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The idea that snow avalanches might behave as granular flows, and thus be described as
Coulomb fluid flows, came up very early in the scientific study of avalanches, but it is not
until recently that field evidence has been provided that demonstrates the reliability of
this idea. This paper aims to specify the bulk frictional behaviour of snow avalanches by
seeking a universal friction law. Since the bulk friction coefficient cannot be measured
directly in the field, the friction coefficient must be calibrated by adjusting the model
outputs to closely match the recorded data. Field data are readily available but are of
poor quality and accuracy. We used Bayesian inference techniques to specify the model
uncertainty relative to data uncertainty and to robustly and efficiently solve the inverse
problem. A sample of 173 events taken from seven paths in the French Alps was used.
The first analysis showed that the friction coefficient behaved as a random variable with
a smooth and bell-shaped empirical distribution function. Evidence was provided that
the friction coefficient varied with the avalanche volume, but any attempt to adjust a
one-to-one relationship relating friction to volume produced residual errors that could be
as large as three times the maximum uncertainty of field data. A tentative universal
friction law is proposed: the friction coefficient is a random variable, the distribution of
which can be approximated by a normal distribution with a volume-dependent mean.

Keywords: snow avalanche; Monte Carlo simulations; Bayesian inference;
Coulomb model

1. Introduction

This paper is concerned with the probabilistic calibration of an avalanche
dynamics model. The objective of probabilistic calibration is to predetermine the
dynamic features (e.g. the velocity, impact pressure and geometry) of extreme
avalanches for various land-use planning and engineering applications, including
avalanche zoning and mitigation. Although snow avalanches are complex
phenomena involving varied processes from snowfall to snow friction, there is
growing evidence that their chief dynamic features can be described by using
simple deterministic models (Hutter 1996).

In the earliest developments of the scientific study of avalanches in the 1920s,
the French forest engineer Mougin (1922) suggested using a sliding block to
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model the avalanche motion. Assuming that the block experiences a Coulomb
frictional force, he was able to compute the maximum velocity reached by the
avalanche and the point of furthest reach. The idea was further used in a few
engineering applications, but the question of how to adjust the friction coefficient
remained open at that time. Since then, different models of the frictional force
have been proposed but most of them include a velocity-dependent contribution
plus a constant term that can be interpreted as a Coulomb frictional contribution
or a yield stress. Despite various attempts to find physical justifications for their
expressions, these models remain speculative and suffer from lack of testing with
field data.

The interest in the Coulomb model for describing avalanches and debris flows
has been renewed recently (Iverson & Denlinger 2001; Tai et al. 2001). Dent
(1993) argued that in snow avalanches, shear should occur in a thin layer at the
avalanche base and that this behaviour is close to that observed in a granular
flow down a smooth surface. Savage & Hutter (1989, 1991), Hutter et al. (1995)
and Pudasaini & Hutter (2003) thoroughly studied the motion of a finite mass of
grains along curved and smooth chutes in the laboratory and showed that
including a basal Coulomb friction as bottom shear stress in depth-averaged
equations makes it possible to describe the behaviour of granular avalanches for a
wide range of flow conditions (see Hutter et al. 2003; Pudasaini & Hutter 2003 for
a recent review on this theory).

Ancey & Meunier (2004) performed a back analysis on 15 well-documented
avalanches by inferring the bulk frictional force from avalanche velocity. They
found that for 11 events, the Coulomb model provided a fairly good description
of the velocity variations along the path profile. Gubler (1993) took
measurements on real avalanches by using a Doppler radar. He found that the
velocity profile inside the observed avalanches exhibited a plug flow (constant-
velocity zone) and a sheared zone at the bottom, clearly revealing that there was
shear localization at the bottom. These experimental results provided evidence
that the bulk rheological behaviour of flowing avalanches can be described by
using the Coulomb model, which makes it possible to use granular-flow theories
such as the Savage & Hutter (1989) theory in engineering applications. This
would be a real breakthrough given the speculative character of current
avalanche dynamics models. Indeed, the ad hoc character of the rheological
equations used in these models is considered the main deficiency of the
mechanical approach.

For the Savage-Hutter theory to be of practical interest in engineering, the
Coulomb friction coefficient must be specified. There is no means of measuring
the friction coefficient for real avalanches, so field data and calibration techniques
must be used to determine it. As for any model calibration, questions emerge
regarding (i) the nature of the parameter to be fitted, (ii) the proper selection of
the calibration technique and (iii) the universality of the adjustment, as follows.

(i) The fact that a variable cannot be measured directly and physically leads to
questioning whether the variable reflects a physical process or merely an
abstract conceptual picture of reality. This is crucial since the variation
range of the parameter must be specified or checked. For instance, a friction
coefficient u=2 is questionable if the coefficient has a physical meaning
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because it outweighs the upper bound of possible values, but it may be

acceptable from a conceptual viewpoint.

(ii) Determining the friction coefficient from field data basically involves solving
an inverse problem. An inverse problem groups different mathematical
issues to invert a relationship in the form Y = %(X), where Y is a model
output or parameter that can be measured, X is a model input or an internal
variable that is not known and & is a functional. Different approaches to
solving this problem can be applied, as follows.

— Deterministic methods try to find a solution in the form X = F1(Y), but
difficult theoretical and numerical issues are usually encountered:
existence, uniqueness and stability of the solution are rarely ensured in
physical problems. These problems are usually exacerbated when
numerical schemes induce discretization errors or when observed data
Y are noisy.

— Stochastic methods are a second family of techniques which attempt to
find X by a trial-and-error procedure: guessed values (X,) of X are
randomly generated and then tested and selected so that F(X,,) converges
to Y. Stability is enforced since X is determined without making use of
F~1 but other difficulties such as slow convergence can arise. Stochastic
methods are particularly useful when data are noisy and uncertain, which
is the case in the available avalanche data.

(iii) We stress that a model is statistically admissible if its residual error, namely
the difference between the observed and computed values, lies below the
datum uncertainty. If a model parameter has a physical meaning, similar
experiments or events must lead to the same value (to the model precision)
when measuring and calibrating it. Alternatively, there is no clear reason to
expect universality if a variable is only conceptual. For instance, if a model
is calibrated for a given site, it is unlikely that it holds true for another site
without further calibration.

This paper begins by presenting the equations of motion used to model
avalanche motion and the probabilistic methods needed for determining the
friction coefficient (§2); this paper extensively uses Bayes’ theorem and inference
techniques (Brooks 1998; D’Agostini 2003). The raw data and the preliminary
treatment (path profile regularization) is presented in §3 and we test different
assumptions regarding the friction coefficient in §4. We show that this coefficient
behaves as a continuous random variable dependent on avalanche volume.
Further analysis reveals that the friction coefficient may depend on other
parameters, but, in the absence of data corroboration, a probabilistic description
of friction depending on volume can be proposed.

2. Methods

(a) Equations of motion

In most current numerical simulations, snow avalanches are modelled by using
the shallow-flow approximation (Brugnot & Pochat 1981; Eglit 1983; Bartelt
et al. 1999; Barbolini et al. 2000). Although these recent developments are
undoubtedly a promising approach in modelling snow avalanches, their level of
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sophistication contrasts with the crude current knowledge of snow rheology
and avalanche physics as well as the poor quality of available field data. Since
this investigation is a preliminary step towards the determination of the
frictional coefficient, we restrict ourselves to a simplified model that requires
less computational effort and time: the sliding-block model. Despite its
simplistic character, this model successfully describes the main characteristics
of flowing granular mass, as shown by laboratory experiments of Iverson et al.
(in press) and by the back-analysis from field data produced by Ancey &
Meunier (2004).

Here, an avalanche will be considered a slender sliding rigid body of volume V
and mass m. The following assumptions are made.

(i) The variations in body shape are ignored as a first approximation (Al).

(ii) The body is assumed to move along a curvilinear two-dimensional profile
(A2) of which an equation in a Cartesian frame takes the form y=f(z),
where y is the elevation and z is an arbitrary distance measured along a
horizontal axis.

(iii) There is no significant lateral spreading of the mass (A3) and there is no
sudden kink in the avalanche trajectory (A4).

(iv) The longitudinal profile is a smooth and gently varying curve (Ab).
Basically, this means that the curvature radius R is at least as large as the
typical length-scale L of the flow or larger: R~ L or R> L.

(v) The sliding body experiences a Coulomb frictional force, that is, the normal
and tangential components of the frictional force F,, and F; are linearly
dependent: Fi=puF,, where u is the Coulomb friction coefficient.

(vi) The avalanching material is of finite and constant mass.

The position of the centre of mass is given by its curvilinear abscissa
E= [y 1+ f2(2/)da’ (where f, is the a-derivative of f). Therefore, we have
rz=£&cos §, with 6 being the mean path inclination computed over the
interval [0, z]. The ordinate of the centre of mass (relative to the curve f) is
denoted by 7. In the natural basis (e;, e;) associated with the curvilinear
coordinates (£, ), the contravariant components of the velocity vector are
denoted by (u!, u®)=(d¢/dt, dn/dt) and its physical components are given
by (v, u)=(1—n/R)uV, u?) (Sedov 1975). The contravariant com-
ponents of acceleration in the natural basis are

2 2
o0 =9 <d§> +or, Edn <d"> ,

de dt 2°q¢ dt dt
d*n dg\? d¢ dn dn\’
2 = = or? I3
¢ dt2+ (dt) Tl gy T\ )

where I'%. are the Christoffel symbols. Because the natural basis is orthogonal,
the Christoffel coefficients are zero, except for 1"12—1"21——0/(1—017)
I’ =C(1—Cn) and TH:—n(dC/dS)/(l—Cn) where C=1/R is the
curvature. The velocity in the £-direction is u= u<1>=(1—nC)dE /dt; assump-
tions Al and A2 imply that n is fairly constant and the velocity u? in
the n-direction is close to zero. The downward and normal components of
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the momentum equation can be expressed in the physical curvilinear basis as

2 42 dR (d£\? K
(-3 g () —omoe -1 Y
1 (dE\® _ F,
_R—n<5> = gcosﬁ(§)+ﬁ. (2:2)

The first term on the left-hand side of equation (2.1) represents the downward
component of the acceleration, while the second term reflects radial effect due to
the curvature of the path profile. The first contribution on the right-hand side of
equation (2.1) is the driving action of gravity, while the second term stands for
the frictional force exerted by the bottom (ground or snowcover) of the
avalanche. Using the Coulomb model Fy=uF,, we expand the equations of
motion with respect to the small parameter e=n/R and neglect terms of the
order of ¢ and higher degrees. Therefore, the equations of motion can be
simplified into

d de\?
d_ti = g cos () (tan (2) — ) + % <d—i> . (2.3)
This equation holds for the avalanche’s centre of mass, and for any other point
because of assumption Al. Notably, if #denotes the curvilinear distance between
the leading edge &; and the mass centre &, it is possible to replace & by & — £in
equation (2.3), which provides the equation governing the leading-edge
variations with time.

(b) Estimation of the probability density function of u

The equation of motion (2.3) being known, it is possible to compute the run-
out distance %y, (point of farthest reach) and its elevation ysop=flzstop) for a
given path and friction coefficient. Repeating the procedure for different values of
w makes it possible to obtain a numerical estimate of the function ., = F(u) or,
if this function is monotonically decreasing, a numerical estimate of u(ystop). The
function ysop(s) is monotonically decreasing when the path profile is
monotonically decreasing (f,<0 along the path).

We solved equation (2.3) for different values of u, usually in the range 0.2-0.7
and with an increment of 0.0025. For each increment of u, we computed the run-
out distance. The resulting array of values was then interpolated to yield either
an estimate of Ysop(s) Or U(Ystop)-

When a time-series of run-out distance has been recorded for a given path, we
can use the function u(ysop) to obtain the u values for all the recorded events. If
we are interested in determining the probability distribution of the u sample, a
common practice is binning, that is, grouping data into categories. The resulting
histogram then provides an estimate of the probability density function of u.
Here, because of the limited size of the samples, different choices of bins lead to
drastic changes in the shape of the histogram. It is thus better to use a more
refined approach. We used the approach developed by Holy (1997).

A sample (uy, i, ...,uy) of u values is available and the probability
distribution (@) that best approximates the empirical distribution of u is
sought. The candidate functions of @ belong to the space of continuous,
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normalized and positive functions, that is, Q=v? and ft//2 du=1. In addition,
@ is assumed to be smooth or, from a probabilistic viewpoint, the probability of
observing large gradients in ¢ is very small. Holy (1997) synthesized this
information by stating that the a priori distribution of Q(P[Q)]) is

— [due?

17“2 5<1 — Jﬁ d#>,

2(9,¥)

where Z is a normalization factor, ¢ is a free parameter controlling the
smoothness of the distribution and ¢ is the Dirac function. Applying Bayes’

theorem enables us to consider the data in order to improve the knowledge of the
distribution @,

1

Ply] = - XP

P[lu“lnu'Qvnu“N|Q]P[Q]
P[:ulnub’”muN]

P[Q|:u1a:u“27 "'HU“N] =

9

where P[Q|u1, 1o, ..., uy] is the a posteriori probability of @ given the data,

Py, oy .oy | Q= W2 (w2 (o). (uy) is the likelihood of the data
(1, Mo, ..., uy )—knowing the distribution @—and the denominator is a normal-

ization factor, Plu;, o, ..., uy] = [dQP[Q]Q(1y)...Q(uy). We then obtain
P[Q':ulnu% -"nuN] *x e_S[w](S(l - J¢2 d:u’)a

where S is the functional

2

s=| (%(cw 2y Y il - m)) du.

The most likely distribution, given the data, is the function that minimizes the
functional S. It can be shown that the solution @ has the form (Holy 1997)

J= \/5 — VRS ae

where /<2=2A/ #, with A being a Lagrange multiplier that must be adjusted to
enforce the normality of @ and a;(1<i<N) are coefficients. The Lagrange
multiplier A and the coefficients a,; are solutions of the system of N+1 equations

20a; 3 ap e Rl =1 fori=1,....N,

N o (2.4)
T ; aanlu; — pile T =1,

The free parameter £ controls the penalty supported by large gradients in ().
Better agreement is obtained when a ‘small’ value of £is chosen, but in this case,
the solution may be widely oscillating. By contrast, the best smoothness is
produced when a relatively ‘large’ value of £is used, but the resulting function
may poorly represent the data.
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Figure 1. Variation in the friction coefficient u as a function of the snow avalanche volume V.
The solid line represents the exponential curve ,u,=0.6950_<v/ 106 925); the dashed line represents

the power-law curve pu=1.07V"%%. and the long-dashed curve represents the function
w=0.555/(0.814+ (/68 883)"*%). The three curves were fitted using the least-square methods.
(Data (dots) from Ancey & Meunier 2004).

(¢) Seeking the dependence of uw on V

In their rheological back-analysis of 15 well-documented snow avalanches,
Ancey & Meunier (2004) showed that in many cases, the snow avalanche motion
can be modelled with the Coulomb sliding-block model. By adjusting the u value
for the computed run-out distance to match the recorded value, the velocity
variations along the path profile can be fairly well described over a large part of
the path. Figure 1 reports the adjusted value of the friction coefficient u as a
function of the snow volume involved in the avalanche for the 11 events that
were considered by Ancey & Meunier (2004) to reach a Coulomb regime. The
plot seems to imply a reduction of the friction coefficient u with growing volume
V, which is similar to that observed for other geophysical mass flows (Savage
1989; Legros 2002). It is attractive to quantify this decrease by adjusting a curve
through the points, but as shown in figure 1 with three curves, the data
scattering is too significant and the volume range is too limited (two orders of
magnitude) to deduce the most suitable trend.

Additional field data should provide better insight into the possible
dependence of u on volume. A major difficulty in considering additional data
comes from their large uncertainty.

(i) Snow is a compressible material; typically, the ratio between the released
and deposited snow densities can be as high as three.

(ii) In most cases, the deposited volume is estimated by the naked eye by
evaluating a typical length, depth and width in the field. Depending on
the topography, relative errors exceeding 100% may be induced when using
this crude estimation technique.

(iii) Significant uncertainty is also met when estimating the run-out distance
(see §4a).
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With such prerequisites, attention must be paid to data uncertainty.
A deterministic method such as the least-square method is not sufficient to
fully address the problem; hence the need for using more elaborate techniques.
The Bayesian approach offers an interesting way of investigating both possible
dependences of u on V and the induced error in adjusting a curve to field data
(D’Agostini 2003). Let us now formulate our problem in the following way.

(i) There are errors introduced by model approximations, as well as errors in
estimating the run-out distance and avalanche volume. We assume that
both error sources can be addressed using a single error parameter. We then
introduce the deviation & between the computed (ysop) and recorded (y°"%)
run-out elevations: e= 1" — Ystop-

(ii) We further assume that ¢ is a random realization from a normal distribution
of mean 0 and unknown variance ¢ : e — 711(0, ). Given the volume, we
assume that there is a one-to-one correspondence between the friction
coefficient and the run-out elevation: ysop=F(u(V)).

(iii) We assume that we have an a priori idea of the u dependence on
V: u=G(V; ©), where © denotes the free-parameter set of the functional G
(e.g. for a power-law dependence), and we can express G as G=« vV ~F with
O={wa, B}.

(iv) We have a series of N events for which run-out elevations and volumes were
observed: d= (9, V™) (1< i< N). The Bayes rule allows us to update
the parameters ® with the data and to quantify the uncertainty on O,

P(d|G,0,0)P(0)P()

P(6,0]d, G) = [d6 doP(d|G,©,0)P(©)P(c)’

(2.5)

where, in the numerator, P(®) and P(g) refer to the probabilities or priors
of ® and ¢. The quantity

obs obs
V
exp § :| Yi i )‘
\V2mo

P(d|G,0,0) = HP obs Yoy @, ) =

is called the ‘likelihood’ and refers to the probability of observing the sample
d when the functional G, its parameters ® and the s.d. ¢ are known. The
denominator is a normalizing constant. Basically, the Bayes rule is an
updating process, where our knowledge of ® and ¢ is updated using the
available information d to provide the posterior distribution P(0, a|d, G).

(v) In order to obtain an estimate of the best choice for the values of ® and o,
random values are drawn from the posterior distribution P(@, a|d, G).
Finally, the best choice of (0, ) can be made by determining the modes or
the means of the posterior distribution. The marginal probability density
function of ® can be estimated by integrating the posterior probability with
respect to g, leading to an estimation of a confidence interval (credibility in
the Bayesian approach) of @. Note that the strength of the Bayesian
approach lies not only in a proper way of choosing the parameters @, but
also in a realistic assessment of the uncertainty on ® and the overall error
(combining model and observation errors) e.
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What we need now is to specify the priors P(®) and P(o) and the iterative
procedure to draw random samples from the posterior distribution P,= P(0, |G, d):

(i) Analysing the data in figure 1 suggests possible priors for ® when a function
G has been adjusted. A common assumption is to consider that the prior of ®
is a multivariate normal distribution of mean ®; and covariance matrix
X : P(O)=1N(0,, X), where the vector @, may stand for the values obtained
by adjusting the parameters @, using the data in figure 1 and the least-
square method. Similarly, ¥ may be interpreted as the asymptotic
covariance matrix determined in the regression.

(ii) Sampling from the posterior distribution P, can be carried out by using the
efficient and robust Metropolis—Hastings algorithm, which is based essentially
on Markov chain sampling and Monte Carlo simulations (MCMC simulations;
Brooks 1998; Robert 2001). We simply expose the principles of this method,
which is widely applicable and easy to implement.

The basic idea of MCMC algorithms is to introduce a probability distribution
from which sampling is straightforward, instead of directly sampling from the
posterior distribution. We refer to this distribution as the instrumental
distribution ¢. We will generate random samples from ¢, and explore the
probability space of the posterior distribution; ¢ is then a transition probability,
which is used to move from a probability state of P, to another one. Iterating the
procedure leads to a sample of values, the empirical probability distribution of
which is close to P,. In practice, the following steps are performed.

(i) Given a current state X,=z, draw a candidate value y" from the
instrumental distribution ¢(y|z).
(ii) Define the acceptance rate r as

[ B 1] o B >o

1, it Py(«)g(aly’) = 0.

(2.6)

(iii) Accept the value y_with probability r, i.e. draw a random value u from the
uniform distribution U[0, 1]. If r<wu, accept y,_ and set X,,,1=y"; otherwise
reject it and set X,,+1=X,,.

(iv) Repeat the procedure.

Central to ensuring the efficiency of MCMC simulations lies in the
proper selection of an instrumental distribution. Here, we have adopted
the random-walk version of Metropolis—Hastings algorithm (Robert 2001),
which involves selecting a symmetric probability distribution ¢=¢(|z—1y]).
This choice leads to simplifying the expression of the acceptance rate r in
(2.6): r=min[1, P,(y")/Py(z)]. Convergence of the empirical distribution of (X,,)
towards P, is ensured here because of the exponential decrease of the tail of P,.
A common choice is to take an uncorrelated, multivariate, normal distribution
with a tuneable covariance matrix p, ¢(-|z) : y< 1(z,p). The scale matrix p
must be tuned such that there is a trade-off between the acceptance rate and the
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ability of the algorithm to fully explore the probability space. An accepted
procedure for this algorithm version is to adjust p such that the acceptance rate r
falls in the range of 0.25-0.5. Choosing an uncorrelated distribution ¢ (i.e. p is a
diagonal matrix) makes it possible to adjust the acceptance rate for each
component of the vector (X,,).

In summary, we are looking for a nonlinear dependence of the friction
coefficient u on the avalanche volume V by adjusting parametric functions
G(V|0) to field data. Assuming that we have an a priori knowledge (subjective
or based on preliminary attempts at fitting G') of the distribution probability of
0, Bayes rule (2.5) makes it possible to update this knowledge and to obtain an
estimate of the precision ¢ of the model.

(d) Least-square method revisited

Let us assume that we have a set of data M = (z;, y;) (1<i<N), and we are
interested in adjusting a straight line across the corresponding points. This is a
classical regression problem that can be solved (among other ways) by using the
least-square method. When data are scattered around the straight line, the
predictive capacity of the linear model is weak, and determining the probability of
finding a point at a given distance from the line is needed. Here, we suggest dealing
with this issue by using a Bayesian approach and conjugate distributions of the
exponential families (normal random-effects model). We first assume that the
deviation from the linear response is normally distributed: y;= a+ nx;+¢;, where
;< 1(0, o) are identically distributed random values with zero mean and variance
o®. We are trying to adjust (a, n, o) from data. Using Bayes’ rule, one obtains

Pla, n,o|M] o P[M]|a,n,c|Pla]P[n|P[o], (2.7)

where we have assumed that the variables (a, n, 0) are not correlated and P[a], P[n],
Plo] denote the prior probability distribution functions of a, n and a, respectively.
Here, we assume, without loss of generality,

a—MN(ag,0,),n—N(ng,0,),7 =0 Ga(vy,0,).

We introduced 7= 0" to simplify the computations. In the prior distributions, we
also introduced the free parameters (ag, 04, 1o, 0., Y4, 0,). The Gibbs sampler
method can be used to find the posterior probability P,= Pla, n, ¢|M]. This
technique first involves determining the full conditional probabilities of the random
variables a, n and o (Brooks 1998; Robert 2001). Here, we deduce from (2.7)

1 1 —1/2]

(32 w1020 10
a F i
RIS Sl

ny 1 1 ‘ 1 ‘
nla, 7N <U—?+?in(yi—a)> F — , 0—%+ZU—2 ,

aln, 7N

n

T|la,n— Ga

Yo +g, ((501 —I—% Z:(yi—(a+nxi))2) ]
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The Gibbs sampler algorithm operates as follows. We want to build a chain (ay,
Ny, 01), whose empirical joint distribution function converges towards P,. At the
first iteration, we initialize the values (aq, ng, 0¢) and then proceed by iteration from
kto k+1 (k>0) as follows.

i) Draw a4, from Pla|ny, 7] with 7,.=a}, 2.

ii) Draw ng41 from Pn|ag4 1, 74 s
(:ii) Draw 741 from P[7|ag4 1, ny+1] and set 0,41 = T;r{ )
(iv) Repeat the procedure.

Since the full conditional probabilities are common distributions, it is computa-
tionally straightforward to generate random samples from them.

The best-fit parameters (a, 71, ) can be deduced by taking the mean or the mode
of the generated samples (after removing the first elements, which are influenced by
the initial conditions). Finally, we obtain the deterministic linear relationship

E(y;) = a + na;,
or the full probabilistic description
y; < N(a + nx;,a).

Note that the procedure that we have presented is quite general and the
assumptions (linearity, prior selection, etc.) can be modified, usually leading to
a substantial increase in the computational efforts. Notably, leaving aside
linearity in the response and conjugate priors leads to coping with full
conditional probabilities from which it may be intricate to generate random
samples.

3. Data

(a) Raw data

To supplement the small dataset (11 data) provided by Ancey & Meunier (2004),
additional data were sought. Table 1 summarizes the origins of the 173 events and
the main features of the seven paths where events were observed. Figure 2 shows
the path profile together with the recorded run-out distances. All of the paths are
located in the northern French Alps: Tours-en-Savoie and la Gurraz are two
villages in Savoie; the other sites are situated in Haute-Savoie. Field data were
extracted from a national database (Enquéte Permanente des Avalanches). The
time-series is not complete. For example, during the two world wars, no
observation was reported. Avalanche volume was no longer measured after 1975
(even earlier for some paths). Moreover, the datum sample forms censored
observations; for an avalanche to be observed or its deposit to be visible from the
valley bottom, it must have travelled a sufficiently long distance from the starting
zone. This implies that avalanches with small run-out distances (i.e. a high
friction coefficient) could not be observed.

The database provides the run-out elevations and the typical dimensions of
the snow deposit by reporting the length L., the width W, and the deposit
thickness H,. Here, deposit volume was estimated as follows: V=(1/2)L,H, W;
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Figure 2. Regularized path profiles. Each dot represents a recorded run-out distance. (a) Saint
Clément path, (b) Gurraz path, (c¢) Scey path, (d) Saugy path, (¢) Chantey path, (f) Nants path.

the multiplicative factor of one-half is arbitrary and was introduced to reflect the
irregular cross-section of the avalanche deposits, which differs usually from a
rectangular section. Uncertainty on the run-out elevation varies with time.
As stated in §2¢, at the beginning of the twentieth century, it probably exceeded
+25m, whereas it is currently expected to be below £10m. Similarly,
uncertainty on snow volume is high. Typically, it can be as high as 100%.

(b) Path profile

For each site, the path profile was computed from a digital map. We needed
to represent the path profile as a continuous curve. Here, we used the best
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polynomial approximations of the discretized path profile; that is, the
polynomial curve that passes through the points: f(£) denotes the Nth order
polynomial approximation of the path profile, where f;(1<i<n) represent the n
discretization points of the path profile at a given set of path points &,.
Using orthogonality properties of Legendre polynomials, one writes the
polynomial f(£) as f(£)=3,auPu(r), O0<E<N, where P(&)=rd"(r*—
1)*/dé* is the normalized Legendre polynomial of order k, defined over the domain
[—1,1]); v, = V2k + 1/(2"k!\/2) is the normalizing factor; and is the scaled variable
defined by 7(§)=(25—(&1+¢&,))/(5,—&1). The coefficients «; are determined
using the least-square method, that is, by minimizing the functional
J=S30—Sp o Pe(r)? 4+ AL(f), where L(f)=(3.f (§))? is a discretized
regularization operator and the Lagrange multiplier A must be tuned such that there
is a good compromise between agreement and smoothness. For most paths, it is possible
to obtain accurate approximations of the path profile by setting N=8 and A=10"".

4. Results

(a) Probability distribution function of u

For each event, we computed the friction coefficient u by numerically solving the
equation F(u)=1"". We then gathered the values related to the same path to
compute the empirical probability distribution using the method described in §2b.
This procedure is purely deterministic and does not take into account the uncertainty
of observed run-out distances. To evaluate the sensitivity of our results to
measurement errors, we randomly perturbed the recorded values and determined
the u values related to these perturbed samples. We found that there was no
substantial difference in the curve shape, which led us to conclude that there is
a certain structural stability of the u distribution function against error
measurement.

Figure 3 shows the empirical distribution functions of the u sample for each
path (thin lines) and for the total sample (thick line). The curves are bell-shaped
with a peak at u.=0.5. This bell shape is not surprising because the observations
were censored at large u values and there are little data at low u values (related
to extreme and rare avalanches). However, note that for other frictional laws, the
probability distribution of the friction coefficient can be significantly modified;
for instance, Ancey et al. (2003) studied the inverse problem for the Voellmy-like
model, in which the frictional force is expressed in the form umg+ Av? (Coulomb
frictional contribution+ turbulent-like term, with A another frictional coeffi-
cient) and did not find a smooth distribution for u given that u behaved as a
discrete random rather than a continuous variable.

A closer look at figure 3 shows that there is a substantial variation in the peak
position for paths taken individually: u. lies in the range of 0.46-0.60. Because it
is unlikely that measurement errors can induce such a deviation between the
distribution functions, we conclude that no universal probability distribution
exists for the friction parameter u. Physically, this shortcoming is expected
because, clearly, different parameters such as snow consistency and avalanche
volume can significantly influence avalanche mobility.
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Figure 3. Empirical distribution functions of the 173 u values collected from the 7 paths, deduced
by using the kernel representation of §2b. The thick line represents the distribution function of the
total sample whereas the thin lines are related to individual paths. Each curve has been split into
three parts: the central part (solid line) corresponds to the range of computed u values, while the
end parts have been extrapolated. Computations have been made with k=5. pdf: Probability
density function.

(b) Looking for an average dependence of u on V

Based on the preliminary analysis (see figure 1) and the results of the previous
section, we will now investigate the V dependence of u by using the methodology

described in §2c. We have a set of data d = (VQ>, 122), where y;; means the ith
recorded elevation of path k(1<k<T7). For each path, we computed a
relationship linking the run-out distance and the friction coefficient by solving
equation (2.3): ysop=F" (). We then tried to adjust a parametric function
u=G(V|O®) such that the deviations between the observed and recorded run-out
elevations are minimized. We were also interested in determining the uncertainty
on the parameters ® as well as the model precision; that is, the s.d. ¢ of
the mismatch e, = 32" — F®(G(V,|@)). We tested a two-parameter function
(exponential model Go(V)=ae ""). A four-parameter model, the power-law
model G4(V)=a(b+ (v/c)") "', was also tested, but we found that increasing the
number of parameters did not enhance the model precision.

Table 2 provides the estimates of the best-fit parameters of @ =(a, n) for the
exponential law and indicates the model precision ¢ when all the data are
considered; individual results for each path are also provided. Figure 4 displays
the histograms of a, n and ¢ built from the values obtained by the MCMC
simulations. Apart from n, the distribution of which is bimodal and non-
symmetric, parameter o and precision ¢ can be described by a normal
distribution. Note that the model accuracy is low; typically, if we know the
avalanche volume, then we can predict the run-out elevation to 180 m. In
comparison, given the measurement uncertainty, the worst estimate that we
expect is: e~|6,|+|F'd,|, where 6, =|0VGy(V)| is the u error related to the
volume uncertainty 6V and F’ is the sensitivity of Ysop to w variations.
Typically, for a middle-size avalanche with V=10" m® we have the following
estimates: [0y]=0(30) m (in the range 20-50m), [6v|=5x10"m* (§3a),
F’=0(2000) m (range 1000-5000m); we deduce: [ou|=0(2x10"?); and
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Table 2. Parameter estimates for the G, model

(The parameters are deduced from the MCMC computations according to the path. The upper
part of the table provides the estimates when all the data are considered together.)

a nXx10~"7 4

full datum set

mode 0.496 7.0 177

9.5

mean 0.498 7.0 189
s.d. 0.02 2.6 10
Saint-Clément 0.52 2.0 260
Gurraz 0.53 3.0 150
Saugy 0.51 4.9 208
Scey 0.62 5.5 83
Entremene 0.63 0.4 41
Nants 0.51 1.7 64
Grand Chantey 0.56 0.3 52

e~T70m. Thus, the model uncertainty substantially exceeds the expected
uncertainty due to measurement errors when all the data are considered. Better
results are achieved for Haute-Savoie paths (Scey, Entremene, Nants and Grand
Chantey), for which o lies in the range of 41-83 m (see table 2).

This shortcoming can be made clearer by plotting u as a function of the
avalanche volume (see figure 5). The points were computed by assuming that
the data d were exact and by inverting u= F_l(ystop). We have superimposed the
two parametric curves Gy and G4 on the same plot and have indicated the 95%
confidence interval. The confidence interval was built from the MCMC value
sample. The points are widely scattered and this scatter is much more
substantial than the measurement uncertainty. This explains why the residual
error of the model is so significant (nearly three times larger than the uncertainty
resulting from the measurement error). This prompts us to think that additional
parameters must be taken into account in the V dependence of u. The data
nevertheless define a trend which could be approximated by eye as a plateau
phase for volumes in the range of 10°-10° m?® (u values close to 0.5 on average)
and a slow decreasing phase for V>10° m®.

In figure 5, in spite of the data scatter, the data provided by Ancey & Meunier
(2004) lie in the upper part of the plot. Typically, when V—0, the u value
extrapolated from their data is approximately 0.68 versus 0.5 for the French
database. A reasonable explanation is that Ancey & Meunier (2004) reported
values related to monitored avalanches triggered under natural conditions or
using explosives, whereas the avalanche database includes censored observations
of naturally released avalanches, which leads to discarding avalanches
characterized by a high u value.

(¢) Normal random-effects model for u(V')

The conclusions of the last subsection prompt us to consider friction as a
random process. Instead of studying a functional dependence u= G(V'), we are
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Figure 4. Histograms of the parameters of the two-parameter model G, as well as the standard
deviation, o, of e;. Normal distributions (thick line) adjusted to each sample have been
superimposed.
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Figure 5. u as a function of the recorded avalanche volume. Dots represent events from the French
avalanche database. Boxes are the same points as those plotted in figure 1 (data from Ancey &
Meunier 2004). The thick solid line represents the exponential law G, and the dashed curves

represent the 95% interval confidence. The thin solid line stands for the power-law G, and the
dashed thin curves represent the 95% interval confidence.
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Figure 6. Histograms of (a) a, (b) n, (¢) ¢ generated by the Gibbs sampler and (d ) histogram of the
residual error ey;=ug;— Go( V;). Normal distributions (thick line) adjusted to each sample have
been superimposed.

seeking the probability P[u| V] of observing u provided the avalanche volume V
is given. To this end, we will use the normal random-effects model presented in
§2d, i.e. we assume that u <« 1(Gy(V), o), with Go(V)=ae™"". This means that
the dependence of u on V holds only on average, and the deviation from the
mean trend is normally distributed with variance . We are looking for ¢°, a and
n. To use the linear model of §2d, we first need to transform the data: (u; V;)—
(vi=—log us, V3).

The Gibbs sampler technique described in §2d was used. The results of typical
simulations are plotted in figure 6 in the form of histograms for a, n and . We
have also reported the residual error histogram ¢ = u— E(u). Table 3 collects the
parameter estimates for a, n and ¢ for the two samples: (i) data from the French
database and (ii) all the data (combining the 173 events of the French database
and the 11 events from figure 1).

Comparison with results reported in figure 4 shows few changes for parameter
a (value close to 0.50), while a significant alteration in n appears (3.22X10~°
against 7.0X 107 previously). Note the much smaller value of the s.d. for a and
n, which indicates a greater accuracy in the normal random-effects model
adjusted on (v;, V;) as compared with the model used in the previous section. The
main difference between the two models is that, in the former model, a normal
distribution of the yst(,p—yobs was assumed, whereas in the latter model, the
normal distribution assumption concerns the friction coefficient u.

In the normal random-effects model, the deviation e = u — E(u) is assumed to
be normally distributed. The panel on the bottom-right quarter of figure 6 shows
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Table 3. Gibb estimates for the Gy model

(The estimates were deduced using the Gibbs sampler method when (i) data from the French
database are included and (ii) all the data are considered.)

a n ag
(i) French database
mode 0.516 3.22x10° "7 0.158
mean 0.519 3.36 X107 0.158
s.d. 6.95X1073 7.56x107° 7.69%x1073
(i) all data
mode 0.526 3.44%10°7 0.162
mean 0.525 3.62X107"7 0.163
s.d. 6.91x1073 7.78%107° 7.71%x1073

a more complex empirical distribution, exhibiting two peaks asymmetrically
positioned on each side of 0 and a flat asymmetric tail extending over the interval
[—0.2,0.15]. The normal distribution is only a crude approximation of the
empirical distribution.

Figure 7 displays the function G, adjusted on either sample as well as the u
data. The curves corresponding to quantiles 0.05 and 0.95 have been
superimposed. Compared with figure 5, the average trend seems to describe
the observed behaviour reasonably well, in spite of the scatter. Although the
residual error ¢ is not normally distributed, it is seen that almost all the data lie
within the quantile bounds, indicating that approximating Ple] as a normal
distribution 71(0, ) provides realistic results concerning the extreme values (i.e.
values far away from the mean average).

The major drawback in using the model N[E(u(V)),o] to describe the
dependence u( V') can be identified on figure 7. For very large avalanche volumes
(V>5x%10°m®), negative values of u can be generated, which is meaningless
from a physical viewpoint. Furthermore, for V>5X10"m® the friction
coefficient comes very close to zero, which also seems unrealistic. However, at
present, there is no historical information in the Alps concerning huge avalanches
with such a snow volume. A refinement of the model would be to include a
volume-dependence variance, for instance u < 1(Gy(V),a(V)), with Go(V)=
ae” "V and o(V)=d'e” ™", where o’ and n’ are two additional parameters to be
determined. Another criticism is that both intrinsic friction variability and
model error are included in the probability distribution Plu|V].

5. Concluding remarks

Different authors have put forward the idea that snow avalanches and debris
flows might behave as granular flows and thus be described as Coulomb fluids.
Such an idea has recently received partial support from a back analysis
performed by Ancey & Meunier (2004) on well-documented snow avalanches and
the intermediate-scale outdoor experiments on debris flows performed by
Denlinger & Iverson (2001). This work offers interesting perspectives,
especially concerning the use of sophisticated and robust theories such as the
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Figure 7. u as a function of the recorded avalanche volume. Dots represent events from the French
avalanche database. Boxes are the same points as those plotted in figure 1. The bold solid line
represents the exponential law G, when all the data are used in the adjustment; the dashed curves
represent the quantiles associated with a probability of 0.05 or 0.95; the thin solid line represents
the power-law Gy (the dashed thin curves represent the 0.05 and 0.95 quantiles) when only the
French database is used.

Savage-Hutter model to predetermine the behaviour of large avalanches. For
this purpose, a better knowledge of the friction coefficient u is required.

The objective of this paper was to calibrate the friction coefficient u for snow
avalanches. Because u cannot generally be directly measured for real avalanches,
an inverse problem must be solved, which involves determining u for the
Coulomb model outputs to match with field data. A major difficulty was that
most field data available from different sources (in Europe) are inaccurate,
making any attempt at fitting u by using common adjustment methods difficult.
Therefore, it was crucial to address the issue of data uncertainty. For the
calibration work to be meaningful, it is also necessary to test the universality of
the calibrated values; if it turns out that u values significantly differ among
avalanche paths, we can assume that the adjusted friction coefficient includes
other effects than friction. This then leads to the question of the universality of
the calibrated values and the interest of the Coulomb model to predetermine
avalanche behaviour for any site.

The first hypothesis tested in this paper was to consider u as an independent
random variable. A sample of 173 events was used. It was found that the overall
empirical distribution function of this sample was smooth and bell-shaped; its
shape showed a slight dependence on the avalanche path. However, the
variations in the distribution function of u remained larger than data uncertainty
for the Coulomb model. This suggests that u depends on other parameters such
as avalanche volume and snow property.

The second hypothesis was the possibility of a one-to-one correspondence
between friction and avalanche volume. Adjusting different parametric functions
u=G(V) produced residual errors between the computed and observed run-out
elevations that were, on average, three times as large as the uncertainty on field
data. Therefore, additional variables should affect this relationship. We then
opted for a probabilistic description of u for a given avalanche volume, and
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assumed that the probability of observing p conditionally to V was in the form
Plu|V]=N(ae ", 7).

It is too early to offer predictions about the universality of such a description,
notably because the data that were used in this investigation were censored
(avalanches with short run-out distance discarded) and the sample size was
small. However, its relevance for engineering purposes is certain. A number of
practical problems involve determining the 100 year old avalanche. If the period
of return is defined in terms of the probability of observing an avalanche volume,
then it is possible to obtain the bounds within which the run-out distance must
lie for any long return-period avalanches. Indeed, the avalanche volume can be
estimated, at least roughly, from snowfalls, whose probability distribution can be
approximated by a generalized extreme value distribution (Coles 2001). Thus, it
is possible to estimate the snow volume involved on average in an extreme
avalanche. Then, by drawing u samples from its probability distribution, one
deduces the run-out distance, its expected mean value and the confidence
interval.

The author thanks the consulting group Toraval (France) for providing avalanche data, digital
maps, and further comments on datum quality.
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