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Abstract1 
State-of-the-art Discrete Element Method (DEM) 
simulations of granular flows produce large 
datasets that contain a wealth of information 
describing the time-dependent physical state of the 
particulate medium. To extract this information, 
both comprehensive and efficient post-processing 
methods are essential. Special attention must be 
paid to the interactive visualization of these large 
hybrid datasets containing both particle-based and 
surface-based data. In this paper, we report the use 
of the open-source visualization package 
ParaView, which we have customized specifically 
to perform advanced techniques for the post-
treatment of large DEM datasets. Particular 
attention is given to the method used to render the 
individual particles, based either on triangulation 
of glyphs or using GPU-accelerated primitives. A 
demonstration of these techniques, and their 
relative merits when applied to the visualization of 
DEM datasets, is presented via their application to 
real industrial examples. 

1. Introduction 
Discrete Element Method (DEM) simulations are 
concerned with the time-varying interaction of a 
large number (potentially millions) of discrete 
particles with other particles and with boundary 
surfaces. Such simulations produce large datasets 
that are hybrid in nature, containing both particle-
based (point) and mesh-based (surface) 
information. Post-processing of these datasets 
involves the application of both quantitative 
(generally involving statistical averaging) and 
qualitative (visualization) analyses to extract the 
required physical insights and information. 
 
The present paper will be concerned exclusively 
with visualization methods. In particular, it is 
assumed that the user wishes to be able to probe 
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the data interactively, and thus requires a 
sufficiently rapid response from the visualization 
system. Currently, a variety of different types of 
software are being used to visualize hybrid DEM 
datasets. These can be broadly categorized into the 
following groups: 

1.1.  Fully-integrated software 

A number of commercial software packages have 
been developed over the years for the visualization 
of scientific data. Generally such data are 
expressed in terms of physical quantities 
discretized on a computational mesh (“mesh-
based” data). These packages often provide a 
number of advanced features, and have a relatively 
short learning curve. Unfortunately, only a few of 
these software packages can be applied to datasets 
containing also point data that are not associated 
with a mesh (“particle-based” data). Particular 
examples of commercial software used for DEM 
simulations are EnSight [1] and Tecplot [2]. Since 
the basic functionality of these “black-box” 
software packages is generally not easily extended, 
such a fully-integrated approach is often overly 
limited for the visualization of DEM datasets. 

1.2  Modular Visualization Environment (MVE) 
software 

A more flexible approach is provided by MVEs, 
which provide a complete high-level programming 
environment that allows users to customize the 
software to their specific needs. Particular 
examples include AVS/Express [3] and OpenDX 
[4], the latter being a free open-source product 
based on software initially developed by IBM. 
Although generally more time-consuming to learn 
and implement, such software provide the 
flexibility and extendibility not offered by fully-
integrated software. The cost of these advantages is 
generally reduced visualization performance, 
which can be a severe disadvantage for large DEM 
databases. 

Sawley, Biddiscombe & Favre, DEM 07 Page 1 / 8 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147930987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1.3  Library-based software 

An approach that can provide flexibility while still 
maintaining performance is the use of “standard” 
computer graphics libraries. Library modules, 
which provide the basic functionality required by 
individual steps in the visualization chain, are 
encapsulated in a global environment. Particular 
examples of libraries used for the purpose of DEM 
visualization are OpenGL [5] and VTK [6]. Such an 
approach requires specific skills of the developer 
and generally a longer learning curve for the user. 
Nevertheless, when implemented in an appropriate 
manner, a library-based software approach 
provides the possibility of both flexibility and 
performance. 
 
The present paper will concentrate on the use of a 
library-based software approach to visualize hybrid 
datasets, in particular the free open-source 
software ParaView. This widely-used package has 
been adapted for the specific visualization 
requirements of large DEM datasets. 

2. ParaView 
ParaView is a flexible, open-source, multi-
platform software created by Kitware Inc. in 
conjunction with a number of US government 
laboratories [7]. It can be considered as a high-
level interface for the VTK computer graphics 
library, which incorporates a wide variety of 
visualization algorithms and modelling techniques. 
ParaView includes a user-friendly interface (see 
Fig. 1) with the more commonly-used VTK library 
elements directly implemented as standard filters. 
This provides the basic functionality required for 
the visualization of DEM simulation data, such as 
independent display of particle and surface data, 
glyph representation of particles, colouring 
according to physical properties (e.g. particle 
velocity, size, density, surface forces), interactive 
view control and animation of time-varying 
datasets. 
 
More advanced functionality can be incorporated 
into ParaView by accessing the appropriate VTK 
library element via a simple XML description. An 
example of particular interest is the creation of a 
continuum (meshed-based) representation of 
discrete (particle-based) data by 3D Delaunay 
triangulation; such a representation provides the 
possibility to use standard continuum visualization 
techniques (e.g. contour plots, cross-sectional cuts, 
streamlines). 
 

 

Figure 1 : ParaView graphical interface, with particles 
coloured according to their velocity. 

 
For large DEM datasets with O(105) particles or 
more, the visualization time can become 
prohibitive, even when using the latest generation 
of high-performance graphics workstations. This is 
particularly the case if a high-resolution glyph 
representation of the particles is used, since an 
excessively large number of triangles need to be 
rendered (see Fig. 2). Visualization would then 
consume such a vast amount of memory and overly 
large data transfer from the CPU to the GPU that 
rendering would be too slow to be useful for 
interactive purposes (see Table 1). 
 

 

Figure 2 : Representation of particles using glyphs (left) 
and GPU primitives (right).  

 
To overcome this problem two different 
approaches have been considered using ParaView: 
parallel computation and rendering, and the use of 
GPU-accelerated primitives for the particle 
representation. 

2.1  Parallel computation and rendering 

To facilitate the processing of large datasets, 
ParaView includes support for distributed parallel 
computation and rendering. When a large number 
of particles must be glyphed and rendered as 
spheres, distributing the work of both glyphing and 
rendering among nodes of a cluster is beneficial. 
As an example, the dataset with 100,000 particles 
shown in Fig. 1 has been loaded and rendered on 8 
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processors. Spherical glyphs with a low resolution 
{θ,φ} of 8x8 when applied to 100,000 particles 
require 960,000 triangles, 500,000 points and a 
total memory of 475 MB. Parallel computation and 
rendering using ParaView allows the display of 
such large datasets and makes a previously 
unmanageable task possible. 
 

# 
Particles 

# 
Vertices 
/ Sphere 

Visual 
Quality 

# 
Total 

Vertices 

Total 
Memory 

BW @ 
25fps 

Glyphs      

103 50 acceptable 50,000 600 kB 24 
MB/s 

103 100 good 100,000 1.2 MB 47 
MB/s 

106 50 acceptable 50x106 600 MB 24 
GB/s 

106 100 good 100x106 1.2 GB 47 
GB/s 

GPU      

106 1 excellent 1x106 12 MB 300 
MB/s 

Table 1 : Memory and bandwidth (BW) requirements 
for triangulated glyphs and GPU spheres. 

2.2  GPU primitives for particle representation 

An alternative approach that we have recently 
implemented into ParaView employs GPU-
accelerated primitives to render particle-based data 
in a highly efficient manner. This technique has 
previously been used with great effect to render 
surfaces obtained from point sampling (e.g. laser 
acquisition of data) and also to render iso-surfaces 
generated from volume data (e.g. medical scans). 
The initial implementations used point splats 
defined as disk-like shapes coloured and shaded to 
match the underlying surface (see [8] for a 
thorough introduction). The technique has steadily 
evolved to consider higher curvature orders of the 
underlying surface, improved blending of 
overlapping splats, perspectively correct rendering 
of individually curved splats and in its latest form, 
the direct rendering of quadratic forms, or quadric 
surfaces [9].  
 
The work of Sigg and co-workers [9] has been 
used as a basis for our implementation of GPU-
rendered primitives. Their key development is to 
represent a quadratic form using a 4x4 
homogeneous matrix. This allows a compact 
representation of an element (sphere, cylinder, 
cone, ellipsoid or even parabolic surface) as a 4x4 
matrix that can be combined with the usual 

transform and lighting pipeline of graphics 
hardware. The sphere form is ideally suited to a 
DEM application and also can be highly optimized 
due to the simplicity of its representation. With a 
single {x,y,z} point representing the centre of the 
sphere plus one parameter for the radius, a 
complete representation can be packed into a 
matrix, then transformed with correct perspective 
and lighting added (see Fig. 2). We have only 
implemented spheres to date, however, ellipsoids 
and other quadratic forms require only the 
reformulation of the matrix with additional 
parameters representing the polynomial terms in 
the equations of the quadratic functions. We also 
plan to extend our capabilities to represent rice-
grain shaped objects by combining multiple 
cylinder / sphere / ellipsoid primitives into a single 
‘particle’. Table 1 indicates that the computer 
resources required for a GPU primitive 
representation of spherical particles are 
significantly less than for triangulated glyphs. 
 
Our ParaView rendering extension supports 
effectively three modes of operation: 

1. Drawing a texture to represent a particle 
(sprite) 

2. Rendering of a sphere without depth / 
perspective  

3. Rendering of an exact depth-correct sphere 
using full ray / sphere intersection testing 
 

The advantage of mode 1 is speed. However, when 
zooming in closely on particles, the sprite image 
does not scale correctly; this mode is thus designed 
primarily for quick interaction. Mode 2 is also fast, 
but allows each particle to have an individually 
controlled radius as well as opacity and colour. 
The disadvantage of mode 2 is that, like mode 1, 
the particles are rendered as flat images and if they 
overlap either with each other, or with the mesh 
geometry, the images generated are incorrect. In 
general, DEM simulations treat particles as solid 
spheres with only a very limited overlap. In cases 
where particles do overlap, mode 3 provides a 
complete sphere evaluation performed by a ray 
intersection from the eye, through the particle, 
taking into account the thickness / depth of the 
particle correctly at each point. The particles may 
be mixed with scenery or other geometric objects 
without problem. Rendering using mode 3 is 
however an order of magnitude slower than for 
mode 2. 
 
Table 2 shows the typical performance of particle 
rendering using GPU primitives. The render times 
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vary from one graphics card to another and 
improve whenever a new generation of graphics 
card is released. Rendering modes 2 and 3 use 
fragment shaders to perform the evaluation of the 
sphere at run time, which also makes them 
sensitive to the size of the screen space occupied 
by spheres. Many large highly-magnified particles 
will render more slowly than the same particles at 
a distance due to the total number of pixels for 
which the evaluation is performed. Timing 
comparisons are therefore subject to a number of 
parameters and the numbers presented in Table 2 
represent a simple ‘average’ during typical daily 
usage. 
 

Rendering Method Millions of particles 
per second 

Raw vertex 50 

Sprite texture (mode 1) 40 

Simple sphere (mode 2) 30 

3D exact sphere (mode 3) 1 

Table 2 : Render times for particles using GPU 
spheres/textures/points (using a NVidia GeForce 7 

series graphics card). 
 
Using our implementation of GPU primitives in 
ParaView it is possible to visualize datasets with 
the order of one million particles at interactive 
rates on a standard desktop workstation. Making 
use of parallel rendering capabilities gives us the 
ability to render easily datasets with the order of 
tens of millions of particles on a visualization 
cluster, while considering hundreds of millions of 
particles would be possible should the need arise. 
Currently the pace of GPU improvement outstrips 
the pace of DEM simulation growth and we have 
not yet reached the size limit. 

3. DEM simulations 
The simulation data analyzed in the present paper 
were produced by a state-of-the-art 3D DEM 
solver developed by Granulair Technologies [10]. 
This software incorporates diverse physical and 
numerical modelling that enables a wide range of 
problems of industrial and academic interest to be 
addressed. 
 
The solver considers particles of either spherical or 
non-spherical (comprised of a cluster of spherical 
particles) shape, with any distribution of particle 
properties (e.g. size, density). The boundary 
surfaces are treated as a collection of objects, with 

each object composed of triangular and/or 
quadrilateral elements produced by standard mesh-
generation software. Objects can be in relative 
translational, rotational or vibrational motion. The 
influence of an interstitial fluid is modelled by 
either considering the single-particle fluid drag, or 
by coupling the DEM solver to a Navier-Stokes 
(CFD) solver using an effective porous medium 
approach [11]. Cohesive forces between particles 
and with boundary surfaces can also be treated to 
model the influence of liquid bridge formation and 
other attractive forces. 
 
A soft-particle model is employed by the DEM 
solver, with the normal and tangential collisional 
forces depending on the particle overlap. The inter-
particle and particle-surface interactions are 
detected using a two-step process involving spatial 
sorting to produce a nearest neighbour list 
followed by explicit contact detection. A spring-
dashpot model is used to model the collisional 
forces [12]. The governing equations expressing 
the conservation of linear and angular momentum 
are resolved using an explicit time-integration 
scheme. 
 
Various types of data are exported during a DEM 
simulation for both qualitative and quantitative 
analysis. For the present study, the data to be 
visualized is exported in EnSight 6 format [1], 
which is directly readable by ParaView. 
 
To illustrate the visualization methods presented in 
this paper, three different problems of industrial 
interest are considered. A description of each 
problem and the DEM simulations undertaken is 
briefly presented. 

3.1  Ribbon blender 

The ribbon blender is a convective mixer used in 
numerous industrial sectors (e.g. pharmaceuticals, 
foods, chemicals, plastics) to mix particulate 
material. The ribbon blender considered here 
consists of two helical ribbons of opposite pitch 
that rotate in a static cylindrical trough. The trough 
has a length of 500 mm and a width of 300 mm. 
The ribbons of width 30 mm rotate at a speed of 30 
rpm. DEM simulations have been undertaken for a 
charge of 100,000 identical spherical particles of 
diameter 6 mm. Figure 3 presents the 
computational mesh used to discretize the mixer 
geometry, which consists of both triangular and 
quadrilateral elements selected to describe in an 
optimal manner the different surfaces of the mixer. 
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Figure 3 : Discretization of the surfaces of the ribbon 
blender geometry. 

3.2  Conveyor loading and transfer 

The loading of a belt conveyor and the transfer of 
material from one moving belt conveyor to another 
are important bulk handling tasks. Such operations 
are widely used for the transport of both coarse 
grain material (such as cereals, mineral ore and 
coal) and fine powders (as used in the chemical 
and pharmaceutical industries). The dual belt 
conveyor system shown in Fig. 4 is considered 
here. The granular material initially stored in a 
rectangular hopper is loaded onto the upper belt 
using a feed chute with lateral skirts. The material 
is transferred to the lower belt at 90o via a transfer 
chute, comprised of a box containing two curved 
impact plates. Both upper and lower belts have a 
width of 450 mm and speed of 2.5 m/s. The 
granular material consists of (initially 25,000) 
spherical particles with diameters distributed 
between 15 and 30 mm, a density of 2500 kg/m3 
and a flow rate corresponding to 47 t/hr. 
 

 

Figure 4 : Particulate flow on a dual belt conveyor 
system with a transfer chute. 

3.2  Sprouted bed 

Sprouted beds are used in industry for a variety of 
tasks including drying, coating and enhancing 
chemical reactions. In a sprouted bed, air enters 
into a vertical hopper through a nozzle above 
which the granular material is fluidized. The 
particles begin to circulate, falling into the 
surrounding area of low-velocity air, before re-
entering the air stream. The numerical simulation 
of such a multiphase system can be undertaken 
using a coupled CFD-DEM approach. The 
commercial CFD solver FLUENT 6 was used to 
obtain the air flow results. For the present 
illustrative purposes, a 2D flow simulation was 
performed using 5000 identical 3 mm diameter 
spheres of density 2500 kg/m3 in a hopper of total 
width 152 mm and nozzle width 19 mm.  

4. Visualization examples 
ParaView has been employed for the visualization 
of DEM datasets corresponding to a wide variety 
of different applications. In the present section, 
some representative results are presented for the 
above-mentioned applications. 

4.1  Continuum representation 

As indicated in Section 2, it can be useful for 
analysis purposes to convert the discrete particle 
representation generated by the DEM solver to a 
continuum representation. To illustrate the 
possibilities provided by such an approach, we 
consider the specific example of granular mixing 
in the ribbon blender. 

 

 

Figure 5 : Delaunay triangulation of the particle-based 
dataset. 

 
The Delaunay triangulation of the particle-based 
dataset was performed using the vtkDelaunay3D 
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class contained in the VTK library. This results in a 
continuous medium filling the lower portion of the 
trough up to the free surface of the flow, as shown 
in Fig. 5. It should be noted that 3D Delaunay 
triangulation is a time-consuming task; in 
ParaView the computation can be accelerated 
using parallel computing. 
 
Based on this continuum representation of the 
DEM data, different standard visualization 
techniques can be applied. As an example, Fig. 6 
shows the velocity contours on three cutting planes 
at different axial positions, using the vtkCutter 
class implemented in ParaView. These contours 
indicate in a clear manner, the variation of the 
particle avalanching along the free surface, as well 
as the influence of the mixer ribbons on the local 
flow velocity. 
 

 

Figure 6 : Velocity contours on three cutting plane 
 at different axial locations. 

4.2  Streamlines and pathlines 

It is often useful to trace the movement of 
individual particles in a granular flow. At a given 
time, a streamline is defined as the curve that is 
tangent to the (instantaneous) velocity field at 
every point. A pathline is defined as the trajectory 
a particle follows when released into a (time-
varying) flow field. Therefore, whereas a 
streamline indicates the trajectory of a fictive 
massless particle injected into the (stationary) flow 
field, a pathline shows the actual trajectory taken 
by a physical particle. 
 
Streamlines can be computed in a straightforward 
manner from the continuum representation of the 
DEM data using the vtkStreamLine class 
implemented in ParaView. An example for the 
ribbon blender is shown in Figure 7. The plotted 

line represents the path that a fictive massless 
particle would take in the velocity field calculated 
at that particular instant of time. By plotting 
streamlines originating at different spatial 
locations, physical phenomena of interest – such as 
the existence of regions of flow recirculation – can 
be elucidated. 
 

 

Figure 7 : A streamline through the velocity field. 
 
Pathlines are calculated in ParaView by tracing the 
time-evolution of the positions of selected 
particles. Figure 8 shows the pathlines calculated 
for particles in the ribbon blender, while Fig. 9 
shows the pathlines of particles being loaded onto 
a conveyor belt. The latter example shows that 
some particles bounce off the conveyor belt and 
eventually leave the computational domain. The 
use of interactive 3D viewing of the pathlines 
enables a detailed inspection of particle 
trajectories, and thus provides insights into the 
behaviour of individual particles. In addition, 
plotting pathlines has proven to be an invaluable 
means of debugging simulations to identify 
erroneous motion introduced by potential errors in 
the DEM simulation code. 
 
Pathline plotting is only possible if one of two 
conditions is met by the data: 
• the number of particles is invariant throughout 

the simulation and the order in which data are 
written is the same for all time steps, 

• each particle has a unique identifier which 
remains unchanged throughout the simulation. 

If either of these conditions is not met, it is not 
possible to track particles unambiguously. 
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Figure 8 : Pathlines of particles in the ribbon blender. 
 

 

Figure 9 : Pathlines for particle loading onto a 
conveyor belt. 

4.3  Transparency rendering 

When DEM simulations are performed for dense 
granular flows (as is the case for the ribbon blender 
example), it can be difficult to observe the 
behaviour of particles within the flow. While 
cutting planes can be used to reveal internal 
details, this has the drawback of hiding features 
that may be desired for contrast or comparison. In 
some cases, volume rendering of the triangulated 
mesh data will produce good results, with the 
opacity of the rendered image being determined by 
a physical scalar quantity. 
 
Volume rendering is supported by ParaView but 
requires a triangulation of the particles. As 
mentioned above, Delaunay triangulation is time-
consuming and therefore not well suited to 
interactive animation. With our custom renderer, 
we can achieve the same effect by providing an 
opacity value, computed from a physical scalar 

quantity, for each particle and performing a depth 
sort on the fly during rendering. 
 
Figure 10 illustrates an example of transparency 
rendering for flow in the ribbon blender. In this 
figure, a clear indication of regions of high particle 
spin (due to the motion of the helical ribbons) is 
revealed in the volume of the granular material. 
 

 
Figure 10 : Transparency rendering of particles to 

highlight a chosen physical quantity (particle spin in 
this example). 

 
In the present implementation, sorting of the 
particles prior to rendering is performed on the 
CPU, and reduces rendering speed by a factor of 
around 5 (depending on the number of particles). 
However, it is planned to perform the sort on the 
GPU in the near future, which will accelerate the 
process significantly. 

4.4  Multiphase fluid-granular flow 

Multiphase flows are of particular importance in 
many industrial processes, and provide a wealth of 
detailed physical behaviour of particular interest. 
In order to extract the maximum amount of 
information from a coupled CFD-DEM simulation, 
it is essential to be able to visualize the computed 
results in an appropriate manner. The ability to 
superimpose different visual results produced from 
different input datasets is essential in this context.  
 
An example of the visualization of coupled fluid-
granular flow is presented in Fig. 11 for the 
sprouted bed. To view simultaneously the fluid and 
granular flows, transparency is applied to the 
continuum fluid results. This figure shows clearly 
the interaction between the granular material and 
the fluid flow, which results in the production of a 
characteristic fountain at the centre of the channel. 
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Figure 11 : Coupled fluid-granular flow in a 
sprouted bed (coloured by velocity). 

5. Conclusions 
The present study has presented a library-based 
software approach to the visualization of DEM 
simulation results. It has been demonstrated that 
such an approach provides both the flexibility and 
performance required to enable detailed interactive 
visualization of large hybrid datasets. 
 
A number of novel methods, implemented into the 
widely-used open-source software ParaView, have 
been illustrated in this paper. Contrary to 
conventional triangulated glyphs, the use of GPU-
accelerated primitives for the particle 
representation enables the interactive rendering of 
the order of one million particles on a standard 
desktop workstation. Delaunay triangulation of the 
3D particle data produces a representation that can 
be used as a basis for standard continuum 
visualization techniques (e.g. contour plots, cross-
sectional cuts, streamlines). Transparency 
rendering enables features hidden within dense 
granular flows to be elucidated. 
 
The application of these advanced visualization 
techniques opens new avenues in the analysis of 
DEM simulation results for large-scale industrial 
problems. 
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