
ADVANCED VISUALIZATION OF LARGE DATASETS FOR
DISCRETE ELEMENT METHOD SIMULATIONS

Mark L. Sawley

LIN-ISE-STI, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

John Biddiscombe, Jean M. Favre
Swiss National Supercomputing Centre (CSCS), CH-6928 Manno, Switzerland

Abstract1
State-of-the-art Discrete Element Method (DEM)
simulations of granular flows produce large
datasets that contain a wealth of information
describing the time-dependent physical state of the
particulate medium. To extract this information,
both comprehensive and efficient post-processing
methods are essential. Special attention must be
paid to the interactive visualization of these large
hybrid datasets containing both particle-based and
surface-based data. In this paper, we report the use
of the open-source visualization package
ParaView, which we have customized specifically
to perform advanced techniques for the post-
treatment of large DEM datasets. Particular
attention is given to the method used to render the
individual particles, based either on triangulation
of glyphs or using GPU-accelerated primitives. A
demonstration of these techniques, and their
relative merits when applied to the visualization of
DEM datasets, is presented via their application to
real industrial examples.

1. Introduction
Discrete Element Method (DEM) simulations are
concerned with the time-varying interaction of a
large number (potentially millions) of discrete
particles with other particles and with boundary
surfaces. Such simulations produce large datasets
that are hybrid in nature, containing both particle-
based (point) and mesh-based (surface)
information. Post-processing of these datasets
involves the application of both quantitative
(generally involving statistical averaging) and
qualitative (visualization) analyses to extract the
required physical insights and information.

The present paper will be concerned exclusively
with visualization methods. In particular, it is
assumed that the user wishes to be able to probe

mark.sawley@epfl.ch; biddisco@cscs.ch; jfavre@cscs.ch

the data interactively, and thus requires a
sufficiently rapid response from the visualization
system. Currently, a variety of different types of
software are being used to visualize hybrid DEM
datasets. These can be broadly categorized into the
following groups:

1.1. Fully-integrated software

A number of commercial software packages have
been developed over the years for the visualization
of scientific data. Generally such data are
expressed in terms of physical quantities
discretized on a computational mesh (“mesh-
based” data). These packages often provide a
number of advanced features, and have a relatively
short learning curve. Unfortunately, only a few of
these software packages can be applied to datasets
containing also point data that are not associated
with a mesh (“particle-based” data). Particular
examples of commercial software used for DEM
simulations are EnSight [1] and Tecplot [2]. Since
the basic functionality of these “black-box”
software packages is generally not easily extended,
such a fully-integrated approach is often overly
limited for the visualization of DEM datasets.

1.2 Modular Visualization Environment (MVE)
software

A more flexible approach is provided by MVEs,
which provide a complete high-level programming
environment that allows users to customize the
software to their specific needs. Particular
examples include AVS/Express [3] and OpenDX
[4], the latter being a free open-source product
based on software initially developed by IBM.
Although generally more time-consuming to learn
and implement, such software provide the
flexibility and extendibility not offered by fully-
integrated software. The cost of these advantages is
generally reduced visualization performance,
which can be a severe disadvantage for large DEM
databases.

Sawley, Biddiscombe & Favre, DEM 07 Page 1 / 8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147930987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.3 Library-based software

An approach that can provide flexibility while still
maintaining performance is the use of “standard”
computer graphics libraries. Library modules,
which provide the basic functionality required by
individual steps in the visualization chain, are
encapsulated in a global environment. Particular
examples of libraries used for the purpose of DEM
visualization are OpenGL [5] and VTK [6]. Such an
approach requires specific skills of the developer
and generally a longer learning curve for the user.
Nevertheless, when implemented in an appropriate
manner, a library-based software approach
provides the possibility of both flexibility and
performance.

The present paper will concentrate on the use of a
library-based software approach to visualize hybrid
datasets, in particular the free open-source
software ParaView. This widely-used package has
been adapted for the specific visualization
requirements of large DEM datasets.

2. ParaView
ParaView is a flexible, open-source, multi-
platform software created by Kitware Inc. in
conjunction with a number of US government
laboratories [7]. It can be considered as a high-
level interface for the VTK computer graphics
library, which incorporates a wide variety of
visualization algorithms and modelling techniques.
ParaView includes a user-friendly interface (see
Fig. 1) with the more commonly-used VTK library
elements directly implemented as standard filters.
This provides the basic functionality required for
the visualization of DEM simulation data, such as
independent display of particle and surface data,
glyph representation of particles, colouring
according to physical properties (e.g. particle
velocity, size, density, surface forces), interactive
view control and animation of time-varying
datasets.

More advanced functionality can be incorporated
into ParaView by accessing the appropriate VTK
library element via a simple XML description. An
example of particular interest is the creation of a
continuum (meshed-based) representation of
discrete (particle-based) data by 3D Delaunay
triangulation; such a representation provides the
possibility to use standard continuum visualization
techniques (e.g. contour plots, cross-sectional cuts,
streamlines).

Figure 1 : ParaView graphical interface, with particles
coloured according to their velocity.

For large DEM datasets with O(105) particles or
more, the visualization time can become
prohibitive, even when using the latest generation
of high-performance graphics workstations. This is
particularly the case if a high-resolution glyph
representation of the particles is used, since an
excessively large number of triangles need to be
rendered (see Fig. 2). Visualization would then
consume such a vast amount of memory and overly
large data transfer from the CPU to the GPU that
rendering would be too slow to be useful for
interactive purposes (see Table 1).

Figure 2 : Representation of particles using glyphs (left)
and GPU primitives (right).

To overcome this problem two different
approaches have been considered using ParaView:
parallel computation and rendering, and the use of
GPU-accelerated primitives for the particle
representation.

2.1 Parallel computation and rendering

To facilitate the processing of large datasets,
ParaView includes support for distributed parallel
computation and rendering. When a large number
of particles must be glyphed and rendered as
spheres, distributing the work of both glyphing and
rendering among nodes of a cluster is beneficial.
As an example, the dataset with 100,000 particles
shown in Fig. 1 has been loaded and rendered on 8

Sawley, Biddiscombe & Favre, DEM 07 Page 2 / 8

processors. Spherical glyphs with a low resolution
{θ,φ} of 8x8 when applied to 100,000 particles
require 960,000 triangles, 500,000 points and a
total memory of 475 MB. Parallel computation and
rendering using ParaView allows the display of
such large datasets and makes a previously
unmanageable task possible.

Particles

Vertices
/ Sphere

Visual
Quality

Total

Vertices

Total
Memory

BW @
25fps

Glyphs

103 50 acceptable 50,000 600 kB 24
MB/s

103 100 good 100,000 1.2 MB 47
MB/s

106 50 acceptable 50x106 600 MB 24
GB/s

106 100 good 100x106 1.2 GB 47
GB/s

GPU

106 1 excellent 1x106 12 MB 300
MB/s

Table 1 : Memory and bandwidth (BW) requirements
for triangulated glyphs and GPU spheres.

2.2 GPU primitives for particle representation

An alternative approach that we have recently
implemented into ParaView employs GPU-
accelerated primitives to render particle-based data
in a highly efficient manner. This technique has
previously been used with great effect to render
surfaces obtained from point sampling (e.g. laser
acquisition of data) and also to render iso-surfaces
generated from volume data (e.g. medical scans).
The initial implementations used point splats
defined as disk-like shapes coloured and shaded to
match the underlying surface (see [8] for a
thorough introduction). The technique has steadily
evolved to consider higher curvature orders of the
underlying surface, improved blending of
overlapping splats, perspectively correct rendering
of individually curved splats and in its latest form,
the direct rendering of quadratic forms, or quadric
surfaces [9].

The work of Sigg and co-workers [9] has been
used as a basis for our implementation of GPU-
rendered primitives. Their key development is to
represent a quadratic form using a 4x4
homogeneous matrix. This allows a compact
representation of an element (sphere, cylinder,
cone, ellipsoid or even parabolic surface) as a 4x4
matrix that can be combined with the usual

transform and lighting pipeline of graphics
hardware. The sphere form is ideally suited to a
DEM application and also can be highly optimized
due to the simplicity of its representation. With a
single {x,y,z} point representing the centre of the
sphere plus one parameter for the radius, a
complete representation can be packed into a
matrix, then transformed with correct perspective
and lighting added (see Fig. 2). We have only
implemented spheres to date, however, ellipsoids
and other quadratic forms require only the
reformulation of the matrix with additional
parameters representing the polynomial terms in
the equations of the quadratic functions. We also
plan to extend our capabilities to represent rice-
grain shaped objects by combining multiple
cylinder / sphere / ellipsoid primitives into a single
‘particle’. Table 1 indicates that the computer
resources required for a GPU primitive
representation of spherical particles are
significantly less than for triangulated glyphs.

Our ParaView rendering extension supports
effectively three modes of operation:

1. Drawing a texture to represent a particle
(sprite)

2. Rendering of a sphere without depth /
perspective

3. Rendering of an exact depth-correct sphere
using full ray / sphere intersection testing

The advantage of mode 1 is speed. However, when
zooming in closely on particles, the sprite image
does not scale correctly; this mode is thus designed
primarily for quick interaction. Mode 2 is also fast,
but allows each particle to have an individually
controlled radius as well as opacity and colour.
The disadvantage of mode 2 is that, like mode 1,
the particles are rendered as flat images and if they
overlap either with each other, or with the mesh
geometry, the images generated are incorrect. In
general, DEM simulations treat particles as solid
spheres with only a very limited overlap. In cases
where particles do overlap, mode 3 provides a
complete sphere evaluation performed by a ray
intersection from the eye, through the particle,
taking into account the thickness / depth of the
particle correctly at each point. The particles may
be mixed with scenery or other geometric objects
without problem. Rendering using mode 3 is
however an order of magnitude slower than for
mode 2.

Table 2 shows the typical performance of particle
rendering using GPU primitives. The render times

Sawley, Biddiscombe & Favre, DEM 07 Page 3 / 8

vary from one graphics card to another and
improve whenever a new generation of graphics
card is released. Rendering modes 2 and 3 use
fragment shaders to perform the evaluation of the
sphere at run time, which also makes them
sensitive to the size of the screen space occupied
by spheres. Many large highly-magnified particles
will render more slowly than the same particles at
a distance due to the total number of pixels for
which the evaluation is performed. Timing
comparisons are therefore subject to a number of
parameters and the numbers presented in Table 2
represent a simple ‘average’ during typical daily
usage.

Rendering Method Millions of particles
per second

Raw vertex 50

Sprite texture (mode 1) 40

Simple sphere (mode 2) 30

3D exact sphere (mode 3) 1

Table 2 : Render times for particles using GPU
spheres/textures/points (using a NVidia GeForce 7

series graphics card).

Using our implementation of GPU primitives in
ParaView it is possible to visualize datasets with
the order of one million particles at interactive
rates on a standard desktop workstation. Making
use of parallel rendering capabilities gives us the
ability to render easily datasets with the order of
tens of millions of particles on a visualization
cluster, while considering hundreds of millions of
particles would be possible should the need arise.
Currently the pace of GPU improvement outstrips
the pace of DEM simulation growth and we have
not yet reached the size limit.

3. DEM simulations
The simulation data analyzed in the present paper
were produced by a state-of-the-art 3D DEM
solver developed by Granulair Technologies [10].
This software incorporates diverse physical and
numerical modelling that enables a wide range of
problems of industrial and academic interest to be
addressed.

The solver considers particles of either spherical or
non-spherical (comprised of a cluster of spherical
particles) shape, with any distribution of particle
properties (e.g. size, density). The boundary
surfaces are treated as a collection of objects, with

each object composed of triangular and/or
quadrilateral elements produced by standard mesh-
generation software. Objects can be in relative
translational, rotational or vibrational motion. The
influence of an interstitial fluid is modelled by
either considering the single-particle fluid drag, or
by coupling the DEM solver to a Navier-Stokes
(CFD) solver using an effective porous medium
approach [11]. Cohesive forces between particles
and with boundary surfaces can also be treated to
model the influence of liquid bridge formation and
other attractive forces.

A soft-particle model is employed by the DEM
solver, with the normal and tangential collisional
forces depending on the particle overlap. The inter-
particle and particle-surface interactions are
detected using a two-step process involving spatial
sorting to produce a nearest neighbour list
followed by explicit contact detection. A spring-
dashpot model is used to model the collisional
forces [12]. The governing equations expressing
the conservation of linear and angular momentum
are resolved using an explicit time-integration
scheme.

Various types of data are exported during a DEM
simulation for both qualitative and quantitative
analysis. For the present study, the data to be
visualized is exported in EnSight 6 format [1],
which is directly readable by ParaView.

To illustrate the visualization methods presented in
this paper, three different problems of industrial
interest are considered. A description of each
problem and the DEM simulations undertaken is
briefly presented.

3.1 Ribbon blender

The ribbon blender is a convective mixer used in
numerous industrial sectors (e.g. pharmaceuticals,
foods, chemicals, plastics) to mix particulate
material. The ribbon blender considered here
consists of two helical ribbons of opposite pitch
that rotate in a static cylindrical trough. The trough
has a length of 500 mm and a width of 300 mm.
The ribbons of width 30 mm rotate at a speed of 30
rpm. DEM simulations have been undertaken for a
charge of 100,000 identical spherical particles of
diameter 6 mm. Figure 3 presents the
computational mesh used to discretize the mixer
geometry, which consists of both triangular and
quadrilateral elements selected to describe in an
optimal manner the different surfaces of the mixer.

Sawley, Biddiscombe & Favre, DEM 07 Page 4 / 8

Figure 3 : Discretization of the surfaces of the ribbon
blender geometry.

3.2 Conveyor loading and transfer

The loading of a belt conveyor and the transfer of
material from one moving belt conveyor to another
are important bulk handling tasks. Such operations
are widely used for the transport of both coarse
grain material (such as cereals, mineral ore and
coal) and fine powders (as used in the chemical
and pharmaceutical industries). The dual belt
conveyor system shown in Fig. 4 is considered
here. The granular material initially stored in a
rectangular hopper is loaded onto the upper belt
using a feed chute with lateral skirts. The material
is transferred to the lower belt at 90o via a transfer
chute, comprised of a box containing two curved
impact plates. Both upper and lower belts have a
width of 450 mm and speed of 2.5 m/s. The
granular material consists of (initially 25,000)
spherical particles with diameters distributed
between 15 and 30 mm, a density of 2500 kg/m3
and a flow rate corresponding to 47 t/hr.

Figure 4 : Particulate flow on a dual belt conveyor
system with a transfer chute.

3.2 Sprouted bed

Sprouted beds are used in industry for a variety of
tasks including drying, coating and enhancing
chemical reactions. In a sprouted bed, air enters
into a vertical hopper through a nozzle above
which the granular material is fluidized. The
particles begin to circulate, falling into the
surrounding area of low-velocity air, before re-
entering the air stream. The numerical simulation
of such a multiphase system can be undertaken
using a coupled CFD-DEM approach. The
commercial CFD solver FLUENT 6 was used to
obtain the air flow results. For the present
illustrative purposes, a 2D flow simulation was
performed using 5000 identical 3 mm diameter
spheres of density 2500 kg/m3 in a hopper of total
width 152 mm and nozzle width 19 mm.

4. Visualization examples
ParaView has been employed for the visualization
of DEM datasets corresponding to a wide variety
of different applications. In the present section,
some representative results are presented for the
above-mentioned applications.

4.1 Continuum representation

As indicated in Section 2, it can be useful for
analysis purposes to convert the discrete particle
representation generated by the DEM solver to a
continuum representation. To illustrate the
possibilities provided by such an approach, we
consider the specific example of granular mixing
in the ribbon blender.

Figure 5 : Delaunay triangulation of the particle-based
dataset.

The Delaunay triangulation of the particle-based
dataset was performed using the vtkDelaunay3D

Sawley, Biddiscombe & Favre, DEM 07 Page 5 / 8

class contained in the VTK library. This results in a
continuous medium filling the lower portion of the
trough up to the free surface of the flow, as shown
in Fig. 5. It should be noted that 3D Delaunay
triangulation is a time-consuming task; in
ParaView the computation can be accelerated
using parallel computing.

Based on this continuum representation of the
DEM data, different standard visualization
techniques can be applied. As an example, Fig. 6
shows the velocity contours on three cutting planes
at different axial positions, using the vtkCutter
class implemented in ParaView. These contours
indicate in a clear manner, the variation of the
particle avalanching along the free surface, as well
as the influence of the mixer ribbons on the local
flow velocity.

Figure 6 : Velocity contours on three cutting plane
 at different axial locations.

4.2 Streamlines and pathlines

It is often useful to trace the movement of
individual particles in a granular flow. At a given
time, a streamline is defined as the curve that is
tangent to the (instantaneous) velocity field at
every point. A pathline is defined as the trajectory
a particle follows when released into a (time-
varying) flow field. Therefore, whereas a
streamline indicates the trajectory of a fictive
massless particle injected into the (stationary) flow
field, a pathline shows the actual trajectory taken
by a physical particle.

Streamlines can be computed in a straightforward
manner from the continuum representation of the
DEM data using the vtkStreamLine class
implemented in ParaView. An example for the
ribbon blender is shown in Figure 7. The plotted

line represents the path that a fictive massless
particle would take in the velocity field calculated
at that particular instant of time. By plotting
streamlines originating at different spatial
locations, physical phenomena of interest – such as
the existence of regions of flow recirculation – can
be elucidated.

Figure 7 : A streamline through the velocity field.

Pathlines are calculated in ParaView by tracing the
time-evolution of the positions of selected
particles. Figure 8 shows the pathlines calculated
for particles in the ribbon blender, while Fig. 9
shows the pathlines of particles being loaded onto
a conveyor belt. The latter example shows that
some particles bounce off the conveyor belt and
eventually leave the computational domain. The
use of interactive 3D viewing of the pathlines
enables a detailed inspection of particle
trajectories, and thus provides insights into the
behaviour of individual particles. In addition,
plotting pathlines has proven to be an invaluable
means of debugging simulations to identify
erroneous motion introduced by potential errors in
the DEM simulation code.

Pathline plotting is only possible if one of two
conditions is met by the data:
• the number of particles is invariant throughout

the simulation and the order in which data are
written is the same for all time steps,

• each particle has a unique identifier which
remains unchanged throughout the simulation.

If either of these conditions is not met, it is not
possible to track particles unambiguously.

Sawley, Biddiscombe & Favre, DEM 07 Page 6 / 8

Figure 8 : Pathlines of particles in the ribbon blender.

Figure 9 : Pathlines for particle loading onto a
conveyor belt.

4.3 Transparency rendering

When DEM simulations are performed for dense
granular flows (as is the case for the ribbon blender
example), it can be difficult to observe the
behaviour of particles within the flow. While
cutting planes can be used to reveal internal
details, this has the drawback of hiding features
that may be desired for contrast or comparison. In
some cases, volume rendering of the triangulated
mesh data will produce good results, with the
opacity of the rendered image being determined by
a physical scalar quantity.

Volume rendering is supported by ParaView but
requires a triangulation of the particles. As
mentioned above, Delaunay triangulation is time-
consuming and therefore not well suited to
interactive animation. With our custom renderer,
we can achieve the same effect by providing an
opacity value, computed from a physical scalar

quantity, for each particle and performing a depth
sort on the fly during rendering.

Figure 10 illustrates an example of transparency
rendering for flow in the ribbon blender. In this
figure, a clear indication of regions of high particle
spin (due to the motion of the helical ribbons) is
revealed in the volume of the granular material.

Figure 10 : Transparency rendering of particles to

highlight a chosen physical quantity (particle spin in
this example).

In the present implementation, sorting of the
particles prior to rendering is performed on the
CPU, and reduces rendering speed by a factor of
around 5 (depending on the number of particles).
However, it is planned to perform the sort on the
GPU in the near future, which will accelerate the
process significantly.

4.4 Multiphase fluid-granular flow

Multiphase flows are of particular importance in
many industrial processes, and provide a wealth of
detailed physical behaviour of particular interest.
In order to extract the maximum amount of
information from a coupled CFD-DEM simulation,
it is essential to be able to visualize the computed
results in an appropriate manner. The ability to
superimpose different visual results produced from
different input datasets is essential in this context.

An example of the visualization of coupled fluid-
granular flow is presented in Fig. 11 for the
sprouted bed. To view simultaneously the fluid and
granular flows, transparency is applied to the
continuum fluid results. This figure shows clearly
the interaction between the granular material and
the fluid flow, which results in the production of a
characteristic fountain at the centre of the channel.

Sawley, Biddiscombe & Favre, DEM 07 Page 7 / 8

Figure 11 : Coupled fluid-granular flow in a
sprouted bed (coloured by velocity).

5. Conclusions
The present study has presented a library-based
software approach to the visualization of DEM
simulation results. It has been demonstrated that
such an approach provides both the flexibility and
performance required to enable detailed interactive
visualization of large hybrid datasets.

A number of novel methods, implemented into the
widely-used open-source software ParaView, have
been illustrated in this paper. Contrary to
conventional triangulated glyphs, the use of GPU-
accelerated primitives for the particle
representation enables the interactive rendering of
the order of one million particles on a standard
desktop workstation. Delaunay triangulation of the
3D particle data produces a representation that can
be used as a basis for standard continuum
visualization techniques (e.g. contour plots, cross-
sectional cuts, streamlines). Transparency
rendering enables features hidden within dense
granular flows to be elucidated.

The application of these advanced visualization
techniques opens new avenues in the analysis of
DEM simulation results for large-scale industrial
problems.

Acknowledgements
The authors wish to acknowledge Sébastien
Wiederseiner for providing the DEM simulation
data for the sprouted bed.

References
[1] Computational Engineering International

(CEI); see www.ensight.com
[2] Tecplot Inc.; see www.tecplot.com
[3] Advanced Visual Systems (AVS); see

www.avs.com
[4] OpenDX; see www.opendx.org
[5] OpenGL; see www.opengl.org
[6] The VTK User’s Guide, Kitware Inc. 2006;

see www.vtk.org
[7] A.H. Squillacote, The ParaView Guide: A

Parallel Visualization Application, Kitware
Inc. 2006; see www.paraview.org

[8] M. Zwicker, H. Pfister, J. van Baar, M. Gross,
Surface Splatting, SIGGRAPH 2001.

[9] Ch. Sigg, T. Weyrich, M. Botsch, M. Gross,
GPU-based ray-casting of quadratic surfaces,
Eurographics Symposium on Point-Based
Graphics 2006, pp. 59-65; see
graphics.ethz.ch/~mbotsch/publications/pbg06
.pdf

[10] Granulair Technologies; see
www.granulair.com

[11] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete
particle simulation of two-dimensional
fluidized bed, Powder Technology, 77, 79-87
(1993).

[12] P.A. Cundall, O.D.L. Strack, A discrete
numerical model for granular assemblies,
Géotechnique, 29, 47-65 (1979).

Sawley, Biddiscombe & Favre, DEM 07 Page 8 / 8

	1. Introduction
	1.1. Fully-integrated software
	1.2 Modular Visualization Environment (MVE) software
	1.3 Library-based software

	2. ParaView
	2.1 Parallel computation and rendering
	2.2 GPU primitives for particle representation

	3. DEM simulations
	3.1 Ribbon blender
	3.2 Conveyor loading and transfer
	3.2 Sprouted bed

	4. Visualization examples
	4.1 Continuum representation
	4.2 Streamlines and pathlines
	4.3 Transparency rendering
	4.4 Multiphase fluid-granular flow

	5. Conclusions

