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Abstract

A brain-computer interface (BCI) is a system that enablegrobof devices or communication with
other persons, only through cerebral activity, withouhgshuscles. The main application for BCls
is assistive technology for disabled persons. Exampledduices that can be controlled by BCls
are artificial limbs, spelling devices, or environment cohsystems.

BCI research has seen renewed interest in recent yearst bhad been convincingly shown
that communication via a BCI is in principle feasible. Howgwpresent day systems still have
shortcomings that prevent their widespread applicatiompadrt, these shortcomings are caused by
limitations in the functionality of the pattern recogniti@lgorithms used for discriminating brain
signals in BCIs. Moreover, BCls are often tested exclugiveth able-bodied persons instead of
conducting tests with the target user group, namely disgiéesons.

The goal of this thesis is to extend the functionality of @attrecognition algorithms for BCI
systems and to move towards systems that are helpful foolddaisers. We discuss extensions of
linear discriminant analysis (LDA), which is a simple biiéent method for pattern recognition.
In particular, a framework from Bayesian machine learnihg, so-called evidence framework, is
applied to LDA. An algorithm is obtained that learns class#iquickly, robustly, and fully au-
tomatically. An extension of this algorithm allows to autatinally reduce the number of sensors
needed for acquisition of brain signals. More specificalig algorithm allows to perform electrode
selection. The algorithm for electrode selection is based concept known as automatic relevance
determination (ARD) in Bayesian machine learning. The st of the algorithmic development
in this thesis concerns methods for computing accuratenatts of class probabilities in LDA-
like classifiers. These probabilities are used to build a 8@t dynamically adapts the amount of
acquired data, so that a preset, approximate bound on thalglity of misclassifications is not
exceeded.

To test the algorithms described in this thesis, a BCI spedifi tailored for disabled persons is
introduced. The system uses electroencephalogram (Eg@Isiand is based on the P300 evoked
potential. Datasets recorded from five disabled and fowe-bbtied subjects are used to show that
the Bayesian version of LDA outperforms plain LDA in termsctdssification accuracy. Also, the
impact of diferent static electrode configurations on classificatiomiaay is tested. In addition,
experiments with the same datasets demonstrate that thetfahy for electrode selection is com-
putationally dficient, yields physiologically plausible results, and ims classification accuracy
over static electrode configurations. The classificatiauescy is further improved by dynamically

Vii



Viii ABSTRACT

adapting the amount of acquired data. Besides the datasstsled from disabled and able-bodied
subjects, benchmark datasets from BCIl competitions akktosghow that the algorithms discussed
in this thesis are competitive with state-of-the-art eteencephalogram (EEG) classification algo-
rithms.

While the experiments in this thesis are uniquely performit P300 datasets, the presented
algorithms might also be useful for other types of BCI systdrased on the EEG. This is the case
because functionalities such as robust and automatic datigu of classifiers, electrode selection,
and estimation of class probabilities are useful in many B@tems. Seen from a more general
point of view, many applications that rely on the classifimatof cerebral activity could possibly
benefit from the methods developed in this thesis. Among titenpial applications are interrog-
ative polygraphy (“lie detection”) and clinical applicatis, for example coma outcome prognosis
and depth of anesthesia monitoring.

Keywords

Brain-Computer Interface, Disabled Users, Assistive Tietbgy, Electroencephalogram, Evoked
Potentials, P300, Bayesian Machine Learning, Linear isoant Analysis, Evidence Framework,
Automatic Relevance Determination
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Un interface cerveau-ordinateur (ICO) est un systéme gumeela commande de dispositifs ou
la communication avec autres personnes, par I'activitébréte seule, sans employer des mus-
cles. Lapplication principale des ICO est la technologssistive pour personnes handicapées.
Des exemples de dispositifs pouvant étre commandés par@Qrsd@t les membres artificiels, les
dispositifs pour épeler, ou les systémes de contrble denmement.

Pendant les derniéres années la recherche sur les ICO & €irgiérét de beaucoup des cher-
cheurs, et il a été montré de facon convaincante que la coioatiom par le biais d'un ICO est en
principe faisable. Cependant, les systémes actuels gjaiursudes imperfections qui empéchent
une application répandue. Ces imperfections sont prowesjaga partie par des limitations dans la
fonctionnalité des algorithmes de reconnaissance de foutiésés dans les ICO pour distinguer
differentes types des signaux cérébraux. En outre, les ICO covetrgt testés exclusivement avec
des sujets sains alors gu'il conviendrait de le faire avegrdeipe d'utilisateurs ciblé, a savoir des
personnes handicapées.

Le but de cette thése est d'améliorer la fonctionnalité dgsrishmes de reconnaissance de
formes pour les ICO et de rendre a des systéemes utiles pouttitiesteurs handicapés. Nous dis-
cutons des extensions de “linear discriminant analysi€JA}, qui est une méthode simple mais
efficace pour la reconnaissance de formes. En particulier, ethoae bayésienne pour la re-
connaissance de formes, le “evidence framework”, est gypla LDA. L'algorithme obtenu par
I'application de cette methode permet un apprentissagdaambuste, et entierement automatique.
Une extension de cet algorithme permet de réduire auton®atignt le nombre d’'éelectrodes reg-
uises pour I'acquisition des signaux cérébraux. Plus §géement, I'algorithme permet de sélec-
tionner les electrodes importantes pour la classificalitalgorithme pour cette selection des elec-
trodes est basé sur un concept connu en tant que “automiatiamee determination” (ARD) dans
la reconnaissance de formes bayésienne. La derniére gartiéveloppement algorithmique dans
cette theése porte sur des méthodes pour calculer précista@mnobabilités de classe dans des clas-
sificateurs comme LDA. Ces probabilités sont employées dan€O qui adapte dynamiquement
la quantité de données acquises, de sorte qu’une limitéglégr, approximative sur la probabilité
de fausse classifications ne soit pas franchie.

Pour tester les algorithmes décrits dans cette thése, unspge@fiquement adapté pour les
personnes handicapées est présenté. Le systéme utilis@gdasx de I'électroencéphalogramme
(EEG) et est basé sur le potentiel évoqué P300. Des donnémgstreées de cing sujets handicapés

iX
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et de guatre sujets sains sont utilisées pour montrer queréion bayésienne de LDA surpasse le
LDA simple en termes de qualité de classification. En outiraphct de diférentes configurations
statiques d’électrodes sur cette qualité de classifica#brexaminée. Des expériences ultérieures
avec les mémes données démontrent que I'algorithme pohoier d’électrodes estfcace, que les
résultats sont physiologiquement plausibles, et que lit§uke classification est améliorée par rap-
port a des configurations statiques d’'électrodes. La @udditclassification est encore améliorée par
'adaptation dynamique de la quantité de données acquidese les données acquises des sujets
handicapés et sains, des données de concours ICO sordagifiur prouver que les algorithmes
discutés dans cette thése sont concurrentiels avec deghatyes “état de I'art”.

Quoique les expériences dans cette thése soient uniquentmitées avec des données P300,
les algorithmes présentés pourraient également étres ytdar d’autres types de ICO basés sur
'EEG. C’est le cas parce que fonctionnalités telles quepiantissage robuste et automatique de
classificateurs, le choix d’électrodes, et le calcul debabdités de classe sont utiles dans beau-
coup des systémes ICO. D’un point de vue général, beaucagpliations qui se fondent sur la
classification de 'activité cérébrale peuvent probablentieer bénéfice des méthodes développées
dans cette these. Parmi les applications potentielleascitpolygraphie interrogative (“détection
des mensonges”) et des applications cliniques telles quexgnple le pronostic de coma et la
surveillance de profondeur d’anesthésie.

Mots-Clés

Interface Cerveau-Ordinateur, Utilisateurs Handicap@eshnologie Assistive, Electroencéphalo-
gramme, Potentiel Evoqué, P300, Reconnaissance De ForayEsiBnne, Linear Discriminant
Analysis, Evidence Framework, Automatic Relevance Deiteaition
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Introduction

1.1 Motivation

The ability to communicate with other persons, be it throsghech, gesturing, or writing, is one
of the main factors making the life of any human being enjtgzaBommunication is at the basis of
human development, makes it possible to express ideasesieand feelings, and on a more ordi-
nary level simply allows to cope with daily life. Individwabufering from the so-called locked-in
syndrome do not have the above mentioned communicatioribfies. The locked-in syndrome
is a condition in which patients are fully conscious and @a@frwhat is happening in their envi-
ronment but are not able to communicate or move. In fact, dbkdd-in syndrome is caused by
a nearly total loss of control over the voluntary muscles. igedse that is known to lead to the
locked-in syndrome is amyotrophic lateral sclerosis (AL&83%o0 known as Lou Gehrig’s disease.
ALS is a progressive, neurodegenerative disease and iaatbared by the death of motor neurons
which in turn leads to the loss of control over voluntary niesc Besides ALS also multiple scle-
rosis, stroke or other cerebrovascular incidents leadirthd infarction or degeneration of parts of
the brain can cause the locked-in syndrome. Clearly, thétyad live of persons &ected by the
locked-in syndrome is strongly diminished by the lack ofgibiities to communicate with other
persons and by the complete loss of autonomy.

A promising means to give back basic communication atslitied a small degree of autonomy
to locked-in persons are brain-computer interfaces (Bdlkg idea underlying BCls is to measure
electric, magnetic, or other physical manifestations @irbractivity and to translate these into
commands for a computer or other devices. More specifidhdyidea underlying BCls is to detect
patterns of brain activity and to link these patterns to c@mds executed by a computer or other
devices. Prototype systems allow for example to choose slgfitom an alphabet by concentrating
on specific mental tasks or to move artificial limbs, solelyiropgining movements.

1



2 CHAPTER 1. INTRODUCTION

Basic research on BCI systems commenced in the early 197@kas seen renewed interest in
recent years. While increases in computing power and adgancmeasurement technology have
led to a large variety of proof-of-concept systems, nonéhefdystems described in the scientific
literature is suited for daily use by disabled persons. Thidue to the fact that the technology
underlying BCls is not yet mature enough for usage out ofdberatory. The main motivation for
the research described in this thesis is to provide advandeshnology which will lead to BCI
systems featuring a performance beyond mere proof-ofeguirgystems.

1.2 Focus of the Thesis

Taking a closer look at the research area of brain-compaoterfaces, one observes that a whole
panoply of diferent systems exists. The general term brain-computeffaoee (or brain-machine
interface) includes not only systems in which signals frdma brain are recorded and analyzed
but also systems in which signals are fed into the brain. Adgexample for the latter type of
systems is given by cochlear implants, i.e. devices thastoam sounds from the environment into
electrical impulses which are in turn used to directly stael auditory nerves. Another example
is given by retinal implants which can transform light intiearical impulses which in turn are
used to stimulate nerve cells in the retina of blind persdvikile cochlear implants are a relatively
mature technology that is already used by thousands ofrpatiectinal implants are still under
development.

Systems that directly stimulate nerve cells are by defimitvasive which means that a surgical
procedure is necessary to implant the device under queSttmtype of systems that is of interest
in this thesis, namely systems which record and analyzetsidrom the brain, can be invasive or
noninvasive. Invasive systems, such as for example sysieing microelectrode arrays implanted
in the motor cortex, have the advantage that the recordedlsitpave a high signal-to-noise ratio
and that useful information can be extracted relativelylg&®m the signals. As a consequence,
demanding applications such as for example the three-diimeal control of artificial limbs can be
realized with invasive systems. Noninvasive systems orctimrary have the big advantage that
potentially risky surgical procedures are unnecessaris dtivantage, however, comes at the cost
of decreased signal-to-noise ratio. Hence, the signalsrded with noninvasive approaches are
often more dificult to analyze than those recorded with invasive appraache

A particularly popular noninvasive method that allows tcasigre electric potentials of the brain
at a temporal resolution on the order of milliseconds is teetmencephalogram (EEG). This mea-
surement method is popular among neuroscientists andqguysibecause modern acquisition de-
vices are relatively inexpensive and easily transportabtébecause the setup of recording sessions
takes only little time. For the same reasons, the EEG is asd in many BCI systems. Among
such BCI systems two subtypes can be discerned:

e Systems based on spontaneous activity use EEG signalsthat depend on external stimuli
and that can be influenced by concentrating on a specific irtaska An example is given by
so-called mu-rhythm BCls. In these systems feedback trgiisi used to let subjects acquire
voluntary control over the amplitude of the mu-rhythm, EEG activity in the frequency
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range of 8-12 Hz, located over the motor cortex. Changes inhyilhm amplitude are then
linked to movements of a cursor or to other commands.

e Systems based on evoked activity use EEG signals that dovdepeexternal stimuli. Par-
ticularly interesting are systems based on the P300 evasimiial. Roughly speaking, such
systems work by detecting on which stimulus out of a randoriesef stimuli the user is
concentrating. Since fierent commands or actions are linked to the stimuli, usersetect
a command simply by concentrating on the associated stgniilue neurophysiological phe-
nomenon underlying this approach is the P300 evoked pateiitie P300 is a positive peak
in the EEG that appears approximately 300 ms after the piesmm of a task-significant
stimulus in a random series of stimuli. Hence, detectingctvistimulus the user is concen-
trating on is equivalent to detecting which stimulus haskedoa P300.

Advantages of the P300 are that it is relatively well undmdtfrom a neurophysiologic point of
view and that it can be evoked robustly acros$edéent subjects. Moreover, feedback training is
not necessary in P300 based BCI systems, as the P300 appatosatically” whenever subjects
concentrate onto one out of several stimuli presented idalanorder. The latter advantage is
important when the goal is to build BCI systems for disablebjexcts who might have fliculties

in acquiring voluntary control over their brain activity.

Motivated by the aforementioned advantages, this thesisss on BCI systems based on the
P300. An important component of any such system, but alsah@frdEEG based systems, are
pattern recognition methods that allow to discriminate Ee@ments representingfiigirent types
of brain activity. Hence, in this thesis special emphasgiven to algorithms that learn from a set
of training data how to discriminate EEG segments contgiai?300 from other EEG segments. In
particular, the algorithms are built by making use of tootsnf Bayesian machine learning. Besides
the theoretical and algorithmic aspects of BCI systems hasip is also put on the thorough testing
of the presented algorithms with a relatively large datalmmtaining EEG records from disabled
and able-bodied subijects.

1.3 Main Contributions

The main contributions of this thesis are the applicatiomotiern pattern recognition algorithms
to BCI systems and the thorough testing of these algorithitts R800 data recorded from a BCI

specifically adapted to disabled subjects. The appliedrigthgas are described and discussed in-
depth and the communication rates achieved with the BClifaddled users are significantly beyond
those of previously described, comparable systems. Tlalekbtcontributions are listed in the

following.

e The so-called evidence framework (MaclKav, 1992), a BayeBiamework for estimating
hyperparameters in neural networks or regression, isepplithe context of linear discrim-
inant analysis. The resulting Bayesian linear discrimirsaralysis (BDA) algorithm is well
suited for applications in BCI systems and can learn classifjuickly, robustly, and fully
automatically. Experiments show that BDA outperformsmplaDA in terms of classification
accuracy.
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e Application of the concept of automatic relevance deteatiim (ARD) ‘MacKay, 19¢€5;
Tiopning, 2001) to the problem of electrode selection in a Bldie developed algorithm can
automatically determine the size of an optimal electrodesstior find electrode subsets with
a predetermined size. Experiments show that selectingretkss with ARD is computation-
ally efficient, improves classification accuracy, and yields phggioally plausible results.

e Development of an algorithm that sequentially computebgiodities for a set of hypotheses
where the hypotheses concern the generation of a streanteaof Thae algorithm is used to
dynamically adapt the amount of data recorded in P300 BCtweNrecisely, the algorithm
is used to build a system in which data is acquired until tlebability of misclassification
is below a preset threshold. Experiments show that dyndijiadapting the amount of
recorded data improves the speed of communication comparggstems in which a fixed
amount of data is used.

e Development of a P300 BCI system which is specifically adhpbethe needs of disabled
users. The impact of fierent fixed electrode configurations on the communicatiaedp
achievable with the system is explored. The system alloweéral disabled users to achieve
communication rates that are significantly beyond the nategiously reported in the litera-
ture. Possible reasons for the improved communicatiors e discussed.

e P300 datasets recorded from four disabled and four ableetd@libjects are made publicly
available on the internet. In addition, MATLAB implementais of some of the algorithms
described in this thesis are made available on the interibetasets and algorithms al-
low to reproduce results presented in this thesis and caroweldaded from the address
http://bci.epfl.ch/efficientp300bci.html.

1.4 Outline of the Thesis

The rest of this thesis is organized into seven chapterspt€isa2 to 4 contain background material,
Chapters 5 to 7 mainly describe research specific to thissthesd Chapter 8 contains a summary
and an outlook on future work. The detailed contents aredigt the following.

e In Chapter 2, a general introduction to the field of BCI reskds given. Topics reviewed
include diterent methods for measuring brain activity, the types ofoghysiologic signals
that can be used in BCI systems, methods for extracting usftures from neurophysio-
logical signals, and BCI applications.

¢ In Chapter 3, basic concepts of supervised machine leaarmgeviewed. In the first part
of the chapter a general exposition of the supervised madbarning problem is given and
important concepts such as overfitting, cross-validationg model selection are discussed.
In the second part of the chapter, probabilistic methodsségervised machine learning,
i.e. maximum-likelihood estimation, maximum a posteriestimation, and Bayesian learn-
ing are introduced. In the third part, concrete exampleitheory described in the first two
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parts are given. In particular, several supervised legralgorithms that have been applied
in the context of BCI are discussed.

¢ In Chapter 4, BCI systems using the P300 are reviewed. HEiest?300 is described from a
neuroscientific point of view. Conditions under which a P888 be evoked and factors that
influence the characteristics of the P300 are discussed, Teebasic idea underlying P300-
based BCls is introduced and several systems implemertiagdea are described. Finally,
algorithmic aspects of P300-based BCls are discussed aedacfor evaluating the dlierent
systems and algorithms are described.

e In Chapter 5 the supervised learning algorithms used inttig@sis are introduced. First,
the connection between least-squares regression and’siglseriminant analysis (FDA) is
reviewed and used to motivate a Bayesian approach to disetnhanalysis. Then, BDA
is reviewed. In the second part of the chapter the BDA algorifs extended to perform
electrode selection in a BCI. The resulting algorithm ierefd to as sparse Bayesian lin-
ear discriminant analysis (SBDA) in the rest of the thesid ases a framework for sparse
Bayesian learning, namely the ARD framework. In the last pathe chapter two meth-
ods are presented that allow for the computation of acculass probabilities with BDA
and SBDA. Moreover, an algorithm that sequentially compybabilities for a set of hy-
potheses where the hypotheses concern the generationredmaif data is introduced. This
algorithm is applied in the context of P300 BCls to adapyivebp data acquisition as soon
as the probability of misclassification is smaller than sptahreshold. In other words, this
algorithm allows to profit from fluctuations in the level ofaertainty of the recorded signals.
If the level of uncertainty is small, classification decisiare taken quickly. If the level of
uncertainty is high, more data is recorded to avoid wrongsa®ts.

e In Chapter 3 a BCI system for disabled users is introducedhérfirst part of the chapter
the system itself is described, the patients from whom datadorded are presented, and
the experimental setup is presented. In the second pareathhpter results fromflline
experiments conducted with FDA and BDA on the recorded data@sented. Classification
accuracy and bitrate achievable by using FDA or BDA in coajiom with different electrode
configurations are discussed. Finallyffdiences to other P300 BCI systems for disabled
subjects are discussed.

e In Chapter 7 the setup and results of experiments condudtedSBDA are described. Ad-
ditionally, the algorithm for adaptively stopping data aisifion is explored. The chapter
starts with a report about the classification accuracy thathe obtained with SBDA and
with a comparison of SBDA and BDA. Then, the electrode subselected with SBDA are
analyzed and compared to predefined, physiologically gdeuslectrode subsets. Further-
more, BDA and SBDA are applied to P300 datasets from past B@Ipetitions and it is
shown that both algorithms lead to classification accusaaikich are competitive with the
state-of-the-art. In the second part of the chapter exmeriswith the adaptive stopping
algorithm are described. It is shown that the adaptive sbgpplgorithm allows to obtain
higher communication speed than decision schemes in wHigeGamount of data is used.



CHAPTER 1. INTRODUCTION

¢ In Chapter 3 the contributions of this thesis are summararatian outlook on possible ex-
tensions of the presented work is provided.



Introduction to
Brain-Computer Interfaces

2.1 Introduction

A BCl is a communication system that translates brain agtivto commands for a computer or
other devices. In other words, a BCI allows users to act om &myironment by using only brain
activity, without using peripheral nerves and muscles. ifilagor goal of BCl research is to develop
systems that allow disabled users to communicate with qibesons, to control artificial limbs,
or to control their environment. To achieve this goal, masggeats of BCl systems are currently
being investigated. Research areas include evaluationvakive and noninvasive technologies
to measure brain activity, evaluation of control signalse.(patterns of brain activity that can be
used for communication), development of algorithms fongtation of brain signals into computer
commands, and the development of new BCI applications.

In this chapter we review the aspects of BCI research mesdi@bove and highlight recent
developments and open problems. The review is ordered bgtéps that are needed for brain-
computer communication (see Figa. 2.1). We start with mettfod measuring brain activity (Sec-
tion 2.2)) and then give a description of the neurophysi@aignals that can be used in BCI systems
(Section 2.3). The translation of signals into commandh thi¢ help of signal processing and clas-
sification methods is described in Section 2.4. Finallyliappons that can be controlled with a
BCl are described in Section :2.5, and a conclusion is giveSeition 2.3.

The number of publications concerning BCI has stronglyeéased during the last few years.
Hence, it is virtually impossible to give a balanced, exfisasreview of the field. The review
provided here is biased towards electroencephalogram JBR&2d BCI systems. Other reviews
can be found in the articles of Wolnast al. (20022), Lebedev and Nicolelis (2(106), Birbaumer and
Cohen (20C7), and Masat al. (2007). Detailed reports about the work in many BCI labaiato
around the world can be found in the 2006 BCI special issuee&H Transactions on Neural
Systems and Rehabilitation Engineerina (Vaughan and Wi BA06).

7
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Signal Acquisition | — Signal Processing —» Classification

Feedback Application

A

Figure 2.1 — Building blocks of a BCI. A subject performs a specific cdiya task or concentrates on
a specific stimulus. Brain signals are acquired and thenegsmd with signal processing and classification
algorithms. The outcome of the classification is fed into ppligaation, for example a spelling device. The
application generates feedback to inform the subject abeubutcome of classification.

2.2 Signal Acquisition

To enable communication with the help of a BCI, first braimnsig have to be measured. Dif-
ferent methods to achieve this goal, ranging from the ineasieasurement of electric potentials
at single neurons to the noninvasive measurement of la@e-femodynamic brain activity, have
been reported in the literature. We review some of these adsthelow, starting from the EEG
which allows for measurements of electric potentials ajdapatial scales. We continue with the
electrocorticogram (ECoG) and microelectrode arrayschvhllow for measurement of potentials
at smaller spatial scales. Next, methods for measuring et&gbrain activity and hemodynamic
brain activity are described. Thefffirent methods are compared in terms of temporal and spatial
resolution, invasiveness vs. noninvasiveness, and instefrcomplexity of the apparatus needed
for performing measurements.

2.2.1 Electroencephalogram

The EEG is one of the most widely used noninvasive technitpregcording electrical brain activ-
ity. Since its discovery by Hans Berger (Beger, 1.929) th&Hias been employed to answer many
different questions about the functioning of the human brainhasdserved as a diagnostic tool in
clinical practice. The EEG is a popular signal acquisitiechinique because the required devices
are simple and cheap and because the preparation of measiisetakes only a small amount of
time. EEG signals are recorded with small sifgédver chloride electrodes with a radius of about 5
mm, placed on the scalp at standardized positions (se Riy.@onductive gel or saltwater is used
to improve the conductivity between scalp and electrodesffix the electrodes to the scalp, often
an electrode cap is used. EEG signals are always recordadesipect to reference electrodes,
i.e. EEG signals are small potentiaffédirences (0 - 100V) between electrodes placed affdient
positions on the scalp.
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Figure 2.2 — Electrode placement according to the 10-20 internatisgatem. Odd numbers indicate
electrodes located on the left side of the head. Even nuniicaite electrodes located on the right side of
the head. Capital letters are used to reference each dadice, namely frontal (F), central (C), parietal (P),
temporal (T), and occipital (O). Fp and A stand for frontalepand auricular. The designation 10-20 comes
from the percentage ratio of the inter-electrode distamgtsrespect to the nasion-inion distance.

To understand how EEG signals are related to informatioogssing in the brain, it is neces-
sary to first review the structure and functioning of neurdwsurons consist of a cell body (soma),
an axon, and a dendritic tree (cf. Fig. 2.3). The axon sergésuatput channel” of neurons and
connects via synapses to the dendrites (the “input chanoktther neurons. The means of com-
munication between neurons are action potentials, i.etraal discharges produced mainly at the
soma of cells. Action potentials travel along the axon ofscahd lead to a release of neurotransmit-
ters when arriving at a synapse. The neurotransmittergiinttigger a flow of ions across the cell
membrane of the neuron receiving the action potential. Tove dif ions across the cell membrane
leads to a change in membrane potential, i.e. to a change ipatential diference between intra-
cellular and extracellular space. If the membrane poteméches a critical value of around -p¥
a new action potential is triggered, and information is $raitted via the axon to other neurons.

The signals measured with the EEG are thought to be mainlyfaat@f information process-
ing at pyramidal neurons located in the cerebral cortex fikle£199:1). Pyramidal neurons have
a pyramid-like soma and large apical dendrites, orienteggeualicular to the surface of the cor-
tex (see Fig. 2.3). Activation of an excitatory synapse aymamidal cell leads to an excitatory
postsynaptic potential, i.e. a net inflow of positively ae ions. Consequently, increased extra-
cellular negativity can be observed in the region of the pgaaThe extracellular negativity leads to
extracellular positivity at sites distant from the synaped causes extracellular currents flowing to-
wards the region of the synapse. The temporal and spatiahstion of such extracellular currents,
at hundreds of thousands of neurons with parallel orienéedidtes, leads to the changes in poten-
tial that are visible in the EEG. The polarity of the EEG signdepends on the type of synapses
being activated and on the position of the synapses. As siowig. 2.3, activation of excitatory
synapses in superficial cortical layers corresponds totivegaurface-potentials. Activation of ex-
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Cortex Layers

Axon from
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Figure 2.3— Generators of the EEG. Pyramidal neurons in cerebral xoeeeive excitatory input from
synapses close to their soma (left) or from synapses cangeottheir apical dendrites in superficial layers
of the cortex (right). Excitation leads to a net inflow of pgiv&ly charged ions and thus to an increased
extracellular negativity in the region of the synapses.r&odllular currents flow towards the region of the
synapse and cause an increased positivity at the dendsfte ¢k at the soma (right). The extracellular
currents lead to changes in potential on the scalp surfalzgfad from Kapar (200€); Martin (1€91)).

citatory synapses connecting close to the soma of a celkgponds to positive surface-potentials.
For inhibitory synapses the inverse is true: activationyolapses in superficial cortical layers cor-
responds to positive surface-potentials, and activatiagymapses connecting close to the soma of a
cell corresponds to negative surface-potentials. Witkaotvledge about the spatial distribution of
synapses the type of synaptic action can thus not be infénwedthe polarity of surface potentials
(Martir, 1991).

The potential changes associated to extracellular cwragntyramidal neurons are mostly vis-
ible at electrodes placed over the active brain area. Hawee to volume conduction in the
cerebrospinal fluid, skull, and scalp, signals from a localeenble of neurons also spread to distant
electrodes. The potentials caused by the activity of a &miortical macrocolumn (of diameter 3-4
mm) can spread to scalp electrodes that are up to 10 cm awaytlfi® macrocolumr (Srinivasan,
1999). A further &ect of the tissue barrier between electrodes and neurohatioiv-amplitude
activity at frequencies of more than 40 Hz is practicallyisiiMe in the EEG. The EEG thus is
a global measurement of brain activity. Consequently, dif§cult to use the EEG for drawing
conclusions about the activity of small brain regions, leha the activity of single neurons.

In addition to the &ects of volume conduction, the analysis of the EEG is furtioenplicated
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by the presence of artifacts. Artifacts can be due to phggioal or nonphysiological sources.
Physiological sources for artifacts include eye movemant eye blinks, muscle activity, heart
activity, and slow potential drifts due to transpirationoiyphysiological sources for artifacts include
power supply line noise (at 50 Hz or 60 Hz), noise generatethbyEEG amplifier, and noise

generated by sudden changes in the properties of the eleedmalp interface. Artifacts often

have much larger amplitude than the signals of interest.refboee, artifact removal and filtering

procedures have to be applied before an analysis of EEGIsigaa be attempted.

Despite the above mentioned shortcomings the EEG rema@sfdhe most interesting meth-
ods for measuring electrical brain signals. It has been irsedvariety of BCI systems and is
also the measurement technigue employed in this thesigdd3BCI there are many other clinical
and research applications of the EEG. These include rdsearditerent sleep stages, epilepsy
monitoring, coma outcome prognosis, and many other, mea@ ¢hical, research questions.

2.2.2 Electrocorticogram

The ECoG is an invasive technique for recording electricdéptials in the brain. In a surgical
procedure an array of electrodes, typically a«88&rid, is placed on the cortex surface. After the
implantation, signals which are generated by the same mesha as the EEG can be measured.
However, &ects of volume conduction are less visible in the ECoG, he stgnals are less spatially
blurred than EEG signals. Further advantages are that E©Qo@ls are barely contaminated with
muscle or eye artifacts and that activity in frequenciesaughiout 100 Hz can be easily observed.

Due to the above mentioned positive properties, ECoG sgmale generated a considerable
deal of interest in the BCI community. Dérent experiments have been performed, mainly with
epilepsy patients having ECoG arrays implanted over a gefi@ne or two weeks for localization
of epileptic foci or for presurgical monitoring purposesielexperiments have shown that patients
can quickly learn to accurately control their ECoG signatetigh motor imagery (Graimarat al,
2004; Hill et al, 2006), motor and speech imagerv (Leuthastl, 2006), mental calculation
(Ramsewet al, 2006), or auditory imagery (Wilsoet al, 2006). This makes ECoG an interesting
alternative to the EEG, however tests with severely hapgied subjects and research on the long
term tissue compatibility of ECoG should be performed tadek the results.

2.2.3 Microelectrode Arrays

Microelectrode arrays are a technique for recording agtifrom single neurons or from small
groups of neurons. As for ECoG, brain-surgery is necessgligrd signals can be recorded. The
difference to ECoG is that electrodes are inseinietie cortex, i.e. the cortical tissue is penetrated
by needle-like electrodes. A typical microelectrode afrag a size of about& mm and contains
around 100 electrodes, which can penetrate the cortex tpth dé several millimeters (Nicolelis
et al, 2003). Due to the invasive procedure that is needed todesignals, microelectrode arrays
have been mainly tested in animal models (for example rhesunkeys). An exception is the BCI
system described hv Hochbestial. (2006), which is based on signals from microelectrode array
implanted in human tetraplegic subjects.
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Compared with other technologies for measuring brain igtithe advantages of microelec-
trode arrays are that signals are acquired at high spasialution and that the activity of single
neurons can be detected. Recording the activity of neurotisei motor areas of the brain allows
for complex applications such as realtime 3D control of sotadrm (Tavloret al, 200:2) which
are dificult to realize with other measurement technologies. Thadliantage of microelectrode
arrays is that brain-surgery is needed before signals caadoeded. During surgery an infection
risk exists and moreover the reaction of brain tissue to itin@anted electrode array is not well
understood (Polikoet al,, 200'%). Due to the death of neurons in the vicinity of the wetectrodes
signal quality decays over time and data can only be recdatemiperiod of several months.

Despite the problems arising from the invasive nature ofrtteasurements, microelectrode
arrays are — together with the EEG — one of the most often uzgld in BCI research. Cur-
rent research issues and recent developments are nicelpamized in the review of Lebedev and
Nicolelis (2005).

2.2.4 Other Methods for Measuring Brain Activity

¢ Magnetoencephalogram

The magnetoencephalogram (MEG) is a noninvasive measut@ismall changesy{101°
Tesla) in magnetic field strength, which are caused by iathalar currents at pyramidal neu-
rons. A small number of experimental studies have used thé MBCI systems (Kauhanen
et al,, 2006; Lalet al, 2005). These studies showed that MEG signals can be usedsior
computer interfacing and that a communication speed caabfmto that of EEG based sys-
tems can be obtained. However, the equipment needed for M&Sumements is technically
complex, expensive, and cannot be easily transported froaptace to another. This rules
out the use of current MEG devices in practical BCls.

e Functional Magnetic Resonance Imaging
Functional magnetic resonance imaging (fMRI) allows toineasively measure the so-
called blood oxygen level dependent (BOLD) signal. The BQdighal does not directly
represent neuronal activation but rather depends on teedéuxygenated and deoxygenated
hemoglobin and on the hemodynamic response to heuronghthati. The peak of the BOLD
signal is typically very broad and observed four to five selsoafter the neuronal activation,
i.e. the temporal resolution of fMRI is relatively low whearapared to methods that directly
measure electrical brain activity. The spatial resolutfovery good, structures of the size of
a few millimeters can be localized with the fMRI. In additjsignals can be acquired from
the whole brain and not only from the cortex, as for examphh wie EEG. In BCI research
fMRI has been used in basic proof of concept systems (Weiskbal, 200; Yooet al,
2004) and to elucidate the brain mechanisms underlyingesstal self regulation of brain
activity (Hinterbergeret al, 200:3). To date, the use in practical BCI systems is imptessib
because fMRI devices are technically demanding, expeaside€annot be easily moved from
one place to another.
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¢ Near-Infrared Spectroscopy
Near infrared spectroscopy (NIRS) is a noninvasive metbaoddasure the hemodynamic ac-
tivity of the cortex (similar to the BOLD signal). To measiMéRS signals, optodes emitting
light in the near-infrared range are placed on the scalp lojfests. The emitted light is re-
flected by the cortical surface and measured by detectodeptd he light intensity measured
at the detector optodes varies as a function of the amountygfemated and deoxygenated
hemoglobin in the blood and thus allows to measure braimigctNIRS provides a relatively
low spatial resolution, and because hemodynamic brainiga measured the temporal res-
olution is also low. Several publications describe the d9¢IBS signals to classify dierent
types of motor imagery in BCI systems (Cow¢ al, 200:}; Sitararet al, 2007). These
studies are proof of concept studies and further developieemeeded to make NIRS a real
alternative for everyday use in a BCI.

Summary

Different methods to measure brain activity can be used in a B@ characteristics of the methods
we reviewed are summarized in Tahle 2.1. As can be seen, eeittodnhas its own advantages
and disadvantages and hence so far no method of choice. eRistsequently, BCI research will
probably continue to explore the possibilities of all methand real-world BCI applications based
on different methods might emerge. Depending on their needs arttewrwiillingness to undergo
brain surgery, users will choose one of the methods. Cletlidydevelopment of new methods for
measuring brain activity has the potential to yield advanB€l systems.

2.3 Neurophysiologic Signals

An ideal BCI system would directly detect every wish or iriten of its user and perform the corre-
sponding action. However, it is veryfiicult to clearly define how wishes or intentions are related
to neurophysiologic signals. Consequently, it is virtyathpossible to detect the intentions and
wishes of a user from his brain activity. This is why preseay BCI systems achieve only a much

Method Measured Invasive? Spatial Temporal Equipment
Quantity Resolution  Resolution  portable?

EEG Electric Potentials No - ++ Yes

ECoG Electric Potentials Yes + ++ Yes

Microel. Electric Potentials Yes ++ ++ Yes

Arr.

MEG Magnetic Fields No + ++ No

fMRI Hemodynamic Act. No ++ - No

NIRS Hemodynamic Act. No -- - Yes

Table 2.1— Methods for measuring brain activity. Characteristicpdmant for practical BCl systems are
indicated. The relative spatial and temporal resolutiothef diferent methods is indicated with symbols
ranging from - - (very low) to++ (very high).
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less ambitious goal, namely the discrimination of two to fi#erent categories of neurophysio-
logic signals, or the mapping of neurophysiologic signalsdntinuous 1D, 2D, or 3D movements.

To allow for discrimination of dierent neurophysiologic signals or for mapping of such $gyna
to movements, users have to acquire conscious control leegrtrain activity. Two fundamentally
different approaches exist to achieve this. In the first appreabfects perceive a set of stimuli
displayed by the BCI system and can control their brain #gthw focusing onto one specific stim-
ulus. The changes in neurophysiologic signals resultiognfperception and processing of stimuli
are termed event-related potentials (ERPs) and are desttisgether with the corresponding BCI
paradigms in Section 2.3.1. In the second approach usenmokttreir brain activity by concentrat-
ing on a specific mental task, for example imagination of hardement can be used to modify
activity in the motor cortex. In this approach feedback algrare often used to let subjects learn the
production of easily detectable patterns of neurophygiolsignals. The types of signals resulting
from concentration on mental tasks together with the cpmeding BCI paradigms are described
in Sections: 2.3.2.. 2.3.3, and 2.3.4.

2.3.1 Event-Related Potentials

ERPs are stereotyped, spatio-temporal patterns of bréintgooccurring time-locked to an event,
for example after presentation of a stimulus, before exeeutf a movement, or after the detection
of a novel stimulus. Traditionally, ERPs are recorded whith EEG and have been used in neuro-
science for studying theflierent stages of perception, cognition, and action. Notesthent-related
changes can also be measured with other signal acquisttthnigues like the MEG or fMRI, this is
however not described here because in a BCI usually the EE§2 for measuring such changes.

e P300

The P300 is a positive deflection in the EEG, appearing ajpetely 300 ms after the
presentation of rare or surprising, task-relevant stir{falittonet al, 196!). To evoke the
P300, subjects are asked to observe a random sequence ghigoof stimuli. One stimulus
type (the oddball or target stimulus) appears only rarelyhan sequence, while the other
stimulus type (the normal or nontarget stimulus) appearserofien. Whenever the target
stimulus appears, a P300 can be observed inthe EEG. Thiggdemvas exploited by Farwell
and Donchin (1988) in a BCI system. They described the P36Despn which a matrix
containing symbols from the alphabet is displayed on a scré&ows and columns of the
matrix are flashed in random order, and flashes of the row ainoolcontaining the desired
symbol constitute the oddball stimulus, while all other fikes constitute nontarget stimuli.
Since the seminal paper of Farwell and Donchin many studliestd®300-based BCI systems
have appeared. A review of these studies and a more detadkatiption of the P300 are
provided in Chapter 4.

e Steady-State Visual Evoked Potentials (SSVEPS)
SSVEPs are oscillations observable at occipital electrodeuced by repetitive visual stim-
ulation. Stimulation at a certain frequency leads to csitilhs at the same frequency and
at harmonics and subharmonics of the stimulation frequéHeyrmann, 2001). In a BCI,
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SSVEPs are used by simultaneously displaying several kfilickering at different frequen-
cies. Users can select one stimulus by focusing on it, whéekd to increased amplitude
in the frequency bands corresponding to the flickering feagy of the stimulus. Systems
emploving this principle are described n (Gabal, 200:3; Laloret al, 200'; Middendorf
et al,, 2000)

e Motor-Related Potentials (MRPS)

Other than the previously described signals, motor-rdlpt#entials (MRPS) are independent
of the perception or processing of stimuli. The events tocWhMRPs are related are the
preparation or imagination of movements. MRPs are slow theggaotentials, observable
over the sensorimotor cortex before movement onset orglaniovement imagination. Since
the sensorimotor cortex has a somatotopic organizatiobdlg part that will be moved, or
for which a movement is imagined, can be inferred from thation of greatest amplitude of
the MRP. This phenomenon has been used in combination wigosenotor rhythms (see
Section 2.3.2) in a BCl based on motor imagery (Dornfetos, 20041).

2.3.2 Oscillatory Brain Activity

Sinusoid like oscillatory brain activity occurs in many i@gs of the brain and changes according to
the state of subjects, for example between wake and sleagivwwebn concentrated work and idling.
Oscillatory activity in the EEG is classified intoftéirent frequency bands or rhythms. Typically
observable are the delta (1 - 4 Hz), theta (4 -8 Hz), alpha am@8m 13 Hz}, beta (13 - 25 Hz),
and gamma (25 - 40 Hz) rhythms.

e Sensorimotor Rhythms
Mu-rhythm oscillations can be observed over the sensodrroairtex when a subject does not
perform movements. These oscillations are decreased ilitadgowhen movements of body
parts are imagined or performed. In addition, imagined afopmed movements of body
parts lead to changes in beta-rhythm amplitude. The chaingé® mu- and beta-rhythm
are localized over the part of the sensorimotor cortex sporading to the body part, and so
imagined movements of fierent body parts can be discriminated. For example imdgmat
of movement of the left hand corresponds to a decrease inhgitbim amplitude over the
right sensorimotor cortex, whereas imagination of movenoéthe right hand corresponds
to a decrease in amplitude over the left sensorimotor corfdre changes in sensorimotor
rhythms occurring in untrained users are usually not stesmaugh to be detected by a classi-
fication algorithm, and thus feedback training has to be tséet users acquire control over
sensorimotor rhythms.

BCI systems employing imagined movements of hands, feeébngue have been mainly in-

troduced by the research group of Pfurtscheller in AusRfartscheller and Neuper, 20001)).
The group of Wolpaw in the United States has also worked oh systems, and an impres-
sive sensorimotor rhythm BCI allowing for fast control of @ 2ursor has been described by

1The term mu-rhythm is used for oscillatory activity with aduency of about 10 Hz, localized over the sensorimotor
cortex. The term alpha-rhythm is more general and can befasady activity in the frequency range 8 - 13 Hz.
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Wolpaw and McFarlanc (2004). Many other groups have perormesearch on such sys-
tems. For example research has been targeted on improvicigmadearning algorithms for
classification of sensorimotor rhythms (Blankestal,, 2006), on measuring and classifying
neurophysiologic signal related to motor imagery with tiegplof NIRS (Covleet al, 2004,
Sitaramet al, 2007), ECoG (Graimanat al, 2004; Leuthardet al, 2006), MEG (Kauha-
nenet al, 2006), and on testing sensorimotor rhythm interfaces sétrerely handicapped
subjects (Kiibleet al, 200%).

e Other Oscillatory Activity

Cognitive tasks other than motor imagery can also be usettget changes in oscillatory
brain activity. Examples for such tasks are mental calmiatiuditory imagery, imagery of
spatial navigation, or imagination of rotating geometfigegts (Curraret al, 2004; Garcia,
2004; Keirn and Aunor. 1930). The classification accuracysteh cognitive tasks seems
to be comparable to that achievable with motor imagery. titesh, depending on the pref-
erences of the users the alternative cognitive tasks migtdasier to perform than motor
imagery (Curraret al, 200:}). However, before such tasks can be routinely usecirsBs-
tems, further research about the underlying neurophygitdd mechanisms and tests with
larger populations of subjects are necessary.

2.3.3 Slow Cortical Potentials

Slow cortical potentials (SCPs) are slow voltage shiftshe EEG occurring in the frequency
range 1-2 Hz. Negative SCPs correspond to a general dedreasetical excitability. Positive
SCPs correspond to a general increase in cortical exdiyabilhrough feedback training subjects
can learn to voluntarily control their SCPs. The voluntargduction of negative and positive
SCPs has been exploited in one of the earliest BCI systentidabled subjects (Birbaumet al,
1999). In their pioneering work. Birbaumet al. showed that patients fiaring from amyotrophic
lateral sclerosis (ALS) can use a BCI to control a spellingickeand to communicate with their
environment. In other publications from the same group ndifferent aspect related to SCPs
were investigated, for example the use of self regulatioB@OPs as a treatment for children with
attention-deficfhyperactivity disorder (Streldt al, 2006).

2.3.4 Neuronal Ensemble Activity

Action potentials are thought to be the basic unit of infaiiorain the brain and enable commu-
nication between dierent neurons. The number of action potentials per timef{timg rate) can
be used in a BCI to predict the behavior of a subject. For ekarhe firing rate of neurons in
the motor and premotor-cortices can be used to predict hasitigns or hand velocities. To make
these predictions more reliable, usually the firing ratemfensembles of neurons, i.e. from popu-
lations of hundreds of neurons, are used to predict subgeor. Furthermore, through feedback
training subjects can learn to modulate the firing rates ofores in the motor cortex. Neuronal
ensemble activity can thus be employed as neurophysia@bsjignal in BCls, in particular in BCls
using microelectrode arrays (Hochbeioal,, 2006; Serruvat al, 20022; Tavloret al,, 200:2).
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Summary

Different neurophysiologic signals can be used to drive a BCé advantage of ERPs is that no
user training is necessary because ERPs occur as a natspahse of the brain to stimulation.
This might be of particular importance for subjects with cemtration problems or for subjects not
willing to go through a long training phase. A disadvantagehiat communication depends on
the presentation and perception of stimuli. Subjects are taquired to have remaining cognitive
abilities. Moreover, BCI systems based on ERPs have onijethapplication scenarios because a
device to present stimuli is needed and because users npag aitention to stimuli, even in the
presence of other unrelated, distracting stimuli.

If oscillatory activity or SCPs are used, more flexible BC$tgyns can be imagined because no
computer screen or other device is needed to present stifdalvever, to gain voluntary control
over brain activity, subjects have to perform feedbackingj, and it can take several weeks before
subjects are able to reliably control a BCI. Therefore, B@&tams based on oscillatory activity
or SCPs might be less suited for subjects with concentragioblems or for subjects who are not
willing to go through a long training phase.

The amount of training in systems using ECoG to measure lctivity or in systems using
neuronal ensemble activity tends to be smaller than in athstems because the recorded signals
have a better signal to noise ratio. A further advantageds sbch systems, especially systems
based on neuronal ensemble signals, allow for control oensomplex applications than systems
using the EEG. As already mentioned in Section 22.2.3, thgdsigdisadvantage of such systems is
the brain surgery that is necessary before signals can bedezt

Taken together, no paradigm for controlling and measuriegrophysiologic signals clearly
rules out all other paradigms. fbérent paradigms will thus probably coexist. In specific sase
paradigms have to be chosen depending on the abilities ofrethe application scenario, and the
willingness of the user to undergo brain surgery.

2.4 Extracting Features from Neurophysiologic Signals

In the previous section we have discussed paradigms thasées control their brain activity and
the neurophysiologic signals corresponding to the reageparadigms. To allow actual control of
a BCI, the neurophysiologic signals have to be mapped tesahat allow to discriminate fierent
classes of signals, i.e. the neurophysiologic signals tabe classified.

The first step underlying most methods for classificationeafrophysiologic signals is to ac-
quire labeled training data. Acquiring labeled trainingadaeans that the subject has to perform
prescribed actions, while neurophysiologic signals acended. Then, a computer is used to learn
the desired mapping from signals to classes.

After the data acquisition phase, machine learning algmistare applied to infer functions that
can be used to classify neurophysiologic signals. For reagbpracticality and simplicity, machine
learning algorithms are usually divided into two modulesattire extraction and classification. The
feature extraction module serves to transform raw neursiplogic signals into a representation
that makes classification easy. In other words, the goalatfife extraction is to remove noise and



18 CHAPTER 2. INTRODUCTION TO BRAIN-COMPUTER |INTERFACES

other unnecessary information from the input signals, evailthe same time retaining information
that is important to discriminate fiierent classes of signals. Another, related, goal of feature
traction is to reduce the dimensionality of the data thattbde classified. After feature extraction,
machine learning algorithms are used to solve two tasks.inBuraining, the task is to infer a
mapping between signals and classes. For this, the labeddulré vectors produced by the feature
extraction module are used. During application of a BCI td#k is to discriminate éierent types
of neurophysiologic signals and hence to allow for contfa 8CI.

In this section we only review methods for feature extraciimBCls. Machine learning algo-
rithms are one of the main themes of this thesis and are Besldrn a separate chapter (cf. Chapter 3).

To achieve the goals of feature extraction, neurophysicéb@ priori knowledge about the char-
acteristics of the signals in the temporal, the frequenogl,the spatial domain is used. Depending
on the type of signals to be classified this knowledge cannakey diferent forms. Consequently
many diferent feature extraction methods have been described. Basieeand often used methods
are described below. A more exhaustive review of featunaetibn methods for BCls can be found
in (Bashashatet al, 2007).

2.4.1 Time Domain Features

Time domain features are related to changes in the amplitiileurophysiologic signals, occurring
time-locked to the presentation of stimuli or time-lockedactions of the user of a BCI system.
Good examples for signals that can be characterized withahgeof time domain features are the
P300, SCPs, and MRPs. A strategy that is often used to sephegte signals from background
activity and noise is lowpass or bandpass filtering, optlgrfallowed by downsampling. This
strategy is reasonable because most of the energy of the B8®E, and MRPs is concentrated at
low frequencies. Lowpass filtering, together with downskmgpthus allows to remove unimportant
information from high frequency bands. In addition, the dirsionality of the signals is reduced.
Examples for systems in which filtering and downsamplingehlaeen employed are the P300 BCI
described by Sellers and Donch n (2006), the SCP basednsyd#ecribed by Birbaumest al.
(1999), and the system for classification of MRPs descrilyeBlankertzet al. (20022).

An alternative to filtering is to use the wavelet transformthe signals. Systems based on the
discrete wavelet transform (DWT), as well as systems basatiecontinuous wavelet transform
(CWT) have been described in the literature. A crucial stepystems using wavelets is to select
a subset of wavelet céiients that is relevant for classification. This is equikal® selecting
regions in the time-frequency plane at which signals canldmsified with high accuracy and can
be achieved with the help of feature selection algorithmseRample for the use of the DWT is the
P300-based BCI system described by Donatiml. (2000). In this system Daubechies wavelets
were used for feature extraction, and relevant wavelefficamnts were selected with stepwise dis-
criminant analysis (SWDA). An example for the use of the CWTHhe algorithm described by
Bostanov (2004). In this algorithm the Mexican hat wavelaswsed for feature extraction from
P300 and SCP signals, and a t-test was used to select relesagiet cofficients.

Besides the use for the EEG signals P300, SCP, and MRP, timaiddeatures are also used
in BCI systems based on microelectrode arrays. A featureishaften used in such systems is
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the number of spikes occurring in a certain time interval.nildifferent techniques for counting
spikes and for sorting spikes recorded with the same elbetimm several neurons exist. These
techniques will however not be further discussed here.

2.4.2 Frequency Domain Features

Frequency domain features are related to changes in asgjllactivity. Such changes can be
evoked by presentation of stimuli or by concentration ofdker on a specific mental task. Since
the phase of oscillatory activity is usually not time-lodke the presentation of stimuli or to actions
of the user, time domain feature extraction techniques atap@ used. Instead, feature extraction
techniques that are invariant to the exact temporal ewaiudf signals have to be used.

The most commonly used frequency domain features are defatehanges in the amplitude
of oscillatory activity. For example in systems based onanohagery, the bandpower in the mu
and beta frequency bands at electrodes located over thergsaator cortex is used as a feature. In
the case of SSVEPSs, band power in the harmonics of the vificallation frequency at occipital
electrodes can be used as a feature. To estimate band pofferert methods have been used.
These include Welch’s method (Lalet al, 200}5), adaptive autoregressive modzls (Schibail,
2005), and Morlet wavelets (Lemat al, 200.1).

A second type of frequency domain features is related toyhehsonization between signals
from different brain regions. Synchronization of signals froffiedent brain regions might indicate
that these regions communicate. This permits to discriteioagnitive tasks involving communica-
tion between dferent brain regions. The use of synchronization featuresimbination with band
power features was explored oy Gysels and Celka (2004) imeg-tiass BCI based on the cog-
nitive tasks “left hand movement”, “right hand movementidd’composition of words”. Brunner
et al. (2006) used synchronization features in combination wathcbpower features in a four-class
BCl based on the cognitive tasks “left hand movement”, ‘rigglmd movement”, “foot movement”,
and “tongue movement”. In both studies, classification w&itbeptable accuracy was possible with
synchronization features alone. Combining synchroromagind band power features led to classi-
fication accuracy that was superior to that obtained witly sghchronization or band power.

2.4.3 Spatial Domain Features

The feature extraction techniques described so far all watk univariate time series, i.e. data
from only one electrode is used (an exception are synchaiaiz features, extracted from bivariate
time series). In many systems however, data from more tharel@ttrode is available. Hence, the
features extracted from several electrodes have to be oewahinl an éicient way. Finding ficient
combinations of features from more than one electrode igytad of spatial feature extraction
methods.

The probably simplest way for performing spatial featurgamtion is to use only electrodes
that carry useful information for discrimination of a giveat of cognitive tasks. The reasoning
behind such an approach is that changes in band power, PaR8, me other features do not occur
uniformly at all electrodes but are usually stronger attetefes over brain regions implied in the
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respective cognitive task. Electrodes can be selected affgrar by using an algorithm that auto-
matically selects an optimal electrode subset. Due to litplgity the former approach has been
used in almost all types of BCls. The latter, more complexaagh has been used for classification
of data recorded with a sensorimotor rhythm paradiam étall, 2004), for classification of P300
data (Rakotomamonigt al,, 200%), and in this thesis (cf. Chaper 5).

A spatial feature extraction method that can be used iniaddib electrode selection, consists
in applying spatial filtering algorithms before further pessing takes place. Spatial filtering corre-
sponds to building linear combinations of the signals messat several electrodes. Denoting by
g(t) € RE the signal fromE electrodes at time spatial filtering can be expressed as follows:

1) = Cs(t). 2.1)

Here theF x E matrix C contains the cd@cients forF spatial filters and the vect&t) € RF
contains the spatially filtered signals at time

To determine the filter cdicients diferent methods can be used. For example for motor im-
agery based BCls, it has been shown that spatial filterinly avitaplacian filter can increase per-
formance (McFarlanat al, 1997). Simple Laplacian filters can be built by subtracting mean
signal of the surrounding electrodes from the signal of edebtrode. Applying a Laplacian filter
corresponds to spatial high-pass filtering, focal activityich is characteristic for motor imagery
tasks is thus enhanced.

In other methods for spatial feature extraction, filterfiiogents are computed from a set of
training data. An algorithm which is very popular in the aoéanotor imagery based BCI systems
is the common spatial patterns (CSP) algorithm (Ramesat, 2000)). The CSP algorithm deter-
mines spatial filters that maximize the temporal variancéadé recorded under one condition and
minimize the temporal variance of data recorded under ansecondition. The success of CSP
stems from the fact that temporal variance, i.e. power, énrttu and beta frequency bands is an
important feature for the classification of EEG signals rded during motor imagery. Note that
the CSP algorithm uses labeled training data and hence ttingrftan occur when a large num-
ber of electrodes is used in conjunction with a small amofittaining data (see Chapt2- 3 for a
description of the overfitting phenomenon).

Another method for computing the d@ieients of spatial filters from training data is indepen-
dent component analysis (ICA). In ICA algorithms it is asedhnthat a set of multichannel signals
s(t) is generated by linearly mixing a set of source signéts

s(t) = Mx (). (2.2)

The goal is to compute a matrixthat allows one to reconstruct the source sigrdilg multiplying s

with F. To achieve this without having information abddif one assumes that the source signals are
statistically independent. The ICA algorithm thus compiesuch that the signakt) multiplied

with F are maximally independent. In the case of EEG signals, & ighderlying the application

of ICA is that the signals measured on the scalp are a linehiratantaneous mixture of signals
from independent sources in the cortex, deeper brain ategtand noise: (Makeiet al, 1996).
ICA has been mainly used in P300-based BCls as a featurecgéatranethod. In such systems
ICA is used to separate multichannel EEG into several compisn corresponding to sources in
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the brain or noise, for example from eye blinks. By retainimdy components that have a P300
like spatial distribution or show P300 like waveforms, tlgnal to noise ratio can be improved.
Consequently, classification can be performed with impil@ecuracy.

Summary

The goal of applying feature extraction algorithms is tonsfarm raw neurophysiologic signals
into a representation suitable for subsequent classgitalio this end, a priori knowledge about the
characteristics of signals produced iffeient paradigms is employed. This knowledge can concern
the characteristics of signals in the temporal, the frequeor the spatial domain. Note that while
the three types of domains have been discussed separatelg, abis also possible to combine
features from several domains. An example for this is sp&&ture extraction which is often
preceded by bandpass filtering. Another example is the amatibn of temporal and frequency
domain features as proposed bv Dornhetial. (2003). Such combinations of features have the
potential to increase classification accuracy.

Note that feature extraction is only the first step in the niagpfrom neurophysiologic signals
to brain states. The second step is to classify the featukiggorithms for classification and for
learning of classification rules are described in detail ia@er 3. For the moment lets us assume
that we have an algorithm at hand that can perform classdicaBuch an algorithm can be used to
build BCI applications, which are described next.

2.5 Applications

In theory any device that can be connected to a computer anioracontroller could be controlled
with a BCI. In practice however, the set of devices and apptios that can be controlled with a
BClis limited. To understand this, one has to consider titimount of information which can be
transmitted with present day BCI systems is limited. Thedgfinformation transfer rate achiev-
able with an EEG based BCI is about 20 to 40 /piiig. As an additional obstacle most present
day BCI systems function only in synchronous mode. In symebus mode, communication is
possible only during predefined time intervals. This mehasystem tells the user when it is ready
to receive the next command and limits severely the possibke of applications. In asynchronous
mode users can send commands whenever they want, see foplextédmm system described by
Borisof et al. (2006). Some of the applications possible with current BEésdescribed below.

2.5.1 Spelling Devices

Spelling devices allow severely disabled users to comnatmiwith their environment by sequen-
tially selecting symbols from the alphabet. One of the fipgtling devices mentioned in the BCI
literature is the P300 speller (Farwell and Donchin. L1988k (also Chapter 4). A system based on
SCPs was described ov Birbaunetmal. (1999). In their system the alphabet is split into two halves
and subjects can select one halve by producing positive gative SCPs. The selected halve is
then again split into two halves and this process is repa&gatsively until only one symbol re-
mains. An advanced version of this system in which the redafiiequency of letters in natural
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language is taken into account is presented bv PerelmonteBabaume:r (2000). Systems based
on sensorimotor rhythms are describecl by Schetrat. (200¢1) ancd Blankertet al. (2007).

2.5.2 Environment Control

Environment control systems allow to control electricgbliances with a BCl. Gaet al.(2003) de-
scribe a proof-of-concept environment control system dhaseSSVEPs. Bavliss (2C03) describes
the control of a virtual apartment based on the P300. To ocowlatdge none of the two aforemen-
tioned systems is asynchronous. Development of asynchsoBEI systems is probably the most
important research topic to advance the area of environgumitol systems.

2.5.3 Wheelchair Control

Disabled subjects are almost always bound to wheelchdicantrol over some muscles remains,
these can be used to steer a wheelchair. For example systeshthat allow to steer a wheelchair
with only a joystick or with head movements. If no control pwveuscles remains, a BCI can
potentially be used to steer a wheelchair. Because stearimfeelchair is a complex task and
because wheelchair control has to be extremely reliabéepdissible movements of the wheelchair
are strongly constrained in current prototype systemshdrsystem presented bv Rebsareéal.
(2006) the wheelchair is constrained to move along pathdgfireed in software joining registered
locations, and a P300-based interface is used to selecesfied location. In the system presented
by Millan et al. (200:}) a miniature robot can be guided through a labyrindised on oscillatory
brain activity recorded with the EEG. Control of the robosisplified by implementing a wall
following behavior on the robot and allowing for turns onfiytiere is an open doorway.

2.5.4 Neuromotor Prostheses

The idea underlying research on neuromotor prosthesesuseta BCI for controlling movement
of limbs and to restore motor function in tetraplegics or ateps. Diferent types of heuromotor
prostheses can be envisioned depending on the informasiosfér rate a BCI provides. If neuronal
ensemble activity is used as control signal, high infororatiransfer rates are achieved and 3D
robotic arms can be controlled (Tavlet al, 200:2). If an EEG based BCI is used, only simple
control tasks can be accomplished. For example in the sydemoribed by Pfurtschelleat al.
(2005%) sensorimotor rhythms were used to control functiefectric stimulation of hand muscles
and so to restore grasp function in a tetraplegic patient.

2.5.5 Gaming and Virtual Reality

Besides the applications targeted towards disabled dgbjmototypes of gaming and virtual reality
applications have been described in the literature. Exesrfpr such applications are the control of
a spaceship with oscillatory brain activiry (Garcia, 2QQ4g control of an animated character in an
immersive 3D gaming environment with SSVE >s (Latbal, 200})), and the control of walking in
a virtual reality environment with sensorimotor rhythrngébet al, 2006).
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Summary

Several application scenarios exist in which a BCI coulddeful. However, so far no commercially
available BCI application has emerged. This is possibly wuthe fact that current technology
does not allow to build BCI systems which can work in asynnbus mode and provide high
information transfer rates. A possible approach to circemithe problem of limited information
transfer rates is to build intelligence into the applicatid.e. to reduce the information needed
by the application by cleverly restraining the number of cmends possible in a given situation.
Examples for applications in which such a strategy has begtemented are the advanced SCP
based spelling device and the wheelchair control apptinatidescribed above. Other problems,
such as the restriction to asynchronous mode still have $olved before practical BCl applications
will appear.

2.6 Conclusion

The number of publications on BCI systems has grown quickiyng the past years, and a con-
siderable variety of prototypes can be found in the litematuSystems diier in the measurement
technology used to acquire brain signals, in the neuroplygic signals that are used, in the signal
processing and machine learning algorithms, and in thetafplication. Despite the large number
of approaches and despite results demonstrating the ilégsih communication and control with
a BCI, none of the systems is commercially available andyréaddaily use by disabled subjects.
However, it is probable that such systems will appear duttregnext years. Large advances
could probably be made if new, noninvasive measuremennhtéabies allowing for a detailed
view into the brain would appear. Moreover, many studiegstigate only isolated aspects of
BCI systems such as for example the use of a new measurencénblegy or new application
scenarios. Systematic studies of complete systems, igagag the dependencies betweefiatient
components of a BCI systems, are largely missing and wouldgiily serve to advance the field.
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Review of Supervised
Machine Learning for
Brain-Computer Interfaces

3.1 Introduction

In a BCI complex neurophysiologic signals have to be traadlnto simple commands for a com-
puter or other devices. The most straightforward approachap signals to commands is probably
to look at the distribution of a small number of simple featuof the signals and to manually spec-
ify a translation rule. This method has indeed been usedrip peototypes of BCls. In the work
described by Wolpawet al. (199:1), subjects could move a cursor up and down by modifthieq
mu-rhythm amplitude. To translate mu-rhythm amplitude ictirsor movements, filerent voltage
ranges were fixed manually by an operator, based on the ¢bastics of previously recorded sig-
nals. However, as noted hv Wolpaat/al,, even if only one feature is used, it igfittult for a human
to specify an optimal mapping between signals and commahiimre features are used, it quickly
becomes impossible to manually design mappings. Moreoeerophysiologic signals show a rel-
atively large variance between subjects. This means thashation rules have to be specified for
each new subject that wants to access a BCI.

A solution to these problems that is used in almost all BCtays, is to first acquire labeled
training data from a subject before it can use the systemn,Taeomputer is used to learn the
mapping between signals and commands. Acquiring labe#dinig data means that the subject
performs prescribed actions, while neurophysiologic aigare recorded. For example in a mu-
rhythm BCI, the result of training can be a set of trials in @hihe subject has imagined left hand
movement and another set of trials in which the subject hagjiined right hand movement. After
the training phase a supervised machine learning algolighreed to learn the desired mapping of
neurophysiologic signals into commands.

Below we review supervised machine learning algorithms tlh&e been used for BCls. In the
first part of the chapter, we explain basic concepts of sugenvmachine learning in a nonproba-
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bilistic framework and then describe probabilistic leagalgorithms (Sections 2.2 aad 3.3). The
second part of the chapter contains a review and discuss$iorachine learning algorithms that
have been used in BCI systems (Secori 3.4).

Other reviews of machine learning methods for BCls can badadn (Bashashatt al, 2007;
Lotte et al, 2007; Vesiret al,, 2006). Good general introductions to machine learningyan in
the books of Bishog (206) and Hasteal. (200:1).

3.2 Basic Concepts

Algorithms that learn from a set of training examples how tapninputs to desired outputs are
called supervised learning algorithtnsThe training examples are pairs ¥) of inputsx € X and
desired outputy € Y. In generalX can be an arbitrary set, however often the inputs are vectors
with real-valued entries computed with the help of a featxteaction method, i.eX = RP. The
set of outputg¥ can be an arbitrary set too, however one often dées{1...K},orY =R. If Y =
{1...K} the outputs are qualitative measurements and the task wisxss a classification task,
i.e. inputs have to be mapped to onekoflifferent classes. ¥ = R the outputs are quantitative
measurements and the task to be solved is a regression.taskputs have to be mapped to real
output values. In both cases the problem a learning algoriths to solve is to choose, based on
the training examples, a function X — Y from a family of functionsf, such that new examples,
not contained in the training set, are correctly mapped ¢octirresponding output. For practical
reasons the family of function® is usually indexed by a set of parametérsi.e.y = f(x;0).
Hence, the task of choosing a function is equivalent to dnggsarameter$.

To formalize the notion of learning from training data, ittisnvenient to assume that pairs of
inputs and outputs are drawn independently and identi¢ailg) from a probability distribution
p(X,y). This assumption can be motivated by imagining a fixed dstestic relationship between
inputs and outputs, together with i.i.d noise in the measnerd of inputs and outputs. To evaluate
the cost of using a specific function f for predicting outpfrtsm inputs, a loss function | ¥ x
Y — R} that measures the cost of mapping an input vector to a speaiput is introduced. The
expected cost (or risk) R associated to a function f can bienras:

RE = [ 10 0)p0c.y) ey (3.1)
A simple example for a loss function is th¢l0loss
R 0 ify=y
I(y. ) = { . N (3.2)
1 ify=+9,

the risk R is then the average number of classification ertorsan be shown that minimizing the
0/1 loss is equivalent to predicting for each input the outpitih he maximal, i.e.:

f(x) = arg ;ng(ylx)- (3-3)

10ne can imagine that a teacher or supervisor indicates sieedeoutput for each training example, hence the term
supervised learning algorithm.
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Another simple loss function, which is often used for regias tasks, is the squared error

Iy, 9) = (v - 9)%, (3.4)

the risk R is then the variance of the estimated outgaoind the true outpuis It can be shown
that minimizing the squared error loss is equivalent to jotédy for each input the conditional
expectation of the output:

f(x) = f YRy dy. (35)

The problem in supervised machine learning is that theilligion p is unknown. Hence,
simple solutions for minimizing the risk, such as those iu&opns 3.3 and 3.5, cannot be used.
Usually the only information we have aboptis a set of training examples;i(y;),i € {1...N}.
Therefore, it is impossible to directly search for a funetiominimizing the expected risk R. A
possible solution to this problem is to use empirical riskimization, i.e. to use the empirical risk
R, the average cost on the training set, as criterion foctetea good function g:

. 1N
R =< ) I(yi.f(x))
Ni; o (3.6)

g=arg frlw%nR(f).

While using the empirical risk as a replacement for the etqubdsk intuitively seems to be a
good idea, there are some severe problems associated @pghizach. To understand this, let us
assume for a moment that pairs of inputs and outputs aregeddrom a fixed linear function with
slopea and intercepb and that i.i.d zero-mean Gaussian naiseorrupts the outputs:

Vi = ax +b+ n;. (3.7)

Using for example the squared error loss function we can rasiyeuse Equation 3.6 to fit func-
tions f from a family of functionsf to the training data. Let us consider a case in which we are
given four training examples and in whi¢h is chosen to be the family of polynomials of degree
three.

f(x; 0) = 6 + O1X + 02X + 03 (3.8)

In this case we will always be able to find parametetisat perfectly fit the training data. In other
words, we can always find a polynomial of order three that goesigh all the four training points
(except for pathological cases in which two or more traingxgmples have the samevalue).
However, the error made on examples not in the training sébwihigh, because a polynomial
going through all training points tends to be a strongly ltsong function, while the function
generating the data is linear (see F-ig. 3.1).

The problem we just described is known as twerfitting problem in the machine learning
literature. Overfitting means that there is a largedence between the risk R and the empirical
risk R and can occur due to several reasons. A first reason is, thanough training examples
are used. Clearly, in our example, if the training set wowdtlehbeen much larger, s&y = 20,
the danger of overfitting would have been strongly reduced [8g. 3.1). A second reason is, that
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Figure 3.1— lllustration of overfitting. Training examples (crosse®re created as follows. Values for the

x-coordinate were drawn uniformly from the interval [0,1®lues for they-coordinate were created from

a linear function with slope 0.5 and intercept 2, with ad@itGaussian noise with mean zero and variance 1.
On the left the result of fitting a linear function (dashea)imnd a polynomial of degree three (dash-dotted
line) to four training examples is shown. The polynomialite and strongly deviates from the underlying
function (solid line). On the right the result of fitting a éar function and a polynomial of degree three to
twenty examples is shown. The polynomial as well as the fifeection fit the underlying function relatively
well.

the family of functionsf is too complex for the learning problem at hand. In our examiblwe
would have choseft to be the family of linear functions, the danger of overfitimould have been
reduced, even for small numbers of training examples (sge3-1.). A third reason is noise in the
training data. In our example, if there had been no noisectiwléhe training examples and if we
had used linear functions, we would have obtained ® for all training sets of sizél > 2.

While the problem of overfitting is controllable for low dim&onal problems, for example by
increasing the size of the training set or by simply plottihg fitted functions, the situation gets
worse for high dimensional problems. This is because thebeurof training examples needed to
sample the input space with a certain density grows exp@ignivith the dimensionality. Using
N examples in a one-dimensional input space correspondsrig NS training examples in ®-
dimensional input space. This is known asc¢hese of dimensionalitin machine learning literature
(Bellman, 1961). Training data for typical problems witmidueds of input variables is thus almost
always sparsely distributed in input space and the dangavesfitting is high.

An approach that is often taken to avoid overfitting is regeéion. When regularization is
used, instead of minimizing the empirical risk, a weightathf the empirical risk and a regular-
ization term is minimized:

g = arg frlw;nli(f) + 2Q(f). (3.9)

HereQ : ¥ — R is a regularization functional, which penalizes complemctions f. The reg-
ularization parametei € [0, o) allows to choose how strongly complex functions are pegéli
While many diterent regularization functionals can be used, complex mibsh is translated as
nonsmooth, i.e. by using regularization one avoids to ochdaactions that vary much in small
neighborhoods of the input spadé The assumption underlying regularization is then that the
function from which the data is generated is smooth in sonmesesé.e. similar inputs give sim-
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ilar outputs. If this assumption is true, regularizatioade to better generalization - the risk of
overfitting is reduced. Another, more pragmatic, motivafior penalizing nonsmooth functions is
that training data is sparse. Clearly, it makes no sense acctimplicated function if only a small
number of training examples is available.

In practice often the squared borm of the parameters of the function is used for regultidma
For example, when fitting a polynomial to training data (asctibed above), the parametérare
the codficients of the polynomials, and we can use

Q) = 011> (3.10)

This has the #ect of penalizing polynomials that oscillate much, i.e. sranoth polynomials are
penalized, and our learning algorithm will tend to fit smofathctions to the data.

To make regularization work it is necessary to carefullyadethe regularization parameter
Choosingl too large will lead to underfitting, i.e. functions that ane smooth will be fitted to the
training data. Choosing too small will lead to overfitting. A related problem is thdtahoosing
a family of functions# which gives good results for a specific learning problem. @hw A
as well as choosing is known asmodel selectionn the machine learning literature. A simple
procedure for model selection often employed in practide isse a so-called validation set. This
means that only a part of the training data is used to competernpirical risk and to fit functions.
Actually, functions are fitted for several valuesioénd for several choices gf. The result is a set
of functions indexed byt and#. The other part of the training data - the validation set hent
used to estimate the risk for each function in this set. Siheevalidation set has not been used for
fitting functions, the empirical risk on the validation sefai realistic estimate of the expected risk
R. Finally the besit and¥ are chosen, and the whole training data is used to fit a funetith the
chosen parameters.

A refined version of using a validation set is to use crosigatibn. Ink-fold cross-validation
the training set is split int& non-overlapping subsets of sikgk. Thenk — 1 subsets are used for
fitting a set of functions with dierent choices of and¥ . After training, the left out subset is used
to estimate the expected risk of each of the functions. Thisgss is repeatddtimes, i.e. each
subset is left out once, and theand# resulting in the smallest average risk are chosen.

3.3 Probabilistic Approaches

The approach to supervised machine learning describe@ iprévious section used loss functions,
regularization functionals, and optimization methodstiden to fit functions to a training dataset.

Probabilities were only used for expressing the expectddafia given function. In this section we

describe approaches to supervised machine learning irhvahicobabilistic interpretation is given

to loss functions and regularization functionals.

3.3.1 Maximum-Likelihood Estimation

The simplest probabilistic approach to supervised macleiaming is maximume-likelihood (ML)
estimation. The idea underlying ML estimation is that theadzan be described with the help of
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a parametric probability distribution. Hence, regressamal classification tasks can be solved in
the following way. First, a probability distribution seted from a parametric family of probability
distributions is fitted to the training data. Then, this bttty distribution is used to perform
classification or regression.

Parametric probability distributions of the training data often built by negating and exponen-
tiating loss functions. When regarded as a function of tharpaterd®, the probability of a training
example is also called the likelihood function. A generaraple for a likelihood function is:

L(yix,0) = pOotx. ) = 2 exp(-I(y. (x; ). (3.11)

Here lis aloss function as described in Secion 3.2zaiwha suitable normalization constant which
assures thap(ylx, 0) is a valid probability distribution. A more specific exaraps the likelihood
function corresponding to the squared-error loss, whichbesexpressed with the help of a Gaussian
probability distribution:

L(ylx,0) =

1 1
exp|-==(y - f(x; 0))?|. 3.12
= x50~ 050)’) (312
So far, we have only described likelihood functions for fniaining examples. To express the
likelihood of a whole training set, in ML estimation it is atrst always assumed that the training
examples are i.i.d. Denoting By all the input vectors in the training set andywll the outputs in
the training set, the likelihood can be written as:

N
L(yIX,6) = [ | pyibx;, 6). (3.13)
i=1
Remember that our goal is to fit a probability distributionthe training data. This is done by
finding a set of parameters such that the probability of thiaitng data is maximized. To maximize
the probability of the training data, it is convenient toddke logarithm of the likelihood:

N
log (L(yIX, ) = > log (P(yilx;, 6)) (3.14)
i=1

The ML estimate of the parameters is then equal to the paessibiat maximize the log-likelihood:
O = arg rr(w)a>dog(L(y|X, 0)). (3.15)

In simple cases, for example when the Gaussian likelihoadtion from Equation 3.1.2 is used in
conjunction with functions that are linear in their paraenst closed form solutions for maximizing
the log-likelihood can be derived. In more complex casegrerpl approach to maximize the log-
likelihood is to take derivatives with respect@@and to use gradient descent or other optimization
methods.

Once a probability distribution has been inferred from tiaéning data it can be used for clas-
sification or regression. In a regression task one can fanplause the mean qf(y|x, Oy ). In a
classification task one can take decisions by using theWoilp rule:

y = arg maxp(yix, O ). (3.16)
yey
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Note that in the above description of the ML approach we he@icitly assumed that a con-
ditional distribution of outputs given inputs is used to rabthe data. Similarly, in Secticn 3.2 we
have fitted functions that take a feature vector as input aedtty give a class label or regression
target as output. This is called tiescriminativeapproach because the focus is on models that allow
to discriminate dferent classes or outputs. The discriminative approach sreiese because often
the only information needed to solve a classification oreegion task is the conditional probability
of the outputs given the inputs. However, it is also posdiblase parametric models of the joint
distribution of input and outputs to solve supervised legyriasks. Using a joint distribution of
inputs and outputs is known as thenerativeapproach and is described next.

In the generative approach an approximatiorp@d, y) is inferred from the training data. Gen-
erative models are almost always used for classificatioblpnos and work as follows. First, a
parametric family of probability distributionp(x, y|0) is defined. Then, using the examples in the
training set, parametefsare fitted using ML. Using the assumption of i.i.d trainingueples, the
likelihood L can be expressed as follows:

N

L(X,y10) = | | p0x;, yil6). (3.17)
i=1

As in the discriminative approach, the probability of thaiing data can be maximized by maxi-
mizing the log-likelihood. In simple cases, for example wipéx, y|0) is Gaussian, closed form so-
lutions exist. In more complex cases, one can compute disdggaand use an optimization method,
or use the so-called expectation-maximization (EM) athani The latter option is especially in-
teresting if the training data has missing values, for exampssing entries in feature vectors or
missing class labels (see (Bis1n. z006) for a detailedrii¢ien of the EM algorithm).

Once the parametefs,. have been fitted to the training data, class lalydls new inputsx
can be predicted using Bayes rule:

p(y. KlOmL )
Zyey PX, YOmL)

pYIX, OmL) = (3.18)

3.3.2 Maximum A Posteriori Estimation

ML estimation, as described in the previous section, is ganjlar to empirical risk minimization
(cf. Equation 3.6). In fact, when the likelihood functionhsilt by negating and exponentiating a
loss function, maximizing the log-likelihood is equivaléa empirical risk minimization. A conse-
qguence of this is that ML estimation fers from the same problem as empirical risk minimization:
overfitting.

An approach that can be used to avoid overfitting in probsthilmodels is maximum a posteriori
(MAP) estimation. As in ML estimation, in MAP estimation &elihood function is used to mea-
sure how well a set of parameters fits the training data. @mtikvL estimation, in MAP estimation
the values parameters can take are restricted by spectyjmgpr distribution over the parameters.
Using Bayes rule the prior and the likelihood are combined,aposterior distribution over param-
eters is obtained. The MAP estimate of parameters is thenmes setting that is most probable
according to the posterior distribution and can be usedrediption in the same way as parameters
derived with the help of ML.
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Similar to the construction of likelihood functions, prsofor use in MAP estimation can be
built by negating and exponentiating regularization fiorals. A general example for a prior is:

p(6) = 5 exp(~A(1(; ). (3.19)

HereZ is a normalization constant that ensures th@#) is a valid probability distributionQ is a
regularization functional, and € [0, =) is a hyperparameter which controls how strongly the pa-
rameters are regularized. The prior distribution expiesse beliefs about the form of the function
f that generated the training data. Building a prior disttibn with the help of a regularization
functional which penalizes complex functions is equivalensaying that, a priori, we believe the
training data was generated by a smooth, non-complex famcti

Using as example a discriminative model, the posterior giodity p(0|x,y) of the parameters
after observing one training example ¥) can be expressed using Bayes rule:

PO, 0)p(0)
| plylx, 0)p(6)de

The posterior probability of parameters after observingertban one training example can be
conveniently expressed by using the likelihood functimnfrEquatior 3.13:

L(yIX, 0)p(0) -
[ L(yIX,8)p(6)de

p(OIx,y) = (3.20)

p(oIX,y) = (3.21)
MAP estimation now consists of finding parameters that maam(0|X, y).Since the denominator
of Equation 3.21 does not depend @it is suficient to maximize Ly|X, 0)p(0).

Omap = arg maxog (L(yIX. ) + log (p(6)). (3.22)

As for ML, in simple cases, the maximization of the postepmbability can be achieved in closed
form. In more complex cases gradient descent or other apiion methods have to be used.

Note that MAP estimation includes ML estimation as a spemak. In fact, MAP estimation
is equivalent to ML estimation if a flat, constant pripf0) = c is used. Note also the close re-
semblance of Equaticn 3.22 and Equaiior 3.9, which shovid\tA® estimation can be seen as a
probabilistic version of regularized empirical risk minzation.

While the MAP approach was demonstrated for the case ofidis@tive models it can also
be applied to generative models. However, we do not furtiesciibe this case here as it is very
similar to the case of discriminative models.

3.3.3 Bayesian Estimation

Bayesian estimation is similar to MAP estimation in that atpdor distribution over parameters
is estimated from prior beliefs and training data. Howewdrereas in the MAP approach a point
estimate of the parameters is used for making predictionthe Bayesian approach one integrates
over the parameters in the posterior distribution to makeliptions.
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Taking the example of a discriminative model, the distiifutused for predictions in the MAP
approach i(yx, Omap). In the Bayesian approach the distribution used for ptixtis is:

DX, X.Y) = f Dlyix, 8) P(01X. y) . (3.23)

Using the Bayesian approach to prediction has the advatitatiehe a posteriori uncertainty in the
parameters is taken into account. Compared to the MAP and pptoaches, Bayesian methods
will thus in general estimate more accurately the uncestaimpredictions, especially if the training
data carries not enough information to obtain precise eséisof the model parameters.

A second aspect that distinguishes the Bayesian approachrfon-probabilistic approaches,
as well as from ML and MAP estimation is model selection (afct®n 3.22). In non-Bayesian
approaches often cross-validation is used to perform mselettion, i.e. to select regularization
parameters or a family of functions appropriate to a givavbfam. Using cross-validation can
be problematic because the potentially time-consuminigditbf parameters has to be performed
several times, and hence the overall time needed for tgicém be long. Moreover, regulariza-
tion parameters and other possibly continuous hyperpadesmbave to be discretized in order to
perform cross-validation and it is often unclear to whichgion hyperparameters should be dis-
cretized. The Bayesian approach to model selection is tgatarthe probability of a model given
the data. The main advantage of Bayesian model selectititigtich model has to be fitted only
once to the training set, whereaskitfold cross-validation each model has to be fitketiilmes. A
further advantage is that discretization of hyperpararaégeunnecessary.

Using again the discriminative approach as example andtidgnmodels byM;,i € 1... M,
the probability of a model given the data can be expressex iBayes rule:

p(yIX, Mi)p(M;) ‘
M. p(yIX, Mi)p(Ms)

Herep(M;) denotes our prior belief that modek the correct model. Model selection is performed
by selecting the model that is a posteriori maximally prdbaBeveral concepts need to be refined
to better understand Bayesian model selection. First, wd teestate more precisely what is meant
by “model”. In general in the context of Bayesian model sibe; a model represents a probability
distribution over training datasets. For example, in tleedininative approach a model is a condi-
tional distribution of outputs given inputs. This distrilmn is formed by combining prior beliefs
and a likelihood function:

PIMIIX,y) = (3.24)

p(yIX, M) =fL(y|X,0,M)p(9|M) de. (3.25)

Models can be formed by choosingféirent likelihood functions or prior distributions. fbérent
choices for likelihood functions can be motivated by knalge about the structure of the problem
to be solved and from assumptions about the distributionoafenin the training data. Herent
choices for the prior distribution can for example corregpto diterent values for the regulariza-
tion parameten or to different choices for the regularization functioga(cf. Equation 3.19).

In practice often a flat priop(M;) = cis used because for many problems it ifidult to de-
cide a priori which models are probable. With a flat prior, Bsign model selection is equivalent to
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ML estimation at the level of models. Note that ML estimatairthe level of models (or hyperpa-
rameters) is also known as type Il ML estimation in statétliterature. Because Bayesian model
selection is equivalent to ML estimation it is in theory alstdnerable to overfitting. However, often
only a small number of dierent models is used, or a small number of hyperparametessinsated.
Hence, in practice the danger of overfitting is small.

3.4 Algorithms for BCI Systems

We now turn our attention to the practical implementationhaf concepts mentioned in the previ-
ous sections. In particular, we review some examples ofrsigeel machine learning algorithms
that have been used in BCI systems and highlight advantageslisadvantages of theftérent
algorithms. For the description of the algorithms we asstiratone of the feature extraction meth-
ods from Section 2 .4 has been used to transform raw neurigptyis signals into feature vectors
x € RP.

3.4.1 Support Vector Machines

An example for a learning algorithm that is often used in Bgdtems is the so-called support
vector machine (SVM). In the following we will briefly desbd some basic concepts underlying
the SVM. A more detailed description of the SVM and relategbethms can be found in Mdller
et al. (200:1), an extensive description of the application of arMSW a BCI is given in Garc a
(2004).

To understand how the SVM works it is instructive to first ddes the case in which all the
training examples can be separated by a hyperplane, i.eaieein which the training data is lin-
early separable. In this case the SVM chooses a hyperplahendéximizes the minimal Euclidean
distance between the hyperplane and the training examipidbe SVM literature this distance is
called the margin. Intuitively, by maximizing the distarfeetween training examples and the hy-
perplane the probability that future feature vectors faltlee wrong side of the hyperplane is kept
small. Denoting class labels gs e {-1, 1}, feature vectors ag € RP, and parameterizing the
optimal hyperplane by € RP, b € R, it can be shown that maximizing the margin is equivalent to
solving the following optimization problem:

. 1,
min - S|w]|
w,b 2 (3.26)
st.  yiw'xi+b)>1 forie{l...N}.

Hereb s a bias variable, and is the number of training examples. It can be shown, that tueim
corresponds to the quantity|fv||, thus a maximization of the margin is achieved by minimizing
Iw|[2. A geometrical interpretation of this optimization prailén the two-dimensional case is
shown in Figure 3.2.

If the data are not linearly separable, Problem 3.26 is gilf¢e, i.e. no solution that respects all
the constraints exists. To deal with non-separable datd#setonstraints are relaxed by introducing
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slack variableg; and a regularization consta@t

. 1 .,
min - Siwl +CZ§.

st ywixi+b)>1-¢ forief{l...N} (3.27)

&>0 forie{l...N}.

If C = oo this problem is equivalent to problem 3.26. HoweveC ifs small enough some training
examples are allowed to lie inside the margin or even on thengviside of the hyperplane. To
obtain good generalization performance it is importaness tiferent values fo€ and to choose
an optimal value, for example via cross-validation.

It can be shown that the optimization problem solved by thdM®¥n also be expressed as the
minimization of the sum of a loss function and a regular@afiunctional (Hastiet al, 200:1):

N
; (. 2
min Z; max(Q 1 - yif(x;)) + Allf|. (3.28)

The function max(01 — yf(x)) is called the hinge loss and gives zero penalty to traieixgmples
for which yf(x) > 1. Training examples for whicff(x) < 1 receive a penalty equal to-1yf(x).
The function f is in general of the form:

N
f(x; 6) = Z ViGiK(X, Xi) + Oo. (3.29)
i=1
Here k is a kernel function, which allows to implement noaéin mappings between inputs and
outputs. If k§, x;) = x'x; the linear SVM is obtained. In the nonlinear case the Gandgianel
k(x, %) = exp(|Ix—x;l[?/c?) and the polynomial kernel k(x;) = (x"x; +c)? are widely used kernel
functions.

X2

>
>

X1

Figure 3.2— Linear SVM in two dimensions for a separable dataset. Thedighows the margin= 1/||w||

and the weight vectow. The three points on the margin are called support vectadsfiaty define the
solution, i.e. the solution does not change if the otherfsane moved while staying on the same side of the
margin.
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In BCl research the SVM has been successfully applied tordataded with dierent paradigms.
Examples include the classification of P300 data (Kaexl,, 2004; Thulasidast al, 2006), mo-
tor imagery data (Schloat al, 200%), and data from other cognitive tasks (Gareethl, 2003).
Though very good classification accuracies have been athievthe previously mentioned stud-
ies, several problems exist that hinder the application\d¥1S in practical BCI systems. A first
problem is linked to the optimization problems that havedsblved when training SVMs. Solving
these problems can be very time consuming, especially wkgenumber of training examples is
used. To reduce the computational costs of training SVMi$maged algorithms have been devel-
oped (Platt, 1999). Even if optimized solvers are used cdatipmal costs remain relatively high,
because cross-validation has to be used to select optigualbrezation and kernel parameters and
so multiple SVM instances have to be trained. Adapting a B&i émploys an SVM to a new user
can thus be a cumbersome process, requiring expert knogviaag a relatively large amount of
time.

A second issue is that the loss function used in the SVM igdesi for problems in which only
binary yegno outputs are needed. The problem with binaryrny@®utputs is that no information
is given about the confidence the system has in those outpdeswill show in later chapters
of this thesis that a classifier which provides confidenceltg\for example in the form of class
probabilities, is of great advantage when building a BCteys

3.4.2 Generative Models

A basic generative approach to classification that is songstiused in BCI systems is to use Gaus-
sian densities for the class-conditional distributionseafture vectors. Gaussian probability distri-
butions for vector € RP are parameterized by a mean veatore RP and a covariance matrix
T € RPxD:

p(xim, X) = - exp —%(x -m)'zx - m)). (3.30)

(2n) 2|22
Here |X| denotes the determinant of the covariance matrix. To buithssifier with the help of
this model, a Gaussian density is fitted to the training examfsom each class. This results in
conditional probability distributions for all classes. iy Bayes rule the conditional probability
distributions can be used for classification:

p(XImk, i) p(k)

k =
P00 = ey paIme 0PI 331)
k =arg Lngxp(k|x).

Heremy andXy denote the parameters for classThe prior probabilityp(k) indicates the a priori
probability for classk.

A method that is very often used to fit the parameters of a geéimermodel is ML estimation.
For the case of the Gaussian distribution well-known cloketh solutions exist for the mean
vectors and covariance matrices. DenotingCythe set of indices of training examples belonging
to classk the ML estimate for the mean of clakss:

1
M= 5 > i (3.32)
KiecCx
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The ML estimate for the covariance of cldsis:

Ee= = 3 (x - 0 - m". (3.33)
Ni 55
While the Gaussian distributions are particularly popédaigenerative models it is also possible to
use other types of parametric distributions. If no closedfeolutions exists for the parameters of
a given distribution, gradient descent with the log-likelbd as objective function can be used for
parameter optimization.

Generative algorithms have been used less frequently in@@hrch than discriminative meth-
ods. Generative algorithms based on Gaussian distrilautiase been applied with success to the
classification of motor imagery data (Lenwhal, 200:; Vidaurreet al, 2006) and the classifica-
tion of other cognitive tasks (Curraet al, 200:1; Keirn and Aunor, 1990). A potential advantage
of using the generative approach in a BCI system is that ai pmowledge about neurophysiologic
signals can be modeled relatively easy (see for exarpleatBlai 2006)). Further advantages are
that generative approaches can readily be used for maksgroblems, that generative approaches
can easily deal with missing data, and that a probabilisitput is given. A potential disadvantage
is that in generative approaches often too many paramedeestb be learned. In fact, in generative
approaches the joint distribution of input vectors and otgps modeled, while for classification
tasks it is sfficient to model decision boundaries between classes. Im wibels, modeling the
joint distribution of input vectors and outputs often inggimodeling structures that are not impor-
tant for classification.

3.4.3 Bayesian Algorithms

Bayesian techniques have been used relatively rarely iartge of BCl systems. However, the few
examples in which Bayesian techniques have been used shabwrith their help systems can be
built that dfer functionality which goes beyond that of many other system

A basic example for the use of Bayesian techniques in a B@¢sysan be found in the study of
Roberts and Penny (20000). In the system presented by RavettRenriy an autoregressive (AR)
model was used to extract features from EEG data recordeld Wig subject performed either
mental arithmetic or imagined hand movements. Thdfmments of the AR model were classified
with the help of linear logistic regression, which is a mettior two-class classification problems.
In logistic regression models class probabilities are aaexas follows:

1

1+expEwTx)’ (3.3

p(y = 1ix, w) =
Herew denotes the parameters of the classifier, and the prolyablit-1/x,w) can be easily com-

puted by using + p(y = 1x, w). The likelihood function corresponding to the logistigression

model is
N

Ly, w) = [ | pyi = 1, W)t plyi = ~1ix, w)* ", (3.35)

i=1

where
Yt 1

tj 5

(3.36)
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In order to infer the model parameters, Roberts and Penny aisésotropic Gaussian prior with
regularization parameter

NIO

a
pwia) = (o=
whereD is the order of the AR model used for feature extraction,the.dimensionality of the
feature vectors. The posterior distribution resultingrirthe combination of the logistic regres-
sion likelihood and a Gaussian prior cannot be expressetbged form and hence was approxi-
mated with a Laplace approximation (s2e (Bisthion. 2006) foreninformation about the Laplace
method). The regularization parametewas estimated with the help of type Il ML estimation (see
Section 3.3.3 and (Roberts and Penny, 2000) for furtheilsleta
The probabilities over classes computed with Bayesiarstimgiegression where exploited in
two ways in the system of Roberts and Penny. First, probasilobtained from several consecutive
EEG segments were used to obtain temporally smoothed é¢stiroé class probability. Second,
a reject-class was introduced in order to reject EEG segrfentwhich no sfficiently certain
decision could be taken. EEG segments were assigned tojéoe-ckass, whenever the maximum
class probability was smaller than a threshaold [%, 1], i.e. whenever:

exp(—%wTw), (3.37)

kg_ellﬁ} p(y = kix,w) < d. (3.38)

As was shown by Roberts and Penny, the temporal smoothingeldas the use of a reject-class
lead to significantly increased classification accuracymdmmpared to a system working without
these features.

Other interesting examples for the use of Bayesian metlbggiah BCI systems can be found in
the work of Svkacelet al. (2003). In this work the authors present two algorithms fassification
of EEG data recorded during the performance éfedent cognitive tasks. The innovative aspect of
the first algorithm is that it takes into account uncertaintyhe features derived from neurophys-
iologic signals. This is dierent from the standard approaches to supervised mackimerig in
BCls in which features are regarded as fixed values. As hasdiemvn by Svkacekt al, treating
features as latent variables results in higher classificatcuracies than treating features as fixed
values. An important drawback of this algorithm is howevettMonte Carlo techniques have to
be used and that computational complexity is high.

The innovative aspect of the second algorithm presentedrk@cgket al. is that it is adaptive.
This means the algorithm is capable to react to nonstaii@sin the relation between neuro-
physiological signals and the underlying cognitive tadkse adaptivity is achieved by treating the
parameters of the classifiers as state variables in a firsr dldrkov process. An update of the
classifier parameters after observing datay() at timet is expressed as follows:

p(O:ly:, De_1) = f %

HereD;_1 denotes the data observed up to tirrel anda serves to automatically control the speed
of adaptation. The conditional distributiqu(0:/0;_1, 1) is multivariate Gaussian with medi_;
and covariancal. An experimental comparison of the adaptive classifier aittotherwise equiv-
alent but static classifier showed that the adaptive classiften outperformed the static classifier
(Svkaceket al, 2003).

P(0:0:—1, ) P(0t—1|Dr—1) p(21)d 0:_1d 1. (3.39)
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In summary, the main advantage of the Bayesian approachtig #ilows to build functionality
into BCI systems, which is éicult to obtain with other approaches. Examples for suchtfane
ality are the automatic estimation of regularization pagtars, the rejection of data that cannot be
classified with certainty, the consideration of uncertaiimt features, and the adaptation to tem-
poral nonstationarities. A potentialfficulty with the Bayesian approach is that often no closed
form solutions exist for the integrals which are at the ba$iBayesian inference and prediction.
A possible solution to this problem is to use sampling teghes such as Monte Carlo sampling.
This approach is however not advisable in BCI systems duks tiigh computational complexity.
Another possible solution, which is more suited for the usBCI systems, is to use deterministic
approximation schemes, such as the Laplace method origagahinference (see: (Bishon. 2006)
for more details about such methods).

3.5 Conclusion

In this chapter we have given a brief introduction to superdimachine learning methods for BCI
systems. In the first part of the chapter we have reviewedpnobabilistic and probabilistic ap-
proaches to supervised learning and have described bastemts, such as loss functions, risk,
overfitting, regularization, model selection, and croabelation. In the second part of the chapter
we have reviewed some examples of supervised learningithigar that have been used in BCI
systems. During the discussion of the individual algorihitnbecame apparent that algorithms
which are to be used in practical BCI systems ideally shoulfillfthe following requirements.
First, algorithms should be robust with respect to outlidisis is important because neurophysio-
logic signals can contain many outliers and artifacts, edder example by eye-blinks and muscle
activity. Second, algorithms should be of low computatia@mplexity during inference and pre-
diction. Low computational complexity during inferencaluees the time needed to setup a BCI
system. Low computational complexity during predictiorciacial because in BCI systems data
should be processed in realtime. Third, algorithms shorddige confidence levels for their predic-
tions or, equivalently, probabilistic outputs. This is ionfant because probabilistic outputs provide
a natural basis to combine information obtained frofifiedent sources and to use decision theory
when taking decisions. As we will see in later chapters of thesis, combining information as
well as taking decisions in a principled manner allow to dhaitlvanced BCls.

The Bayesian approach to supervised machine learning @ltme to build algorithms that
fulfill many of the requirements described above. Neveedgl Bayesian techniques have been
used only relatively rarely in the area of BCls. In this tlsesie will present Bayesian algorithms
that can learn classifiers quickly, robustly, and fully an&ically. Moreover, with these algorithms,
electrode configurations can be adapted to specific useiafanehation from several data segments
can be aggregated. Before describing the details of ouritiigs, we review in the next chapter
the specific type of BCI used in this thesis, namely BCls basethe P300 evoked potential.
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Review of P300-Based
Brain-Computer Interfaces

4.1 Introduction

After the general discussion of BCI systems in Chapter 2 Aedréview of supervised machine
learning in Chapter 3 we now give a more detailed review otype of system used in this thesis,
that is to say P300-based BCls. First, in Secton 4.2 we iestne P300 from a neuroscientific
point of view, i.e. we list conditions under which the P300 t& evoked and factors that influence
the characteristics of the P300. Then, in Section 4.3 thie idea underlying P300-based BCls is
introduced and several systems implementing this ideaeseritbed. In Section 4.4 the algorithmic
aspects of P300-based BCls are discussed. Finally, indBetth criteria for evaluating thef@ierent
systems and algorithms are described. The chapter is supetham Sectior 4.6.

4.2 The P300 Event-Related Potential

Event-related potentials (ERPs) can be divided into twesgda. Exogenous ERPs are the result
of early, automatic processing of stimuli and have a lateanyplitude, and topographic distribu-
tion that depends mainly on the physical stimulus charaties. Endogenous ERPs are the result
of later, more conscious processing of stimuli and haveadiaristics that depend mainly on the
stimulus context, i.e. on the task the subject was given anth@ attention the subject pays to the
stimuli. An endogenous ERP that has gained much attentitdmeimeuroscientific and medical re-
search communities is the P300 (see I-1a. 4.1). The P300 idenesting and fruitful research topic
because it can be reliably measured and because the chiatistef the P300 waveform, such as
for example amplitude and latency, can be influenced by warfactors. Since the discovery of
the P300 by Suttoet al. (196!%) many studies have tried to uncover the psychologicdlneuro-
physiological meaning of the P300 by varying the way stinanéi presented and by observing the
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Figure 4.1 — Typical P300 wave. The P300 (or P3) is a positive deflectiothe EEG, which appears

approximately 300 ms after the presentation of a rare orsimg stimulus. A series of negative and positive
components (N1, P2, N2) precedes the P3. While the P3 reflggtidevel processing of stimuli, the earlier

components reflect low-level, automatic processing ofgiim

corresponding changes in the waveform of the P300. Othdiestiave linked the characteristic of
the P300 to subject specific factors such as gender, ageaiordiseases, for example Alzheimer
or schizophrenia. As it is impossible to review all thesalss in detail, the following discussion
is restricted to points that are important for the use of tB@dRn a BCIl. Readers who are keen to
learn more about the P300 are referred to the reviews in (Bop&981), (Hruby and Marsalek,
2003), and (Nieuwenhuist al, 200%).

To evoke the P300 fferent stimulus modalities and paradigms can be used. Regdha stim-
ulus modality, auditory, visual, tactile, gustatory, ofagtory stimuli can be employed. However,
for practical reasons, often auditory or visual stimuliased. Mainly two paradigms are employed,
the oddball paradigm and the three-stimulus paradigm.dmtidball paradigm two fferent stim-
uli are used, a target (or oddball) stimulus and a nontatgatikis. The two stimuli are presented
in a random sequence and the target stimulus appears oely. r&ubjects are instructed to respond
to each occurrence of the target stimulus and to ignore thearget stimuli. For example subjects
can be instructed to react with a button press to each 1000¢zih a random sequence of 1000
Hz and 2000 Hz tones.

The three-stimulus paradigm is a modified oddball paradigrwhiich a so-called distracter
stimulus appears infrequently in the sequence of targetnantarget stimuli (Courchesret al,
197%). The distracter stimulus is usually not mentionedmgiging instructions to the subjects and
S0 it surprises subjects when it first appears in a sequendaciease theféect of surprise, several
unique distracter stimuli are used and each distracteuitiis presented only once. The distracter
stimuli are perceptually flierent from the target and nontarget stimuli. For examplelukrggs or
other environmental sounds can be used in an oddball seggensisting of 1000 Hz and 2000 Hz
tones.

Different types of P300 can be observed in the two paradigmsildeg@bove. In the classical
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Figure 4.2— Paradigms for evoking the P300. Left: In the oddball payada sequence of target (T) and
nontarget (N) stimuli is presented in random order. The @bdlty for target stimuli is low, and subjects
are instructed to react to the targets, either by a buttosspreby silently counting the targets. Each target
stimulus evokes a P3b. Right: In the three-stimulus paradistracter stimuli are added to the sequence of
target and nontarget stimuli. A P3a is evoked by surprisisgyatter stimuli.

oddball paradigm, target stimuli evoke the so-called P3i®e FP3b has a latency of about 300-500
ms and can be observed mostly over centro-parietal braiomgegThe P3b appears only if subjects
pay attention to stimuli and disappears if subjects do ngtgiention to stimuli. When subjects
do not pay attention to stimuli, the target stimuli in the bdlll paradigm evoke a fierent type of
P300 - the so-called P3a (Sauiresal, 197%). The P3a has a latency of about 200-400 ms and
can be observed mostly over fronto-central brain regiomshé three-stimulus paradigm the target
stimuli also evoke a P3b. The distracter stimuli howevekewP3a (Courchesm al, 197%). The
relation between the filerent paradigms and the P3a and P3b is summarized in Fig. 4.2.

In addition to the dependence orfdrent experimental paradigms, the P300 is also influenced
by many other factors. The dependence of the P300 on thesesfatows that the P300 is not
a static, fixed phenomenon but rather an inherently variegdponse of the brain, occurring in
situations in which novel or improbable and task-relevaimhdi have to be processed. Some
important factors influencing the P300 are listed below.

e Target Probability

The P3b peak amplitude is inversely related to the proltglufithe evoking stimulus. High
amplitude P3b waves are evoked when the probability of thgetastimulus is low. Low
amplitude P3b waves are evoked when the probability of thgetsstimulus is high. In
practice, the probability for target stimuli is usually setvalues around 10% in order to
reliably evoke the P300. In addition to thifext of global target probability, the amplitude of
the P3b is alsoféected by local target probability. This means that ampditislhigh when
many nontarget stimuli precede a target stimulus and thptitude is low if a small number
of nontarget stimuli precedes a target stimulus (Sawgtes, 1976).

¢ Interstimulus Interval
The amplitude of the P3b wave is positively correlated toittterstimulus interval (ISI),
i.e. to the amount of time between two consecutive stimubnd. I1SIs lead to high ampli-
tudes, short ISls lead to smaller amplitudes.



44 CaapPTER 4. ReviEw oF P300-Bisep BRAIN-COMPUTER INTERFACES

e Habituation
The amplitude of the P3a habituates. After presentation afymdistracter stimuli subjects
get used to these stimuli and P3a amplitude decreases ttesme, 1978). The amplitude of
the P3b is mostly urféected by long-term repetition of stimuli.

e Attention
The amplitude of the P3b wave depends on how much attentigecs pay to stimuli and
on how concentrated subjects are. In fact, the P3b wave ebdetpldisappears if subjects
are not actively engaged in an oddball task. The P3a waveeondhtrary remains mostly
undfected by changes in attention and can be observed evenéicssispmpletely ignore the
stimuli.

e Task Dfficulty
The latency of the P3b increases and the amplitude decredtbeimicreasing task diculty.
For example target tones being veryfeient from nontarget tones yield higher P3b ampli-
tudes than target tones being only a littl&elient from nontarget tones (Poich, 1987). For
the P3a the féect of task dfficulty is different from the fects for the P3b. Increasing the
difficulty of discrimination between target and nontarget tanesthree-stimulus paradigm
will lead to increased P3a amplitudes. In addition to stimulovelty the P3a thus also seems
to be related to perceptual discriminatiotfifidulty between target and nontarget stimuli. The
P3b amplitude decreases in such a setup as expected (Bisaiz2006).

The paradigms used for evoking the P3a and P3b, togethetheiflactors influencing the shape
of the P3a and P3b, allow to draw conclusions about the psygital and physiological meaning of
these ERPs. In general the P3a seems to be related to froimaiunction and is evoked by stimuli
that require attention and subsequent processing. Ircpkatj it has been proposed that the P3ais a
part of the so-called orienting response, i.e. the respohgee human body to novel, surprising or
potentially threatening situations, consisting of ragi@mges in heart rate, skin conductance, and
other physiological parameters (Courcheshal, 197'; Knigkt, 19¢6). The P3b is thought to be
related to processes for context updating, processes @atimg “models of the environment”, and
to stimulus evaluation. In contrast to overt, immediatpoeses to a stimulus these processes (and
the P3b) are thought to be part of high-level, metacontrot@ssing (Donchin and Cale:s, 1388).
Note however, that the context updating model of Donchin@nié:s has been criticized av Verleger
(1988) who promotes a theory in which the P300 is a sign ofecdriosure. In this theory the P300
is linked to expected events, instead of unexpected evsritsthe theory of Donchin and Cales. In
summary, a conclusive theory about the role of P3a and P3britah information processing has
yet to be established.

4.3 P300-Based BCI Systems

The basic idea underlying P300-based BCI systems is to usddirall-like paradigm and to let the
user decide which stimulus plays the role of the target dtimuAs the P300 (P3b) occurs only if
a subject voluntarily reacts to a target stimulus, the tachesen by the user can be automatically
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Figure 4.3— Working principle of the P300 speller. Left: Example foryargol matrix that can be used
in the P300 speller. Flashes of rows or columns are usedmaslstiThe stimuli are numbered from 1 to 12.
Right: A random stimulus sequence. If the user concentfatesxample on the letter 'B’, a P3b will be
evoked for stimuli 2 and 7.

inferred from the EEG recorded during stimulus presematidore specifically, the sequence of
events in a P300-based BCl is usually as follows. First, #er decides on a command he wants
to execute with the help of the BCI. Then, stimuli are presérdnd the user concentrates on
the stimulus associated to the desired command. After Bigrresentation the recorded EEG is
analyzed with the help of a classification algorithm (seetiS8e#.2). The goal of this analysis is
to infer which stimulus was chosen as target by the userelftialysis is successful the command
associated to the chosen stimulus is executed by the B@&my®&elow we present several systems
that implement this idea.

4.3.1 P300 Speller

The first P300-based BCI has been presented bv Farwell anchidbp1983). In their work a %6
matrix containing the letters of the alphabet and some atji@bols was displayed on a computer
screen. Rows and columns of the matrix were flashed in randdar,cand subjects could choose
a symbol from the matrix by counting how often it was flashediaskes of the row or column
containing the desired symbol constituted target stimndi @/oked a P300 while all other flashes of
rows and columns constituted nontarget stimuli and did waktea P300. To infer which symbol the
user wanted to select, it was thudfaient to find out which flashes evoked a P300. The principle
underlying the P300 speller is depicted in Fig. 4.3.

Since the work of Farwell and Donchin several researcheans paposed extensions and mod-
ifications of the basic P300 speller paradicm. Allison anikBa (20C3) tested the impact of dif-
ferent matrix sizes on the amplitude and latency of the P3DBey presented matrices of size
4x4, 8x8, and 1X12 to their subjects. Instead of single symbols the entrighé matrix were
digrams, i.e. pairs of letters. The outcome of their studg tat P300 latency decreased and am-
plitude increased as matrix size was increased. Note tfgistin line with the relation between
target probability and P300 amplitude described in Sectian the smaller the target probability,
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the higher the P300 amplitude. Unfortunately in the studilifon and Pinecla classification of
the P300 signals and thus the automatic detection of the @lytind user wanted so select was not
attempted. The impact of fierent matrix sizes on the communication speed achievatletiag
P300 speller thus remained unclear.

Another modification of the basic P300 speller, the so-dadiagle display paradigm, was pro-
posed by Guaet al. (2004). In their system, instead of flashing whole rows ardmas of the
symbol matrix, single symbols were used as stimuli. Thisthasdfect of reducing the probability
for the target stimulus. In the basic P300 speller paradigentarget probability is 6 ~ 0.16,
while in the single display paradigm it ig36 ~ 0.03. In the experiments performed by Guetral.
the lower target probability led to higher P300 amplituded better classification accuracy than in
the basic P300 speller.

Many other studies were concerned with classification &lgos for the P300 speller and payed
less attention to stimulus display aspects. These studhedescribed in Secticn 4.4.

4.3.2 Virtual Apartment

A departure from the P300 speller paradigm was initiated &wliBs (2003) who tested if the P300
could be evoked in a virtual reality environment. In the egstpresented by Bavliss, subjects
viewed a virtual apartment alternatively on a monitor ootlgh a head-mounted display. Control
of several items in the virtual apartment, for example dwitg onjoff a lamp, was possible by
concentrating on small spheres that were flashing in randder @ver the controllable items. The
outcome of the study was that only smalffdrences existed between the P300 waves recorded in
the monitor and head-mounted display conditions. It was ghown that virtual reality, which
allows for complex, yet controllable experimental envirents, is an interesting alternative to
other, simpler P300 BCI paradigms.

4.3.3 Cursor Control

Yet another P300 BCI paradigm was presented by Plial. (199%). The idea behind the system
described by Polikd et al. is to allow users to control a two-dimensional cursor wita telp of
the P300. To implement this idea a fixation cross with targetsain the north, east, south, and
west directions was displayed on a monitor. At the end of emahsmall crosses were displayed
and temporarily replaced by asterisks. The replacementoskes occurred in random order, and
to move the cursor in a given direction subjects were ingtdito count the number of asterisks
appearing at the corresponding target arm. While in theysticPolikoff et al. actual cursor
movement was not implemented, afflioe analysis showed that cursor control with the help of the
P300 was in principle possible.

4.3.4 Systems for Disabled Subjects

The cursor control paradigm was further explorecl by Piceetral. (2006). Flashing arrows were
displayed in the peripheral area of a screen and subjectd otave a cursor by concentrating on
one of the arrows Piccionet al. tested their system with five severely handicapped and seven
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able-bodied subjects. The outcome of their study was thadlibapped as well as able-bodied
subjects were able to control cursor movement with theirOP3@nals. The communication speed
achieved by the severely handicapped subjects was signtifidawer than that of the able-bodied
subjects. Nevertheless, the study of Picciehal, (2006) was one of the first studies showing that
P300-based communication is possible for severely hapgézhsubjects.

Another study testing P300 based communication with sgvdigabled subjects was presented
by Sellers and Donctin (2006). A paradigm similar to the P§08ller was used by Sellers and
Donchin [2006), however the matrix size was reducedx@.2The motivation for reducing the
matrix size was to simplify use of the system for disabledettb who might have visual deficits
and thus might not be able to concentrate on a small item onegrsc: Sellers and Donchin also
tested auditory stimuli and combinations of visual and tmudistimuli. The results obtained in the
study showed that communication with the help of the P300paeasible in the auditory, the visual,
and in the combined auditory-visual modality. Furthermibkgas shown that communication was
possible for the handicapped as well as for the able-bodibpats.

4.4 Algorithms for P300-Based BCI Systems

Clearly, in all of the systems described above, algorithresnacessary that can infer the command
a user wants to execute from the EEG recorded during stinpriesentation. The input for these
algorithms is the EEG recorded during presentation of dtjmogether with the sequence and
timing of stimuli. The required output is the identity of tkBmulus that was chosen by the user,
i.e. the identity of the target stimulus. To compute thispotitin all algorithms described in the
literature the same general approach is employed. Firsgach presentation of a stimulus a short
EEG segment, a so-called single trial, is extracted. Thesithgle trials are classified with the help
of a (non-probabilistic) machine learning algorithm. Thdomme of the classification is a score
that indicates for each single trial if a P300 is present ¢r Rimally the scores from all single trials
are aggregated in order to form a decision about the idestitiye target stimulus. In the following
we first describe algorithms that have been used to aggragateation from several single trials
(see Section 4.4.1). Then, in Secton 4.4.2 we describe tehime learning methods that have
been used to classify single trials.

4.4.1 Algorithms for Aggregating Information from Single Trials

In the simplest type of algorithms the information from dengials is directly used, without aggre-
gating information from several stimuli, i.e. the EEG ratmxdt after each stimulus presentation is
immediately translated into a command (see -i0. 4.4.).

For example in the cursor control system described by Rieabal. the following three steps
are repeated until the system is stopped by an operator:

1. One of the four arrows in the peripheral area of the screesmnidomly chosen and flashed.

2. The EEG segment recorded during the flash of the arrow igzsthwith a classifier. The
output of the classifier is a score that indicates if a P300dsgnt in the analyzed segment.
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Figure 4.4— Immediate translation of EEG into commands. Fotifedent stimuli are presented in random

order with an ISI of 500 ms (1,2,3,4). The EEG segment comedjmg to each stimulus presentation is

classified (C); the output of the classifier is a score indicgttow similar the EEG segment is to a P300. The
classifier scores are immediately used to take decisions.€D)f the classifier score indicates that a P300 is
present, the command associated to the stimulus that etio&d?B00 is executed.

3. If the classifier output is larger than a preset threshblel cursor moves into the direction of
the arrow chosen in step 1. Otherwise the cursor remaits stil

This algorithm has the advantage that the user almost inatedgliobtains feedback from the sys-
tem. A disadvantage is however that wrong decisions willdien relatively often. This is the

case because the EEG is a noisy signal and consequentlyasifielr output for single trials also

contains noise.

To allow for more complex application scenarios, a methad was first described by Farwell
and Donchin (1968) is often used (see F-10. 4.5). In this ntetisulus presentation also has to be
started by an operator and stops after all stimuli have beesepted a certain number of times (in a
random sequence). To infer a command from the EEG, first #sifler-outputs corresponding to
multiple presentations of one stimulus are summed. Thencdimmand associated to the stimulus
with the maximal summed classifier score is executed. Tha mdwvantage of this approach is
that summing the classifier scores obtained from multipbs@ntations of a stimulus reduces noise.
The danger of executing an unwanted command is thus grealliced. In the original P300 speller
system of' Farwell and Donchin for example, flashing each megv@lumn of the symbol matrix
fifteen times allowed for perfect classification. The disatage of repeating each stimulus several
times is that sending a command takes more time than whesiaesiare taken immediately. For
example, if an ISI of 500 ms is used in the P300 speller systaheach row and column is flashed
fifteen times, selecting one character takes 12500 ms= 90 s. An additional disadvantage is
that the number of stimulus presentations has to be fixedaai.pThis is problematic because
the system cannot take into account fluctuations in the kigraoise ratio of the EEG. These
fluctuations can arise for example from changes in the Iduebacentration of the user or changes
in the electrode-skin connection.

An algorithm that is able to dynamically adapt to fluctuasian the signal-to-noise ratio has
been described kv Serlet al. (2005). In the system of Serlat al. stimulus presentation is started
by an operator and stops as soon as “enough” data has bedredcquafter a fixed maximal
number of stimuli has been presented. Enough data here rtiesrthe system can take a reliable
decision, i.e. the system presents more stimuli if it is s@suhich command the user wants to
send and stops stimulus presentation as soon as it is swetbbaesired command (see Figd. 4.6).
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Figure 4.5— Translation of EEG into commands after a fixed number of ghirs presentations (symbols in
squares represent operations, symbols in circles represgables). Four dferent stimuli are presented in
random order with an ISI of 500 ms (1,2,3,4). The EEG segmamésponding to each stimulus presentation
is classified (C). The classifier scores from the second ldéskmuli are summed with the scores from the
first block (+). The maximum of the summed scores is computed (M) and thenzord associated to the
stimulus with the largest summed score is executed (D).iekample each stimulus is presented twice,
however dfferent numbers of stimulus presentations can be used toiaptparformance for a given user.

As has been shown hv Serbt al, adapting the number of stimulus presentation to the sitgnal
noise ratio significantly improves the speed of commuracagchievable with a P300-based BCI.
However, instead of fixing the number of stimulus preseoitatia priori as in the system of Farwell
and Donchin, now a criterion has to be chosen that allows@dedide how much data the system
requires to take a reliable decision. In the systera of Setbal. a thresholding technique was
used to decide if more stimuli have to be presented or not budetails about the algorithm for
computing optimal thresholds were given.

4.4.2 Classification Algorithms

All of the methods for aggregating information from singlials, presented in the previous section,
depend on algorithms that can transform a EEG segment irtora svhich indicates if a P300 is
present or not. Discrimination of P300 and non-P300 EEG sedgris a surprisingly problematic
task because the amplitude of the P300 wave is relativelyl ssthan compared to the background
EEG activity and because the latency, topography, and audpliof the P300 dier from subject
to subject. The approach that is usually taken in P300 BCkotee these problems is to use
supervised machine learning algorithms. This means ttsdtifirone or several training sessions
a training dataset is acquired that contains many examplE8@0 and non-P300 EEG segments
from a specific user. Then, a classifier that can solve theidisation task is learned from the
training dataset.

A straightforward classification algorithm that has beesdusith good success in several P300
BCls consists of the following steps. First, a subset oftedeles positioned at the locations on
the scalp where one expects strong P300 amplitudes is etlethen the raw signals from these
electrodes are bandpass filtered and downsampled. Fih&lfiltered and downsampled signals
from the selected electrode subset are concatenated mardevectors and fed into a machine
learning algorithm.
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Figure 4.6— Decision after a variable number of blocks (symbols in sgsaepresent operations, symbols
in circles represent variables). Fouffdrent stimuli are presented in random order with an ISI of B30
(1,2,3,4). The EEG segment corresponding to each stimuéseptation is classified (C); the output of the
classifier is a score indicating how similar the EEG segm&id ia P300. After the first block of stimulus
presentations, the maximum of the classifier scores is ctedil). If the maximum is larger than a certain
threshold (T), a decision is taken (D), i.e. the systems@esthe command associated to the stimulus with
the largest score. If the maximum is smaller than the thieslam additional block of stimuli is presented.
The classifier scores from the second block of stimuli arersathwith the scores from the first block)(
The maximum of the summed scores is computed and the comnsandiated to the stimulus with the
largest summed score is executed.

This general approach was used in the algorithms descriphberet al. (200:}) and Thu-
lasidaset al. (2006). In the method described by Kamtral. (2004) a ten electrode configuration
consisting of the midline electrodes, the parietal-ot¢almlectrodes PO7, P08, P3, P4 and the cen-
tral electrodes C3, C4 was used. A support vector machin®S¥th Gaussian kernels was used
for classification. The method described by Kaeeal. (2004) was one of the winning entries for
the P300 dataset from the BCI competition 2C03 (Blankertal,, 200:}). The algorithm described
by Kaperet al. (200:) was also employed in another study. In this studv &and Ritter, 2004),
classifiers were trained from a pool of data from severalestibjand then tested with data from
new, unseen subjects. This idfdrent from the usual approach in which training data frony onl
one subject is used. The results describel by Kaper and {Zi6:1) showed that generalizing to
new subjects without subject-specific training data is imgyple possible, however significantly
lower classification accuracies than in the standard aphragre achieved.

In the method described by Thulasidetsal. a set of 25 central and parietal electrodes was
used. In addition to the downsampled signals also estindttse time-derivatives of the signals
were used. According to Thulasidasal. the use of the time-derivatives improves classification
accuracy. A SVM with a Gaussian kernel was used for classifita The method described by
Thulasidaset al. was tested with several P300 speller datasets and showeda®d performance.
Unfortunately the method was not tested with publicly alaid datasets and thus a direct compar-
ison with the method of Kapest al. is impossible.

An alternative to manually fixing parameters for featureamtion (e.qg. filter settings and subset
of electrodes) is to let an algorithm select the optimaluezg from a set of predefined features.
This idea is implemented in the stepwise discriminant aialySWDA) algorithm and was used
in the studies described by Farwell and Donchin (1938), et al. (2000), and Sellers and
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Donchin (2006). In these studies filter settings and a sufisetectrodes were fixed, however
SWDA was used to select timepoints relevant for P300 classifin within EEG segments. In a
recent comparison of classification methods for the P30lesp8WDA turned out to be one of the
best methods in terms of classification performance andnmstef éfort needed for implementation
of the method (Krusienslét al, 2006).

The principle of automatically selecting features was alsed by Bostanov (2004). In the
algorithm of Bostanov an overcomplete dictionary of camtins wavelets was used to transform
the raw EEG signals into the time-scale space. During trgiai t-test was used to identify points
in time-scale space at which thefférence between the mean waveletfiornts from P300 seg-
ments and non-P300 segments is high and at which at the sareehe variance around these
means is small. The wavelet dbeients with the best t-test results were fed into an lineserdn-
inant analysis (LDA) classifier for classification. The nuthof Bostancv (2004) was tested with
slow cortical potentials (SCP) and P300 datasets in the B@ipetition 2003 and was among the
winning entries for both datasets.

Still another algorithm which used the principle of autoiméature selection was presented by
Rakotomamoniet al. (200%). In this algorithm recursive feature selection vifith SVM was used
to find an optimal subset of electrodes. To further improvdgomance several SVM classifiers
were learned from dlierent subsets of the training data. This approach is bas#dteassumption
that the distribution of the P300 and non-P300 segmentsertriining set is variable and thus
cannot be appropriately modeled by a single classifier. Tétoa of Rakotomamonigt al. (200%)
was tested with very good results on the 2003 BCI competB800 dataset and was the winning
entry for the 2004 BCI competition P300 dataset.

In addition to the algorithms based on filtering for featux&raction and the algorithms based
on feature selection a third group of algorithms can be ifledt The algorithms in this group use
independent component analysis (ICA) for spatial featuteaetion (Piccioneet al,, 2006; Serby
et al, 200%; Xuet al, 2004). The first step in all algorithms using ICA is to congirtdependent
components from the training data. Then the componentgtieaent well the P300 are selected.
This can be either done manually, i.e. by inspecting the (&¢abvet al, 200'%), or by defining
criteria that allow to automatically select P300 like comeots (Piccionest al, 2006; Xuet al,
2004). When the algorithm is applied to new data, the dateoiggted on the retained independent
components and then classified fierent types of classifiers were used in combination with IEA a
feature extraction method. Xat al. proposed to use LDA. Sertat al. tested matched filters and a
maximume-likelihood based classifier, end Picciahal. used a neural network. While the methods
of Serbvet al. and Piccioneet al. were only tested on proprietary datasets, the algorithroriess!
by Xu et al. was tested on the 2003 P300 competition datasets and wag threevainning entries
in this competition.

4.5 Evaluation of Systems and Algorithms

In the previous sections we have seen that to build a P308da€1 a lot of diferent approaches
can be taken. Dlierent approaches exist for stimulus presentation, for gigeegation of informa-
tion from single trials, and for discriminating P300 frommB300 segments. As a consequence,
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it is virtually impossible to find a sensible metric with whiall the diferent systems can be com-
pared and evaluated. Nevertheless, it is possible to testive properties of P300-based systems
that should enter in a metric for comparison and evaluatinrihe following we mention some of
these properties, concentrating especially on aspe@tedeto the practicality and suitability for
daily use of BCI systems.

A certainly very important aspect of any BCI system is thee@ble speed of communication.
In a P300-based BCI the speed of communication depends olSthéhe number of dferent
stimuli, the classification accuracy, and the control flogoaithm. To abstract from all these factors
it is useful to use the information transfer rate (also kn@grbitrate, or capacity) as a metric for
the speed of communication. Roughly speaking the bitratasomes the number of bits that can
be transferred from a user to the system in a given amounirgf. tilt is also commonly used to
evaluate other, non-P300 BCI systems. The bitrate b ipnhiishas also been used to characterize
other types of BCI systems and can be computed accordingetéotlowing equation (Wolpaw
et al, 2002):

1-p))\60
DN, .0) = (10g2(N) + ploga(p) + (1.~ Pogz (=5 ) - @)

HereN denotes the number offiierent commands a user can sepdgenotes the probability that a
command is correctly recognized by the system, taisdhe time in seconds that is needed to send
one command. Note that according to the noisy-channel gabdaorem, the bitrate is an upper limit
on the number of bits that can be transmitted, given the chaniatics of the transmission channel
(MacKay, 2003). This limit can only be attained if optimalceding and decoding algorithms are
used. Since in a BCI the encoding has to be performed by theamskesince optimal encoding
algorithms are relatively complex, the bitrate is mostlyhaforetical value.

Other than the bitrate, several important characteristiceern the overall practical usability of
a BClI system, particularly with regard to usage of a systersdwerely handicapped users. Clearly,
any system for handicapped users should be adapted to ftezirlionited cognitive abilities. For
example, using a large number offdrent stimuli, possibly in combination with very short I1Sls
might strongly limit the usability for subjects with visuiahpairments. In other words, the number
of different stimuli, the size of the stimuli, and the ISI should Heped to a user. In general any
BCI system targeted for use by handicapped subjects shtadda tested by such subjects.

A further point influencing the practicality of a given systés the time and fort needed to
setup and adapt the system for a new user. Clearly, systerhagd only few electrodes take less
time for setup and are more user friendly than systems withynatectrodes. However, if too few
electrodes are used not all features that are necessargcimage classification can be captured and
communication speed decreases. A good trideween time needed for setup and classification
accuracy thus has to be found. Moreover, it is important toimmize the time and féort needed
to train a classifier for a specific user. If a system is to bejpisd by end users, lengthy training
sessions should be avoided. Therefore, the amount ofricatfata that is necessary to achieve a
certain communication speed is probably as important aacheristic as the communication speed
itself.

In addition it is important to limit the amount of user intention necessary during setup of a
system. Several of the prototype systems described in #wopis section rely on the intervention
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of a trained technician during setup, for example to selé&t tomponents or to choose hyperpa-
rameters for classification. This is clearly undesirablg @practical system should be able to adapt
to new users according to a simple and fully automatic paitoc

4.6 Conclusion

In this chapter we have reviewed P300-based BCI systemsP3b@ is an endogenous ERP, which
appears approximately 300 ms after the presentation of task-relevant or surprising stimuli.
While to analyze the psychological and physiological aspe€the P300 dferent experimental
paradigms can be used, in P300-based BCls usually a vafitim glassical oddball paradigm is
employed. In fact, the user can select one of several comsrayndoncentrating on the stimulus
associated to the command. This basic principle has beehnusg@ferent designs, targeted toward
different application scenarios. Besides developing newegtjaih scenarios much research in the
area of P300-based BCls has also concentrated on the denexioand refinement of algorithms
for inferring the command a user wants to send. These atgasitusually consist of two modules,
one module controls stimulus presentation and the aggoegattinformation obtained from several
single trials. The second module has the task of transfaymsiimgle trials into scores that indicate
if a P300 is present or not. Much research has been dediaatbd katter type of algorithms, i.e. to
feature extraction methods and supervised machine lgpaigorithms for discriminating target
trials from nontarget trials.

However, only little research has concentrated on the pmklif optimally integrating infor-
mation from several trials. In fact, the most interestingesoe for aggregating information from
several trials, namely the scheme in which decisions amntakiaptively (cf. Fig. 4 6), has been
used in only one study (Serlay al,, 200'5). Moreover, in this study no details have been giveugb
the exact implementation of this scheme. Another obsemvatiat can be made when reviewing
the supervised machine learning methods for P300-basesd iB@iat when training classifiers for
a specific subject usually only data from that subject is uSdte only exception is the study of
Kaper and Ritter (2004) in which SVM classifiers trained otadeom a pool of subjects were used
to classify data from new, unseen subjects. A last observadi that all classification algorithms,
exclusively use features related to the P300 to perfornsifieation. Side information for example
from bigram probabilities in a speller application or infaation from other phenomena than the
P300 is dfficult to integrate in existing algorithms.

In the next chapter we present Bayesian classification itthgos that can be used in a P300-
based BCI. As we will see, these algorithms allows us to renmsmme of the above mentioned
limitations of classification algorithms for P300-basedI&C
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Bayesian Algorithms for
EEG Classification

5.1 Introduction

In this chapter we describe Bayesian machine learning itthgas that are well suited for BCI
systems using EEG measurements. The algorithms are usimystdge procedure in which first a
probability distribution over discriminant directionsiigerred from training data using a Bayesian
approach. Then heuristics are used to estimate class fliitbalior new input vectors from the
distribution over discriminant directions.

Before describing the Bayesian algorithms for EEG clasdifio we discuss simpler, related
algorithms, namely least squares regression and FishiscBrdinant analysis (FDA). This discus-
sion can be found in Section 5.2, where in particular it issghthat FDA is a special case of least
squares regression. After the introductory material, gorithm is discussed that we have termed
Bayesian linear discriminant analysis (BDA) (see Sectid).5BDA is especially interesting for
use in BCls because it is robust to noise in the training dathteecause it can learn classifiers
quickly and without intervention of expert users. The techhbasis for BDA is the so-called
evidence framework for Bayesian regression (MacKay, 1992)

In Section 5.4 we show how a technigue that is known as automrelevance determination
(ARD) in the machine learning literatura (Mackayv, 1935:diimg), 2001) can be used to perform
electrode selection in our BCl application. The resultitgpethm is termed sparse Bayesian linear
discriminant analysis (SBDA) and is a simple extension oABD

Finally, in Sectior 5.5 we describe algorithms that allonctopute class probabilities from
the distribution over discriminant directions learnedh\BDA or SBDA. We also show how these
probabilities can be used to build a straightforward impatation of a P300-based BCI in which
the number of presented stimuli is dynamically adapted ghaeh a preset, approximate bound
on the probability of classification errors is not exceed@dsummary of the chapter is given in
Section b.3.

55
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5.2 From Least Squares Regression to Fisher’s Discriminant

5.2.1 Least Squares Regression

Regression analysis is arguably one of the most often uséslitoscience and engineering. While
many diferent linear and nonlinear methods for regression anadysss, here we concentrate on
methods that are relevant for the developments in latefosecof this chapter, namely on linear
regression and ridge regression. Other, more extendeews\wf regression can for example be
found in ‘'Hastieet al, 2001) or in (Bishop. 2006).

In linear regression one is given a training set of targetest; € R,i € {1...N} and corre-
sponding input vectors; € RP*1i € {1...N}. The goal is to find a weight vectov € RP+! that
can be used to map the input vectors to target values. TorHiglee sum of squared errors between
regression targets and mapped input vectors is minimized:

N
Iw) = D (i - wx)? (5.1)
i=1

To unclutter the notation, we assume here that Ehe (L)st entry in the input vectors is equal to 1
for all i. Consequently, theX + 1)st entry of the weight vector is equivalent to the bias @als is
usually done in regression.

By setting the derivative of J with respectwato zero it can be shown that the weights and bias
that minimize the sum of squared errors on the training tisfgdhe following equation:

w = (XXT)™IXt, (5.2)

where T
XI[X]_ Xo - XN], t=[t1 b .- tN] . (53)

If the dimensionalityD of the input vectors is nearly as big as the number of traieixgmplesN,
one can observe thdtect of overfitting. This means that on the training set a negetfect fit is
achieved, however, for pairs of input vectors and targetesthat are not in the training set typically
large errors will be observed (see Chapter 3 for a discusHiaverfitting). If the dimensionality
is bigger than the number of training examples, the mat¥< becomes singular and cannot be
inverted. One approach to avoid overfitting and singularicex is regularization. The canonical
approach to regularized regression is called ridge reigre¢sloerl and Kennarc. 1970). In ridge
regression a modified objective function is used:

N
IW) = D (= whHi)? + w1, (5.4)

i=1
Herel’ is an identity matrix in which thel§ + 1)st diagonal element is set to zero. The regulariza-
tion termAw"I’w has the &ect of shrinking the optimal solution for the filStweights towards the
origin, while leaving the solution for the bias unconstesin For a correct choice of the hyperpa-
rameterd weight vectors with a large norm and overfitting are thus d@di To choosa one can
use cross-validation or other model selection methodsoA®fjression without regularization, one
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can set the derivative of J to zero in order to find the soluti@ minimizes the objective function.
The solution to the ridge regression problem satisfies thedimg equation:

w = (XXT + A1)~ xt. (5.5)

Once the weights and the bias have been estimated frormigadaita, either by using regression
or ridge regression, the target valiider new input vectors are computed as follows:

f=w'x. (5.6)

5.2.2 Fisher’s Discriminant

While in regression the goal is to map input vectors to tavghies, the goal in FDA is to compute
a discriminant vector that separates two or more classesbhasvpossible (Fisker. 1€36). Here
we consider only the two-class case. We are given a set of iwmmiorsx; € RP,i € {1...N}
and corresponding class-labgise {-1,1}1. We denote byN; the number of training examples
from class 1 (i.e. examples for whigh = 1), by C; the set containing the indices of the training
examples belonging to class 1, and use analogous definftoMs, C». The objective function for
computing a discriminant vectov € RP then is

1 - H2)?
Jw) = YL-ses (5.7)
O-l + 0'2
where 1
2 2
=5 Z w'x, of= Z(WTXi - H)“. (5.8)
1€Ck 1eCx

In FDA the objective function is maximized. This amounts éarshing for discriminant vectors
that result in a large distance between the projected mewhsraall variance around the projected
means (small within-class variance). To compute diredtly aptimal discriminant vector for a
training dataset, matrix equations for the quantities{u2)? ando? + o' can be used. To this end,
we first define the class meamg for k € {1, 2}.

1
Mg = — Xi (5.9)
N 2

Now we can define the between-class scatter m&giand the within-class scatter mat®y,.

Sg =(M1 — mz)(my - my)" (5.10)
2
Sw= ) 06— m(i —my)’ (5.11)
k=1 ieCx

With the help of these two matrices the objective functionF®A can be written as a Rayleigh

guotient:

w'Sgw

wTSyw'
1In this section, we slightly change our notation and dengte;input vectors without appended ones andviby

weight vectors without appended bias value.

Jw) = (5.12)
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By computing the derivative of J and setting it to zero, onestfzow that the optimal solution for
satisfies the following equation:
W oc Spr(my — my). (5.13)

The discriminant vectow is thus equal to the fference between the class means, scaled by the in-
verse of the sum of the within-class scatter matrices. Tiee®of scaling byg,; is that discriminant
directionsw with small within-class variance are preferred, whereasations with large within-
class variance are penalized. This is important wheneeawithin-class scatter is anisotropic. The
concept of FDA is illustrated in Fig. £.1.

As in regression analysis, we run into problems when the mumkiraining examples becomes
small compared to the dimensionality of the input vectdrthd dimensionality of the input vectors
is nearly as big as the number of training examples ovegittiocurs. If the number of training
examples is smaller than the dimensionality of the inputarsg the within-class scatter matrix
becomes singular and cannot be inverted. Several solutiotieese problems exists. A solution
that is similar to the ridge regression approach is to add kipteuof the identity matrix to the
within-class scatter matrix. The objective function theads

w'Sgw
Jw) = — . 5.14
w) wT (Sg+al)w ( )
The solution is then given by
W o< (Sw + A1) (Mg — my). (5.15)

Another possible solution, which has the advantage thayperparameters have to be specified, is
to replace the invergq\,l by the Moore-Penrose pseudo-inve%@(Tian etal, 1988). The solution
for w then reads:

w o S (mg — my). (5.16)

Note that the discriminant vectar alone cannot be used to perform classification. This is
becausewn only defines a one-dimensional projection of the featurgoredn which classes are
maximally separated. In order to use FDA for classificat@aiditionally a bias valué has to be
inferred. This can be done for example by fitting one-dimamai Gaussian distributions to the
projections of the classes.

After inference of the discriminant vecter and biash new feature vectors can be mapped to
outputs as follows:

f(X;w,b) = w'X + b. (5.17)

Since the output of FDA is a continuous value it can for exanyel used to control a one-dimensional
cursor in a BCI. Another option is to convert the output of FID#o class labels by using the sign

of f:
1 iff(xw,b) >0
g = (;w. b) (5.18)
_1 iff(Rw,b) <O.

In BCI research FDA has been successfully applied ffedént scenarios. Examples include
the use of FDA for classification of data from motor imagerperiments (Blankertet al,, 200:2;
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Figure 5.1— lllustration of FDA. The left panel shows examples dravwmfirtwo two-dimensional Gaussian
distributions with identical covariance butfidirent means. Also shown are the directiormotomputed
with FDA and the corresponding discriminating hyperpladashed line). The thin dotted line shows the
discriminating hyperplane that is obtainedaifec m; — m,. The right panel shows the distributions of the
projected data. The weight vectarcomputed with FDA leads to a smaller overlap between classasa

weight vector equal to the flierence of the class means.

Pfurtscheller and Neuper, 2001), the use of FDA for clasgifio of data from P300 and slow
cortical potentials (SCP) experiments (Bostanov, 2)04d¢32008), and the use of FDA for clas-
sification of data from steady-state visual evoked potBn(i@8SVEP) experiments; (Lalat al,
2005).

The main advantages of FDA are its computational and conakptmplicity. More specifi-
cally, FDA is computationally @cient for situations in which the number of featuf@gs small,
and the number of training examplBkis large. This is the case because the only complex oper-
ation required for FDA is the inversion of the within-clagsmtter matrix, which scales as D)?().
Situations in whiclD < N are relatively often found in BCI applications.

Note that in BCI applications often plain FDA, i.e. FDA witltoregularization is used. This
is problematic because data from BCI experiments oftenagosmtoutliers, resulting for example
from eyeblinks or muscle activity, and hence there is aneased tendency for overfitting. A
possible remedy to this problem is to use a regularized sersf FDA. However, regularized
FDA is surprisingly seldom used in the context of BCl. An extien is the work by (Blankertz
et al,, 20022), in which a noaprobabilistic, regularized version of FDA is compared witter
classification methods. A Bayesian version of regularizBd Fn which regularization parameters
are estimated with Bayesian model selection, is describ&ction 5.3 of the present chapter.

5.2.3 Relation between Regression and Fisher’s Discriming

A deeper understanding of least squares regression and BbAe obtained by investigating the
connection between the two methods. It turns out that FDAjisvalent to linear regression with
target values representing (modified) class-labels. HuisWill be used in the next section in order
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to motivate an algorithm for BDA. We show below that by seftiarget valueg; for training
examples in class 1 th/N; and to—N/N, for class 2, regularized linear regression is equivalent
to regularized FDA. The proof is adapted from the proof given in (Dustaal, 200'1) but a little
more general (it also considers the case of regularize@ssigm and regularized FDA, instead of
considering only regression and FDA).

To show the relation between the two methods, we first writgrdthe matrix equations for
ridge regression with target valugs= N/N; for i € C; andt; = —N/N, for i € C52.
W] B [N(ml - mz)]

(5.19)

(XXT + /U) N1m; + Nomo
b| 0

NlmI + sz;— N

This can be interpreted as a set of two equations, onle émid one fow. Solving forb we obtain

1
b= —N(Nlml + szz)TW. (5.20)

Inserting the solution fob in the equation fow we obtain

NZ N;N N,N N2
(XXT + A - Wlmlml - 1T2m1m£ - %mzml - Wzmzsz]w = N(my-m,). (5.21)

Using the identities

N2 N;N
= XXT = Nymim] = Nomoml, and Ny - — 2+ — = 122 22
Sw 1imim; — Nompm,,, and Nj Nt N, - Ni N (5.22)
it follows that
NiN, N

Sy+ Al + N (mg —m2)(m1 —my)" Jw = N(m1 — my). (5.23)

Since (1 — my)(m1 — my)"w is always in the direction ofni; — m,) we can write
W oc (S + A1) My — my). (5.24)

The discriminant vector obtained by performing ridge regien to target valuesN/Ny is thus in
the same direction as the one obtained by regularized FDAeBingA to zero, we also see that the
discriminant vector obtained by performing regressiomithe same direction as the one obtained
by FDA.

5.3 Bayesian Discriminant Analysis

Given the connection between ridge regression and regathFfDA, we are now ready to describe
BDA. In short, BDA is equivalent to performing Bayesian meggion and setting target values
to N/N; for examples from class 1 and teN/N, for examples from class 2. BDA is relatively
robust to noise in the training data because regularizatiarsed during learning. Additionally,

LActually, it is suficient to use any two distinct values for the target valuedadgscl and 2. The advantage of using
N/N; and—N/N; is that the proof becomes a little bit simpler.

2As in the previous section, in this sectians aD-dimensional vector without appended bias value. Accalglithe
matrix X has dimension® x N andb denotes the bias value.
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the regularization parameters are estimated automatiaatl quickly, without the need for time-
consuming cross-valdiation. These facts make BDA an iateg alternative to FDA which is
popular for BCI applications.

The basis for BDA is the evidence framework for Bayesianesgion, which was first intro-
duced to the machine learning community by MacKay (1992). cadydescription of Bayesian
regression and the evidence framework is given in the bo Bigbfory (2006). The evidence frame-
work was used in a variety of contexts, for example for Bayresegressior (MacKay, 1€92), for
the development of Bayesian neural network algorithms #i&ac¢ 199'5), for the estimation of
regularization parameters and kernel parameters in suppctor machines: (Kwok:. 2000), for the
estimation of regularization parameters and kernel patersién least squares support vector ma-
chines (Van Gestatt al, 200:22), and for a Bayesian implementation of FDA in which ¢fess
means are treated as latent parameters (Centeno and Ley/26@:5).

It has to be noted that the developments in this section anestlequivalent to the work on
Bayesian regression presented bv MacKay and are also sitmitae work of Van Gestedt al.
One diterence to the neural networks and kernel methods presenidddKayv and by Van Gestel
et al. is that here only linear discriminants are considered. $higlification is motivated by the
observation that for EEG classification often linear dis@énants are sfticient ‘Miilleret al, 2003).
The main aim of this section is thus not to introduce a new hmackearning algorithm but rather
to give a simple introduction to linear Bayesian regressind to show the relation to BDA. An
earlier version of the material presented in this sectionbmfound in (H&Fmannet al, 200:1).

5.3.1 Prior, Posterior, and Predictive Distribution

The basic idea behind Bayesian regression and conseqletilyd BDA is to interpret the objec-
tive function for ridge regression as the exponent of a drita distribution from the exponential
family. We can write

p(W) = 3 exp(-In), (525

whereZ is a suitable normalization constant and J is the objectinetfon for ridge regression,
from equatior 5.4. The distribution fav can also be written as the product of two distributions.
One distribution is associated to the sum of squared erratgree other distribution is associated
to the regularization term.

N
p(w) = % exp Z(ti —w'x)?) expEaw'1’w) (5.26)
i=1

Under the assumption that regression targets and inpubrgeate linearly related with additive
white Gaussian noise, the first term on the right hand sideefibove equation can be identified
as the likelihood function fow. Denoting by the inverse variance of the noise andbyhe pair
{X,t}, the proper, normalized expression for the likelihood figrtis

(NP4

B

PO, w) = () exp 51X w -ty (527)
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The second term from the right hand side of equetion 5.26 eantbrpreted as the prior distri-
bution forw. In Bayesian analysis the prior distribution is used to #pehe prior belief we have
about the values of. The expression for the normalized prior distribution is:

D 1
_(a@\2(€)2 14,
p(Wla/)_( 277) ( 277) exp(-5WI"(@w) (5.28)
wherel’(a) is aD + 1 dimensional, diagonal matrix:

a 0 ... 0

O a ... O
V@)=1|. . . - (5.29)

0 0 ... €

The prior for the weights is thus an isotropic, zero-meandSin distribution with variancé.
The dfect of using a zero-mean Gaussian prior for the weights igasino the dfect of applying
regularization in ridge regression and FDA. The estimatesvfare shrunk towards the origin and
overfitting is avoided. The prior for the bias, which is thstlantry inw is a zero-mean univariate
Gaussian with variancé. Settinge to a very small value, the prior for the bias is practically
flat, which expresses that we do not make assumptions abeubd¢htion of the discriminating
hyperplane.

Given likelihood and prior, the posterior distributionwfcan be computed using Bayes rule:

P(DIB, w) p(w|a)
J p(DIB, W) p(wler) dw
Since both prior and likelihood are Gaussian, the postésiatso Gaussian and its parameters can
be derived from likelihood and prior by completing the squérf. Bisho) (2006)). The mean
and covarianc€ of the posterior satisfy the following equations.

p(w|g, @, D) = (5.30)

m = BBXXT + I"(a)) 1Xt (5.31)
C=(@BXXT+1"(@)™* (5.32)
By multiplying the likelihood function for a new input vect& with the posterior distribution and

integrating ovew we obtain the predictive distribution, i.e. the probabitiistribution over regres-
sion targets given the input vector.

p(f3, @, x,D) = f p(f|8, X, w) p(w|B, a, D) dw (5.33)

The predictive distribution is again Gaussian and can beackerized by its megmand its variance

o2

M= mTf( (5-34)
o? = % +XTCX (5.35)

How the predictive distribution can be used for classifaratand specifically how it can be used
for classification of sequences of EEG trials in the framéwaira P300 BCI will be discussed in
section 5.5.
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5.3.2 Estimation of Hyperparameters

Both the posterior distribution af and the predictive distribution depend on the hyperpararset
andg. The strict Bayesian approach to eliminate this dependencéd be to compute the posterior
distribution of the hyperparameters and to integrate ogithiyperparameters. Assuming we have
already computed the posterip(s, «|D) of the hyperparameters, the posteriomo€ould then be
expressed as follows:

pOWID) = f P(W|B. @. D) p(B. alD) d3 dar (5.36)

The problem with this approach is that except for trivialesaso closed-form solution is available
for the posterior distribution ofr. The solution used in the evidence framework is to assuniditba
posterior over the hyperparameters is unimodal and shpgaied (MacKey'. 1992). The posterior
of w can then be approximated as

p(w|D) ~ p(w|3, &, D), (5.37)

wherep, & are maximum a posteriori (MAP) estimates of the hyperpatarse Moreover, in the
evidence framework usually a flat prigkg, @) = c is used, hence the MAP estimates are equal
to maximume-likelihood (ML) estimates. Estimating hyperuraeters with maximum-likelihood is
also known as type-ll maximume-likelihood in the statistitsrature (Berae:r. 1938).

To compute3, & we write down the likelihood for the hyperparameters. Tkelihoodp(D|3, @)
is the normalizing integral from equation 5.30.

pDIB. o) = f D(DIB. W) p(wla) dw (5.38)

The quantityp(D|B, @) is also known as the evidence, or the marginal likelihood|, @rresponds to
the probability of the data given the hyperparameteaside. The integral in equation 5.38 can be
solved by noting that everything is Gaussian and using ataheikpressions for Gaussian integrals.
After computing the integral, it is convenient to use thealddnm of the likelihood function for
further analysis.

D 1 N N 1
log (p(D|B, @)) =3 log(a) + > log(e) + 0l log(B) — 0l log(2r) + > log(detC)) (5.39)
_B
2
To maximize the log-likelihood, partial derivatives witkispect tar andg are taken and equated to
zero. To compute the derivative with respectitandg, the following identity for the derivative of
the logarithm of the determinant of a matixis useful (cf. Bishap (2006);: MacKay (1€92)):

1
IXTm = t)? - EmTI'(a/)m

(% log detA = tr (A‘lg—i). (5.40)
Using this identity we obtain
dlog(pDB.2)) D 1 1<
— -3 > G- > >, (5.41)

i=1 i=1
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where thec; are the values on the diagonal Gfand them;, are the elements oh. Taking the
derivative with respect t@ yields

dlog(p(DiB.@)) _ N 1
4B T3 2

Setting the derivatives to zero and solving fioands we obtain the update equations:

1
tr(XX'C) - §||me — . (5.42)

D
Y2y ci +m?
N

T w(XXTC) + IXTm — {2’

(5.43)

a

B (5.44)

The partial derivatives forr and depend on the posterior meam which itself depends ow
andp. Equations: 5.43 and 5.44 thus represent implicit solutfonghe hyperparameters. Thus,
to maximize the log-likelihood an iterative scheme is useavhich firstC andm are computed
for a given setting of the hyperparameters and then the pgp@meters are updated according to
equations 5.43 ard 5.44. After a few iterations the valueghi® hyperparameters converge to the
maximume-likelihood solution. More specifically, for the BElatasets we tested, hyperparameter
optimization typically converged after twenty to fifty itgions.

5.4 Sparse Bayesian Discriminant Analysis

5.4.1 Electrode Selection via Automatic Relevance Determation

Having discussed a basic version of BDA in the previous sagctive now turn our attention to an
extension of BDA that allows to perform feature selectiomattre selection is a strategy that is
often used in machine learning to reduce the dimensionefity given learning problem and to
enhance classification accuracy. Feature selection asmes the computational cost of classifi-
cation algorithms and allows to gain insights into the stricesof learning problems by examining
the selected features. In particular, we will use the feasalection capabilities of the algorithm
presented in this section to perform electrode selectiawa have seen during the review of clas-
sification algorithms for P300-based BClIs, electrode s$ieledas led to good results and thus is
interesting to investigate.

To implement electrode selection, we make use of a methddstkmown as automatic rele-
vance determination (ARD) in the neural networks literatar as the relevance vector machine in
the area of kernel methocs (MacKay. 1995:; Tinp na. 2001k itlea underlying the ARD method
is to associate a hyperparametgito each feature instead of using anéor all features (as in the
basic BDA method). Theffect of this modification to the basic BDA algorithm is that th&evance
of each feature can be determined separately via the optilmizof the hyperparametet. As we
will see, theq; corresponding to irrelevant features will take very largtues and hence irrelevant
features will be &ectively switched .

To write down the equations for electrode selection via ARB,first need to state more pre-
cisely the structure of the feature vectogs Let us assume that we want to classify EEG trials
containing data fronNe electrodes antls temporal samples. Let us assume further that the feature
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vectors are built by vertically concatenating the signedstall electrodes. The feature vectors then
have dimensioD = NgNg and the firstNg entries of a feature vector correspond to samples from
the first electrode, entridds + 1 to 2N correspond to samples from the second electrode, and so
forth. With this structure of feature vectors the prior disition used for electrode selection can be
expressed as follows (cf. Equation £.28):

p(wle) = ﬁ (%)NT (i)% exp(—%WTl’(a)W). (5.45)
i=1

Herel’ is aD + 1 dimensional, diagonal matrix with the following diaganal
diag’) =[a1...a1 a2...a2 ... an,...an, €. (5.46)

The prior for the weights is thus an axis-aligned, zero meansSian distribution with variance
;1i for the weights corresponding to electradeThe dfect of this prior is that weights are shrunk
towards the origin, however in contrast to the prior spegifieEquation 5.28 the shrinkage factor
can now be determined separately for each electrode. Asdhefis set to a small value in order to
leave the bias value unconstrained.

The posterior distribution and the predictive distribatigesulting from the use of a prior as
specified in Equation 5.45 can be calculated as in the case isb&opic prior, i.e. with the help
of Equations 5.20 and 5.34 which are not repeated here. Wightlg changes with respect to
the use of an isotropic prior is the expression for the Ii@did of the hyperparameters and conse-
guently the expressions that are necessary to optimizeyterparameters. The likelihood of the
hyperparameters can be expressed as follows:

Ng <& 1 N N 1
I0g (P(DIS. @) == > log(ai) + 5 10g(€) + - og(s) - 5 log(2) + 5 log(detC))  (5.47)
i=1

_B
2
The partial derivative of the hyperparameter likelihoodhwespect tay; is:

1
IXTm — )12 - EmTI’(a)m.

ki +Ns ki+Ns
0log(p(DB. @) _ Ns 1 1 2 (5.48)

Oa; 20y 2 =3 o !

=
where the summation is over the posterior parametgrsn; corresponding tay;, i.e. ki = (i —
1)Ns + 1. The partial derivative with respect pois the same as in the case of an isotropic prior,
i.e. Equatior 5.42 can be used. Setting the derivative w#hect tay; to zero yields the following
update equation:

Nsg

aj= ———o—.
ki+Ns ..
T cii +m;

(5.49)

To optimize the hyperparameters it isflstient to sequentially update all the andg until
convergence. The result of this optimization is a set ofrogtivalues for the hyperparameters
aj andB. Smalla; are equivalent to a large prior variance and allow largeeglfior the weights
corresponding to electrode Largea; are equivalent to small prior variance and allow only small
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values for the weights corresponding to electroddn other words thex; can be used to rank
electrodes by their importance for classification: elatgowith smalky; are more important than
electrodes with large;.

A straightforward strategy to choose a subset of electrérdes the ranking given by the; is
to specify a threshold and to retain only electrodes for whiek < r. Actually it is advantageous
to apply the threshold already during optimization of hyjeameters, i.e. to remove rows and
columns from the matrice$X " andl’ as soon as the; corresponding to these rows and columns
start to take values larger than The dfect of this is that the inversion of the posterior precision
matrix which is necessary during each iteration of the ojzttion procedure is speeded up and
hence the optimization converges faster. The choiceisfrelatively uncritical because thg of
irrelevant electrodes tend to take on very large valuesaduwptimization and hence it is ficient
to simply choose a that is large compared to the scale of the data. We chesd0® during the
experiments with the SBDA algorithm. The results of theggeeixnents are described in Chagter 7.

5.4.2 Automatic Relevance Determination and Backward Sedéion

A task that cannot be directly solved with the method for tetete selection described above, is
to select a predetermined number of electrodes. This isabe lbecause the number of electrodes
retained by the SBDA algorithm depends on the thresha@dd on the dataset at hand. To allow
for selection of electrode subsets with predetermined sizause a strategy that is similar to what
is known as backward selection in the feature selectionatilee. In this strategy first ARD is
applied to the initial electrode set, i.e. the updates fraqudfions 5.49 and 5.44 are executed until
the changes of the; and B become sfiiciently small. Typically, during this first run of ARD
someq; take very large values and thus some electrodes are remdiviite desired number of
electrodes is attained after the first run of ARD, the algonitis stopped. Otherwise, the electrode
with the largesty; is removed and ARD is run again on the remaining electrodés. riiotivation

for removing the electrode with the largestis that the weights corresponding to this electrode are
constrained to be small and thus the electrode is unimgorRumning ARD after removal of the
electrode with the largest; can either result in some small adjustments todthandg or can lead

to removal of further electrodes as the correspondingike values larger than the threshold. The
strategy of alternately removing the electrode with thgdata; and running ARD on the subset of
remaining electrodes is repeated until the desired nunfledectrodes is attained.

5.5 Classifying Single Trials and Sequences of Trials

The result of running the BDA or SBDA algorithms are maximlikelihood values for the hyper-
parameterg anda and a posterior distribution for the weights and the biasealThe posterior
distribution can be used to compute the predictive didtidouof target values given a new in-
put vector. However, what is ultimately needed are clasbaiilities, i.e. the probabilities that
p(y = 1|X) andp(y = -1|X) = 1 — p(y = 1|X). Furthermore, in a P300-based BCI we not only need
to classify data from single EEG trials but also need to aggpeeclassification results from several
single trials into a final decision. As explained in Chapteadggregation of classification results is
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often used in P300-based BCls in order to improve classificatccuracy.

In the next section we first describe the steps that are regetssperform single trial classifi-
cation with the help of BDA or SBDA. In the following sectiorevthen describe how classification
results can be combined, i.e. how sequences of trials calabsfeed.

5.5.1 Single Trials

To obtain class probabilities for single trials we make ushe predictive distribution given by the
BDA and SBDA algorithms. As shown in equaticns 5.33 and 5tBd predictive distribution is a
Gaussian distribution describing how probablgatient target valuesare, given a new input vector
X. Recalling that during training the target valuggN; and—N/N, were used for examples from
class 1 and 2, a canonical way to compute the probabilityl&sscl is:

p(f: NﬁlLB,a/,)A(, D)
p(t = Nﬁlw’ a,%X,D) + p(f = _N%Wa @.%,D)

Note that the accuracy of the above approach depends ondimaeyg of the predictive distributions.
In other words, using this approach is equivalent to assgrtiat p(f = Nﬁlw, a, X, D) takes large
values for example& from class 1 and thap(f = %W, a, X, D) takes large values for examples
from class 2.

For the datasets with which we performed tests, we foundiegpredictive probabilities were
slightly inaccurate. In particular, we observed that theanseof the predictive distributions were
biased towards zero, when compared to the target valuesdusied training. This is probably an
effect of using a zero mean Gaussian prior for regularizati@hisudifficult to avoid if one wants
to avoid overfitting. Furthermore, investigation of themasgsion residuals showed that these were
larger for examples from class 1 than from class 2. This caexpkained if one takes into account
that in P300 datasets there are typically less target {gldss 1) than nontarget trials (class 2). This
imbalance typically leads to larger errors for the minodlgss, which are however not taken into
account in the predictive distribution.

In the following we present two approaches that allow to déthl the aforementioned problems
and yield relatively accurate class probabilities. An ekpental comparison of the quality of the
two approaches can be found in Chapter 7.

p(y = 1B, @, %, D) = (5.50)

Van Gestel's Method

The first approach is used for least-squares support veeohimes in the work of Van Gested al.
(20022). Van Gestatt al. use the following equation for computing the probabilitysofiew input
vectorg, given the class labgiand parametens andg.*:

PlY = 1,B.,W) = (%) exp(—%*(wT(x - cup?). (5.51)

Herec; is the mean of the training examples of class 1. The clasgitomal probability forx
thus depends on theftiirence between class meaand exampl& and on the angle between this

1An analogous expression is used for class 2, i.eyfor-1.



68 CaAPTER 5. BayEesiaN ALGorITHMS FOR EEG G.ASSIFICATION

difference and the discriminant directisn The precisiorns, corresponds roughly to the inverse
variance of the projected fierences between class means and training examples and psiteoin
as follows in the approach of Van Gesatlal:

_ N — Yer
Yiec, (MT(Xi — €1))? + Yiee,(MT(Xi — C2))2

Herem is the mode of the posterior distribution wf (cf. Equation 5.31) angs is the dfective
number of parameters (se:e (Bishon. 2006; MacKay, 1992; \émie®et al, 200:2) for an explana-
tion).

To remove the dependence on the discriminant direction.Géstelet al. integrate over the
posterior distribution ofv.

Bs (5.52)

PRl = LA.) = f Ply = 1B..W)pWi, a, D) cw (5.53)

This integral can be solved by noting that under the postetistribution p(w|3, a, D), the ex-
pressionw' (X — ¢1) corresponds to a univariate Gaussian with medifk — ¢;) and variance
(X — ¢1)"C(Xx - ¢1). Using additionally the fact that a convolution of two Gsiasis is another
Gaussian, with variance equal to the sum of the variancedseafnto original Gaussians and mean
equal to the sum of the two means, the probabilityXeinen is

. 1 mT(X - ¢1))?
PRlY = 1,B.) = ———— exp(—(z(_l—ll))’ (5.54)
2B + 0?) B." + o1
with
o2 = (X -¢)"C(R - c1). (5.55)
Now using Bayes’ rule the probabilities for the class lalwais be computed as
. pP(Xly.B:) p(Y)
|X9 * = A B 556
PORA2) Dyey PXIY, B.)p(Y) (559

whereY = {-1, 1} and thep(y) allow to take into account prior class probabilities.

A Leave-One-Out Approach

While Van Gestel's method is sound and yields good resultergossibilities exist for the com-
putation of class probabilities. One such possibility s ldave-one-out approach presented in the
following. An important diference to Van Gestel's method is that the contribution tovng
ance from the posterior uncertainty in the parametersEigeation 5.55 is completely ignored in
the leave-one-out approach. The motivation for this is tbateasonably large training sets this
contribution is very small when compared@o(Qazazet al, 1996). Hence, the solution of Equa-
tion b.5% for each test example can be avoided and time caavieel sluring prediction. Moreover
the mean projection of the classes is computed with a leaeesat method instead of using simply
the training examples as in Van Gestel's method. The peatleadivantage of this is that overfitting
effects due to the use of the same training examples for the datigruof discriminant directions
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as well as for the mean projections are avoided. The diséayans that a considerable amount of

computational complexity is added to the training stagdasfsifiers by the leave-one-out approach.
The leave-one-out approach uses univariate generativesizaumodels to capture the between-

class and within-class variation of the mean of the pregiddistribution. Denoting byn the mean

of the posterior distribution (Equation 5 31), Bythe new input vector we want to classify, by

f = m™x the mean of the predictive distribution, and Jay,u> and af,cr% the parameters of the

Gaussians, the class probability can be expressed as $ollow

p(flur, g2, 72, 072, y) p(Y)

PYI, 1. 12, 05, %) = . (5.57)
! 2 Zy&y p(ﬂ/‘lla ﬂ29 O-%’ O’%, y) p(y)
Here p(flus, 12, 02, 3, y) are univariate Gaussian probabilities, i.e. :

p(lhus iz, 02 02y = 1) =— exp(—i(f—m)z] (5.59)

) ) 1 2° \/Zo—l 20_5

1 1 .

Pflus, p2, 03, 05,y = -1) = exp[——(t —/12)2] (5.59)

1 v 2 \/ZO'Z 20_%

The accuracy of class probabilities computed with this apgih depends of course on realistic
estimates for the meaps, » and variances=, (r%. One possibility to obtain such estimates would
be to simply use the training examples, i.e. one could use:

1
= o Z mTxi (5.60)
K icck
1
o2 = N Z(mei — 1), (5.61)
ieCk

whereNy denotes the number of training examples in clasndCy denotes the set containing the
indices of the training examples belonging to clas$his is however not advisable because using
the training set for computing the posterior mean and forpaing the variance-ﬁ of the projected
training examples typically leads to overly optimisticdtemall) estimates for the variances.

To obtain realistic estimates f@rﬁ, we employed a leave-one-out procedure, in which each
training example is removed once from the training set. Birgdhe mean of the posterior distri-
bution computed without training exampley m,;, we can compute class conditional estimates of
the mean and variance of the mean of the predictive distoibbdtty the following equations:

1

Mk = W Z m{ixi (5.62)
K icck
1

k= D mixi = m)?. (5.63)
kicc

Note that to exactly compute the posterior meapnwe need to compute the hyperparameters
B\ anday; and additionally the covariance mati@;. Since this has to be done once for each
training example, a naive implementation of the leave-omeprocedure would be computation-
ally very demanding. To reduce the computational complexit assume that the changes in the
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hyperparameters resulting from the removal of one traiex@mple are negligible, i.g,; ~ 8 and
@\ ~ a. Furthermore, to compute the covariar@@g we use the Woodbury identity (see for exam-
ple Golub and Van Loan (1996)), which allows to quickly corgprank-1 updates (or downdates)
of the covariance matri.

Cx; XiTC

1. vTOy
-3 +X Cx;

Ci=C- (5.64)

5.5.2 Sequences of Trials

Given the algorithms for computing class probabilitiessprded in the previous section, the classi-
fication of sequences of trials is relatively straightforsdkaAssuming independence of single trials,
the probability for a sequence of class labels given a seguehinput vectors can in general be
expressed as follows:

T s
PU=y1...y7l%e...R7) = iz PO = Yi%)

= — ~ for ye L. (5.65)
Z|€L H.T:1 p(y = |t|Xt)

Herel = 11...l7 is a sequence of labels of lengih £ is the set of all possible class label sequences
of lengthT, and we have omitted the conditioning on w2, (r%, andcrg. The reader might object
that the computation of the denominator in the above equdttzomes computationally infeasible
for largeT because/| = 27. The objection is correct, however it is not relevant for aipplication

we are envisaging here, namely P300-based BCls. In P3@@HBGEIs the number of possible label
sequences is equal to the number dgfatient stimuli and hence the denominator can be computed
easily.

To see how the probabilities for sequences of class labeldeaused in a P300-based BCI,
let us recall the scheme for aggregating information fromadable number of trials which was
reviewed in Chapter 4 on paade 50. In this scheme stimuli aasgomted blockwise until a reliable
decision about the target stimulus can be taken. The adyamtfthis scheme over the other de-
cision schemes presented in Chapier 4 is that the numbeinuilstan be dynamically adapted
to the performance of the user and the noise level in the ksigila implement the scheme, Serby
et al. (200%) used nonprobabilistic classifiers and combinedim&tion from several trials by av-
eraging classifier outputs. Decisions were taken when teeaged classifier outputs exceeded a
threshold. Thresholds depended on the number of averagssifer outputs and were computed
with a method that is not specified in detail in the paper ob8et al. (200%).

The probabilities for sequences of class labels allow usimement the scheme of Serbwal.
in a more straightforward way. Taking as example the fommgi setup depicted in Fig¢. 5.2, the
probability that the user was concentrating on stimulusrilb@aeasily computed. In particular after
the first block of stimulus presentations this probabilignde obtained by using Equation £.65

with
1] [-1] [-1] [-1
1 and £- _l, l, _1, —Ht (5.66)
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Figure 5.2— Decision after a variable number of blocks using a prolithtlapproach (symbols in squares
represent operations, symbols in circles represent wagpb-our dfferent stimuli are presented in random
order with an interstimulus interval of 500 ms (1,2,3,4) eTEEG segment corresponding to each stimulus
presentation is classified (C); the output of the classifiea probability indicating how similar the EEG
segment is to a P300. After the first block of stimulus presmts, the classifier outputs are combined in
order to compute for each stimulus the probability that tberwas concentrating on it (P). If the maximum
of these probabilities is larger than a certain thresholé@sibn is taken (D), i.e. the systems executes the
command associated to the stimulus with the largest prbtyaltithe maximum is smaller than the threshold
a second block of stimuli is presented. The classifier ostfrotn the second block of stimuli are combined
with the outputs from the first block (P). The command asgedito the stimulus with the largest probability
is executed (D).

The probabilities for the other stimuli can be computed byoadingly changing. Adaptive deci-
sions are taken by comparing the maximum of the probalsilfte all four stimuli to a threshold. If
the maximum of the probabilities is smaller than the thréslaonew block of stimuli is presented
and the probabilities are recomputed using all blocks pteseso far. If the maximum of the
probabilities is larger than the threshold the system descitiat the user was concentrating on the
stimulus corresponding to the maximal probability (see Big¢). Compared to the implementation
of the adaptive decision scheme described bv Settal. our implementation has the advantage
that only one threshold has to be specified and that thishblgé$ias an intuitive meaning. Setting
the threshold to a valuemeans that one accepts approximately 180¢)% wrong decisions.

Note however, that using a fixed threshold to decide wheno sampling data is not neces-
sarily optimal. In fact, the problem of deciding for one of/seal hypotheses after evaluating a
variable number of samples is relatively complex and is kmas sequential analysis or sequen-
tial hypothesis testing in the decision theory literatufe.decision theory based analysis of the
threshold procedure we used can be founcl in (Draetlial, 1999). Note also, that the approach
we presented for classification of sequences of trials isicdy not the only possible one. While
the advantages of our approach are that it is simple andjstfaiward and leads to good results,
other possible approaches exist. In particular, it woulthberesting to test methods for combining
results obtained from multiple classifiers (Kittletral, 1998). For example the majority voting rule
could be used in the context presented here, by first findingdoh stimulus block the stimulus
with the maximal score. Then, a decision about the targetustis could be taken by finding the
stimulus that has the maximal score in the majority of blocks

Apart from using probabilities for taking adaptive decigpother, extended, applications can
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be envisaged. For example in the P300 speller system, ittiégimteresting to combine the proba-
bilities computed from the EEG with probabilities compufexin a language model. This approach
could also be combined with adaptive decisions, i.e. if treglage model strongly reduces the a
priori uncertainty for the next symbol to be spelled, the benof stimuli would be small. If the lan-
guage model is unsure about the next symbol the number ofilstivould be large. Another area
in which the probabilistic approach to classification migktuseful is the area of asynchronous
BCI systems. More generally, every BCI application in whéchriori probabilities for commands
can be computed could profit from the probabilistic apprdactiassification presented in the last
sections.

5.6 Conclusion

In this chapter we have discussed algorithms for learniagsifiers from training data and for per-
forming classification of new data not used during trainifidne algorithms we discussed can be
seen as linear versions of the well-known relevance vectmhine (Tipping, 2001) and are based
on the evidence framework presented originally by Mack:&0¢). Starting from least squares
regression and FDA we have described BDA, an algorithm wisiddbtained by applying the ev-
idence framework to the discriminant analysis scenario.efVtompared to other algorithms that
have been used in BCI systems, the main advantages of BDAatra tegularized discriminant is
computed and that regularization constants are estimatethatically. Compared to simple algo-
rithms such as FDA, which work without regularization, tlwantage is that high-dimensional data
can be used for training without the danger of overfittingmpared to regularized algorithms such
as for example regularized FDA or the support vector mac{8wiM) the advantage is that regular-
ization constants are estimated automatically. Time4amirsg and cumbersome cross-validation
procedures are thus not necessary. As an extension of tleeBi24& algorithm we have described
the SBDA algorithm which is based on a technique known asnaatic relevance determination
and can be employed to perform electrode selection whenitepclassifiers from EEG datasets.

After the description of the inference algorithms BDA and#8wve have described probabilis-
tic approaches for the classification of single trials ardffie classification of sequences of trials.
The first approach for probabilistic single trial classifioca we described, is the approach used in
the work of Van Gesteét al. on Bayesian least-squares support vector machines. Theides
underlying the second approach is to use a leave-one-oceghuee to estimate Gaussian probability
models for the one-dimensional projections of featureorsct

Building on the class probabilities for single trials, werbgresented a probabilistic approach
to classification of sequences of trials. As we have seescdn be used for a straightforward im-
plementation of a P300-based BCI system, in which the numfegtimuli is automatically adapted
to the noise level of the signals and to the performance ofisee

In the next two chapters the algorithms that were describélae present chapter will be tested
with different datasets. In Chaprer 6 we describe a BCI system whishused to record P300
datasets from several disabled and able-bodied subjebtsseTdatasets are then used to compare
BDA with FDA and to test dierent (static) electrode configurations. In Chapier 7 wethse
data from disabled and able-bodied subjects to test etbxgelection with SBDA and the adaptive
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decision scheme. Additionally, in order to test how the Atgms presented here compare to the
state-of-the-art, experiments are performed with BCI cetitipn datasets in Chaptar 7.
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An Efficient Brain-Computer
Interface for Disabled
Subjects

6.1 Introduction

In this chapter we present affieient BCI for disabled subjects. The system is based on thé P3
evoked potential and is tested with data from five disabledifaor able-bodied subjects. Except
for some minor modifications in Sections 6.4 ancl 6.5, the rizdie this chapter is identical to that
presented in (H®mannet al, 2007).

The chapter starts in Section 6.2 with a brief review on B@Isdisabled subjects. Then, in
Section 6.3 the materials and methods used for recordinguaalgizing data are discussed. In Sec-
tion 6.4 results are presented. An important result is thatdassification accuracy and bitrate
achieved for the disabled subjects are significantly beytbonde previously reported in the liter-
ature. Additional results concern the classification a@mcyiand bitrate achievable with Bayesian
linear discriminant analysis (BDA) and Fisher’s discriani analysis (FDA) and a comparison of
different, static electrode configurations. In Section 6.5ekalts are discussed and reasons for the
good classification accuracy and bitrate achieved for thsakubjects are sought. The chapter is
summarized in Section ¢.6.

6.2 Related Work

One of the earliest systems that used the EEG and was tegtedigabled subjects was described
by Birbaumetet al.(1999). In their pioneering wor <. Birbaumetal. showed that patients fiaring
from amyotrophic lateral sclerosis (ALS) can use a BCI totra spelling device and communi-
cate with their environment. The system relied on the feat platients were able to learn voluntary
regulation of slow cortical potentials (SCP), i.e. voltagisfts of the cerebral cortex which occur
in the frequency range 1-2 Hz (cf. Chapter 2, page 16). Draksbaf the system were that it usu-
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ally took several months of patient training before the saty could control the system and that
communication was relatively slow.

Parallel to the work cf Birbaumaest al. BCI systems were developed that used changes in brain
activity correlated to motor imagerv (Pfurtscheller anduNer, 2001). While these systems were
for a long time tested exclusively with able-bodied and gjipdelic subjects, recently tests have
been performed with ALS patients and other disabled subjéutsitive results have been obtained
by Kibler et al. (200%) who showed that ALS patients can learn to control miobagery based
BCI systems. However, as for the system based on SCP, usezsraimed over several months
and communication was relatively slow. Negative resultseizeen obtained kv Hiltt al. (2006),
who tested a motor imagery based BCI with several compléeeled-in patients and could not
obtain signals that were suitable for communication. Oresiisbe reason for the filerent results
is the fact that in the study nf Kiiblet al. the patients were not completely locked-in whereas the
patients in the study of Hiket al. were completely locked in. Furthermore, in the study of Kiibl
et al. several training sessions were used whereas in the worlloét-il. only one, relatively long
training session was used. In summary, it has thus been stimwvmotor imagery based systems
can be used by disabled subjects, however positive evideriteited to cases in which subjects
were not completely locked-in and followed a long trainimgtpcol.

Recently, two studies have been published in which P308ebBE1 systems were tested with
disabled subjects. Picciors al. (2006) tested a 2D cursor control system with five disabledl an
seven able-bodied subjects. For cursor control, a foutreehB300 paradigm was used. Subjects
had to concentrate on one of four arrows flashing every 2.5anidom order in the peripheral area
of a computer screen. Signals were recorded from one etectimgram electrode and four EEG
electrodes, preprocessed with independent componenys&ahd classified with a neural network.
The results described hy Piccioaeal. showed that the P300 is a viable control-signal for disabled
subjects. However, the average communication speed ebténtheir study was relatively low
when compared to state-of-the-art systems, as for exareleyistems described v Karedral.
(2004); Thulasidagt al. (2006). This was the case for the disabled subjects, as wétiraable-
bodied subjects and can probably be ascribed to the userdlsiffom only few electrodes, the
small number of dferent stimuli, and long interstimulus intervals (ISls).

Sellers and Donchin (2006) also used a four-choice paradigirtested their system with three
subjects sfiering from ALS and three able-bodied subjects. In their wtiodir stimuli (YES’,
'NO’, 'PASS’, 'END’) were presented every 1.4 s in random erdeither in the visual modality,
in the auditory modality, or in a combined auditory-visuabahality. Signals from three electrodes
were classified with a stepwise linear discriminant aldponit The research of Sellers and Donzhin
showed that P300 based communication is possible for dslgefering from ALS. The research
also showed that communication is possible in the visualitary, and combined auditory-visual
modality. However, as in the work of Picciors al, the achieved classification accuracy and
communication rate were low when compared to state-ofatheesults. This can again be ascribed
to the small number of electrodes, the small number Hédint stimuli, and long ISIs.



6.3. MATERIALS AND METHODS 77

Figure 6.1— The display used for evoking the P300. Images were flashredaba time, by changing the
overall brightness of images.

6.3 Materials and Methods

6.3.1 Experimental Setup

Users were facing a laptop screen on which six images weptaglisd (see Fic. 6.1). The images
showed a television, a telephone, a lamp, a door, a windadvaaadio. The images were selected
according to an application scenario in which users canrabetectrical appliances via a BCI
system. The application scenario served however only asaanme and was not pursued in further
detail.

The images were flashed in random sequences, one image at.aHach flash of an image
lasted for 100 ms and during the following 300 ms none of theges was flashed, i.e. the ISI was
400 ms. The EEG was recorded at 2048 Hz sampling rate froty-tho electrodes placed at the
standard positions of the 10-20 international system. A@&ioi Active Two amplifier was used for
amplification and analog to digital conversion of the EEGalg. Signal processing and machine
learning algorithms were implemented with MATLAB. The stilus display and the online access
to the EEG signals were implemented as dynamic link libsafBLLS) in C. The DLLs were
accessed from MATLAB via a MEX interface.

6.3.2 Subjects

The system was tested with five disabled and four able-bosligsjiects. The disabled subjects
were all wheelchair-bound but had varying communicatiod émb muscle control abilities (see
Table 6.1). Subjects 1 and 2 were able to perform simple, shfmwements with their arms and
hands but were unable to control other extremities. Spokemmunication with subjects 1 and 2
was possible, although both subject#fered from mild dysarthria. Subject 3 was able to perform
restricted movements with his left hand but was unable toaridg arms or other extremities.
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S1 S2 S3 S4 S5
Diagnosis Cerebral palsy Multiple scle-Late-stage Traumatic brain Post-anoxic
rosis amyotrophic and spinal-cord encephalopathy
lateral sclerosis injury, C4 level
Age 56 51 47 33 43
Age atillness onset 0 (perinatal) 37 39 27 37
Sex M M M F M
Speech production Mild dysarthria  Mild dysarthria ~ Severe Mild dysarthria  Severe
dysarthria hypophony
Limb muscle control  Weak Weak Very weak Weak Very weak
Respiration control Normal Normal Weak Normal Normal
Voluntary eye move- Normal Mild  nystag- Normal Normal Balint's  syn-
ment mus drome

Table 6.1 — Subjects from which data was recorded in the study of the environment control system.

Spoken communication with subject 3 was impossible. Howt#we patient was able to answer
yegno questions with eye blinks. Subject 4 had very little colntver arm and hand movements.
Spoken communication was possible with subject 4, alth@ugtild dysarthria existed. Subject 5
was only able to perform extremely slow and relatively uncdled movements with hands and
arms. Due to a severe hypophony and large fluctuations irethe of alertness, communication
with subject 5 was very dicult. Subjects 6 to 9 were PhD students recruited from owrktbry
(all male, age 3@ 2.3). None of subjects 6 to 9 had known neurological deficits.

6.3.3 Experimental Schedule

Each subject completed four recording sessions. The fisssdgsions were performed on one day
and the last two sessions on another day. For all subjectintiecbetween the first and the last
session was less than two weeks. Each of the sessions ednsistix runs, one run for each of the
six images. The following protocol was used in each of thesrun

1. Subjects were asked to count silently how often a presdiiimage was flashed (For example:
"Now please count how often the image with the televisionasted").

2. The six images were displayed on the screen and a warniegaas issued.

3. Four seconds after the warning tone, a random sequenasbéfl was started and the EEG
was recorded. The sequence of flashes was block-randorttiietheans that after six flashes
each image was flashed once, after twelve flashes each imagiaslaed twice, etc.. The
number of blocks was chosen randomly between 20 and 25. Qage/@2.5 blocks of six
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flashes were displayed in one run, i.e. one run consisted erage of 225 target (P300)
trials and 225 - 5 = 1125 nontarget (non P300) trials.

4. In the second, third, and fourth session the target imaag inferred from the EEG with
a simple classifier. The classifier was trained from the datarded in session one, one
to two, and one to three, respectively. The algorithm dbsdrin Hdfmannet al. (2006)
was used for preprocessing and the algorithm described fintdanet al. (200:) was used
for classification. At the end of each run the image inferrgdhe classification algorithm
was flashed five times to give feedback to the user. The fekdimwed to keep the users
interested and concentrated during the training sessions.

5. After each run subjects were asked what their countingtress. This was done in order to
monitor performance of the subjects.

The duration of one run was approximately one minute andubatidn of one session including
setup of electrodes and short breaks between runs was a&pptely 30 minutes. One session
comprised on average 810 trials, and the whole data for dnjecconsisted on average of 3240
trials.

6.3.4 fine Analysis

The impact of diferent electrode configurations and machine learning @kgos on classification
accuracy was tested in affiime procedure. For each subject four-fold cross-validetias used to
estimate average classification accuracy. More specificalt data from three recording sessions
were used to train a classifier and the data from the left-ession was used for validation. This
procedure was repeated four times so each session senedfobonalidation.

Preprocessing

Before learning a classification function and before vdiaa several preprocessing operations
were applied to the data. The preprocessing operationsapgted in the order stated below.

1. Referencing
The average signal from the two mastoid electrodes was ase&dférencing.

2. Filtering
A 6th order forward-backward Butterworth bandpass filtes wsed to filter the data. Cufo
frequencies were set to 1.0 Hz and 12.0 Hz. The MATLAB functiutter was used to
compute the filter caéicients and the functiofiltfilt was used for filtering.

3. Downsampling
The EEG was downsampled from 2048 Hz to 32 Hz by selecting @étthsample from the
bandpass-filtered ddta

INote that a more robust approach to downsampling would begcaveraging with a window size of 64 samples.
Although, due to the preceding lowpass filtering, the improent of averaging compared to selecting each 64th sample
is probably small, averaging should be used in future vassaf the system presented here.
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4. Single Trial Extraction
Single trials of duration 1000 ms were extracted from the.d&ingle trials started at stim-
ulus onset, i.e. at the beginning of the intensification ofraage, and ended 1000 ms after
stimulus onset. Due to the ISI of 400 ms, the last 600 ms of &&dlwere overlapping with
the first 600 ms of the following trial.

5. Windsorizing
Eye blinks, eye movement, muscle activity, or subject mayencan cause large amplitude
outliers in the EEG. To reduce thdfects of such outliers, the data from each electrode
were windsorized. For the samples from each electrode ttte dércentile and the 90th
percentile were computed. Amplitude values lying below 108¢&h percentile or above the
90th percentile were then replaced by the 10th percentileeo®0th percentile, respectively.

6. Scaling
The samples from each electrode were scaled to the inter§al]. Scaling constants were
computed for each electrode from all trials in the trainiagesd then applied to the validation
data. Note that scaling wasot done on a trial by trial basis. Instead the same scaling
constants were used for all trials. This is important sirzdisg each trial individually could
potentially destroy important amplitude information doaerizing the P300.

7. Electrode Selection
Four static electrode configurations withffdrent numbers of electrodes were tested. The
electrode configurations are shown in Fig. 6.2.

8. Feature Vector Construction
The samples from the selected electrodes were concateimefbature vectors. The di-
mensionality of the feature vectors wids x Ns, whereN, denotes the number of electrodes
and Ng denotes the number of temporal samples in one trial. Dueddrthl duration of
1000 ms and the downsampling to 32 Hi,always equaled 32. Depending on the electrode
configuration,Ne equaled four, eight, sixteen, or thirty-two.

Machine Learning and Classification

Classifiers and the percentile values used for windsoriziege trained on the data from three
sessions and validated on the left-out fourth session.nifgidatasets contained 405 target trials
and 2025 nontarget trials and validation datasets codsaftd 35 target and 675 nontarget trials
(these are average values cf. Section 3.3.3). BDA was udedrto classifiers (cf. Chapt2- 5, page
6C). To compare the performance of BDA with a standard algar, in a second set of experiments
classifiers were computed with FDA. In particular the varsid FDA based on the Moore-Penrose
pseudoinverse of the within-class scatter matrix was usfedChapter 5, pace 58). Both algorithms
were fully automatic, i.e. no user intervention was redqliite adjust hyperparameters, and the
computation of classifiers took less than one minute on alatarPC.
After the classifiers had been trained, they were appliedlidation data in the following way.

For each run in the validation session, the single trialsesmonding to the first twenty blocks of
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Figure 6.2— Electrode configurations used in the experiments. Frorfeibfo bottom right: Configuration
| (four electrodes), configuration Il (eight electrodesjfiguration Il (sixteen electrodes), and configuration
IV (thirty-two electrodes).

flashes were extracted using the preprocessing operatidrmen the single trials were classified.
This resulted in twenty blocks of classifier outputs. Eaathklconsisted of six classifier outputs,
one output for each image on the display. To decide which éntlag user was concentrating on, the
classifier outputs were summed over blocks for each imagehamdthe image with the maximum
summed classifier output was seleétedifferent tradeffs between the time needed to take a
decision and the classification accuracy were simulatedhbying the number of summed classifier
outputs, i.e. the number of blocks. The performance measiged for comparing classifiers are
described in more detail in the next section.

6.4 Results

6.4.1 Performance Measures

To illustrate and compare the results obtained féiedént subjects, classifiers, and electrode con-
figurations we have used the following performance measéiéperformance measures are based

1This decision scheme is described in more detail in Chantardds depicted in Fi¢. 4.5 on page 49.
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on the cross-validation procedure presented in the pre\geation.

e Classification Accuracy Graphs
Classification accuracy graphs illustrate the dependefadassification accuracy on the
amount of aggregated data. This is best understood by airgidthe following notation.
Lett, € R denote the classifier output corresponding to the presentaf stimuluss, in
block b, during runr. The identity tsK, B) of the target stimulus in run, taking into account
data fromB blocks of stimulus presentations, is then computed asvistio

B
ts(r, B) = arg msaxZ tey, (6.1)
b=1

The classification accuracy &)(as a function of the number of blocks can be expressed as:

R
1
ac®) = = ; | (ts(r, B) = gt(r)). (6.2)
Here R denotes the number of runs in the validation set, | denotesniicator function,
and gt¢) denotes the groundtruth identity of the target stimulusuimr. The classification
accuracy as a function of the number of blocks can easily besrted into graphs depending
on time by noting that each block has a duration ef 400 ms= 2.4 s.

e Bitrate Graphs and Maximum Bitrate
The dependence of communication speed (the bitrate) omtberat of aggregated data was
computed by applying the definition of Wolpast al. (2002) to the classification accuracy
graphs. Maximum bitrates were computed by finding the marirfithe bitrate graphs.

Note that in the bitrate definition of Wolpaet al. (cf. Chapter 4, page 1) it is assumed
that the user communicates an infinite amount of data anchéhahcodes the data he wants
to transmit in an optimal way, such that eventual commuitinagrrors can be corrected by
a decoding algorithm. In the environment control applmatiliscussed here the amount of
transmitted data is limited and no encoding takes place.céldahe bitrates depicted in the
graphs on page 34 are only actually achievable at pointsentherclassification accuracy is
100%. When the classification accuracy is lower than 100%ptimal encoding procedure
would be necessary to actually achieve the depicted kstrabespite this drawback of the
bitrate definition of Wolpawet al. we have nevertheless used it as it is widely used for
comparisons betweenftirent types of BCl systems.

e Per Block Accuracy (PBA)
The principal performance measure used for comparingifieassis what we have termed
“per block accuracy”. The motivation for introducing thierformance measure is that it
is difficult to find a sensible metric for comparing graphs of acqu@ditrate. Maximum
bitrate is also unsuitable as a performance measure beitaleggends mainly on the data
recorded during the first few stimulus presentations and thight have high variance. The
PBA is computed from all blocks of EEG trials seen during srealidation and hence should



6.4. Resurrs 83

be more reliable. To define this performance measure morsphg let us introduce the
following notation.
fs(r, b) = arg maxty,, (6.3)
S

As beforet;b denotes the classifier output for stimukgsn block b, during runr. Therefore,
ts(r, b) denotes the identity of the target stimulus computed ordynfblockb in runr. The
PBA is then computed as:

R B
pba= %Z D186, b) = gt(r)). (6.4)
r=1 b=1

Here, by a slight abuse of notatidd,denotes the total number of blocks in each run.

6.4.2 General Observations

Graphs of classification accuracy and bitrate are showngné-t. Electrode configuration (II) in
conjunction with BDA as classification method was used festhgraphls The maximum bitrates
for all possible combinations of electrode configurationl atassification algorithm are listed in
Table 6.2. The PBAs for all possible combinations of elegra@onfiguration and classification
algorithm are listed in Table €.3.

Data for subject 5 are not included in Fig. 6.3 , Teble 6.2, Badole 6.3 because classification
accuracies above chance level could not be obtained. Dtmim@xperiments a speech therapist
helped to communicate with subject 5. However, it was nadrdiiethe subject understood the in-
structions given before the experiments. Furthermordgthat of alertness of the subject fluctuated
strongly and rapidly during experiments.

All of the subjects, except for subjects 6 and 9, achievedvarage classification accuracy of
100% after 12 or more blocks of stimulus presentations weeeaged (i.e. after 28.8 s). Subject
6 reported that he accidentally concentrated on the wrangukts during one run in session 1.
This explains the lower average classification accuracthiersubject. In all other runs the average
classification accuracy after more than 12 blocks was 10096ubject 6. The somewhat lower
performance for subject 9 is restricted to session 4, i.eegsions 1 to 3 subject 9 always reached
100% classification accuracy. The reason for the lower padace in session 4 might be fatigue.

The best performance was achieved by subject 8. Subject 8iglly concentrated and mo-
tivated during the experiments. It is known that motivatamd arousal in general increase P300
amplitude (Carrillo-de-la Pena and Cadaveira. 2000). Qussiple explanation for the very good
performance of subject 8 might thus be the fact that the stibjas very motivated.

6.4.3 Dfiferences between Disabled and Able-bodied Subjects

The diferences that can be observed between disabled and abtsizodijects depend on the per-
formance measure used. If maximum classification accusaaged as performance measure, no

1Electrode configuration (II) was chosen for plotting beeaitsrepresents a good tradedetween classification
performance and practical applicability of a BCI system.k&ep the plots uncluttered, the curves for FDA, which for
electrode configuration (ll) are very similar to those of B#e not shown.
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Figure 6.3— Classification accuracy and bitrate plotted vs. time. Téegbs show the classification accu-
racy obtained with BDA and the eight electrode configurataueraged over four sessions (circles) and the
corresponding bitrate (crosses), for disabled subjedtsS@ and able-bodied subjects (S6-S9).
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differences can be found between able-bodied and disabledtsubjjais is shown for classification
with BDA and the eight electrodes configuration in F1g. 6.BeBame behavior was found for the
other combinations of classifier and electrode configunafimt shown). If bitrate is used as per-
formance measure, fiiérences between disabled and able-bodied subjects caly tadbserved.
Able-bodied subjects achieved higher maximum bitrates thigabled subjects. This was the case
for all combinations of classifier and electrode configaraiisee Tabl2 6.2). Eerences between
disabled and able-bodied subjects were also found in the 8B& Table: 6 3). This indicates that
the smaller performance of disabled subjects is not réstrito the first few stimulus presentations
but persist also for stimuli presented later during a run.

6.4.4 Electrode Configurations and Classification Methods

Using diferent electrode configurations in conjunction with BDA arldAFyielded the results
shown in Fig. 6.4 and Table ¢.3. For BDA one can observe tlatasing the number of elec-
trodes always led to an increase in performance. The laig@sovements were obtained by using
eight instead of four electrodes and by using sixteen idstéaight electrodes. The increase in per-
formance obtained by using thirty-two electrodes was ixedgt small. For FDA the performance
was not directly related to the number of electrodes. Usigigteelectrodes led to a strong increase
in performance over the four electrode configuration. AHertsmall improvement was obtained
by using sixteen electrodes. The thirty-two electrodedigaration, however, led to performance
below that of the eight electrode configuration. Concernivggrelative performance of FDA and
BDA it can be seen that BDA always outperformed FDA.

6.4.5 Averaged Waveforms

Detecting the target image from a sequence of EEG trialeg@n dfferences between the wave-
forms of target and nontarget trials. To visualize theskedinces the averaged waveforms at elec-

Disabled Able-bodied Average
S1 S2 S3 sS4 S6 S7 S8 S9 S1-S4 S6-S9  All
FDA-04 6 7 24 13 22 19 44 8 D 23%15 18:12
-08 7 13 28 17 22 19 56 13 9 2819 2215
-16 5 6 28 19 17 22 50 15 #H1 26:16 20:14
-32 7 6 19 15 13 19 39 13 ¥ 21412 16t10
BDA-04 9 7 22 15 26 22 39 17 ¥y 26£9 20:£10
-08 9 11 25 19 26 22 50 19 8 29:14 23:13
-16 8 11 25 22 26 39 56 22 ¥  36£15 26:£15
-32 13 11 22 30 34 39 65 17 19  39+29 29+18

Table 6.2— Maximum average bitrate per minute (rounded to integenes). Bitrates were computed

from average accuracy curves and are shown for all combimatf classification algorithm and electrode
configuration. Mean bitrate and standard deviations werepetted for disabled subjects (S1-S4), able-
bodied subjects (S6-S9), and all subjects.
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Disabled Able-bodied Average
S1 S2 S3 sS4 S6 S7 S8 S9 S1-S4 S6-S9 Al
FDA-04 41 37 63 40 48 56 66 45 432 54:10 49:10
-08 42 46 67 56 55 58 78 45 531 5914 56:12
-16 41 39 67 56 58 63 77 49 493 62:12 56:£13
-32 42 37 62 55 53 57 74 44 491 52:13 53:12
BDA-04 43 43 68 43 54 56 69 49 493 578  53tl11
-08 46 53 71 63 60 61 80 51 491 6312 60:11
-16 47 53 75 68 68 71 85 55 €13 7Q:13 65:13
-32 57 51 76 70 70 72 87 58 842 7212 68:12

Table 6.3— Per block accuracy (PBA) in percent for all subjects. Sharem the mean PBA for each
subject, the mean and standard deviations for disable@&stshjS1-S4), able-bodied subjects (S6-S9), and
all subjects. All numbers were rounded to integer valuendosiase readability of the table.

BOA32 | — o
BDA-16 — o - 4
BDA-08 r — o —_— 1
FDA-16  — . N 4
FDA-08 — . ; 4
FDA-32 | — . | J
BDA-04 r r o E— R
FDA-04  — . - |

35 40 45 50 55 60 65 70 75 80 85 90
Per Block Accuracy(%)

Figure 6.4— Boxplots of the per block accuracy (PBA). Each boxplot swarizes the data from subjects
S1-S4 and subjects S6-S9. The leftmost vertical lines @tdithe minimal PBA among subjects and the
rightmost vertical lines indicate the maximal PBA amongjsats. Circles represent the median PBA among
subjects (filled circles were used for FDA, empty circleseuesed for BDA). White space around the circles
indicates the interquartile range of the PBA.

trode Pz are plotted in Fig. 6:5As expected, disabled subjects and able-bodied subjects a

P300-like peak in the target condition which is not presarithe nontarget condition. The latency
of the P300 is higher for the disabled subjects (around 500when compared to the one from
able-bodied subjects (around 300 ms). The amplitude at306 Peak is smaller for the disabled

Electrode Pz was chosen for plotting because it typicalbysthe largest P300 amplitude.
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Figure 6.5— Top: Average waveforms at electrode Pz for disabled sthjE®1-S4). Bottom: Average
waveforms at electrode Pz for able-bodied subjects (S6-S®pown are the average responses to target
stimuli (solid line) and nontarget stimuli (dashed line)rfr all four sessions. A prestimulus interval of 100
ms was used for baseline correction of single trials.

subjects (around 1,8V) than for the able-bodied subjects (around\?).

6.5 Discussion

6.5.1 Diferences to Other Studies

Compared to other P300-based BCI systems for disabled, uberslassification accuracy and bi-
trate obtained in the current study are relatively high. he work of Sellers and Donchin (2006)
the best classification accuracy for the able-bodied stshjeas on average 85% and the best clas-
sification accuracy for the ALS patients was on average 72%u¢g taken from Table 3 in Sellers
and Donchin (2006)). In the present study the best classifitaccuracy for the able-bodied sub-
jects was on average close to 100% and the best classificatmmacy for disabled subjects was
on average 100% (see F a. 6.3). Bitrates in/biia were not reported in the study of Sellers and
Donchin.

In the work of Piccioneet al. (2006) the definitions for bitrate and classification accyrare
different from those used in this thesis. Therefore a direct anisgn with the system of Piccione
et al. is impossible. However, given the number of stimuli (foundahe ISI (2.5 s) used in the
system o7 Piccionet al, the maximal possible bitrate according to the definitiofEquation 4.1
can be computed. This bitrate is 12 jgitén. In the present study the average bitrate obtained with
electrode configuration (Il) was 15.9 bitsn for the disabled subjects and 29.3 piti for the
able-bodied subijects.

Due to diferences in experimental paradigms and subject populatienslassification accu-
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racy and bitrate obtained in the two studies described abamgot be compared directly to those
obtained in the present study. Nevertheless, severalrfattiat might have caused thdidrences
can be identified. These factors are described below.

e Number of Choices
In the present study a six-choice paradigm was used, wherghs experiments of Sellers
and Donchin and Piccionet al. four-choice paradigms were used. As a consequence the
target stimulus occurred with a probability of 0.25 in th@estiments of Sellers and Donchin
and Piccioneet al, whereas in the present work it occurred with a probabilit§.t6. Smaller
target probabilities correspond to higher P300 amplituf®scan-Johnson and Donchin,
19777), thus the P300 in our system might have been easietdotde

In general, when designing a P300-based BCI, one has to éeaccount that disabled
subjects might sfier from visual impairments. Systems such as the P300 spelighich
users have to focus on a relatively small area of the dispigytnthus not be appropriate for
disabled subjects. Reducing the number of choices enléigesea occupied by one item on
the screen and thus facilitates concentration on one itdris.rmight be particularly important
for subjects who have little remaining control over theieegovements. Such subjects might
use covert shifts of visual attenticn (Posner and Peief§9t()) to control a P300-based BCl,
which should be easier when a small number of large itemsaid.us

e Interstimulus Interval
Several factors have to be kept in mind when choosing an ISi 8300-based BCI system.
Regarding classification accuracy, longer ISls theoriyiggeld better results. This should
be the case because longer ISIs (within some limits) caugerl®300 amplitude. On the
other hand, a consequence of long ISls is a longer overadtidarof runs. Disabled subjects
might have diiculties to stay concentrated during long runs and thus PB@flitade and
classification accuracy might actually decrease for lohgks.

Regarding bitrate, the factors described above have torisdared together with the fact that
for a given classification accuracy higher bitrates areinbthwith shorter ISls. Additionally
one has to consider that if the ISI is made too short, subjgitts cognitive deficits might
have problems to detect all target stimuli and classificaticcuracy might decrease.

Given the complex interrelationship of several factors ptinaal 1SI for P300-based BCls
can only be determined experimentally. Here we have shoanath ISI of 400 ms yields
good results. Sellers and Donchin have used an IS| of 1.4Pmeioneet al. have used an
ISI of 2.5 s. The results obtained in their studies seem ticatel that these 1Sls are too long.

6.5.2 Visual Evoked Potentials

In the literature on P300-based BCI systems it is almostydvessumed that the only factor al-
lowing to discriminate target trials from nontarget trisddhe P300 (see Kapet al. (2004) for an
exception). However, for systems using visual stimuli tsumption might be too limited. To
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understand this let us consider that in the system presétedand in any other visual P300 BCI,
users can use one of (at least) two strategies to selectrardigplayed on the screen. In the first
strategy, users gaze at a neutral position on the screeexénple the center of the screen) and
use covert shifts of attention to concentrate on the flashédwealesired target item. For this strat-
egy, the assumption that the P300 is the main factor foridigtation of targets from nontargets is
probably correct. In the second strategy, users employ @xements to gaze at the desired item
and to foveate this item. For this strategy, it is probabbg the visual potentials evoked by the
target item are dierent from those evoked by nontarget items. The target iseat the center of
the visual field and influences a relatively large part of &istortex whereas peripheral nontarget
items influence a smaller part of visual cortex. Hence, tkealievoked potentials (VEPS) corre-
sponding to target flashes can be expected to have a largditiataghan the VEPs corresponding
to nontarget flashes. In the second strategy, discrimmatigargets from nontargets might thus be
based on the P30fhdon differences in the VEPs.

For the system presented here, the plots of the average avm&efn the target and nontarget
conditions (cf. Fig 6.5) provide evidence that the P309%kn important role for the classification
of targets and nontargets. However, the possibility thatthssification accuracy depends partly on
the ability to perform eye movements and to focus on an itemaigbe excluded. Further research
is necessary to elucidate the role of P300 and VEPs in P388dACI systems.

6.5.3 Electrode Configurations

The electrode configuration used in a BCI determines thatsility of the system for daily use.
Clearly, systems that use only few electrodes take less ftimsetup and are more user friendly
than systems with many electrodes. However, if too few edeleis are used not all features that are
necessary for accurate classification can be captured amchgpication speed decreases.

For P300-based BCI systemdfdrent electrode configurations have been described intthe li
erature. Good results have been reported using only thrémuomidline electrodes (Fz, Cz, Pz,
Oz) (Piccioneet al, 2006; Sellers and Donchin. 2006: Sednal, 200%). Krusiensket al. (2006)
described an eight electrode configuration consistingefriidline electrodes and the four parietal-
occipital electrodes PO7, PO8, P3, and P4. Kaait. (200:}) employed a ten electrode configura-
tion consisting of the midline electrodes, the parietatipital electrodes PO7, P08, P3, P4 and the
central electrodes C3, C4. Thulasiddasal. (2006) used a set of 25 central and parietal electrodes.

Here we have tested ftirent electrode configurations, consisting of four, eightteen, and
thirty-two electrodes, in combination with the BDA and FDssification algorithms. The results
show that for both algorithms a significant increase in diasdgion accuracy can be obtained by
augmenting the set of four midline electrodes with the pakielectrodes P7, P3, P4, and P8. For
most of the subjects, inspection of the average waveforntiseaparietal electrodes showed that
in target trials there was a negative peak with a latency oilaB00 ms which was weaker in
the nontarget condition. This N200-like component propablresponsible for the increase of
classification accuracy when the parietal electrodes afeided. Further research is needed to
clarify the possible functional significance of this compnh

With the BDA algorithm a further increase in classificatiataracy could be obtained by using
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the configurations consisting of sixteen or thirty-two éledes. With the FDA algorithm, classi-
fication decreased when more than sixteen electrodes wede Tikis probably happened because
the FDA algorithm is unable to deal with training data set@itich the number of features is large
compared to the number of training examples.

In summary, regardless of the classification algorithm ihased, the eight electrode configu-
ration represents a good compromise between suitabilitgddy use and classification accuracy
and seems to capture most of the important features for Ha68ification.

6.5.4 Machine Learning Algorithms

Many of the characteristics of a BCI system depend crifjcali the employed machine learning
algorithm. Important characteristics that are influencgthie machine learning algorithm are clas-
sification accuracy and communication speed, as well asnioeiat of time and user intervention
necessary for setting up a classifier from training data.

A simple and éicient algorithm that has relatively often been used in P3@€ed and other BCI
systems is FDA (Bostanov, 20C4; Kaper, 2006; Pfurtschaltel Neuper, 2001). In a comparison
of classification techniques (Krusiensid al, 2006) for P300-based BCls, FDA was among the
best methods in terms of classification accuracy and easeseof ldowever, using FDA becomes
impossible when the number of features becomes largeivestatthe number of training examples.
This is known as the small sample size problem. The small kasige problem occurs because the
between-class scatter matrix used in FDA becomes singuilansthe number of features becomes
large. In the present study the solution to this problem wasse the Moore-Penrose pseudoinverse
of the between-class scatter matrix (cf. Chaprer 5, pagje B8 allows to use FDA, even if the
number of features is high. However, with this approach thdopmance deteriorated when the
number of electrodes was increased.

In BDA, the small sample size problem, and more generallyptitodblem of overfitting are
solved by using regularization. Through a Bayesian aralybe degree of regularization can be
automatically estimated from training data without thechfae user intervention or time consuming
cross-validation. With the datasets used in this work, tBé&RBlgorithm is superior to FDA in terms
of classification accuracy and bitrates, especially if thember of features is large.

In summary, BDA dfers good classification accuracy and does not constrainrietiqal ap-
plicability of a BCI system and is thus an interesting aléive to FDA.

6.6 Conclusion

In this chapter an fécient P300-based BCI system for disabled subjects was miszke It was
shown that high classification accuracies and bitrates eaoblained for severely disabled sub-
jects. Due to the use of the P300, only a small amount of trgimias required to achieve good
classification accuracy.

Concerning the relative performance of disabled and abtkeld subjects we have seen that
the data from able-bodied subjects can be classified withehigccuracy. Nevertheless, by inte-
grating information from many stimulus presentations isvg@ssible to achieve communication



6.6. GONCLUSION 91

without errors also for the disabled subjects. A comparigetween the machine learning algo-
rithms FDA and BDA revealed that BDA clearly outperforms FDFhis was especially the case
when high-dimensional feature vectors, resulting from ukage of many electrodes, were em-
ployed. Concerning the performance offdient electrode configurations we concluded that the
eight electrode configuration represents a good comprob@sgeen practicality and achievable
classification accuracy.

In the next chapter experiments with the sparse Bayesiaarlidiscriminant analysis (SBDA)
algorithm, which allows to adapt electrode configuratiomspecific subjects, will be presented.
Moreover, experiments conducted with the adaptive stagpgigorithm will be presented.
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Experiments with Bayesian
Algorithms for EEG
Classification

7.1 Introduction

In this chapter we describe experiments with Bayesian fimiscriminant analysis (BDA) and
sparse Bayesian linear discriminant analysis (SBDA), tiagptve stopping algorithm, andftérent
approaches for computing class probabilities from the wugf BDA and SBDA. The theory
underlying these algorithms and methods is described ip&ha.

We start in Section 7.2 with a report about the classificatioturacy that can be obtained with
SBDA and with a comparison of SBDA and BDA. Furthermore, weoréon the electrodes that are
selected by SBDA, and compare the automatically selecetreties to the predefined electrode
subsets proposed in Chapter 6. Then, BDA and SBDA are apiaiB800 datasets from past BCI
competitions. We show that both algorithms lead to claggifio accuracies that are competitive
with the state-of-the-art. In Section 7.3, experimenthittie adaptive stopping algorithm and with
the algorithms for computing class probabilities are dbsd. The adaptive stopping algorithm
dynamically adapts to the level of uncertainty in the sigrml varying the amount of data used for
taking decisions. We show that the adaptive stopping dlgarallows to obtain higher communi-
cation speed than decision schemes in which a fixed amoumtaisiused. For the computation of
class probabilities it is shown that the leave-one-out @aqgin performs slightly better than Van Ges-
tel’s method, this comes however at the cost of increas@urigatime. The chapter is summarized
in Section 7.4.

93
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7.2 Sparse Bayesian Discriminant Analysis

7.2.1 Results with Proprietary Datasets
Comparison with BDA

Four versions of SBDA were compared with BDA. In the versibattwe refer to as SBDA-
32, the SBDA algorithm was used to select an optimal numbeslatrodes from all thirty-two
electrodes. In the versions that we refer to as SBDA-16, SBBAand SBDA-04, the number
of selected electrodes was predetermined to be sixteent, eigd four, respectively, and SBDA
was used to select electrode subsets of that size. The tatesssl for the experiments, as well
as the preprocessing methods and the cross-validatiorequoe were the same as those used in
Chapter 3. As performance measure we used per block acc(RP8d), as defined in Chaptar 6,
on page: 82.

The results obtained by running SBDA, together with theltesabtained by running BDA, are
summarized in Fig. 7.1.

Detailed results for each subject and foffelient groups of subjects are provided in Teble: 7.1.
As can be seen in Fig. 7.1, SBDA in general outperformed BDAe lBrgest improvements were
obtained when the number of electrodes was small. In p#atithe improvement obtained by us-
ing SBDA-04 instead of BDA-04 was about 8% in the median PBAe Tmprovement obtained
for the configuration consisting of eight electrodes was.ab&6. For the configurations consisting

SBDA-32 % | . P
SBDA-16 - — . P
BDA-32 +  — ° _ 4
BDA-16 | —_— o —— 4
SBDA-08 - — . —_ .
BDA-08 —_— ° S — ]
SBDA-04 + — . — ]
BDA-04 | + o  — e

40 45 50 55 60 65 70 75 80 85 90
Per Block Accuracy (%)

Figure 7.1 — Boxplots of per block accuracy (PBA) for BDA and SBDA. Eaabxplot summarizes the
data from subjects S1-S4 and subjects S6-S9 (cf. Chaptexgeé 13). The leftmost vertical lines indicate
the minimal PBA among subjects. The rightmost verticaldimaicate the maximal PBA among subjects.
Circles represent the median PBA among subjects (filledesirwere used for SBDA, empty circles were
used for BDA). White space around the circles indicatesrterquartile range of the PBA.
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Disabled Able-bodied Average
S1 S2 S3 sS4 S6 S7 S8 S9 S1-S4 S6-S9 All
BDA-04 43 43 68 43 54 56 69 49 493 578  53t11
-08 46 53 71 63 60 61 80 51 581 63:12 60:11
-16 47 53 75 68 68 71 85 55 613 70:13 6513
-32 57 51 76 70 70 72 87 58 642 7212 68:12
SBDA-04 52 48 65 57 64 62 76 52 B8 6310 60:9
-08 54 51 73 63 70 71 84 57 800 7Q:11 65:11
-16 56 53 74 71 69 74 89 62 641 7311 6911
-32 62 53 75 72 70 74 89 62 630 7411 69:11

Table 7.1 — Per block accuracy (PBA) in percent for all subjects. Shanae the mean PBA for each
subject, the mean and standard deviations for disable@&cishjS1-S4), able-bodied subjects (S6-S9), and
all subjects. All numbers were rounded to integer valuemjarove readability of the table.

of sixteen and thirty-two electrodes, thefdrences between SBDA and BDA were smaller. Intu-
itively, this can be explained by assuming that for eachestttd small set of electrodes is critical
for obtaining good results, while electrodes not in thisistdrfere only little. For the static con-
figurations consisting of sixteen or thirty-two electrodém probability that the critical electrodes
are included is relatively high. However, for smaller numsbef electrodes the probability that the
important electrodes are included in a predetermined sbiesemes smaller. The automatic adap-
tation of electrode subsets to a given subject thus is impbmhenever one wants to use only a
small number of electrodes.

Looking at Table: 7.1, which contains the detailed resulis,can make several additional ob-
servations. Regarding the improvements in classificatmmuracy, we can see that for nearly all
subjects SBDA vyielded better results than BDA. The biggesteases in classification accuracy
were 14% and 10% and were obtained for subjects S4, S6, andi&vever, for subject S2 and
especially for subject S3, SBDA led in some cases to a dezmfdmetween 1% and 3% in classifica-
tion accuracy. Possible reasons for the fact that SBDA dsekaccuracy for some subjects while
it improved accuracy for other subjects will be given durthg following discussion of electrode
rankings.

Electrode Rankings

To rank electrodes by their importance, we ran SBDA on thelgvdata from each subject and
restricted the number of retained electrodes to one. Irr otheds, we used SBDA to sequentially
remove all electrodes from the initial configuration cotisgs of thirty-two electrodes. Electrodes
were then ranked in the order in which they were removed. tildes that were removed first
received low rankings, while electrodes that were retagezh in small electrode subsets received
high rankings. The results of this procedure are shown ifel @t

A firstinsight that can be gleaned from this table is relatetthé varying performance of SBDA
among subjects, which was mentioned above. As can be sdgecisuS4, S6, and S7, for which the
biggest increases in performance were obtained, are $siipgavhich many of the electrodes from
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Rank S1 S2 S3 S4 S6 S7 S8 S9  Avg.

1 Fp2 01 02 P7 Cz 02 [Pz Pz 02
2 Fpl P4 P3 FC2 P8 PO4 02 02 PY

3 P7 Pz Fz Cz CP2 Pz P7 o1 o1
4 Fz P8 01 O1 02 P8 0z Oz Pz

5 AF4 P7 Cz Pz P7 PO3 FC2 Fpl Cz

6 F3 P3 P7 CP1 CP1 C3 P3 P8 CP1
7 Cz AF3 PO3 02 AF3 C4 PO4 FC2 0Oz

8 Oz Oz Fp2 CP2 Oz O1 Fp2 Cz FC2
9 AF3 Fz CP1 Fz Fp2 P3 [Cz PO3 Fp2
10 FC1 CP1 CP2 CP6 F4 FC6 CP6 C4P8

11 02 FP1 Oz CP5 FC2 FC5 FC6 P3 P3
12 FC5 CP2 Pz P4 Fpl P7 CP1 C3 Fz
13 PO4 FC2 FC1 Fp2 O1 FC1P4 CP1 CP2
14 FC6 Fp2 C3 C3 FC5 CP1 P8 CP6 Fpl
15 F4 02 FC2 AF3 Fz FC2 C4 AF3 AF3
16 01 F7 FC5 FCl1 C4 F4 o1 P7 C3
17 CP1L Cz CP5 Fpl F8 CP5 F4 F4 PO4
18 C3 F8 P8 Oz FC6 P4 CP2 Fz P4
19 CP2 AF4 CP6 T7 F7 CP2 CP5 F8 CP6
20 P3 FC6 PO4 T8 F3 AF3 Fz T8 C4
21 P4 C3 F7 F8 PO4 Fp2 F8 T7 PO3
22 F7 F4 F3 P3 T7 F7 Fpl FC6 FC6
23 F8 CP6 Fpl C4 T8 F3 AF4 FC5 F4
24 CP6 FCl1 F8 F7 CP6 AF4 F3 FCl1 FC5
25 Pz PO3 C4 PO4 C3 T7 PO3 AF4 FC1
26 T8 CP5 T8 FC5 Pz T8 T8 F7 F8
27 T7 FC5 T7 F3 PO3 CP6 T7 P4 F7
28 FC2 PO4 P4 P8 P4 Oz C3 Fp2 F3
29 P8 F3 AF3 AF4 AF4 Fz FCl1 PO4 CP5
30 PO3 C4 F4 PO3 P3 Fpl FC5 CP2 AF4
31 C4 T7 FC6 F4 FCl1 Cz AF3 F3 T7
32 CP5 T8 AF4 FC6 CP5 F8 F7 CP5 T8

Table 7.2— Electrodes as ranked by the SBDA algorithm. Each columnaios a ranking of electrodes
from most important to least important for one subject. Tdst tolumn contains an average ranking com-
puted from the rankings of all subjects. Electrode nameggxtiin bold font indicate the size of the electrode
subsets selected by SBDA. To show that the results are gbhggially plausible, electrodes at which large
P300 amplitudes are expected are highlighted (these asdetirodes from the eight electrode configuration
proposed in Chapter 6). On average 69% of the highlightetirelges are ranked among the first sixteen
electrodes.

the static electrode configurations received low ranks. ddghig increases in performance when
using SBDA instead of BDA might be expected for subjects whaadt match the static electrode
configurations. Small dierences in performance might be expected for subjects whchrmeell

the static electrode configurations. Furthermore, we canfregn Table 7.2 that the electrodes
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selected by SBDA correspond roughly to those at which we axpege P300 amplitudes. The
results returned by SBDA are thus physiologically plawsilih addition to electrodes related to the
P300, also the occipital electrodes O1 and O2 received stendly high rankings. This indicates
that besides the P300 also visual evoked potentials (VERS)rgortant to classify EEG trials as
belonging to target or nontarget stimuli.

7.2.2 Results with BCI Competition Datasets

To test how BDA and SBDA compare to state-of-the-art clasatifbn algorithms, we performed
experiments with the P300 datasets from the BCI compesitR®03 and 2004 (Blankeret al,
2004, 200€a). All the competition datasets consist of aitngi set and a test set. Training set as
well as test set contain data recorded with the P300 spealtadmm (cf. Chapter 4, paie 45). The
goal in the competition was to train a classifier on the trajnset and to predict the symbols in
the test set. We simulated the competition conditions aed wsly the training set to determine
classifier parameters and hyperparameters.

Preprocessing

Before learning classifiers and before performing clasgifio, the data were preprocessed with
methods that were similar or equal to those used by the cdiippetinners. This was done because
our goal was to do a fair comparison of BDA, SBDA, and othetestd-the-art machine learning
techniques for P300 datasets. In other words the prepiiogestethods described in Chap:er 6
were not used because it would not have been possibldftoatitiate between the contribution of
preprocessing to classification performance and the dotioh of machine learning to classifica-
tion performance.

For the 2003 dataset an approach similar to the one desdrit Kdperet al. (2004) was used.
The following preprocessing steps were used.

1. Filtering
The data were bandpass filtered between 0.5 Hz and 30 Hz witlthao&der forward-
backward Butterworth filter.

2. Scaling
The data were scaled to the intervall][ 1]. As already discussed in Chapter 6 on page 79,
the scaling was performed for the whole training and vailisaset and not on a trial by trial
basis.

3. Single Trial Extraction
Single trials of length 600 ms, starting at stimulus onsetrenextracted from the data.

4. Downsampling
The data were downsampled from 240 Hz sampling rate to 60 Mplgag rate by selecting
each 4th sample. This is the only donéf@ience to the preprocessing proposed by Kaper
et al. The downsampling was performed to reduce the dimensiosadtife vectors and thus
to make learning of classifiers computationally moffecent.
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5. Electrode Selection
The electrode subset described by Kaeenl. was used. The subset consists of the ten
electrodes Fz, Cz, Pz, Oz, C3, C4, P3, P4, PO7, and POS8. awlily the electrode config-
urations from Chapter 6 and electrode selection with SBDfewtested.

6. Feature Vector Construction
The samples from the selected electrodes were concaténtiddature vectors. The dimen-
sionality of the feature vectors was 360 for the electrodafigaration proposed by Kaper
et al. and varied accordingly for other electrode configurations.

For the 2004 dataset the approach described by Rakotomarabal. (200%) has been used.
More specifically, the preprocessed data were downloaded (Rakotomamonjy, 2017) and fed
into BDA and SBDA. Hence, the preprocessing was exactlytidainto the one employed by
Rakotomamoniet al. The preprocessing steps used in the method of Rakotomarabal. were
as follows.

1. Single Trial Extraction
Single trials of length 667 ms, starting at stimulus onse&trenextracted from the data.

2. Filtering
The single trials were filtered with an 8-th order Chebyslypetl filter with cutdtf frequen-
cies of 0.1 Hz and 20 Hz.

3. Decimation
The data were downsampled to a sampling rate of 20 Hz. Thislaas with the MATLAB
functiondecimatewhich involves an additional low pass filtering step.

4. Electrode Selection
The electrode subsets described in Chanter 6 were used.tigkiddly electrode selection
with SBDA was tested.

5. Feature Vector Construction
The samples from the selected electrodes were concateimefbature vectors. The di-
mensionality of the feature vectors was 896 for the full &tete configuration and varied
accordingly for other electrode configurations.

Results

The results obtained on the competition data, together thétresults of the competition winners
are summarized in Tabe 7.3. For the data from the BCI cornipet2003, perfect classification
after five and fifteen blocks was obtained with the BDA-64, BB2 BDA-16, and for the electrode
configuration used by Kapet al. (200:), i.e. for BDA-10. For the data from the BCI competitio
2004, 74.5% classification accuracy after five blocks an8%7after fifteen blocks were obtained
with SBDA-64. Very good results were also obtained with SBBA This shows that in terms
of classification accuracy BDA and SBDA are competitive with algorithms of the competition
winners.
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2003 2004 A 2004 B
5 15 5 15 5 15
BDA-04 71 84 30 62 44 72
-08 97 100 41 81 51 83
-10 100 100 - - - -
-16 100 100 46 87 64 89
-32 100 100 56 98 78 94
-64 100 100 66 98 80 97
SBDA-04 74 87 37 79 70 87
-08 97 100 43 90 75 96
-16 97 100 52 94 79 96
-32 97 100 66 99 80 97
-64 97 100 67 98 82 97
Winner 2003 100 100 - - - -
Winner 2004 - - 73.5 96.5 73.5 96.5

Table 7.3— Classification results for the P300 datasets from BCI cditipes 2003 and 2004. Shown is the
percentage of correctly predicted symbols on the test tatfafe blocks of stimulus presentations and after
fifteen blocks of stimulus presentations. The last two roastain the results of the competition winners
according to Blankertet al. (2004, 200€a). Note that for the BCI competition 2004 onlgraged results
for datasets A and B are available. The average results sptagled for dataset A as well for dataset B.

At the same time the computational complexity of BDA and SBiBAjuite low. Learning a
classifier from the competition data with an unoptimized NMLAB implementation of BDA took on
average four minutes on a PC with a 3.4 GHz processor and 1 ®BBFL. Computing parameters
of the univariate Gaussians for estimation of class prditialsi with the leave-one-out procedure
described in Chapter 5, took ten minutes. In total, the sefupclassifier that gives probabilistic
outputs thus took fourteen minutes. The amount of time rebéalesetting up classifiers with an
unoptimized version of SBDA-64 was only slightly highernhtaat needed for BDA.

To get an estimate of the computational complexity of suppector machine (SVM) based
solutions, proposed by the winners of the BCI competitioB832'Kaperet al, 2004) and 2004
(Rakotomamoniwet al, 200!), we used LIBSVM. LIBSVM is an optimized, state-oétart im-
plementation of the SVV (Chana and L n, 2001). Linea®VMs were trained on the competition
training sets by performing a ten-fold cross-validatiorihwien diferent values for. This proce-
dure took on average 4.5 hours on the PC used for testing BAASBMA. The time needed to train
an SVM-based classifier is thus much higher than the timeeteéat training BDA. The reason
for this is that training an SVM is computationally compléx.addition, regularization parameters
and kernel parameters have to be estimated via cross-tiatida

A further advantage of BDA and SBDA when compared to the SVithi these algorithms
allow for simple and fast estimation of class probabilitfeg the procedures presented in Chap-

ter 5). Experiments with the adaptive stopping algorithrhjolr uses these class probabilities, are
described next.

1The time required for setting up a classifier varied accardinthe diferent sizes of the competition training sets.
All runtimes reported here are averages.
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7.3 Adaptive Stopping

Up to now all experiments were based on a scheme in which aioi fixed number of stimuli is
presented before classification of the recorded EEG siganatempted. In this scheme, a small
number of stimuli corresponded to low classification accyaut also to fast decisions. A large
number of stimuli corresponded to high classification aacyat the cost of slower decisions. Now,
instead of fixing the number of stimulus presentations aiprige use thresholds on the probability
of misclassification to automatically adapt the number iofiglus presentations to the uncertainty
in the recorded signals. More specifically, in the followiveg report results that were obtained
with the algorithm for adaptive stopping and with probdig§ computed with the leave-one out
approach (cf. Chapter 5, page 66)A comparison of the probabilities computed with the leave-
one-out approach and with Van Gestel’s method can be foutiab &nd of this section.

7.3.1 Results with Proprietary Datasets
Classification Accuracy and Bitrates

To get a first impression of the performance the adaptivepgtgpalgorithm dfers, we used BDA-
08 in an experiment with the datasets, preprocessing metlaod cross-validation procedure de-
scribed in Chapter 6. In this experiment, a set of six prdhegsi p; . . . ps was computed after each
block of stimulus presentations from all data recorded solfaother words, after the first block
of stimulus presentations, the probabilities were congditem six EEG trials, after the second
block of stimulus presentations the probabilities were poted from twelve EEG trials, and so
forth. Thep;: ... ps corresponded to the probability of occurrence of six mijuatclusive events.
The event linked tq; was “The subject concentrated on stimulus 1” and the evemtesponding
to pz... ps were defined accordingly. After each block of stimulus pntssigons the maximum of
p1... ps Was compared to a preset threshold. If the maxinpsnwas larger than the threshold the
system decided that the user was concentrating on stimulifsthe maximum was lower than the
threshold the next block of stimulus presentations wasievadl.

Decisions in whichm corresponded to the ground-truth target stimulus wereteoles correct.
Decisions in whichmwas diferent from the ground-truth were counted as wrong. The ac@s,
i.e. the percentage of correct decisions, for the thresholdl5, 0.4, 0.65, 0.9, 0.95, and 0.99 are
plotted for each subject in Fia. :22The accuracies are plotted at the stopping times correspgpn
to the thresholds. The stopping time for a threshold is tregame time that was needed until the
maximum ofp; ... pg first exceeded the threshold. For comparison purposestasacturacy and
bitrate obtained without adaptive stopping are plottediin #.Z..

Adaptive stopping led to improved classification accurmeied bitrates for almost all subjects.
In terms of classification accuracy the largest improvesevdre around 15% (subject S4). In
terms of maximal bitrate the largest improvements wereradda bitgmin (subjects S2, S4, S7).

1The leave-one-out approach was chosen because it yieidgathsbetter results than Van Gestel's method.

2Sometimes, the large thresholds were not exceeded evartlatenaximum of 20 stimulus blocks. In this case
decisions were taken based on probabilities computed fitb&0astimulus blocks and the stopping time was adjusted
accordingly.
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Figure 7.2— Comparison of classification accuracy and bitrate obtdéaith BDA-08 with and without
adaptive stopping. Thick, solid lines represent resultaiokd with adaptive stopping. Thin, dashed lines
represent results obtained without adaptive stopping.petmels show the classification accuracy, averaged
over four sessions (circles) and the corresponding bi{ratesses), for disabled subjects (S1-S4) and able-
bodied subjects (S6-S9).
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Regarding the relation between threshold and resultingsifleation accuracy, one can see that
classification accuracy was almost always larger than tteshiold. In other words, for a threshold

equal to 0.15 the classification accuracy was bigger than, ¥6#a threshold equal to 0.4 the

classification accuracy was bigger than 40%, and so fortfs ila desirable behavior as it allows

to choose thresholds based on the percentage of errors omadis to accept. Exceptions to this

behavior can be found in the performance curves for subj@6isand S9. For these subjects,
classification accuracy resulting from thresholds equad.g5 and 0.99 is lower than it should

be. For subject S6, this can be explained by the fact thatr#tieinig and test data contain some
mislabeled trials (cf. Chapter 6, page 83). For subject I8 chause for the lower than predicted
classification accuracy is at present unknown.

Calibration and Refinement

From the relation between thresholds and resulting claatibin accuracy it seems thpt ... ps
computed with the leave-one-out approach ealibrated i.e. it seems thap; ... ps are realistic
estimates of the probability of occurrence of the corredpuan events. However, this cannot be
checked thoroughly based on the results in ~i1g. 7.2 aloneh@&ok how well the probability esti-
mates were calibrated, we applied the following reasonifgn event is predicted oN occasions
with a probability ofp it should occur aboupN times. Hence, for all blocks of stimulus presenta-
tions tested during cross-validation, the probabilifies. . ps were computed and sorted into bins.
Then, for each bin the number of events that actually ocdus@s computed. The resulting plot is
shown in Fig. 7.3. As can be seen from this plot, the prediptetabilities coincide relatively well
with the observed (true) probabilities. A possible reasmrttie small deviations between true and
predicted probabilities is that some of the model assumptaye wrong. In particular, the assump-
tions of Gaussian predictive distributions and independesf trials should be checked in order to
further improve the probability estimates.

The calibratedness qf; ... pg is an important feature of the adaptive stopping algorithmit
allows for an intuitive adjustment of the threshold valuesaddition,

calibrated probabilities are important whenever prolistiil estimates from several systems or
applications have to be combined. In the BCI context thisldidor example be the case if one
wanted to build a spelling system in whichifédrent probabilities for dierent symbols are taken
into account.

Besides being calibrated, probabilistic classifier owg@utd probability estimates derived from
these outputs should also tefined Speaking abstractly, this means that probability estshéir
a certain event should allow to discriminate between oocasbn which the event occurs and other
occasions. Translated to the BCI scenario considered théseneans that the probability estimates
p1 ... ps Should allow to decide on which stimulus the user is coneginty. The diference between
refinement and calibration can be understood by noting teefegqt calibration could be easily
achieved by predictingy; = % fori € {1...6}. More generally, perfect calibration can always be
achieved by predicting the long run probability of an evéhich probability estimates are however
not useful, as they do not allow to discriminate between siots on which the event in question
occurs and other occasions.
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Figure 7.3— Boxplots of true probabilities versus predicted probitibg (the leave-one-out approach was
used to compute class probabilities). Each boxplot sunzesithe data from subjects S1-S4 and subjects
S6-S9. The uppermost horizontal lines indicate the maxiraalprobability among subjects. The lowermost
horizontal lines indicate the minimal true probability amgosubjects. Circles represent the median true
probability. White space around the circles indicates tiverguartile range of the true probabilities.

A tool that allows to measure calibration as well as refinenierthe so-called Brier score
(Brier, 1950; DeGroot and Fienbarag, 1383). The Brier sca®lbeen routinely used for evaluation
of probabilistic forecast in economics and meteorology lsesimore recently also been introduced
in machine learninc (Cohen and Goldszmidt, 2004). The BdereP is computed as follows:

E
P==> > (pi-a) (7.1)

1
N = =1
HereN is the number of observations,is the number of events, am is the predicted probability
that eventj occurs in observation Theg; indicate if events actually occur, i.e; = 1 if event
occurs in observationande; = 0 if eventj does not occur in observation In the BCI scenario
considered herdy is equal to the number of stimulus blocks dais equal to the number of stimuli,
i.e. E is equal to six. The average Brier scores for all subjectsfandll classifier configurations
are shown in Tabl2 7.4. The Brier scores follow closely theaveor that was observed when testing
the PBA (cf. Table: 7.1). In particular, classifiers usingrgéanumber of electrodes achieved better
Brier scores than classifiers using a small number of eldesroFurthermore, the scores achieved
with SBDA were in general better than those achieved with BDFis means that among the
algorithms we tested, the algorithms that were preferatmeciassification were also preferable
for producing probabilistic forecasts. This is not selfdent, as the tasks of discrimination and

assigning class probabilities ardidrent tasks.
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Disabled Able-bodied Average
S1 S2 S3 sS4 S6 S7 S8 S9 S1-S4 S6-S9 Al
BDA-04 70 72 46 71 63 59 43 67 632 58t10 6111
-08 67 62 39 50 54 51 28 64 £33 4915 5213
-16 65 62 35 46 47 40 21 58 524 4215 4715
-32 57 62 33 41 44 40 19 56 484 39:15 4414
SBDA-04 63 68 45 55 56 50 35 62 580 51+12 54+11
-08 59 62 38 48 47 41 24 57 521 4214 4713
-16 57 61 36 41 43 37 18 54 492 38:t15 43:14
-32 57 61 34 39 43 36 17 53 483 3715 43t14

Table 7.4— Brier scores for all subjects. Shown are the mean scoreafcin subject, the mean score and
standard deviation for disabled subjects (S1-S4), abtiedosubjects (S6-S9), and all subjects. All values
were multiplied by 100 and rounded to integer values to iaseereadability of the table. The best possible
score is 0 and the worst possible score is 200.

Comparison of Van Gestel's Method and the Leave-One-Out Apmach

Having discussed results that can be achieved with the imdagtbpping algorithm and having
introduced the Brier score as a tool for evaluating estimatgrobabilities, we now present a com-
parison of the quality of the probabilities computed witm\@estel's method and the leave-one-out
approach. For this comparison we used class probabilititead of the probabilities for fierent
stimuli. This was done in order to avoid masking offéiences between the two approaches by
the combination scheme for class probabilities. The Brieres obtained with the two methods
are shown in Fig. 7 4. As one can see the Brier scores for #es girobabilities are better than
the scores in Table 7.4, which can intuitively be explaingdhe fact that computing probabilities
for two different events is a much simpler task than computing prokiabifior six diferent events.
Moreover, it can be seen from Fig. 7.4 that the leave-onexppioach yielded slightly better scores
than Van Gestel's method, especially so for subjects arsgifieation methods with very good Brier
scores.

Given that the dference between the two methods is only small, computatimmaplexity is
the most important factor to choose between the two meth®bs. leave-one-out approach adds
complexity to the training phase of classifiers but is veficent for computing class probabilities
for new feature vectors. Hence, it should be chosen for egipdins in which an increased training
time can be fiorded and for which it is important to compute class prolités! for test examples
very fast. Van Gestel's method does add only little compjeto the training phase but is less
efficient for the computation of class probabilities. Henceait be used for applications in which
the training time should be as short as possible and in whightly slower computation of class
probabilities for test examples can be accepted.

7.3.2 Results with BCl Competition Datasets

We now turn our attention to experiments performed with t& &mpetition datasets and adaptive
stopping. The goal in these experiments was to test if thel gesults achieved with the SBDA
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Figure 7.4— Comparison of Brier scores obtained with Van Gestel's mé#nd the leave one-out approach
(cf. Chapter 5, pace 36). The leave-one-out approach pesfsiightly better than Van Gestel's method. Big
circles correspond to scores for BDA-32, intermediatdesrcorrespond to scores for BDA-16 and BDA-08,
small circles correspond to scores for BDA-04. Crossesespond to scores obtained with SBDA, size of
the crosses indicates the number of channels as for BDA. calles were multiplied by 100, so the best
possible score is 0 and the worst possible score is 200.

algorithm on the competition datasets (cf. Table 7.3) cbelgushed even further by using adaptive
stopping. We used thresholds equal to 0.02, 0.15, 0.4, 0.850.95, and 0.99. The results of these
experiments are shown in Fig. 7.5. As can be seen, it was resilge to improve the maximal
classification accuracy with the adaptive stopping alporit However, the maximal classification
accuracy was obtained earlier than by the competition winiéor the 2003 dataset the maximal
accuracy was obtained on average after 7.5 s, whereas thpetiton winners needed 10.5 s. For
the 2004 datasets the maximal accuracy was obtained aftgir&iead of 31.5 s for the competition
winners. Using SBDA-64 in conjunction with adaptive stompthus led to a slight improvement
over the results obtained by the competition winners.

7.4 Conclusion

In this chapter we have reported the results of experimentducted with SBDA and the adaptive
stopping algorithm. Concerning SBDA, one of the main resulas that electrode selection im-
proves classification accuracy over the BDA algorithm, \wtdoes not perform electrode selection.
Moreover, the electrode subsets selected by SBDA were glbgstally plausible, i.e. the selected

electrodes coincided mostly with electrodes at which 1&§80 amplitudes were expected. Ex-
periments were also conducted with publicly available stfrom past BCl competitions. These
experiments showed that SBDA and also BDA allow to achiegelte that are in terms of clas-
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Figure 7.5— Classification accuracy and bitrate obtained on the BClpmtition datasets 2003 and 2004
with SBDA-64. Shown are the accuracy and bitrate obtaindd adaptive stopping (thick solid lines) and
without adaptive stopping (thin dashed lines). The resiltise competition winners are indicated by crosses.

sification accuracy as good as those of the competition winni addition, the computational
complexity of learning classifiers with SBDA and BDA is sifjoantly lower than that of the SVM-
based solutions proposed by the competition winners.

Experiments conducted with the adaptive stopping algorishowed that automatically adapt-
ing the amount of data is preferable to decision schemes ichvehfixed amount of data is used. In
particular, in the setting of the BCI presented in Chao'esidgptive stopping allowed to improve
the communication speed while maintaining the classificaticcuracy. An investigation of the
class probabilities used in the adaptive stopping algorithowed that these probabilities are ap-
proximately calibrated. This is important for selectingpgiing thresholds in the adaptive stopping
algorithm and for interfacing with other probabilistic dipptions or systems. The comparison of
the leave-one-out approach and Van Gestel's method for singpclass probabilities showed that
the leave-one-out approach yields slightly more preciasscprobabilities. This comes however at
the cost of increased computational complexity during thming phase.

Using adaptive stopping with the BCI competition datasesaed that adaptive stopping al-
lows to improve upon the results of the competition winnénsparticular, adaptive stopping per-
mitted to reduce the number of stimuli that are necessarglitaining the maximal classification
accuracy.



Conclusion

8.1 Summary

In this thesis two closely related aspects of research onsBgtems were discussed. These aspects
were the development of machine learning algorithms sleitidy application in BCls and the de-
velopment and analysis of BCls for disabled subjects. Inféflewing, conclusions that can be
drawn from this research will be summarized.

Machine Learning Algorithms

In many publications on machine learning for BCI, the onlyfpemance measure that is employed
is the accuracy with which electroencephalogram (EEG]siriar data from other sensors, can
be classified. The viewpoint taken in this thesis is thatdessiclassification accuracy also other
properties are important for characterizing good algorgh These properties are related to the
applicability of algorithms in systems suitable for dailseuby disabled users.

A property that is important when adapting a system to a nesr, us that classifiers can be
learned quickly, robustly, and without intervention frompert users. The Bayesian linear discrim-
inant analysis (BDA) algorithm presented in this thesisspsses this property. In BDA, hyper-
parameters are estimated quickly and automatically wisipe-tl maximum-likelihood formalism.
An extension of the algorithm allows to adapt electrode gpméitions to the peculiarities of a given
user. Adapting electrode configurations reduces the nuwftelectrodes necessary for successful
operation of a BCI. Moreover, it was shown that using useesjt electrode configurations in-
creases classification accuracy as compared to using, gtagigelected electrode configurations.
To test the algorithms proposed in this thesis, P300 dataraded from disabled and able-bodied
subjects and data from past BCI competitions were used. Aperienents with data from the BCI
competitions demonstrated that the proposed algorithms@npetitive with state-of-the-art algo-
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rithms for EEG classification. More specifically, it was shotlvat the classification accuracy of the
algorithms proposed in this thesis is equivalent to thataitksof-the-art solutions using the support
vector machine (SVM). In addition, the time needed for Bgttip classifiers is significantly lower
than that needed by solutions using the SVM.

When applying a classifier to new data it is important thassifecation can be done quickly
and without the need for computationally complex algorghrhis is ensured for the algorithms
proposed in this thesis because everything is linear. Herlassifier outputs can be computed
quickly. Equally important is the form the classifier outptake. We proposed to use probabilistic
outputs computed with the help of a leave-one-out schemeadt shown how in the context of
P300-based BCls probabilistic outputs can be used to adamount of data such that a preset,
approximate bound on the probability of misclassificatitnsot exceeded. Concerning the eval-
uation of machine learning algorithms with probabilististuts, we proposed to use Brier scores.
Brier scores measure calibration and refinement of prabab#timates, and have been used with
success to evaluate algorithms and methods in areas otmeB@I, such as for example economical
or meteorological forecasting.

Brain-Computer Interfaces for Disabled Subjects

To test the algorithms proposed in this thesis, data frorabiésl and able-bodied subjects was
recorded. Validating algorithms with data from disabletbjsats is crucial, simply because dis-
abled subjects are the target population for BCIl systemsoiag data also from able-bodied
subjects allowed to perform comparisons between disaligdble-bodied subjects in terms of the
recorded signals themselves and in terms of achievable 8@mance. Maybe most importantly,
interaction with disabled persons is crucial to get a fegfior factors that make BCls suitable or
unsuitable for disabled subjects.

The BCI used for recording data was based on the well-knowd0 R&radigm. The main
difference between the proposed system and other P300-baseaisysuch as for example the
P300 speller, is that the number of items on the screen idesnaald that the interstimulus interval
(IS1) is longer. These modifications were motivated by thpento simplify usage of the system
for disabled persons with cognitive deficits. Compared teeoP300-based systems for disabled
subjects, the classification accuracy achieved with theesypresented in this thesis is significantly
higher.

8.2 Perspectives

8.2.1 Short Term Perspectives
Machine Learning Algorithms
Based on the research in this thesis, extensions in thevioljpareas immediately come into mind:

e Filtering Methods
For the filtering of the EEG data a forward-backward schenieguButterworth filters was
employed that is being applied in one step to the integrafithe ingoing signal. This choice
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was made for reasons of simplicity, however in order to enabhltime classification in
online BCI systems, the filter should be realized either biggua windowed implementation
of the forward-backward scheme (Diokat al, 19983; Kurosuet al, 2003), or by using a
traditional causal filtering scheme, for instance basedrotefimpulse response (FIR) filters.

e Handling of Outliers

To deal with outliers, a windsorizing approach was used i tiiiesis. The advantages of
this approach are that it is conceptually and computatipisahple. Clear disadvantages are
however, that the proportion of outliers has to be specifiaghunally and that it is assumed
that all electrodes have the same proportion of outliersreldeer, it would be desirable to
have a method enabling adaptation to changing proportibosttiers. A method that seems
promising for dealing with such problems is to model EEG dasps a mixture of two or
more univariate Gaussians with zero mean arftedint variances. Gaussians with small
variance would then account for normal samples, whereassems with large variance
would account for outliers. Parameters of such a model cdeareed and adapted with the
expectation-maximization (EM) algorithm (cf. Aitkin andiMén (1980)).

e Electrode Selection
Concerning electrode selection, improvements may be lpedsithe algorithm for selecting
a predetermined number of electrodes. The approach prdposthapter 5 was to alternate
automatic relevance determination (ARD) and backwardcsele until the desired number
of electrodes is attained. A clear drawback of this procedsithat electrodes cannot reenter
the selected subset once they have been removed. This iematic because already re-
moved electrodes might become important again as othdrades are removed. A possible
solution to this problem, which is however not explored iis thesis, would be to use combi-
nations of ARD and more sophisticated procedures for featakection, such as for example
floating search methods (Pudit al, 1994). Another possible solution that might be worth
investigating is to use a parameterized hyperprior forathén particular a hyperprior of the
following form might be of interest (cf. (Schmolck and Ewvenig 2007)):

Ne
p(alc, B) o« exp[—c Z(l + %ai)_l} . (8.1)
i=1

Here the notation from Chaptar 5 has been used. With such erfnygr the number of
selected electrodes can be indirectly controlled by chrantiie sparsity constant

e Loss Functions

In this thesis, a Gaussian likelihood function has been teddarning classifiers from train-
ing data. Using a Gaussian likelihood is equivalent to usirgfjuared error loss function.
In other words, classification functions were learned thap tmaining examples as close as
possible to their class labels. The advantage of using thissgm likelihood is that in com-
bination with a Gaussian prior, closed form expressionstdgir the posterior. The only
complex operation necessary for computing the posteritveéisnversion of the correlation
matrix of the feature vectors.
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An alternative loss function that is often proposed for sification problems in the machine
learning literature is the logistic loss (cf. Bishon (2006The logistic loss might be more
suitable for classification problems than the squared evioch is rather used in the case
of regression problems. Moreover, the logistic loss mightlvantageous because it is less
sensitive to outliers than the squared error loss. A disadge of the logistic loss is how-
ever, that no closed form expressions exist for the postdistribution. Hence, optimization
algorithms have to be used to compute the mode of the pasgeribin a full Bayesian setting
additionally approximation schemes have to be used to ajypade the posterior. This makes
algorithms for logistic regression computationally andaeptually relatively complex. It re-
mains to be checked if the additional complexity is paydtby improved classification
accuracy or other advantages.

Brain-Computer Interfaces for Disabled Subjects

Concerning the BCI for disabled users presented in thisgghtse following extensions might be
of interest.

¢ Development of Dialog Systems
The BCI for disabled users presented in this thesis allovisfon extremely simple interac-
tions with the environment. For example the system couldsed to switch ofoff a particular
set of devices. To overcome this restriction it would berigg&ng to develop a dialog-system
allowing a disabled user to perform everyday tasks and lwasiomunication with other per-
sons. Dialog and communication systems for disabled usera sesearch area on its own
and it seems that using results from this area might be difraipproach to build better BCls.
An example for a dialog- and environment-control systemdigaebled users that might be
adapted to a BCI environment is the ScriptTalk system desdrby Dveet al. (1998). In
the ScriptTalk system a set of useful scenarios for disgbéedons (e.g. a visit to the doctor,
calling help via the telephone, etc.) is predefined. Eachas@e has a corresponding script
which allows to select from a sequence of communicationssteqt are typically performed
in that scenario. Scenarios and communication options eathbsen via a graphical user
interface.

Two techniques are used in the ScriptTalk system to speedmpneinication. Firstly the
communication options are limited to a prescribed set dfopable size and secondly words
and sentences are predicted from the structure of comntioricecenarios and from past
communication. To transfer these techniques to a BCI faldél persons, an algorithmic
framework should be developed in which a dialog-based comization can be performed
and which allows prediction of items that will be communéezanext.

e Extended Testing
The system presented in this thesis was tested with fivelddaibjects, out of which four
achieved good results. Clearly, more extended tests aessay to build an optimal BCI
for disabled users. Acquisition of a large database with E&g®rds from disabled persons
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would allow to precisely define which cognitive abilitiesearecessary to control a BCl and
which cognitive disabilities might limit the use of BCls.

8.2.2 Longer Term Perspectives
Using a BCI Without Training

In almost all current BCI systems, subjects first have to gouph a training phase, in which they
concentrate on prescribed mental tasks or prescribed Istidvftier the training phase a classifier
is learned and used to classify new, unseen data. A drawlatkscsetup is that for many dis-
abled users a long training phase is an insurmountable adéstae to cognitive impairments and
concentration problems. Another problem is caused by tttetiat patterns of cerebral activity are
constantly changing, and hence new training sessions bave performed periodically to adapt
classification rules.

To overcome these problems, we propose to develop learfdgogtams, with which subjects
can immediately start using a BCI, without training. Theibadea to achieve this goal is to profit
from data that was recorded from other subjects while udiegsame BCI system. To build a
classifier from a large database of EEG records frofiedint subjects, a mixture of experts model
could be used. Roughly speaking, training a mixture of éspapdel corresponds to a clustering of
data and to simultaneously learning classifiers for eache€lusters. After training, test instances
are first assigned to one of the clusters by a so-called gatimgfion, and then classified by the
expert responsible for the cluster (Jordan and Jacobs )1994he BCI context it can be hoped
that the learning stage detects subgroups of subjects vgliylsimilar EEG signals and that new
subjects are automatically assigned to the correct supgioudng application of the mixture of
experts of model.

Asynchronous P300 BCI

One significant limitation of the P300-based BCI presentethis thesis and of many other BCI
systems is that they only work in synchronous mode. This i@t users can only communicate
via the BCI at time instants predetermined by the system. gsibte solution to this problem

is to develop asynchronous BCI systems. Asynchronous B&EBys can detect autonomously
that a user is trying to communicate via the BCl and hencevalto more realistic application

scenarios than synchronous systems. To build an asynalsdd®00 BCI several steps have to
be foreseen. First, experimental protocols and evaluatittaria for asynchronous BCI systems
should be defined. Second, algorithms that can detect ifdbewants to communicate via the BCI
or is engaged in other activity have to be developed. Sudrithigns could possibly make use of
features other than the P300. For example visual evokeatate(VEPS) could be used to detect
that a user is concentrating on the stimulus display andeéhesanits to communicate via the BCI.

Operant Conditioning of the P300

In systems employing slow cortical potentials or motor ierggthe use of feedback and operant
conditioning is very common. It was shown that classificati@curacy significantly increases as
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subjects learn how to modulate their brain activity (Kikdeal, 200:1). In evoked potential BCls,
feedback and operant conditioning are currently not usethgbly because evoked potentials are
natural responses of the brain and arffisiently robust for accurate classification. However, the
possibility exists that feedback training could increakssification accuracy for systems based
on evoked potentials. Such an increase in classificationracg would be especially helpful for
disabled subjects with a low base classification accuracy.

Evidence for the hypothesis that subjects can learn to alathieir evoked potentials is given in
several papers. Sommer and Schweinbaiger (1992) and Métra. (1986) describe experiments
in which subjects learned, with the help of feedback, todase or decrease the amplitude of their
P300 evoked potentials. In a related experiment stimulesgmtation was stopped after a P300 was
evoked and subjects were asked to classify their brain nsspas small, medium or large (Sommer
and Matt, 1990). Averaging of the evoked potentials, adogrdo the classification given by the
subjects, showed that P300 amplitude corresponded to déissifitation category. Subjects were
thus aware of the amplitude of the P300 they were producitnjs dwareness could be important
for learning to produce strong P300s.

One of the main challenges in building a P300 BCI system thas wperant conditioning is
probably the development of classification algorithms tizat give results quickly after stimulus
presentation. Another challenge lies in the developmeatfeédback display which does not evoke
unwanted EEG activity that could be confounded with agtivilevant for classification.
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