mn′
f ′ [p − 1]S(n′) +

∑
n′∈I(n′)

an′
f ′

rn′
(11)

For any node n′
k ∈ Un1

f , Δtk = 0, and Δtint,k is upper
bounded by the minimum between dn′

k [p−1], and a bound to
delay derived in the same way as the bound to dn′

k [p]: In this
last bound, the contributions from any flow f ′ ∈ H(f, n′

k, n1)
are absent, as they are already taken into account by a term
of the form mn′

f ′ [p − 1]S(n′), with n′ = (n′
k, ..., n1, ...). For

the contributions relative to all the other flows, we note that
Γk

f ′ + γk
f ′ + Θk

f ′ + θk
f ′ ≤ m

n′
k

f ′ [p− 1]: we finally get the upper
bound in (4). Then for the considered super chain (as well as
for any super chain (c,n) relative to flow f and with time
≤ tp−1), putting together the contribution from all flows, we
finally get the following upper bound to the duration:∑

n∈Un1
f

(bn[p − 1] ∧ dn[p − 1]) +

+
∑
f ′

∑
n′∈G(f,f ′,n)

mn′
f ′ [p − 1]S(n′)+

+
∑

n∈I(n)

(
maxf ′∈Qn

f
Lf ′ +

∑
f ′∈Nn an

f ′

rn
+ 2Tn + Δn

)

Then using the expression of flow f ’s arrival curve, and taking
into account those packets from flow f present in the buffers
in the network at t = 0, we finally derive the upper bound in
(2). ��
B. Proof of Theorem 3.2

In order to prove Theorem 3.2, we first need the following
lemma:

Lemma A.2: If Π is the operator defined in Theorem 3.1,
we have that ∀p ∈ IN, (m[p],d[p]) ≤ Π∗(m0,d0)

Proof (Lemma A.2): We have from Theorem 3.1 that ∀p > 0

(m[p],d[p]) ≤ Π(m[p − 1],d[p − 1]) ≤
We observe that the operator Π is monotonic. Then we get

≤ Π(2)(m[p − 2],d[p − 2]) ≤ Π(p)(m[0],d[0]) ≤
As by Theorem 3.1, (m[0],d[0]) ≤ (m0,d0),

≤ Π(p)(m0,d0) ≤ sup
p′≥0

Π(p′)(m0,d0) = Π∗(m0,d0)

��
Proof (Theorem 3.2): This theorem derives from

Lemma A.2 and the definition of total stability: Indeed, if m∗
is finite, then for any node n in the network, for any flow f
traversing the node, we have an upper bound to the maximum
number of bytes of that flow that can be present in a busy
period at node n. Therefore from m∗ and d∗ we can derive
finite bounds to the maximum queue size and maximum delay
at each node. ��
C. Proof of Theorem 4.2

Proof : We consider separately the case of networks
composed by a single strongly connected component, and the
general case.
Networks with a single strongly connected component. From
Lemma 4.3, we note that for any flow the only variables
associated to super chains that come into play are those relative
to the whole path of the flow in the network. Therefore, if
we indicate with mpath the array of all those variables in
the network (one per flow), we can rewrite part of the set of
inequalities in Lemma 4.3 in the form⎧⎪⎪⎨

⎪⎪⎩
mpath[p] ≤ Ψ1(mpath[p − 1]) ∀p ≥ 1
d[p] ≤ Ψ2(d[p − 1]) ∀p ≥ 1
mpath[0] ≤ m′

0

d[0] ≤ d0

(12)

m′
0 is such that ∀f , m′

0,f = Lf . We observe that ∀(m,d) ∈
(IR+ ∪ +∞)B , Ψ(m,d) ≥ (m0,d0): therefore any solution
of the fixed point (m,d) = Ψ(m,d) is larger than (m0,d0)
We have therefore two upper bounding operators, one for
each class of variables. For each of them we can apply
Lemma 4.2: if at least one of the fixed point problems
mpath = Ψ1(mpath), d = Ψ2(d) admits a finite solution, then
the network is stable, as in this way we have finite bounds to
the values of all the variables belonging to one class, at least.
As the two operators are linear, each of the two fixed points
admits a finite solution if the spectral radius of the associated
matrix is inferior to one.
General case. We note that neither the flow burstiness nor the
initial buffer content play any role in the sufficient conditions
for total stability in Theorem 4.2: then if a single strongly
connected component network satisfies the sufficient condi-
tions with a given setting of these parameters, it satisfies them
for any setting of these parameters, and in particular, for any
(finite) value of the flow burstiness at the input to the network.
Let’s consider then the case of a network composed by two
strongly connected components, connected between them: this
implies that some flows traverse first one component (we call



it component 1) and then the component 2 (no flow traverses
them in the reverse order, otherwise we would have only
one strongly connected component). Let us assume that each
component, considered as a separate network, satisfies the
sufficient conditions in Theorem 4.2 with a given allocation
of flow burstiness: then as observed before, it satisfies them
for any finite value of flow burstiness at the input to the
component. All flows getting into component 2 and coming

from component 1 have a finite burstiness, as component 1
is totally stable: then component 2 is totally stable also in
this configuration. Hence the network is totally stable. In the
general case, the graph of the strongly connected components
of a network has a feed forward structure, to which it can
be easily extended the proof shown for the case of two
components. ��


