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Abstract

A brain-computer interface (BCI) is a system that enables control of devices or communication with
other persons, only through cerebral activity, without using muscles. The main application for BCIs

is assistive technology for disabled persons. Examples fordevices that can be controlled by BCIs
are artificial limbs, spelling devices, or environment control systems.

BCI research has seen renewed interest in recent years, and it has been convincingly shown

that communication via a BCI is in principle feasible. However, present day systems still have
shortcomings that prevent their widespread application. In part, these shortcomings are caused by

limitations in the functionality of the pattern recognition algorithms used for discriminating brain
signals in BCIs. Moreover, BCIs are often tested exclusively with able-bodied persons instead of

conducting tests with the target user group, namely disabled persons.

The goal of this thesis is to extend the functionality of pattern recognition algorithms for BCI
systems and to move towards systems that are helpful for disabled users. We discuss extensions of

linear discriminant analysis (LDA), which is a simple but efficient method for pattern recognition.
In particular, a framework from Bayesian machine learning,the so-called evidence framework, is

applied to LDA. An algorithm is obtained that learns classifiers quickly, robustly, and fully au-
tomatically. An extension of this algorithm allows to automatically reduce the number of sensors

needed for acquisition of brain signals. More specifically,the algorithm allows to perform electrode
selection. The algorithm for electrode selection is based on a concept known as automatic relevance
determination (ARD) in Bayesian machine learning. The lastpart of the algorithmic development

in this thesis concerns methods for computing accurate estimates of class probabilities in LDA-
like classifiers. These probabilities are used to build a BCIthat dynamically adapts the amount of

acquired data, so that a preset, approximate bound on the probability of misclassifications is not
exceeded.

To test the algorithms described in this thesis, a BCI specifically tailored for disabled persons is

introduced. The system uses electroencephalogram (EEG) signals and is based on the P300 evoked
potential. Datasets recorded from five disabled and four able-bodied subjects are used to show that

the Bayesian version of LDA outperforms plain LDA in terms ofclassification accuracy. Also, the
impact of different static electrode configurations on classification accuracy is tested. In addition,

experiments with the same datasets demonstrate that the algorithm for electrode selection is com-
putationally efficient, yields physiologically plausible results, and improves classification accuracy

over static electrode configurations. The classification accuracy is further improved by dynamically

vii
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adapting the amount of acquired data. Besides the datasets recorded from disabled and able-bodied
subjects, benchmark datasets from BCI competitions are used to show that the algorithms discussed

in this thesis are competitive with state-of-the-art electroencephalogram (EEG) classification algo-
rithms.

While the experiments in this thesis are uniquely performedwith P300 datasets, the presented
algorithms might also be useful for other types of BCI systems based on the EEG. This is the case

because functionalities such as robust and automatic computation of classifiers, electrode selection,
and estimation of class probabilities are useful in many BCIsystems. Seen from a more general

point of view, many applications that rely on the classification of cerebral activity could possibly
benefit from the methods developed in this thesis. Among the potential applications are interrog-

ative polygraphy (“lie detection”) and clinical applications, for example coma outcome prognosis
and depth of anesthesia monitoring.

Keywords
Brain-Computer Interface, Disabled Users, Assistive Technology, Electroencephalogram, Evoked
Potentials, P300, Bayesian Machine Learning, Linear Discriminant Analysis, Evidence Framework,

Automatic Relevance Determination



Version abrégée

Un interface cerveau-ordinateur (ICO) est un système qui permet la commande de dispositifs ou
la communication avec autres personnes, par l’activité cérébrale seule, sans employer des mus-

cles. L’application principale des ICO est la technologie assistive pour personnes handicapées.
Des exemples de dispositifs pouvant être commandés par un ICO sont les membres artificiels, les

dispositifs pour épeler, ou les systèmes de contrôle d’environnement.

Pendant les dernières années la recherche sur les ICO a éveillé l’intérêt de beaucoup des cher-
cheurs, et il a été montré de façon convaincante que la communication par le biais d’un ICO est en

principe faisable. Cependant, les systèmes actuels ont toujours des imperfections qui empêchent
une application répandue. Ces imperfections sont provoquées en partie par des limitations dans la

fonctionnalité des algorithmes de reconnaissance de formes utilisés dans les ICO pour distinguer
differentes types des signaux cérébraux. En outre, les ICO sont souvent testés exclusivement avec

des sujets sains alors qu’il conviendrait de le faire avec legroupe d’utilisateurs ciblé, à savoir des
personnes handicapées.

Le but de cette thèse est d’améliorer la fonctionnalité des algorithmes de reconnaissance de

formes pour les ICO et de rendre à des systèmes utiles pour desutilisateurs handicapés. Nous dis-
cutons des extensions de “linear discriminant analysis” (LDA), qui est une méthode simple mais

efficace pour la reconnaissance de formes. En particulier, une methode bayésienne pour la re-
connaissance de formes, le “evidence framework”, est appliqué à LDA. L’algorithme obtenu par
l’application de cette methode permet un apprentissage rapide, robuste, et entièrement automatique.

Une extension de cet algorithme permet de réduire automatiquement le nombre d’éelectrodes req-
uises pour l’acquisition des signaux cérébraux. Plus spécifiquement, l’algorithme permet de sélec-

tionner les electrodes importantes pour la classification.L’algorithme pour cette selection des elec-
trodes est basé sur un concept connu en tant que “automatic relevance determination” (ARD) dans

la reconnaissance de formes bayésienne. La dernière partiedu développement algorithmique dans
cette thèse porte sur des méthodes pour calculer précisement les probabilités de classe dans des clas-

sificateurs comme LDA. Ces probabilités sont employées dansun ICO qui adapte dynamiquement
la quantité de données acquises, de sorte qu’une limite préréglée, approximative sur la probabilité

de fausse classifications ne soit pas franchie.

Pour tester les algorithmes décrits dans cette thèse, un ICOspécifiquement adapté pour les
personnes handicapées est présenté. Le système utilise dessignaux de l’électroencéphalogramme

(EEG) et est basé sur le potentiel évoqué P300. Des données enregistrées de cinq sujets handicapés
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et de quatre sujets sains sont utilisées pour montrer que la version bayésienne de LDA surpasse le
LDA simple en termes de qualité de classification. En outre, l’impact de différentes configurations

statiques d’électrodes sur cette qualité de classificationest examinée. Des expériences ultérieures
avec les mêmes données démontrent que l’algorithme pour le choix d’électrodes est efficace, que les

résultats sont physiologiquement plausibles, et que la qualité de classification est améliorée par rap-
port à des configurations statiques d’électrodes. La qualité de classification est encore améliorée par

l’adaptation dynamique de la quantité de données acquises.Outre les données acquises des sujets
handicapés et sains, des données de concours ICO sont utilisées pour prouver que les algorithmes

discutés dans cette thèse sont concurrentiels avec des algorithmes “état de l’art”.
Quoique les expériences dans cette thèse soient uniquementexécutées avec des données P300,

les algorithmes présentés pourraient également être utiles pour d’autres types de ICO basés sur
l’EEG. C’est le cas parce que fonctionnalités telles que l’apprentissage robuste et automatique de
classificateurs, le choix d’électrodes, et le calcul des probabilités de classe sont utiles dans beau-

coup des systèmes ICO. D’un point de vue général, beaucoup d’applications qui se fondent sur la
classification de l’activité cérébrale peuvent probablement tirer bénéfice des méthodes développées

dans cette thèse. Parmi les applications potentielles citons la polygraphie interrogative (“détection
des mensonges”) et des applications cliniques telles que par exemple le pronostic de coma et la

surveillance de profondeur d’anesthésie.

Mots-Clés
Interface Cerveau-Ordinateur, Utilisateurs Handicapées, Technologie Assistive, Électroencéphalo-
gramme, Potentiel Évoqué, P300, Reconnaissance De Formes Bayésienne, Linear Discriminant

Analysis, Evidence Framework, Automatic Relevance Determination
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Introduction 1
1.1 Motivation

The ability to communicate with other persons, be it throughspeech, gesturing, or writing, is one
of the main factors making the life of any human being enjoyable. Communication is at the basis of

human development, makes it possible to express ideas, desires, and feelings, and on a more ordi-
nary level simply allows to cope with daily life. Individuals suffering from the so-called locked-in

syndrome do not have the above mentioned communication possibilities. The locked-in syndrome
is a condition in which patients are fully conscious and aware of what is happening in their envi-

ronment but are not able to communicate or move. In fact, the locked-in syndrome is caused by
a nearly total loss of control over the voluntary muscles. A disease that is known to lead to the

locked-in syndrome is amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease.
ALS is a progressive, neurodegenerative disease and is characterized by the death of motor neurons
which in turn leads to the loss of control over voluntary muscles. Besides ALS also multiple scle-

rosis, stroke or other cerebrovascular incidents leading to the infarction or degeneration of parts of
the brain can cause the locked-in syndrome. Clearly, the quality of live of persons affected by the

locked-in syndrome is strongly diminished by the lack of possibilities to communicate with other
persons and by the complete loss of autonomy.

A promising means to give back basic communication abilities and a small degree of autonomy
to locked-in persons are brain-computer interfaces (BCIs). The idea underlying BCIs is to measure

electric, magnetic, or other physical manifestations of brain activity and to translate these into
commands for a computer or other devices. More specifically,the idea underlying BCIs is to detect

patterns of brain activity and to link these patterns to commands executed by a computer or other
devices. Prototype systems allow for example to choose symbols from an alphabet by concentrating

on specific mental tasks or to move artificial limbs, solely byimagining movements.

1
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Basic research on BCI systems commenced in the early 1970’s and has seen renewed interest in
recent years. While increases in computing power and advances in measurement technology have

led to a large variety of proof-of-concept systems, none of the systems described in the scientific
literature is suited for daily use by disabled persons. Thisis due to the fact that the technology

underlying BCIs is not yet mature enough for usage out of the laboratory. The main motivation for
the research described in this thesis is to provide advancesin technology which will lead to BCI

systems featuring a performance beyond mere proof-of-concept systems.

1.2 Focus of the Thesis

Taking a closer look at the research area of brain-computer interfaces, one observes that a whole
panoply of different systems exists. The general term brain-computer interface (or brain-machine

interface) includes not only systems in which signals from the brain are recorded and analyzed
but also systems in which signals are fed into the brain. A good example for the latter type of

systems is given by cochlear implants, i.e. devices that transform sounds from the environment into
electrical impulses which are in turn used to directly stimulate auditory nerves. Another example

is given by retinal implants which can transform light into electrical impulses which in turn are
used to stimulate nerve cells in the retina of blind persons.While cochlear implants are a relatively

mature technology that is already used by thousands of patients, retinal implants are still under
development.

Systems that directly stimulate nerve cells are by definition invasive which means that a surgical

procedure is necessary to implant the device under question. The type of systems that is of interest
in this thesis, namely systems which record and analyze signals from the brain, can be invasive or

noninvasive. Invasive systems, such as for example systemsusing microelectrode arrays implanted
in the motor cortex, have the advantage that the recorded signals have a high signal-to-noise ratio

and that useful information can be extracted relatively easily from the signals. As a consequence,
demanding applications such as for example the three-dimensional control of artificial limbs can be
realized with invasive systems. Noninvasive systems on thecontrary have the big advantage that

potentially risky surgical procedures are unnecessary. This advantage, however, comes at the cost
of decreased signal-to-noise ratio. Hence, the signals recorded with noninvasive approaches are

often more difficult to analyze than those recorded with invasive approaches.

A particularly popular noninvasive method that allows to measure electric potentials of the brain
at a temporal resolution on the order of milliseconds is the electroencephalogram (EEG). This mea-

surement method is popular among neuroscientists and physicians because modern acquisition de-
vices are relatively inexpensive and easily transportableand because the setup of recording sessions

takes only little time. For the same reasons, the EEG is also used in many BCI systems. Among
such BCI systems two subtypes can be discerned:

• Systems based on spontaneous activity use EEG signals that do not depend on external stimuli

and that can be influenced by concentrating on a specific mental task. An example is given by
so-called mu-rhythm BCIs. In these systems feedback training is used to let subjects acquire

voluntary control over the amplitude of the mu-rhythm, i.e.EEG activity in the frequency
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range of 8-12 Hz, located over the motor cortex. Changes in mu-rhythm amplitude are then
linked to movements of a cursor or to other commands.

• Systems based on evoked activity use EEG signals that do depend on external stimuli. Par-
ticularly interesting are systems based on the P300 evoked potential. Roughly speaking, such

systems work by detecting on which stimulus out of a random series of stimuli the user is
concentrating. Since different commands or actions are linked to the stimuli, users can select

a command simply by concentrating on the associated stimulus. The neurophysiological phe-
nomenon underlying this approach is the P300 evoked potential. The P300 is a positive peak

in the EEG that appears approximately 300 ms after the presentation of a task-significant
stimulus in a random series of stimuli. Hence, detecting which stimulus the user is concen-

trating on is equivalent to detecting which stimulus has evoked a P300.

Advantages of the P300 are that it is relatively well understood from a neurophysiologic point of
view and that it can be evoked robustly across different subjects. Moreover, feedback training is

not necessary in P300 based BCI systems, as the P300 appears “automatically” whenever subjects
concentrate onto one out of several stimuli presented in random order. The latter advantage is

important when the goal is to build BCI systems for disabled subjects who might have difficulties
in acquiring voluntary control over their brain activity.

Motivated by the aforementioned advantages, this thesis focuses on BCI systems based on the
P300. An important component of any such system, but also of other EEG based systems, are

pattern recognition methods that allow to discriminate EEGsegments representing different types
of brain activity. Hence, in this thesis special emphasis isgiven to algorithms that learn from a set
of training data how to discriminate EEG segments containing a P300 from other EEG segments. In

particular, the algorithms are built by making use of tools from Bayesian machine learning. Besides
the theoretical and algorithmic aspects of BCI systems, emphasis is also put on the thorough testing

of the presented algorithms with a relatively large database containing EEG records from disabled
and able-bodied subjects.

1.3 Main Contributions

The main contributions of this thesis are the application ofmodern pattern recognition algorithms
to BCI systems and the thorough testing of these algorithms with P300 data recorded from a BCI

specifically adapted to disabled subjects. The applied algorithms are described and discussed in-
depth and the communication rates achieved with the BCI for disabled users are significantly beyond

those of previously described, comparable systems. The detailed contributions are listed in the
following.

• The so-called evidence framework (MacKay, 1992), a Bayesian framework for estimating

hyperparameters in neural networks or regression, is applied in the context of linear discrim-
inant analysis. The resulting Bayesian linear discriminant analysis (BDA) algorithm is well

suited for applications in BCI systems and can learn classifiers quickly, robustly, and fully
automatically. Experiments show that BDA outperforms plain LDA in terms of classification

accuracy.
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• Application of the concept of automatic relevance determination (ARD) (MacKay, 1995;
Tipping, 2001) to the problem of electrode selection in a BCI. The developed algorithm can

automatically determine the size of an optimal electrode subset or find electrode subsets with
a predetermined size. Experiments show that selecting electrodes with ARD is computation-

ally efficient, improves classification accuracy, and yields physiologically plausible results.

• Development of an algorithm that sequentially computes probabilities for a set of hypotheses
where the hypotheses concern the generation of a stream of data. The algorithm is used to

dynamically adapt the amount of data recorded in P300 BCIs. More precisely, the algorithm
is used to build a system in which data is acquired until the probability of misclassification

is below a preset threshold. Experiments show that dynamically adapting the amount of
recorded data improves the speed of communication comparedto systems in which a fixed
amount of data is used.

• Development of a P300 BCI system which is specifically adapted to the needs of disabled

users. The impact of different fixed electrode configurations on the communication speed
achievable with the system is explored. The system allowed several disabled users to achieve

communication rates that are significantly beyond the ratespreviously reported in the litera-
ture. Possible reasons for the improved communication rates are discussed.

• P300 datasets recorded from four disabled and four able-bodied subjects are made publicly

available on the internet. In addition, MATLAB implementations of some of the algorithms
described in this thesis are made available on the internet.Datasets and algorithms al-
low to reproduce results presented in this thesis and can be downloaded from the address

http://bci.epfl.ch/efficientp300bci.html.

1.4 Outline of the Thesis

The rest of this thesis is organized into seven chapters. Chapters 2 to 4 contain background material,

Chapters 5 to 7 mainly describe research specific to this thesis, and Chapter 8 contains a summary
and an outlook on future work. The detailed contents are listed in the following.

• In Chapter 2, a general introduction to the field of BCI research is given. Topics reviewed
include different methods for measuring brain activity, the types of neurophysiologic signals

that can be used in BCI systems, methods for extracting useful features from neurophysio-
logical signals, and BCI applications.

• In Chapter 3, basic concepts of supervised machine learningare reviewed. In the first part

of the chapter a general exposition of the supervised machine learning problem is given and
important concepts such as overfitting, cross-validation,and model selection are discussed.

In the second part of the chapter, probabilistic methods forsupervised machine learning,
i.e. maximum-likelihood estimation, maximum a posterioriestimation, and Bayesian learn-

ing are introduced. In the third part, concrete examples forthe theory described in the first two
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parts are given. In particular, several supervised learning algorithms that have been applied
in the context of BCI are discussed.

• In Chapter 4, BCI systems using the P300 are reviewed. First,the P300 is described from a
neuroscientific point of view. Conditions under which a P300can be evoked and factors that

influence the characteristics of the P300 are discussed. Then, the basic idea underlying P300-
based BCIs is introduced and several systems implementing this idea are described. Finally,

algorithmic aspects of P300-based BCIs are discussed and criteria for evaluating the different
systems and algorithms are described.

• In Chapter 5 the supervised learning algorithms used in thisthesis are introduced. First,
the connection between least-squares regression and Fisher’s discriminant analysis (FDA) is
reviewed and used to motivate a Bayesian approach to discriminant analysis. Then, BDA

is reviewed. In the second part of the chapter the BDA algorithm is extended to perform
electrode selection in a BCI. The resulting algorithm is referred to as sparse Bayesian lin-

ear discriminant analysis (SBDA) in the rest of the thesis and uses a framework for sparse
Bayesian learning, namely the ARD framework. In the last part of the chapter two meth-

ods are presented that allow for the computation of accurateclass probabilities with BDA
and SBDA. Moreover, an algorithm that sequentially computes probabilities for a set of hy-

potheses where the hypotheses concern the generation of a stream of data is introduced. This
algorithm is applied in the context of P300 BCIs to adaptively stop data acquisition as soon

as the probability of misclassification is smaller than a preset threshold. In other words, this
algorithm allows to profit from fluctuations in the level of uncertainty of the recorded signals.
If the level of uncertainty is small, classification decision are taken quickly. If the level of

uncertainty is high, more data is recorded to avoid wrong decisions.

• In Chapter 6 a BCI system for disabled users is introduced. Inthe first part of the chapter

the system itself is described, the patients from whom data is recorded are presented, and
the experimental setup is presented. In the second part of the chapter results from offline

experiments conducted with FDA and BDA on the recorded data are presented. Classification
accuracy and bitrate achievable by using FDA or BDA in conjunction with different electrode

configurations are discussed. Finally, differences to other P300 BCI systems for disabled
subjects are discussed.

• In Chapter 7 the setup and results of experiments conducted with SBDA are described. Ad-

ditionally, the algorithm for adaptively stopping data acquisition is explored. The chapter
starts with a report about the classification accuracy that can be obtained with SBDA and

with a comparison of SBDA and BDA. Then, the electrode subsets selected with SBDA are
analyzed and compared to predefined, physiologically plausible electrode subsets. Further-

more, BDA and SBDA are applied to P300 datasets from past BCI competitions and it is
shown that both algorithms lead to classification accuracies which are competitive with the

state-of-the-art. In the second part of the chapter experiments with the adaptive stopping
algorithm are described. It is shown that the adaptive stopping algorithm allows to obtain

higher communication speed than decision schemes in which afixed amount of data is used.
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• In Chapter 8 the contributions of this thesis are summarizedand an outlook on possible ex-
tensions of the presented work is provided.



Introduction to
Brain-Computer Interfaces 2
2.1 Introduction

A BCI is a communication system that translates brain activity into commands for a computer or

other devices. In other words, a BCI allows users to act on their environment by using only brain
activity, without using peripheral nerves and muscles. Themajor goal of BCI research is to develop

systems that allow disabled users to communicate with otherpersons, to control artificial limbs,
or to control their environment. To achieve this goal, many aspects of BCI systems are currently

being investigated. Research areas include evaluation of invasive and noninvasive technologies
to measure brain activity, evaluation of control signals (i.e. patterns of brain activity that can be
used for communication), development of algorithms for translation of brain signals into computer

commands, and the development of new BCI applications.

In this chapter we review the aspects of BCI research mentioned above and highlight recent

developments and open problems. The review is ordered by thesteps that are needed for brain-
computer communication (see Fig. 2.1). We start with methods for measuring brain activity (Sec-

tion 2.2) and then give a description of the neurophysiologic signals that can be used in BCI systems
(Section 2.3). The translation of signals into commands with the help of signal processing and clas-
sification methods is described in Section 2.4. Finally, applications that can be controlled with a

BCI are described in Section 2.5, and a conclusion is given inSection 2.6.

The number of publications concerning BCI has strongly increased during the last few years.

Hence, it is virtually impossible to give a balanced, exhaustive review of the field. The review
provided here is biased towards electroencephalogram (EEG) based BCI systems. Other reviews
can be found in the articles of Wolpawet al. (2002), Lebedev and Nicolelis (2006), Birbaumer and

Cohen (2007), and Masonet al. (2007). Detailed reports about the work in many BCI laboratories
around the world can be found in the 2006 BCI special issue of IEEE Transactions on Neural

Systems and Rehabilitation Engineering (Vaughan and Wolpaw, 2006).

7
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Signal Acquisition Signal Processing Classification

Application
Feedback

Figure 2.1 — Building blocks of a BCI. A subject performs a specific cognitive task or concentrates on
a specific stimulus. Brain signals are acquired and then processed with signal processing and classification
algorithms. The outcome of the classification is fed into an application, for example a spelling device. The
application generates feedback to inform the subject aboutthe outcome of classification.

2.2 Signal Acquisition

To enable communication with the help of a BCI, first brain signals have to be measured. Dif-
ferent methods to achieve this goal, ranging from the invasive measurement of electric potentials

at single neurons to the noninvasive measurement of large-scale hemodynamic brain activity, have
been reported in the literature. We review some of these methods below, starting from the EEG

which allows for measurements of electric potentials at large spatial scales. We continue with the
electrocorticogram (ECoG) and microelectrode arrays, which allow for measurement of potentials

at smaller spatial scales. Next, methods for measuring magnetic brain activity and hemodynamic
brain activity are described. The different methods are compared in terms of temporal and spatial

resolution, invasiveness vs. noninvasiveness, and in terms of complexity of the apparatus needed
for performing measurements.

2.2.1 Electroencephalogram

The EEG is one of the most widely used noninvasive techniquesfor recording electrical brain activ-
ity. Since its discovery by Hans Berger (Berger, 1929) the EEG has been employed to answer many

different questions about the functioning of the human brain andhas served as a diagnostic tool in
clinical practice. The EEG is a popular signal acquisition technique because the required devices

are simple and cheap and because the preparation of measurements takes only a small amount of
time. EEG signals are recorded with small silver/silver chloride electrodes with a radius of about 5

mm, placed on the scalp at standardized positions (see Fig. 2.2). Conductive gel or saltwater is used
to improve the conductivity between scalp and electrodes. To affix the electrodes to the scalp, often

an electrode cap is used. EEG signals are always recorded with respect to reference electrodes,
i.e. EEG signals are small potential differences (0 - 100µV) between electrodes placed at different

positions on the scalp.
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Figure 2.2 — Electrode placement according to the 10-20 internationalsystem. Odd numbers indicate
electrodes located on the left side of the head. Even numbersindicate electrodes located on the right side of
the head. Capital letters are used to reference each cortical zone, namely frontal (F), central (C), parietal (P),
temporal (T), and occipital (O). Fp and A stand for frontal pole and auricular. The designation 10-20 comes
from the percentage ratio of the inter-electrode distanceswith respect to the nasion-inion distance.

To understand how EEG signals are related to information processing in the brain, it is neces-
sary to first review the structure and functioning of neurons. Neurons consist of a cell body (soma),

an axon, and a dendritic tree (cf. Fig. 2.3). The axon serves as “output channel” of neurons and
connects via synapses to the dendrites (the “input channel”) of other neurons. The means of com-

munication between neurons are action potentials, i.e. electrical discharges produced mainly at the
soma of cells. Action potentials travel along the axon of cells and lead to a release of neurotransmit-

ters when arriving at a synapse. The neurotransmitters in turn trigger a flow of ions across the cell
membrane of the neuron receiving the action potential. The flow of ions across the cell membrane

leads to a change in membrane potential, i.e. to a change in the potential difference between intra-
cellular and extracellular space. If the membrane potential reaches a critical value of around -50µV
a new action potential is triggered, and information is transmitted via the axon to other neurons.

The signals measured with the EEG are thought to be mainly an effect of information process-
ing at pyramidal neurons located in the cerebral cortex (Martin, 1991). Pyramidal neurons have
a pyramid-like soma and large apical dendrites, oriented perpendicular to the surface of the cor-

tex (see Fig. 2.3). Activation of an excitatory synapse at a pyramidal cell leads to an excitatory
postsynaptic potential, i.e. a net inflow of positively charged ions. Consequently, increased extra-

cellular negativity can be observed in the region of the synapse. The extracellular negativity leads to
extracellular positivity at sites distant from the synapseand causes extracellular currents flowing to-

wards the region of the synapse. The temporal and spatial summation of such extracellular currents,
at hundreds of thousands of neurons with parallel oriented dendrites, leads to the changes in poten-

tial that are visible in the EEG. The polarity of the EEG signals depends on the type of synapses
being activated and on the position of the synapses. As shownin Fig. 2.3, activation of excitatory

synapses in superficial cortical layers corresponds to negative surface-potentials. Activation of ex-
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Figure 2.3 — Generators of the EEG. Pyramidal neurons in cerebral cortex receive excitatory input from
synapses close to their soma (left) or from synapses connecting to their apical dendrites in superficial layers
of the cortex (right). Excitation leads to a net inflow of positively charged ions and thus to an increased
extracellular negativity in the region of the synapses. Extracellular currents flow towards the region of the
synapse and cause an increased positivity at the dendrite (left) or at the soma (right). The extracellular
currents lead to changes in potential on the scalp surface (adapted from Kaper (2006); Martin (1991)).

citatory synapses connecting close to the soma of a cell corresponds to positive surface-potentials.

For inhibitory synapses the inverse is true: activation of synapses in superficial cortical layers cor-
responds to positive surface-potentials, and activation of synapses connecting close to the soma of a

cell corresponds to negative surface-potentials. Withoutknowledge about the spatial distribution of
synapses the type of synaptic action can thus not be inferredfrom the polarity of surface potentials

(Martin, 1991).

The potential changes associated to extracellular currents at pyramidal neurons are mostly vis-

ible at electrodes placed over the active brain area. However, due to volume conduction in the
cerebrospinal fluid, skull, and scalp, signals from a local ensemble of neurons also spread to distant

electrodes. The potentials caused by the activity of a typical cortical macrocolumn (of diameter 3-4
mm) can spread to scalp electrodes that are up to 10 cm away from the macrocolumn (Srinivasan,

1999). A further effect of the tissue barrier between electrodes and neurons is that low-amplitude
activity at frequencies of more than 40 Hz is practically invisible in the EEG. The EEG thus is
a global measurement of brain activity. Consequently, it isdifficult to use the EEG for drawing

conclusions about the activity of small brain regions, let alone the activity of single neurons.

In addition to the effects of volume conduction, the analysis of the EEG is furthercomplicated
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by the presence of artifacts. Artifacts can be due to physiological or nonphysiological sources.
Physiological sources for artifacts include eye movementsand eye blinks, muscle activity, heart

activity, and slow potential drifts due to transpiration. Nonphysiological sources for artifacts include
power supply line noise (at 50 Hz or 60 Hz), noise generated bythe EEG amplifier, and noise

generated by sudden changes in the properties of the electrode-scalp interface. Artifacts often
have much larger amplitude than the signals of interest. Therefore, artifact removal and filtering

procedures have to be applied before an analysis of EEG signals can be attempted.

Despite the above mentioned shortcomings the EEG remains one of the most interesting meth-
ods for measuring electrical brain signals. It has been usedin a variety of BCI systems and is
also the measurement technique employed in this thesis. Besides BCI there are many other clinical

and research applications of the EEG. These include research on different sleep stages, epilepsy
monitoring, coma outcome prognosis, and many other, more theoretical, research questions.

2.2.2 Electrocorticogram

The ECoG is an invasive technique for recording electrical potentials in the brain. In a surgical

procedure an array of electrodes, typically an 8×8 grid, is placed on the cortex surface. After the
implantation, signals which are generated by the same mechanisms as the EEG can be measured.

However, effects of volume conduction are less visible in the ECoG, i.e. the signals are less spatially
blurred than EEG signals. Further advantages are that ECoG signals are barely contaminated with

muscle or eye artifacts and that activity in frequencies up to about 100 Hz can be easily observed.

Due to the above mentioned positive properties, ECoG signals have generated a considerable

deal of interest in the BCI community. Different experiments have been performed, mainly with
epilepsy patients having ECoG arrays implanted over a period of one or two weeks for localization

of epileptic foci or for presurgical monitoring purposes. The experiments have shown that patients
can quickly learn to accurately control their ECoG signals through motor imagery (Graimannet al.,

2004; Hill et al., 2006), motor and speech imagery (Leuthardtet al., 2006), mental calculation
(Ramseyet al., 2006), or auditory imagery (Wilsonet al., 2006). This makes ECoG an interesting

alternative to the EEG, however tests with severely handicapped subjects and research on the long
term tissue compatibility of ECoG should be performed to validate the results.

2.2.3 Microelectrode Arrays

Microelectrode arrays are a technique for recording activity from single neurons or from small
groups of neurons. As for ECoG, brain-surgery is necessary before signals can be recorded. The

difference to ECoG is that electrodes are insertedin the cortex, i.e. the cortical tissue is penetrated
by needle-like electrodes. A typical microelectrode arrayhas a size of about 5×5 mm and contains

around 100 electrodes, which can penetrate the cortex to a depth of several millimeters (Nicolelis
et al., 2003). Due to the invasive procedure that is needed to record signals, microelectrode arrays

have been mainly tested in animal models (for example rhesusmonkeys). An exception is the BCI
system described by Hochberget al. (2006), which is based on signals from microelectrode arrays

implanted in human tetraplegic subjects.
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Compared with other technologies for measuring brain activity, the advantages of microelec-
trode arrays are that signals are acquired at high spatial resolution and that the activity of single

neurons can be detected. Recording the activity of neurons in the motor areas of the brain allows
for complex applications such as realtime 3D control of a robot arm (Tayloret al., 2002) which

are difficult to realize with other measurement technologies. The disadvantage of microelectrode
arrays is that brain-surgery is needed before signals can berecorded. During surgery an infection

risk exists and moreover the reaction of brain tissue to the implanted electrode array is not well
understood (Polikovet al., 2005). Due to the death of neurons in the vicinity of the microelectrodes

signal quality decays over time and data can only be recordedfor a period of several months.

Despite the problems arising from the invasive nature of themeasurements, microelectrode

arrays are – together with the EEG – one of the most often used tools in BCI research. Cur-
rent research issues and recent developments are nicely summarized in the review of Lebedev and

Nicolelis (2006).

2.2.4 Other Methods for Measuring Brain Activity

• Magnetoencephalogram

The magnetoencephalogram (MEG) is a noninvasive measurement of small changes (≈ 10−15

Tesla) in magnetic field strength, which are caused by intracellular currents at pyramidal neu-
rons. A small number of experimental studies have used the MEG in BCI systems (Kauhanen

et al., 2006; Lalet al., 2005). These studies showed that MEG signals can be used forbrain-
computer interfacing and that a communication speed comparable to that of EEG based sys-

tems can be obtained. However, the equipment needed for MEG measurements is technically
complex, expensive, and cannot be easily transported from one place to another. This rules

out the use of current MEG devices in practical BCIs.

• Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) allows to noninvasively measure the so-
called blood oxygen level dependent (BOLD) signal. The BOLDsignal does not directly

represent neuronal activation but rather depends on the level of oxygenated and deoxygenated
hemoglobin and on the hemodynamic response to neuronal activation. The peak of the BOLD
signal is typically very broad and observed four to five seconds after the neuronal activation,

i.e. the temporal resolution of fMRI is relatively low when compared to methods that directly
measure electrical brain activity. The spatial resolutionis very good, structures of the size of

a few millimeters can be localized with the fMRI. In addition, signals can be acquired from
the whole brain and not only from the cortex, as for example with the EEG. In BCI research

fMRI has been used in basic proof of concept systems (Weiskopf et al., 2004; Yooet al.,
2004) and to elucidate the brain mechanisms underlying successful self regulation of brain

activity (Hinterbergeret al., 2003). To date, the use in practical BCI systems is impossible
because fMRI devices are technically demanding, expensiveand cannot be easily moved from

one place to another.
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• Near-Infrared Spectroscopy

Near infrared spectroscopy (NIRS) is a noninvasive method to measure the hemodynamic ac-

tivity of the cortex (similar to the BOLD signal). To measureNIRS signals, optodes emitting
light in the near-infrared range are placed on the scalp of subjects. The emitted light is re-

flected by the cortical surface and measured by detector optodes. The light intensity measured
at the detector optodes varies as a function of the amount of oxygenated and deoxygenated

hemoglobin in the blood and thus allows to measure brain activity. NIRS provides a relatively
low spatial resolution, and because hemodynamic brain activity is measured the temporal res-

olution is also low. Several publications describe the use of NIRS signals to classify different
types of motor imagery in BCI systems (Coyleet al., 2004; Sitaramet al., 2007). These

studies are proof of concept studies and further development is needed to make NIRS a real
alternative for everyday use in a BCI.

Summary

Different methods to measure brain activity can be used in a BCI. The characteristics of the methods
we reviewed are summarized in Table 2.1. As can be seen, each method has its own advantages

and disadvantages and hence so far no method of choice exists. Consequently, BCI research will
probably continue to explore the possibilities of all methods and real-world BCI applications based

on different methods might emerge. Depending on their needs and on their willingness to undergo
brain surgery, users will choose one of the methods. Clearly, the development of new methods for

measuring brain activity has the potential to yield advanced BCI systems.

2.3 Neurophysiologic Signals

An ideal BCI system would directly detect every wish or intention of its user and perform the corre-
sponding action. However, it is very difficult to clearly define how wishes or intentions are related
to neurophysiologic signals. Consequently, it is virtually impossible to detect the intentions and

wishes of a user from his brain activity. This is why present day BCI systems achieve only a much

Method Measured
Quantity

Invasive? Spatial
Resolution

Temporal
Resolution

Equipment
portable?

EEG Electric Potentials No - ++ Yes
ECoG Electric Potentials Yes + ++ Yes
Microel.
Arr.

Electric Potentials Yes ++ ++ Yes

MEG Magnetic Fields No + ++ No
fMRI Hemodynamic Act. No ++ – No
NIRS Hemodynamic Act. No - - – Yes

Table 2.1— Methods for measuring brain activity. Characteristics important for practical BCI systems are
indicated. The relative spatial and temporal resolution ofthe different methods is indicated with symbols
ranging from - - (very low) to++ (very high).
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less ambitious goal, namely the discrimination of two to fivedifferent categories of neurophysio-
logic signals, or the mapping of neurophysiologic signals to continuous 1D, 2D, or 3D movements.

To allow for discrimination of different neurophysiologic signals or for mapping of such signals

to movements, users have to acquire conscious control over their brain activity. Two fundamentally
different approaches exist to achieve this. In the first approachsubjects perceive a set of stimuli

displayed by the BCI system and can control their brain activity by focusing onto one specific stim-
ulus. The changes in neurophysiologic signals resulting from perception and processing of stimuli

are termed event-related potentials (ERPs) and are discussed together with the corresponding BCI
paradigms in Section 2.3.1. In the second approach users control their brain activity by concentrat-

ing on a specific mental task, for example imagination of handmovement can be used to modify
activity in the motor cortex. In this approach feedback signals are often used to let subjects learn the

production of easily detectable patterns of neurophysiologic signals. The types of signals resulting
from concentration on mental tasks together with the corresponding BCI paradigms are described
in Sections 2.3.2, 2.3.3, and 2.3.4.

2.3.1 Event-Related Potentials

ERPs are stereotyped, spatio-temporal patterns of brain activity, occurring time-locked to an event,
for example after presentation of a stimulus, before execution of a movement, or after the detection

of a novel stimulus. Traditionally, ERPs are recorded with the EEG and have been used in neuro-
science for studying the different stages of perception, cognition, and action. Note that event-related

changes can also be measured with other signal acquisition techniques like the MEG or fMRI, this is
however not described here because in a BCI usually the EEG isused for measuring such changes.

• P300

The P300 is a positive deflection in the EEG, appearing approximately 300 ms after the

presentation of rare or surprising, task-relevant stimuli(Suttonet al., 1965). To evoke the
P300, subjects are asked to observe a random sequence of two types of stimuli. One stimulus

type (the oddball or target stimulus) appears only rarely inthe sequence, while the other
stimulus type (the normal or nontarget stimulus) appears more often. Whenever the target

stimulus appears, a P300 can be observed in the EEG. This principle was exploited by Farwell
and Donchin (1988) in a BCI system. They described the P300 speller in which a matrix

containing symbols from the alphabet is displayed on a screen. Rows and columns of the
matrix are flashed in random order, and flashes of the row or column containing the desired
symbol constitute the oddball stimulus, while all other flashes constitute nontarget stimuli.

Since the seminal paper of Farwell and Donchin many studies about P300-based BCI systems
have appeared. A review of these studies and a more detailed description of the P300 are

provided in Chapter 4.

• Steady-State Visual Evoked Potentials (SSVEPs)

SSVEPs are oscillations observable at occipital electrodes, induced by repetitive visual stim-
ulation. Stimulation at a certain frequency leads to oscillations at the same frequency and

at harmonics and subharmonics of the stimulation frequency(Herrmann, 2001). In a BCI,
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SSVEPs are used by simultaneously displaying several stimuli flickering at different frequen-
cies. Users can select one stimulus by focusing on it, which leads to increased amplitude

in the frequency bands corresponding to the flickering frequency of the stimulus. Systems
employing this principle are described in (Gaoet al., 2003; Laloret al., 2005; Middendorf

et al., 2000)

• Motor-Related Potentials (MRPs)

Other than the previously described signals, motor-related potentials (MRPs) are independent

of the perception or processing of stimuli. The events to which MRPs are related are the
preparation or imagination of movements. MRPs are slow negative potentials, observable

over the sensorimotor cortex before movement onset or during movement imagination. Since
the sensorimotor cortex has a somatotopic organization thebody part that will be moved, or
for which a movement is imagined, can be inferred from the location of greatest amplitude of

the MRP. This phenomenon has been used in combination with sensorimotor rhythms (see
Section 2.3.2) in a BCI based on motor imagery (Dornhegeet al., 2004).

2.3.2 Oscillatory Brain Activity

Sinusoid like oscillatory brain activity occurs in many regions of the brain and changes according to
the state of subjects, for example between wake and sleep or between concentrated work and idling.

Oscillatory activity in the EEG is classified into different frequency bands or rhythms. Typically
observable are the delta (1 - 4 Hz), theta (4 -8 Hz), alpha and mu (8 - 13 Hz)1, beta (13 - 25 Hz),

and gamma (25 - 40 Hz) rhythms.

• Sensorimotor Rhythms

Mu-rhythm oscillations can be observed over the sensorimotor cortex when a subject does not

perform movements. These oscillations are decreased in amplitude when movements of body
parts are imagined or performed. In addition, imagined or performed movements of body

parts lead to changes in beta-rhythm amplitude. The changesin the mu- and beta-rhythm
are localized over the part of the sensorimotor cortex corresponding to the body part, and so

imagined movements of different body parts can be discriminated. For example imagination
of movement of the left hand corresponds to a decrease in mu-rhythm amplitude over the

right sensorimotor cortex, whereas imagination of movement of the right hand corresponds
to a decrease in amplitude over the left sensorimotor cortex. The changes in sensorimotor
rhythms occurring in untrained users are usually not strongenough to be detected by a classi-

fication algorithm, and thus feedback training has to be usedto let users acquire control over
sensorimotor rhythms.

BCI systems employing imagined movements of hands, feet, ortongue have been mainly in-
troduced by the research group of Pfurtscheller in Austria (Pfurtscheller and Neuper, 2001)).
The group of Wolpaw in the United States has also worked on such systems, and an impres-

sive sensorimotor rhythm BCI allowing for fast control of a 2D cursor has been described by

1The term mu-rhythm is used for oscillatory activity with a frequency of about 10 Hz, localized over the sensorimotor
cortex. The term alpha-rhythm is more general and can be usedfor any activity in the frequency range 8 - 13 Hz.
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Wolpaw and McFarland (2004). Many other groups have performed research on such sys-
tems. For example research has been targeted on improving machine learning algorithms for

classification of sensorimotor rhythms (Blankertzet al., 2006b), on measuring and classifying
neurophysiologic signal related to motor imagery with the help of NIRS (Coyleet al., 2004;

Sitaramet al., 2007), ECoG (Graimannet al., 2004; Leuthardtet al., 2006), MEG (Kauha-
nenet al., 2006), and on testing sensorimotor rhythm interfaces withseverely handicapped

subjects (Kübleret al., 2005).

• Other Oscillatory Activity

Cognitive tasks other than motor imagery can also be used to trigger changes in oscillatory

brain activity. Examples for such tasks are mental calculation, auditory imagery, imagery of
spatial navigation, or imagination of rotating geometric objects (Curranet al., 2004; Garcia,

2004; Keirn and Aunon, 1990). The classification accuracy for such cognitive tasks seems
to be comparable to that achievable with motor imagery. In addition, depending on the pref-

erences of the users the alternative cognitive tasks might be easier to perform than motor
imagery (Curranet al., 2004). However, before such tasks can be routinely used in BCI sys-
tems, further research about the underlying neurophysiological mechanisms and tests with

larger populations of subjects are necessary.

2.3.3 Slow Cortical Potentials

Slow cortical potentials (SCPs) are slow voltage shifts in the EEG occurring in the frequency

range 1-2 Hz. Negative SCPs correspond to a general decreasein cortical excitability. Positive
SCPs correspond to a general increase in cortical excitability. Through feedback training subjects

can learn to voluntarily control their SCPs. The voluntary production of negative and positive
SCPs has been exploited in one of the earliest BCI systems fordisabled subjects (Birbaumeret al.,

1999). In their pioneering work, Birbaumeret al. showed that patients suffering from amyotrophic
lateral sclerosis (ALS) can use a BCI to control a spelling device and to communicate with their

environment. In other publications from the same group manydifferent aspect related to SCPs
were investigated, for example the use of self regulation ofSCPs as a treatment for children with
attention-deficit/hyperactivity disorder (Strehlet al., 2006).

2.3.4 Neuronal Ensemble Activity

Action potentials are thought to be the basic unit of information in the brain and enable commu-
nication between different neurons. The number of action potentials per time (thefiring rate) can

be used in a BCI to predict the behavior of a subject. For example the firing rate of neurons in
the motor and premotor-cortices can be used to predict hand positions or hand velocities. To make

these predictions more reliable, usually the firing rates from ensembles of neurons, i.e. from popu-
lations of hundreds of neurons, are used to predict subject behavior. Furthermore, through feedback

training subjects can learn to modulate the firing rates of neurons in the motor cortex. Neuronal
ensemble activity can thus be employed as neurophysiological signal in BCIs, in particular in BCIs

using microelectrode arrays (Hochberget al., 2006; Serruyaet al., 2002; Tayloret al., 2002).
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Summary

Different neurophysiologic signals can be used to drive a BCI. The advantage of ERPs is that no

user training is necessary because ERPs occur as a natural response of the brain to stimulation.
This might be of particular importance for subjects with concentration problems or for subjects not

willing to go through a long training phase. A disadvantage is that communication depends on
the presentation and perception of stimuli. Subjects are thus required to have remaining cognitive

abilities. Moreover, BCI systems based on ERPs have only limited application scenarios because a
device to present stimuli is needed and because users need topay attention to stimuli, even in the
presence of other unrelated, distracting stimuli.

If oscillatory activity or SCPs are used, more flexible BCI systems can be imagined because no

computer screen or other device is needed to present stimuli. However, to gain voluntary control
over brain activity, subjects have to perform feedback training, and it can take several weeks before

subjects are able to reliably control a BCI. Therefore, BCI systems based on oscillatory activity
or SCPs might be less suited for subjects with concentrationproblems or for subjects who are not

willing to go through a long training phase.

The amount of training in systems using ECoG to measure brainactivity or in systems using

neuronal ensemble activity tends to be smaller than in othersystems because the recorded signals
have a better signal to noise ratio. A further advantage is that such systems, especially systems

based on neuronal ensemble signals, allow for control of more complex applications than systems
using the EEG. As already mentioned in Section 2.2.3, the biggest disadvantage of such systems is

the brain surgery that is necessary before signals can be recorded.

Taken together, no paradigm for controlling and measuring neurophysiologic signals clearly

rules out all other paradigms. Different paradigms will thus probably coexist. In specific cases
paradigms have to be chosen depending on the abilities of theuser, the application scenario, and the

willingness of the user to undergo brain surgery.

2.4 Extracting Features from Neurophysiologic Signals

In the previous section we have discussed paradigms that letusers control their brain activity and
the neurophysiologic signals corresponding to the respective paradigms. To allow actual control of
a BCI, the neurophysiologic signals have to be mapped to values that allow to discriminate different

classes of signals, i.e. the neurophysiologic signals haveto be classified.

The first step underlying most methods for classification of neurophysiologic signals is to ac-
quire labeled training data. Acquiring labeled training data means that the subject has to perform

prescribed actions, while neurophysiologic signals are recorded. Then, a computer is used to learn
the desired mapping from signals to classes.

After the data acquisition phase, machine learning algorithms are applied to infer functions that
can be used to classify neurophysiologic signals. For reasons of practicality and simplicity, machine

learning algorithms are usually divided into two modules: feature extraction and classification. The
feature extraction module serves to transform raw neurophysiologic signals into a representation

that makes classification easy. In other words, the goal of feature extraction is to remove noise and
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other unnecessary information from the input signals, while at the same time retaining information
that is important to discriminate different classes of signals. Another, related, goal of featureex-

traction is to reduce the dimensionality of the data that hasto be classified. After feature extraction,
machine learning algorithms are used to solve two tasks. During training, the task is to infer a

mapping between signals and classes. For this, the labeled feature vectors produced by the feature
extraction module are used. During application of a BCI, thetask is to discriminate different types

of neurophysiologic signals and hence to allow for control of a BCI.

In this section we only review methods for feature extraction in BCIs. Machine learning algo-
rithms are one of the main themes of this thesis and are described in a separate chapter (cf. Chapter 3).

To achieve the goals of feature extraction, neurophysiological a priori knowledge about the char-
acteristics of the signals in the temporal, the frequency, and the spatial domain is used. Depending

on the type of signals to be classified this knowledge can takemany different forms. Consequently
many different feature extraction methods have been described. Somebasic and often used methods

are described below. A more exhaustive review of feature extraction methods for BCIs can be found
in (Bashashatiet al., 2007).

2.4.1 Time Domain Features

Time domain features are related to changes in the amplitudeof neurophysiologic signals, occurring

time-locked to the presentation of stimuli or time-locked to actions of the user of a BCI system.
Good examples for signals that can be characterized with thehelp of time domain features are the

P300, SCPs, and MRPs. A strategy that is often used to separate these signals from background
activity and noise is lowpass or bandpass filtering, optionally followed by downsampling. This

strategy is reasonable because most of the energy of the P300, SCPs, and MRPs is concentrated at
low frequencies. Lowpass filtering, together with downsampling thus allows to remove unimportant

information from high frequency bands. In addition, the dimensionality of the signals is reduced.
Examples for systems in which filtering and downsampling have been employed are the P300 BCI
described by Sellers and Donchin (2006), the SCP based system described by Birbaumeret al.

(1999), and the system for classification of MRPs described by Blankertzet al. (2002).

An alternative to filtering is to use the wavelet transform ofthe signals. Systems based on the

discrete wavelet transform (DWT), as well as systems based on the continuous wavelet transform
(CWT) have been described in the literature. A crucial step in systems using wavelets is to select

a subset of wavelet coefficients that is relevant for classification. This is equivalent to selecting
regions in the time-frequency plane at which signals can be classified with high accuracy and can

be achieved with the help of feature selection algorithms. An example for the use of the DWT is the
P300-based BCI system described by Donchinet al. (2000). In this system Daubechies wavelets
were used for feature extraction, and relevant wavelet coefficients were selected with stepwise dis-

criminant analysis (SWDA). An example for the use of the CWT is the algorithm described by
Bostanov (2004). In this algorithm the Mexican hat wavelet was used for feature extraction from

P300 and SCP signals, and a t-test was used to select relevantwavelet coefficients.

Besides the use for the EEG signals P300, SCP, and MRP, time domain features are also used

in BCI systems based on microelectrode arrays. A feature that is often used in such systems is
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the number of spikes occurring in a certain time interval. Many different techniques for counting
spikes and for sorting spikes recorded with the same electrode from several neurons exist. These

techniques will however not be further discussed here.

2.4.2 Frequency Domain Features

Frequency domain features are related to changes in oscillatory activity. Such changes can be

evoked by presentation of stimuli or by concentration of theuser on a specific mental task. Since
the phase of oscillatory activity is usually not time-locked to the presentation of stimuli or to actions

of the user, time domain feature extraction techniques cannot be used. Instead, feature extraction
techniques that are invariant to the exact temporal evolution of signals have to be used.

The most commonly used frequency domain features are related to changes in the amplitude

of oscillatory activity. For example in systems based on motor imagery, the bandpower in the mu
and beta frequency bands at electrodes located over the sensorimotor cortex is used as a feature. In

the case of SSVEPs, band power in the harmonics of the visual stimulation frequency at occipital
electrodes can be used as a feature. To estimate band power, different methods have been used.

These include Welch’s method (Laloret al., 2005), adaptive autoregressive models (Schlöglet al.,
2005), and Morlet wavelets (Lemmet al., 2004).

A second type of frequency domain features is related to the synchronization between signals
from different brain regions. Synchronization of signals from different brain regions might indicate
that these regions communicate. This permits to discriminate cognitive tasks involving communica-

tion between different brain regions. The use of synchronization features incombination with band
power features was explored by Gysels and Celka (2004) in a three-class BCI based on the cog-

nitive tasks “left hand movement”, “right hand movement”, and “composition of words”. Brunner
et al. (2006) used synchronization features in combination with band power features in a four-class

BCI based on the cognitive tasks “left hand movement”, “right hand movement”, “foot movement”,
and “tongue movement”. In both studies, classification withacceptable accuracy was possible with

synchronization features alone. Combining synchronization and band power features led to classi-
fication accuracy that was superior to that obtained with only synchronization or band power.

2.4.3 Spatial Domain Features

The feature extraction techniques described so far all workwith univariate time series, i.e. data
from only one electrode is used (an exception are synchronization features, extracted from bivariate
time series). In many systems however, data from more than one electrode is available. Hence, the

features extracted from several electrodes have to be combined in an efficient way. Finding efficient
combinations of features from more than one electrode is thegoal of spatial feature extraction

methods.

The probably simplest way for performing spatial feature extraction is to use only electrodes

that carry useful information for discrimination of a givenset of cognitive tasks. The reasoning
behind such an approach is that changes in band power, P300 peaks, or other features do not occur

uniformly at all electrodes but are usually stronger at electrodes over brain regions implied in the
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respective cognitive task. Electrodes can be selected manually or by using an algorithm that auto-
matically selects an optimal electrode subset. Due to its simplicity the former approach has been

used in almost all types of BCIs. The latter, more complex approach has been used for classification
of data recorded with a sensorimotor rhythm paradigm (Lalet al., 2004), for classification of P300

data (Rakotomamonjyet al., 2005), and in this thesis (cf. Chapter 5).
A spatial feature extraction method that can be used in addition to electrode selection, consists

in applying spatial filtering algorithms before further processing takes place. Spatial filtering corre-
sponds to building linear combinations of the signals measured at several electrodes. Denoting by

s(t) ∈ RE the signal fromE electrodes at timet, spatial filtering can be expressed as follows:

ŝ(t) = Cs(t). (2.1)

Here theF × E matrix C contains the coefficients forF spatial filters and the vector̂s(t) ∈ RF

contains the spatially filtered signals at timet.
To determine the filter coefficients different methods can be used. For example for motor im-

agery based BCIs, it has been shown that spatial filtering with a Laplacian filter can increase per-
formance (McFarlandet al., 1997). Simple Laplacian filters can be built by subtractingthe mean

signal of the surrounding electrodes from the signal of eachelectrode. Applying a Laplacian filter
corresponds to spatial high-pass filtering, focal activitywhich is characteristic for motor imagery

tasks is thus enhanced.
In other methods for spatial feature extraction, filter coefficients are computed from a set of

training data. An algorithm which is very popular in the areaof motor imagery based BCI systems
is the common spatial patterns (CSP) algorithm (Ramoseret al., 2000). The CSP algorithm deter-
mines spatial filters that maximize the temporal variance ofdata recorded under one condition and

minimize the temporal variance of data recorded under a second condition. The success of CSP
stems from the fact that temporal variance, i.e. power, in the mu and beta frequency bands is an

important feature for the classification of EEG signals recorded during motor imagery. Note that
the CSP algorithm uses labeled training data and hence overfitting can occur when a large num-

ber of electrodes is used in conjunction with a small amount of training data (see Chapter 3 for a
description of the overfitting phenomenon).

Another method for computing the coefficients of spatial filters from training data is indepen-
dent component analysis (ICA). In ICA algorithms it is assumed that a set of multichannel signals

s(t) is generated by linearly mixing a set of source signalsx(t):

s(t) = Mx (t). (2.2)

The goal is to compute a matrixF that allows one to reconstruct the source signalsx by multiplyings
with F. To achieve this without having information aboutM , one assumes that the source signals are
statistically independent. The ICA algorithm thus computes F such that the signalss(t) multiplied

with F are maximally independent. In the case of EEG signals, the idea underlying the application
of ICA is that the signals measured on the scalp are a linear and instantaneous mixture of signals

from independent sources in the cortex, deeper brain structures, and noise (Makeiget al., 1996).
ICA has been mainly used in P300-based BCIs as a feature extraction method. In such systems

ICA is used to separate multichannel EEG into several components, corresponding to sources in
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the brain or noise, for example from eye blinks. By retainingonly components that have a P300
like spatial distribution or show P300 like waveforms, the signal to noise ratio can be improved.

Consequently, classification can be performed with improved accuracy.

Summary

The goal of applying feature extraction algorithms is to transform raw neurophysiologic signals
into a representation suitable for subsequent classification. To this end, a priori knowledge about the

characteristics of signals produced in different paradigms is employed. This knowledge can concern
the characteristics of signals in the temporal, the frequency, or the spatial domain. Note that while

the three types of domains have been discussed separately above, it is also possible to combine
features from several domains. An example for this is spatial feature extraction which is often

preceded by bandpass filtering. Another example is the combination of temporal and frequency
domain features as proposed by Dornhegeet al. (2003). Such combinations of features have the
potential to increase classification accuracy.

Note that feature extraction is only the first step in the mapping from neurophysiologic signals
to brain states. The second step is to classify the features.Algorithms for classification and for

learning of classification rules are described in detail in Chapter 3. For the moment lets us assume
that we have an algorithm at hand that can perform classification. Such an algorithm can be used to

build BCI applications, which are described next.

2.5 Applications

In theory any device that can be connected to a computer or to amicrocontroller could be controlled
with a BCI. In practice however, the set of devices and applications that can be controlled with a

BCI is limited. To understand this, one has to consider that the amount of information which can be
transmitted with present day BCI systems is limited. The typical information transfer rate achiev-

able with an EEG based BCI is about 20 to 40 bits/min. As an additional obstacle most present
day BCI systems function only in synchronous mode. In synchronous mode, communication is

possible only during predefined time intervals. This means the system tells the user when it is ready
to receive the next command and limits severely the possibletype of applications. In asynchronous
mode users can send commands whenever they want, see for example the system described by

Borisoff et al. (2006). Some of the applications possible with current BCIsare described below.

2.5.1 Spelling Devices

Spelling devices allow severely disabled users to communicate with their environment by sequen-
tially selecting symbols from the alphabet. One of the first spelling devices mentioned in the BCI

literature is the P300 speller (Farwell and Donchin, 1988) (see also Chapter 4). A system based on
SCPs was described by Birbaumeret al.(1999). In their system the alphabet is split into two halves

and subjects can select one halve by producing positive or negative SCPs. The selected halve is
then again split into two halves and this process is repeatedrecursively until only one symbol re-

mains. An advanced version of this system in which the relative frequency of letters in natural
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language is taken into account is presented by Perelmouter and Birbaumer (2000). Systems based
on sensorimotor rhythms are described by Schereret al. (2004) and Blankertzet al. (2007).

2.5.2 Environment Control

Environment control systems allow to control electrical appliances with a BCI. Gaoet al.(2003) de-

scribe a proof-of-concept environment control system based on SSVEPs. Bayliss (2003) describes
the control of a virtual apartment based on the P300. To our knowledge none of the two aforemen-

tioned systems is asynchronous. Development of asynchronous BCI systems is probably the most
important research topic to advance the area of environmentcontrol systems.

2.5.3 Wheelchair Control

Disabled subjects are almost always bound to wheelchairs. If control over some muscles remains,

these can be used to steer a wheelchair. For example systems exist that allow to steer a wheelchair
with only a joystick or with head movements. If no control over muscles remains, a BCI can
potentially be used to steer a wheelchair. Because steeringa wheelchair is a complex task and

because wheelchair control has to be extremely reliable, the possible movements of the wheelchair
are strongly constrained in current prototype systems. In the system presented by Rebsamenet al.

(2006) the wheelchair is constrained to move along paths predefined in software joining registered
locations, and a P300-based interface is used to select the desired location. In the system presented

by Millan et al. (2004) a miniature robot can be guided through a labyrinth, based on oscillatory
brain activity recorded with the EEG. Control of the robot issimplified by implementing a wall

following behavior on the robot and allowing for turns only if there is an open doorway.

2.5.4 Neuromotor Prostheses

The idea underlying research on neuromotor prostheses is touse a BCI for controlling movement
of limbs and to restore motor function in tetraplegics or amputees. Different types of neuromotor

prostheses can be envisioned depending on the information transfer rate a BCI provides. If neuronal
ensemble activity is used as control signal, high information transfer rates are achieved and 3D
robotic arms can be controlled (Tayloret al., 2002). If an EEG based BCI is used, only simple

control tasks can be accomplished. For example in the systemdescribed by Pfurtschelleret al.

(2005) sensorimotor rhythms were used to control functional electric stimulation of hand muscles

and so to restore grasp function in a tetraplegic patient.

2.5.5 Gaming and Virtual Reality

Besides the applications targeted towards disabled subjects, prototypes of gaming and virtual reality
applications have been described in the literature. Examples for such applications are the control of

a spaceship with oscillatory brain activity (Garcia, 2004), the control of an animated character in an
immersive 3D gaming environment with SSVEPs (Laloret al., 2005), and the control of walking in

a virtual reality environment with sensorimotor rhythms (Leebet al., 2006).
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Summary

Several application scenarios exist in which a BCI could be useful. However, so far no commercially
available BCI application has emerged. This is possibly dueto the fact that current technology

does not allow to build BCI systems which can work in asynchronous mode and provide high
information transfer rates. A possible approach to circumvent the problem of limited information

transfer rates is to build intelligence into the application, i.e. to reduce the information needed
by the application by cleverly restraining the number of commands possible in a given situation.

Examples for applications in which such a strategy has been implemented are the advanced SCP
based spelling device and the wheelchair control applications described above. Other problems,
such as the restriction to asynchronous mode still have to besolved before practical BCI applications

will appear.

2.6 Conclusion

The number of publications on BCI systems has grown quickly during the past years, and a con-
siderable variety of prototypes can be found in the literature. Systems differ in the measurement

technology used to acquire brain signals, in the neurophysiologic signals that are used, in the signal
processing and machine learning algorithms, and in the target application. Despite the large number

of approaches and despite results demonstrating the feasibility of communication and control with
a BCI, none of the systems is commercially available and ready for daily use by disabled subjects.

However, it is probable that such systems will appear duringthe next years. Large advances
could probably be made if new, noninvasive measurement technologies allowing for a detailed

view into the brain would appear. Moreover, many studies investigate only isolated aspects of
BCI systems such as for example the use of a new measurement technology or new application

scenarios. Systematic studies of complete systems, investigating the dependencies between different
components of a BCI systems, are largely missing and would probably serve to advance the field.
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Review of Supervised
Machine Learning for
Brain-Computer Interfaces 3
3.1 Introduction

In a BCI complex neurophysiologic signals have to be translated into simple commands for a com-
puter or other devices. The most straightforward approach to map signals to commands is probably

to look at the distribution of a small number of simple features of the signals and to manually spec-
ify a translation rule. This method has indeed been used in early prototypes of BCIs. In the work

described by Wolpawet al. (1991), subjects could move a cursor up and down by modifyingtheir
mu-rhythm amplitude. To translate mu-rhythm amplitude into cursor movements, different voltage

ranges were fixed manually by an operator, based on the characteristics of previously recorded sig-
nals. However, as noted by Wolpawet al., even if only one feature is used, it is difficult for a human
to specify an optimal mapping between signals and commands.If more features are used, it quickly

becomes impossible to manually design mappings. Moreover,neurophysiologic signals show a rel-
atively large variance between subjects. This means that translation rules have to be specified for

each new subject that wants to access a BCI.

A solution to these problems that is used in almost all BCI systems, is to first acquire labeled

training data from a subject before it can use the system. Then, a computer is used to learn the
mapping between signals and commands. Acquiring labeled training data means that the subject

performs prescribed actions, while neurophysiologic signals are recorded. For example in a mu-
rhythm BCI, the result of training can be a set of trials in which the subject has imagined left hand

movement and another set of trials in which the subject has imagined right hand movement. After
the training phase a supervised machine learning algorithmis used to learn the desired mapping of

neurophysiologic signals into commands.

Below we review supervised machine learning algorithms that have been used for BCIs. In the

first part of the chapter, we explain basic concepts of supervised machine learning in a nonproba-
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bilistic framework and then describe probabilistic learning algorithms (Sections 3.2 and 3.3). The
second part of the chapter contains a review and discussion of machine learning algorithms that

have been used in BCI systems (Section 3.4).
Other reviews of machine learning methods for BCIs can be found in (Bashashatiet al., 2007;

Lotte et al., 2007; Vesinet al., 2006). Good general introductions to machine learning aregiven in
the books of Bishop (2006) and Hastieet al. (2001).

3.2 Basic Concepts

Algorithms that learn from a set of training examples how to map inputs to desired outputs are
called supervised learning algorithms1. The training examples are pairs (x, y) of inputsx ∈ X and

desired outputsy ∈ Y. In generalX can be an arbitrary set, however often the inputs are vectors
with real-valued entries computed with the help of a featureextraction method, i.e.X = RD. The
set of outputsY can be an arbitrary set too, however one often usesY = {1 . . .K}, orY = R. If Y =
{1 . . .K} the outputs are qualitative measurements and the task to be solved is a classification task,
i.e. inputs have to be mapped to one ofK different classes. IfY = R the outputs are quantitative

measurements and the task to be solved is a regression task, i.e. inputs have to be mapped to real
output values. In both cases the problem a learning algorithm has to solve is to choose, based on

the training examples, a function f :X → Y from a family of functionsF , such that new examples,
not contained in the training set, are correctly mapped to the corresponding output. For practical

reasons the family of functionsF is usually indexed by a set of parametersθ, i.e. y = f(x;θ).
Hence, the task of choosing a function is equivalent to choosing parametersθ.

To formalize the notion of learning from training data, it isconvenient to assume that pairs of
inputs and outputs are drawn independently and identically(i.i.d) from a probability distribution

p(x, y). This assumption can be motivated by imagining a fixed deterministic relationship between
inputs and outputs, together with i.i.d noise in the measurement of inputs and outputs. To evaluate
the cost of using a specific function f for predicting outputsfrom inputs, a loss function l :Y ×
Y → R+0 that measures the cost of mapping an input vector to a specificoutput is introduced. The
expected cost (or risk) R associated to a function f can be written as:

R(f) =
∫

l(y, f(x))p(x, y) dxdy. (3.1)

A simple example for a loss function is the 0/1 loss

l(y, ŷ) =



















0 if y = ŷ

1 if y , ŷ,
(3.2)

the risk R is then the average number of classification errors. It can be shown that minimizing the
0/1 loss is equivalent to predicting for each input the output with the maximal, i.e.:

f(x) = arg max
y∈Y

p(y|x). (3.3)

1One can imagine that a teacher or supervisor indicates the desired output for each training example, hence the term
supervised learning algorithm.
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Another simple loss function, which is often used for regression tasks, is the squared error

l(y, ŷ) = (y− ŷ)2, (3.4)

the risk R is then the variance of the estimated outputs ˆy around the true outputsy. It can be shown

that minimizing the squared error loss is equivalent to predicting for each input the conditional
expectation of the output:

f(x) =
∫

yp(y|x)dy. (3.5)

The problem in supervised machine learning is that the distribution p is unknown. Hence,
simple solutions for minimizing the risk, such as those in Equations 3.3 and 3.5, cannot be used.

Usually the only information we have aboutp is a set of training examples (xi , yi), i ∈ {1 . . .N}.
Therefore, it is impossible to directly search for a function f minimizing the expected risk R. A

possible solution to this problem is to use empirical risk minimization, i.e. to use the empirical risk
R̂, the average cost on the training set, as criterion for selecting a good function g:

R̂(f) =
1
N

N
∑

i=1

l(yi , f(xi))

g = arg min
f∈F

R̂(f).

(3.6)

While using the empirical risk as a replacement for the expected risk intuitively seems to be a
good idea, there are some severe problems associated to thisapproach. To understand this, let us

assume for a moment that pairs of inputs and outputs are generated from a fixed linear function with
slopea and interceptb and that i.i.d zero-mean Gaussian noiseni corrupts the outputs:

yi = axi + b+ ni . (3.7)

Using for example the squared error loss function we can now easily use Equation 3.6 to fit func-
tions f from a family of functionsF to the training data. Let us consider a case in which we are

given four training examples and in whichF is chosen to be the family of polynomials of degree
three.

f(x;θ) = θ0 + θ1x+ θ2x2 + θ3x3 (3.8)

In this case we will always be able to find parametersθ that perfectly fit the training data. In other

words, we can always find a polynomial of order three that goesthrough all the four training points
(except for pathological cases in which two or more trainingexamples have the samex value).

However, the error made on examples not in the training set will be high, because a polynomial
going through all training points tends to be a strongly oscillating function, while the function
generating the data is linear (see Fig. 3.1).

The problem we just described is known as theoverfitting problem in the machine learning
literature. Overfitting means that there is a large difference between the risk R and the empirical

risk R̂ and can occur due to several reasons. A first reason is, that not enough training examples
are used. Clearly, in our example, if the training set would have been much larger, sayN = 20,

the danger of overfitting would have been strongly reduced (see Fig. 3.1). A second reason is, that
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Figure 3.1— Illustration of overfitting. Training examples (crosses)were created as follows. Values for the
x-coordinate were drawn uniformly from the interval [0,10].Values for they-coordinate were created from
a linear function with slope 0.5 and intercept 2, with additive Gaussian noise with mean zero and variance 1.
On the left the result of fitting a linear function (dashed line) and a polynomial of degree three (dash-dotted
line) to four training examples is shown. The polynomial overfits and strongly deviates from the underlying
function (solid line). On the right the result of fitting a linear function and a polynomial of degree three to
twenty examples is shown. The polynomial as well as the linear function fit the underlying function relatively
well.

the family of functionsF is too complex for the learning problem at hand. In our example, if we

would have chosenF to be the family of linear functions, the danger of overfitting would have been
reduced, even for small numbers of training examples (see Fig. 3.1). A third reason is noise in the

training data. In our example, if there had been no noise added to the training examples and if we
had used linear functions, we would have obtained R= 0, for all training sets of sizeN ≥ 2.

While the problem of overfitting is controllable for low dimensional problems, for example by

increasing the size of the training set or by simply plottingthe fitted functions, the situation gets
worse for high dimensional problems. This is because the number of training examples needed to

sample the input space with a certain density grows exponentially with the dimensionality. Using
N examples in a one-dimensional input space corresponds to using ND training examples in aD-

dimensional input space. This is known as thecurse of dimensionalityin machine learning literature
(Bellman, 1961). Training data for typical problems with hundreds of input variables is thus almost
always sparsely distributed in input space and the danger ofoverfitting is high.

An approach that is often taken to avoid overfitting is regularization. When regularization is
used, instead of minimizing the empirical risk, a weighted sum of the empirical risk and a regular-

ization term is minimized:

g = arg min
f∈F

R̂(f) + λΩ(f). (3.9)

HereΩ : F → R is a regularization functional, which penalizes complex functions f. The reg-

ularization parameterλ ∈ [0,∞) allows to choose how strongly complex functions are penalized.
While many different regularization functionals can be used, complex mostoften is translated as

nonsmooth, i.e. by using regularization one avoids to choose functions that vary much in small
neighborhoods of the input spaceX. The assumption underlying regularization is then that the

function from which the data is generated is smooth in some sense, i.e. similar inputs give sim-
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ilar outputs. If this assumption is true, regularization leads to better generalization - the risk of
overfitting is reduced. Another, more pragmatic, motivation for penalizing nonsmooth functions is

that training data is sparse. Clearly, it makes no sense to fita complicated function if only a small
number of training examples is available.

In practice often the squared L2 norm of the parameters of the function is used for regularization.

For example, when fitting a polynomial to training data (as described above), the parametersθ are
the coefficients of the polynomials, and we can use

Ω(f) = ‖θ‖2. (3.10)

This has the effect of penalizing polynomials that oscillate much, i.e. nonsmooth polynomials are
penalized, and our learning algorithm will tend to fit smoothfunctions to the data.

To make regularization work it is necessary to carefully choose the regularization parameterλ.

Choosingλ too large will lead to underfitting, i.e. functions that are too smooth will be fitted to the
training data. Choosingλ too small will lead to overfitting. A related problem is that of choosing

a family of functionsF which gives good results for a specific learning problem. Choosing λ
as well as choosingF is known asmodel selectionin the machine learning literature. A simple
procedure for model selection often employed in practice isto use a so-called validation set. This

means that only a part of the training data is used to compute the empirical risk and to fit functions.
Actually, functions are fitted for several values ofλ and for several choices ofF . The result is a set

of functions indexed byλ andF . The other part of the training data - the validation set - is then
used to estimate the risk for each function in this set. Sincethe validation set has not been used for

fitting functions, the empirical risk on the validation set is a realistic estimate of the expected risk
R. Finally the bestλ andF are chosen, and the whole training data is used to fit a function with the

chosen parameters.

A refined version of using a validation set is to use cross-validation. Ink-fold cross-validation
the training set is split intok non-overlapping subsets of sizeN/k. Thenk − 1 subsets are used for

fitting a set of functions with different choices ofλ andF . After training, the left out subset is used
to estimate the expected risk of each of the functions. This process is repeatedk times, i.e. each
subset is left out once, and theλ andF resulting in the smallest average risk are chosen.

3.3 Probabilistic Approaches

The approach to supervised machine learning described in the previous section used loss functions,

regularization functionals, and optimization methods in order to fit functions to a training dataset.
Probabilities were only used for expressing the expected risk of a given function. In this section we

describe approaches to supervised machine learning in which a probabilistic interpretation is given
to loss functions and regularization functionals.

3.3.1 Maximum-Likelihood Estimation

The simplest probabilistic approach to supervised machinelearning is maximum-likelihood (ML)

estimation. The idea underlying ML estimation is that the data can be described with the help of
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a parametric probability distribution. Hence, regressionand classification tasks can be solved in
the following way. First, a probability distribution selected from a parametric family of probability

distributions is fitted to the training data. Then, this probability distribution is used to perform
classification or regression.

Parametric probability distributions of the training dataare often built by negating and exponen-
tiating loss functions. When regarded as a function of the parametersθ, the probability of a training

example is also called the likelihood function. A general example for a likelihood function is:

L(y|x, θ) = p(y|x, θ) = 1
Z

exp(−l(y, f(x;θ))) . (3.11)

Here l is a loss function as described in Section 3.2 andZ is a suitable normalization constant which

assures thatp(y|x, θ) is a valid probability distribution. A more specific example is the likelihood
function corresponding to the squared-error loss, which can be expressed with the help of a Gaussian

probability distribution:

L(y|x, θ) = 1
√

2πσ2
exp

(

− 1

2σ2
(y− f(x;θ))2

)

. (3.12)

So far, we have only described likelihood functions for single training examples. To express the
likelihood of a whole training set, in ML estimation it is almost always assumed that the training

examples are i.i.d. Denoting byX all the input vectors in the training set and byy all the outputs in
the training set, the likelihood can be written as:

L(y|X, θ) =
N

∏

i=1

p(yi |xi , θ). (3.13)

Remember that our goal is to fit a probability distribution tothe training data. This is done by
finding a set of parameters such that the probability of the training data is maximized. To maximize

the probability of the training data, it is convenient to take the logarithm of the likelihood:

log(L(y|X, θ)) =
N

∑

i=1

log(p(yi |xi , θ)) . (3.14)

The ML estimate of the parameters is then equal to the parameters that maximize the log-likelihood:

θML = arg max
θ

log(L(y|X, θ)) . (3.15)

In simple cases, for example when the Gaussian likelihood function from Equation 3.12 is used in

conjunction with functions that are linear in their parameters, closed form solutions for maximizing
the log-likelihood can be derived. In more complex cases, a general approach to maximize the log-

likelihood is to take derivatives with respect toθ and to use gradient descent or other optimization
methods.

Once a probability distribution has been inferred from the training data it can be used for clas-

sification or regression. In a regression task one can for example use the mean ofp(y|x, θML ). In a
classification task one can take decisions by using the following rule:

ŷ = arg max
y∈Y

p(y|x, θML ). (3.16)
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Note that in the above description of the ML approach we have implicitly assumed that a con-
ditional distribution of outputs given inputs is used to model the data. Similarly, in Section 3.2 we

have fitted functions that take a feature vector as input and directly give a class label or regression
target as output. This is called thediscriminativeapproach because the focus is on models that allow

to discriminate different classes or outputs. The discriminative approach makes sense because often
the only information needed to solve a classification or regression task is the conditional probability

of the outputs given the inputs. However, it is also possibleto use parametric models of the joint
distribution of input and outputs to solve supervised learning tasks. Using a joint distribution of

inputs and outputs is known as thegenerativeapproach and is described next.
In the generative approach an approximation ofp(x, y) is inferred from the training data. Gen-

erative models are almost always used for classification problems and work as follows. First, a
parametric family of probability distributionsp(x, y|θ) is defined. Then, using the examples in the
training set, parametersθ are fitted using ML. Using the assumption of i.i.d training examples, the

likelihood L can be expressed as follows:

L(X, y|θ) =
N

∏

i=1

p(xi , yi |θ). (3.17)

As in the discriminative approach, the probability of the training data can be maximized by maxi-

mizing the log-likelihood. In simple cases, for example when p(x, y|θ) is Gaussian, closed form so-
lutions exist. In more complex cases, one can compute derivatives and use an optimization method,

or use the so-called expectation-maximization (EM) algorithm. The latter option is especially in-
teresting if the training data has missing values, for example missing entries in feature vectors or

missing class labels (see (Bishop, 2006) for a detailed description of the EM algorithm).
Once the parametersθML have been fitted to the training data, class labelsy for new inputsx

can be predicted using Bayes rule:

p(y|x, θML ) =
p(y, k|θML )

∑

y∈Y p(x, y|θML )
. (3.18)

3.3.2 Maximum A Posteriori Estimation

ML estimation, as described in the previous section, is verysimilar to empirical risk minimization

(cf. Equation 3.6). In fact, when the likelihood function isbuilt by negating and exponentiating a
loss function, maximizing the log-likelihood is equivalent to empirical risk minimization. A conse-
quence of this is that ML estimation suffers from the same problem as empirical risk minimization:

overfitting.
An approach that can be used to avoid overfitting in probabilistic models is maximum a posteriori

(MAP) estimation. As in ML estimation, in MAP estimation a likelihood function is used to mea-
sure how well a set of parameters fits the training data. Unlike in ML estimation, in MAP estimation

the values parameters can take are restricted by specifyinga prior distribution over the parameters.
Using Bayes rule the prior and the likelihood are combined, and a posterior distribution over param-

eters is obtained. The MAP estimate of parameters is the parameter setting that is most probable
according to the posterior distribution and can be used for prediction in the same way as parameters

derived with the help of ML.
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Similar to the construction of likelihood functions, priors for use in MAP estimation can be
built by negating and exponentiating regularization functionals. A general example for a prior is:

p(θ) =
1
Z

exp(−λΩ(f(.;θ))) . (3.19)

HereZ is a normalization constant that ensures thatp(θ) is a valid probability distribution,Ω is a

regularization functional, andλ ∈ [0,∞) is a hyperparameter which controls how strongly the pa-
rameters are regularized. The prior distribution expresses our beliefs about the form of the function

f that generated the training data. Building a prior distribution with the help of a regularization
functional which penalizes complex functions is equivalent to saying that, a priori, we believe the

training data was generated by a smooth, non-complex function.

Using as example a discriminative model, the posterior probability p(θ|x, y) of the parameters

after observing one training example (x, y) can be expressed using Bayes rule:

p(θ|x, y) =
p(y|x, θ)p(θ)

∫

p(y|x, θ)p(θ)dθ
. (3.20)

The posterior probability of parameters after observing more than one training example can be
conveniently expressed by using the likelihood function from Equation 3.13:

p(θ|X, y) =
L(y|X, θ)p(θ)

∫

L(y|X, θ)p(θ)dθ
. (3.21)

MAP estimation now consists of finding parameters that maximize p(θ|X, y).Since the denominator
of Equation 3.21 does not depend onθ it is sufficient to maximize L(y|X, θ)p(θ).

θMAP = arg max
θ

log (L(y|X, θ)) + log
(

p(θ)
)

. (3.22)

As for ML, in simple cases, the maximization of the posteriorprobability can be achieved in closed

form. In more complex cases gradient descent or other optimization methods have to be used.

Note that MAP estimation includes ML estimation as a specialcase. In fact, MAP estimation

is equivalent to ML estimation if a flat, constant priorp(θ) = c is used. Note also the close re-
semblance of Equation 3.22 and Equation 3.9, which shows that MAP estimation can be seen as a

probabilistic version of regularized empirical risk minimization.

While the MAP approach was demonstrated for the case of discriminative models it can also

be applied to generative models. However, we do not further describe this case here as it is very
similar to the case of discriminative models.

3.3.3 Bayesian Estimation

Bayesian estimation is similar to MAP estimation in that a posterior distribution over parameters

is estimated from prior beliefs and training data. However,whereas in the MAP approach a point
estimate of the parameters is used for making predictions, in the Bayesian approach one integrates

over the parameters in the posterior distribution to make predictions.
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Taking the example of a discriminative model, the distribution used for predictions in the MAP
approach isp(y|x, θMAP). In the Bayesian approach the distribution used for predictions is:

p(y|x,X, y) =
∫

p(y|x, θ)p(θ|X, y) dθ. (3.23)

Using the Bayesian approach to prediction has the advantagethat the a posteriori uncertainty in the

parameters is taken into account. Compared to the MAP and ML approaches, Bayesian methods
will thus in general estimate more accurately the uncertainty in predictions, especially if the training
data carries not enough information to obtain precise estimates of the model parameters.

A second aspect that distinguishes the Bayesian approach from non-probabilistic approaches,
as well as from ML and MAP estimation is model selection (cf. Section 3.2). In non-Bayesian

approaches often cross-validation is used to perform modelselection, i.e. to select regularization
parameters or a family of functions appropriate to a given problem. Using cross-validation can

be problematic because the potentially time-consuming fitting of parameters has to be performed
several times, and hence the overall time needed for training can be long. Moreover, regulariza-

tion parameters and other possibly continuous hyperparameters have to be discretized in order to
perform cross-validation and it is often unclear to which precision hyperparameters should be dis-

cretized. The Bayesian approach to model selection is to compute the probability of a model given
the data. The main advantage of Bayesian model selection is that each model has to be fitted only

once to the training set, whereas ink-fold cross-validation each model has to be fittedk times. A
further advantage is that discretization of hyperparameters is unnecessary.

Using again the discriminative approach as example and denoting models byMi , i ∈ 1 . . .M,

the probability of a model given the data can be expressed using Bayes rule:

p(Mi |X, y) =
p(y|X,Mi)p(Mi )

∑M
i=1 p(y|X,Mi )p(Mi)

. (3.24)

Herep(Mi) denotes our prior belief that modeli is the correct model. Model selection is performed
by selecting the model that is a posteriori maximally probable. Several concepts need to be refined

to better understand Bayesian model selection. First, we need to state more precisely what is meant
by “model”. In general in the context of Bayesian model selection, a model represents a probability
distribution over training datasets. For example, in the discriminative approach a model is a condi-

tional distribution of outputs given inputs. This distribution is formed by combining prior beliefs
and a likelihood function:

p(y|X,M) =
∫

L(y|X, θ,M)p(θ|M) dθ. (3.25)

Models can be formed by choosing different likelihood functions or prior distributions. Different
choices for likelihood functions can be motivated by knowledge about the structure of the problem

to be solved and from assumptions about the distribution of noise in the training data. Different
choices for the prior distribution can for example correspond to different values for the regulariza-

tion parameterλ or to different choices for the regularization functionalΩ (cf. Equation 3.19).
In practice often a flat priorp(Mi) = c is used because for many problems it is difficult to de-

cide a priori which models are probable. With a flat prior, Bayesian model selection is equivalent to
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ML estimation at the level of models. Note that ML estimationat the level of models (or hyperpa-
rameters) is also known as type II ML estimation in statistical literature. Because Bayesian model

selection is equivalent to ML estimation it is in theory alsovulnerable to overfitting. However, often
only a small number of different models is used, or a small number of hyperparameters isestimated.

Hence, in practice the danger of overfitting is small.

3.4 Algorithms for BCI Systems

We now turn our attention to the practical implementation ofthe concepts mentioned in the previ-
ous sections. In particular, we review some examples of supervised machine learning algorithms

that have been used in BCI systems and highlight advantages and disadvantages of the different
algorithms. For the description of the algorithms we assumethat one of the feature extraction meth-

ods from Section 2.4 has been used to transform raw neurophysiologic signals into feature vectors
x ∈ RD.

3.4.1 Support Vector Machines

An example for a learning algorithm that is often used in BCI systems is the so-called support
vector machine (SVM). In the following we will briefly describe some basic concepts underlying

the SVM. A more detailed description of the SVM and related algorithms can be found in Müller
et al. (2001), an extensive description of the application of an SVM in a BCI is given in Garcia

(2004).

To understand how the SVM works it is instructive to first consider the case in which all the

training examples can be separated by a hyperplane, i.e. thecase in which the training data is lin-
early separable. In this case the SVM chooses a hyperplane that maximizes the minimal Euclidean
distance between the hyperplane and the training examples.In the SVM literature this distance is

called the margin. Intuitively, by maximizing the distancebetween training examples and the hy-
perplane the probability that future feature vectors fall on the wrong side of the hyperplane is kept

small. Denoting class labels asyi ∈ {−1, 1}, feature vectors asxi ∈ RD, and parameterizing the
optimal hyperplane byw ∈ RD, b ∈ R, it can be shown that maximizing the margin is equivalent to

solving the following optimization problem:

min
w,b

1
2
‖w‖2

s.t. yi(wTxi + b) ≥ 1 for i ∈ {1 . . .N}.
(3.26)

Hereb is a bias variable, andN is the number of training examples. It can be shown, that the margin

corresponds to the quantity 1/‖w‖, thus a maximization of the margin is achieved by minimizing
‖w‖2. A geometrical interpretation of this optimization problem in the two-dimensional case is

shown in Figure 3.2.

If the data are not linearly separable, Problem 3.26 is infeasible, i.e. no solution that respects all

the constraints exists. To deal with non-separable datasets the constraints are relaxed by introducing
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slack variablesξi and a regularization constantC:

min
w,b,ξi

1
2
‖w‖2 +C

∑

i

ξi

s.t. yi(wTxi + b) ≥ 1− ξi for i ∈ {1 . . .N}
ξi ≥ 0 for i ∈ {1 . . .N}.

(3.27)

If C = ∞ this problem is equivalent to problem 3.26. However ifC is small enough some training
examples are allowed to lie inside the margin or even on the wrong side of the hyperplane. To
obtain good generalization performance it is important to test different values forC and to choose

an optimal value, for example via cross-validation.
It can be shown that the optimization problem solved by the SVM can also be expressed as the

minimization of the sum of a loss function and a regularization functional (Hastieet al., 2001):

min
f∈F

N
∑

i=1

max(0, 1− yi f(xi )) + λ‖f‖2. (3.28)

The function max(0, 1− yf(x)) is called the hinge loss and gives zero penalty to trainingexamples

for which yf(x) ≥ 1. Training examples for whichyf(x) < 1 receive a penalty equal to 1− yf(x).
The function f is in general of the form:

f(x; θ) =
N

∑

i=1

yiθik(x, xi ) + θ0. (3.29)

Here k is a kernel function, which allows to implement nonlinear mappings between inputs and
outputs. If k(x, xi ) = xTxi the linear SVM is obtained. In the nonlinear case the Gaussian kernel

k(x, xi ) = exp(−‖x−xi‖2/σ2) and the polynomial kernel k(x, xi ) = (xTxi+c)d are widely used kernel
functions.

w

γ

γ

x1

x2

Figure 3.2— Linear SVM in two dimensions for a separable dataset. The figure shows the marginγ = 1/‖w‖
and the weight vectorw. The three points on the margin are called support vectors and fully define the
solution, i.e. the solution does not change if the other points are moved while staying on the same side of the
margin.
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In BCI research the SVM has been successfully applied to datarecorded with different paradigms.
Examples include the classification of P300 data (Kaperet al., 2004; Thulasidaset al., 2006), mo-

tor imagery data (Schlöglet al., 2005), and data from other cognitive tasks (Garrettet al., 2003).
Though very good classification accuracies have been achieved in the previously mentioned stud-

ies, several problems exist that hinder the application of SVMs in practical BCI systems. A first
problem is linked to the optimization problems that have to be solved when training SVMs. Solving

these problems can be very time consuming, especially when alarge number of training examples is
used. To reduce the computational costs of training SVMs, optimized algorithms have been devel-

oped (Platt, 1999). Even if optimized solvers are used computational costs remain relatively high,
because cross-validation has to be used to select optimal regularization and kernel parameters and

so multiple SVM instances have to be trained. Adapting a BCI that employs an SVM to a new user
can thus be a cumbersome process, requiring expert knowledge and a relatively large amount of
time.

A second issue is that the loss function used in the SVM is designed for problems in which only
binary yes/no outputs are needed. The problem with binary yes/no outputs is that no information

is given about the confidence the system has in those outputs.We will show in later chapters
of this thesis that a classifier which provides confidence levels, for example in the form of class

probabilities, is of great advantage when building a BCI system.

3.4.2 Generative Models

A basic generative approach to classification that is sometimes used in BCI systems is to use Gaus-
sian densities for the class-conditional distributions offeature vectors. Gaussian probability distri-

butions for vectorsx ∈ RD are parameterized by a mean vectorm ∈ RD and a covariance matrix
Σ ∈ RD×D:

p(x|m,Σ) =
1

(2π)
D
2 |Σ| 12

exp

(

−1
2

(x −m)T
Σ
−1(x −m)

)

. (3.30)

Here |Σ| denotes the determinant of the covariance matrix. To build aclassifier with the help of

this model, a Gaussian density is fitted to the training examples from each class. This results in
conditional probability distributions for all classes. Using Bayes rule the conditional probability
distributions can be used for classification:

p(k|x) =
p(x|mk,Σk)p(k)

∑

k∈Y p(x|mk,Σk)p(k)

k̂ = arg max
k∈Y

p(k|x).
(3.31)

Heremk andΣk denote the parameters for classk. The prior probabilityp(k) indicates the a priori
probability for classk.

A method that is very often used to fit the parameters of a generative model is ML estimation.
For the case of the Gaussian distribution well-known closedform solutions exist for the mean

vectors and covariance matrices. Denoting byCk the set of indices of training examples belonging
to classk the ML estimate for the mean of classk is:

mk =
1
Nk

∑

i∈Ck

xi . (3.32)
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The ML estimate for the covariance of classk is:

Σk =
1
Nk

∑

i∈Ck

(xi −mk)(xi −mk)
T. (3.33)

While the Gaussian distributions are particularly popularfor generative models it is also possible to

use other types of parametric distributions. If no closed form solutions exists for the parameters of
a given distribution, gradient descent with the log-likelihood as objective function can be used for
parameter optimization.

Generative algorithms have been used less frequently in BCIresearch than discriminative meth-
ods. Generative algorithms based on Gaussian distributions have been applied with success to the

classification of motor imagery data (Lemmet al., 2004; Vidaurreet al., 2006) and the classifica-
tion of other cognitive tasks (Curranet al., 2004; Keirn and Aunon, 1990). A potential advantage

of using the generative approach in a BCI system is that a priori knowledge about neurophysiologic
signals can be modeled relatively easy (see for example (Chiappa, 2006)). Further advantages are

that generative approaches can readily be used for multi-class problems, that generative approaches
can easily deal with missing data, and that a probabilistic output is given. A potential disadvantage

is that in generative approaches often too many parameters have to be learned. In fact, in generative
approaches the joint distribution of input vectors and outputs is modeled, while for classification
tasks it is sufficient to model decision boundaries between classes. In other words, modeling the

joint distribution of input vectors and outputs often implies modeling structures that are not impor-
tant for classification.

3.4.3 Bayesian Algorithms

Bayesian techniques have been used relatively rarely in thearea of BCI systems. However, the few

examples in which Bayesian techniques have been used show that with their help systems can be
built that offer functionality which goes beyond that of many other systems.

A basic example for the use of Bayesian techniques in a BCI system can be found in the study of
Roberts and Penny (2000). In the system presented by Robertsand Penny an autoregressive (AR)
model was used to extract features from EEG data recorded while the subject performed either

mental arithmetic or imagined hand movements. The coefficients of the AR model were classified
with the help of linear logistic regression, which is a method for two-class classification problems.

In logistic regression models class probabilities are computed as follows:

p(y = 1|x,w) =
1

1+ exp(−wTx)
. (3.34)

Herew denotes the parameters of the classifier, and the probability p(y=-1|x,w) can be easily com-
puted by using 1− p(y = 1|x,w). The likelihood function corresponding to the logistic regression

model is

L(y|X,w) =
N

∏

i=1

p(yi = 1|x,w)ti p(yi = −1|x,w)1−ti , (3.35)

where

ti =
yi + 1

2
. (3.36)
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In order to infer the model parameters, Roberts and Penny used an isotropic Gaussian prior with
regularization parameterα

p(w|α) =
(

α

2π

)
D
2

exp(−α
2

wTw), (3.37)

whereD is the order of the AR model used for feature extraction, i.e.the dimensionality of the
feature vectors. The posterior distribution resulting from the combination of the logistic regres-

sion likelihood and a Gaussian prior cannot be expressed in closed form and hence was approxi-
mated with a Laplace approximation (see (Bishop, 2006) for more information about the Laplace

method). The regularization parameterα was estimated with the help of type II ML estimation (see
Section 3.3.3 and (Roberts and Penny, 2000) for further details).

The probabilities over classes computed with Bayesian logistic regression where exploited in
two ways in the system of Roberts and Penny. First, probabilities obtained from several consecutive
EEG segments were used to obtain temporally smoothed estimates of class probability. Second,

a reject-class was introduced in order to reject EEG segments for which no sufficiently certain
decision could be taken. EEG segments were assigned to the reject-class, whenever the maximum

class probability was smaller than a thresholdd ∈ [ 1
2, 1], i.e. whenever:

max
k∈{−1,1}

p(y = k|x,w) < d. (3.38)

As was shown by Roberts and Penny, the temporal smoothing, aswell as the use of a reject-class
lead to significantly increased classification accuracy when compared to a system working without

these features.
Other interesting examples for the use of Bayesian methodology in BCI systems can be found in

the work of Sykaceket al. (2003). In this work the authors present two algorithms for classification
of EEG data recorded during the performance of different cognitive tasks. The innovative aspect of

the first algorithm is that it takes into account uncertaintyin the features derived from neurophys-
iologic signals. This is different from the standard approaches to supervised machine learning in

BCIs in which features are regarded as fixed values. As has been shown by Sykaceket al., treating
features as latent variables results in higher classification accuracies than treating features as fixed
values. An important drawback of this algorithm is however that Monte Carlo techniques have to

be used and that computational complexity is high.
The innovative aspect of the second algorithm presented by Sykaceket al. is that it is adaptive.

This means the algorithm is capable to react to nonstationarities in the relation between neuro-
physiological signals and the underlying cognitive tasks.The adaptivity is achieved by treating the

parameters of the classifiers as state variables in a first order Markov process. An update of the
classifier parameters after observing data (xt, yt) at timet is expressed as follows:

p(θt |yt,Dt−1) =
∫ ∫

p(yt |xt, θt)
p(yt)

p(θt |θt−1, λ)p(θt−1|Dt−1)p(λ)dθt−1dλ. (3.39)

HereDt−1 denotes the data observed up to timet−1 andλ serves to automatically control the speed
of adaptation. The conditional distributionp(θt |θt−1, λ) is multivariate Gaussian with meanθt−1

and covarianceλI . An experimental comparison of the adaptive classifier withan otherwise equiv-
alent but static classifier showed that the adaptive classifier often outperformed the static classifier

(Sykaceket al., 2003).
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In summary, the main advantage of the Bayesian approach is that it allows to build functionality
into BCI systems, which is difficult to obtain with other approaches. Examples for such function-

ality are the automatic estimation of regularization parameters, the rejection of data that cannot be
classified with certainty, the consideration of uncertainty in features, and the adaptation to tem-

poral nonstationarities. A potential difficulty with the Bayesian approach is that often no closed
form solutions exist for the integrals which are at the basisof Bayesian inference and prediction.

A possible solution to this problem is to use sampling techniques such as Monte Carlo sampling.
This approach is however not advisable in BCI systems due to its high computational complexity.

Another possible solution, which is more suited for the use in BCI systems, is to use deterministic
approximation schemes, such as the Laplace method or variational inference (see (Bishop, 2006)

for more details about such methods).

3.5 Conclusion

In this chapter we have given a brief introduction to supervised machine learning methods for BCI
systems. In the first part of the chapter we have reviewed non-probabilistic and probabilistic ap-

proaches to supervised learning and have described basic concepts, such as loss functions, risk,
overfitting, regularization, model selection, and cross-validation. In the second part of the chapter
we have reviewed some examples of supervised learning algorithms that have been used in BCI

systems. During the discussion of the individual algorithms it became apparent that algorithms
which are to be used in practical BCI systems ideally should fulfill the following requirements.

First, algorithms should be robust with respect to outliers. This is important because neurophysio-
logic signals can contain many outliers and artifacts, caused for example by eye-blinks and muscle

activity. Second, algorithms should be of low computational complexity during inference and pre-
diction. Low computational complexity during inference reduces the time needed to setup a BCI

system. Low computational complexity during prediction iscrucial because in BCI systems data
should be processed in realtime. Third, algorithms should provide confidence levels for their predic-

tions or, equivalently, probabilistic outputs. This is important because probabilistic outputs provide
a natural basis to combine information obtained from different sources and to use decision theory

when taking decisions. As we will see in later chapters of this thesis, combining information as
well as taking decisions in a principled manner allow to build advanced BCIs.

The Bayesian approach to supervised machine learning allows one to build algorithms that

fulfill many of the requirements described above. Nevertheless, Bayesian techniques have been
used only relatively rarely in the area of BCIs. In this thesis we will present Bayesian algorithms

that can learn classifiers quickly, robustly, and fully automatically. Moreover, with these algorithms,
electrode configurations can be adapted to specific users andinformation from several data segments

can be aggregated. Before describing the details of our algorithms, we review in the next chapter
the specific type of BCI used in this thesis, namely BCIs basedon the P300 evoked potential.
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Review of P300-Based
Brain-Computer Interfaces 4
4.1 Introduction

After the general discussion of BCI systems in Chapter 2 and the review of supervised machine
learning in Chapter 3 we now give a more detailed review of thetype of system used in this thesis,

that is to say P300-based BCIs. First, in Section 4.2 we describe the P300 from a neuroscientific
point of view, i.e. we list conditions under which the P300 can be evoked and factors that influence
the characteristics of the P300. Then, in Section 4.3 the basic idea underlying P300-based BCIs is

introduced and several systems implementing this idea are described. In Section 4.4 the algorithmic
aspects of P300-based BCIs are discussed. Finally, in Section 4.5 criteria for evaluating the different

systems and algorithms are described. The chapter is summarized in Section 4.6.

4.2 The P300 Event-Related Potential

Event-related potentials (ERPs) can be divided into two classes. Exogenous ERPs are the result
of early, automatic processing of stimuli and have a latency, amplitude, and topographic distribu-

tion that depends mainly on the physical stimulus characteristics. Endogenous ERPs are the result
of later, more conscious processing of stimuli and have characteristics that depend mainly on the

stimulus context, i.e. on the task the subject was given and on the attention the subject pays to the
stimuli. An endogenous ERP that has gained much attention inthe neuroscientific and medical re-

search communities is the P300 (see Fig. 4.1). The P300 is an interesting and fruitful research topic
because it can be reliably measured and because the characteristics of the P300 waveform, such as

for example amplitude and latency, can be influenced by various factors. Since the discovery of
the P300 by Suttonet al. (1965) many studies have tried to uncover the psychologicaland neuro-

physiological meaning of the P300 by varying the way stimuliare presented and by observing the

41
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Figure 4.1 — Typical P300 wave. The P300 (or P3) is a positive deflection in the EEG, which appears
approximately 300 ms after the presentation of a rare or surprising stimulus. A series of negative and positive
components (N1, P2, N2) precedes the P3. While the P3 reflectshigh-level processing of stimuli, the earlier
components reflect low-level, automatic processing of stimuli.

corresponding changes in the waveform of the P300. Other studies have linked the characteristic of
the P300 to subject specific factors such as gender, age, or brain diseases, for example Alzheimer

or schizophrenia. As it is impossible to review all these studies in detail, the following discussion
is restricted to points that are important for the use of the P300 in a BCI. Readers who are keen to

learn more about the P300 are referred to the reviews in (Donchin, 1981), (Hruby and Marsalek,
2003), and (Nieuwenhuiset al., 2005).

To evoke the P300 different stimulus modalities and paradigms can be used. Regarding the stim-
ulus modality, auditory, visual, tactile, gustatory, or olfactory stimuli can be employed. However,

for practical reasons, often auditory or visual stimuli areused. Mainly two paradigms are employed,
the oddball paradigm and the three-stimulus paradigm. In the oddball paradigm two different stim-

uli are used, a target (or oddball) stimulus and a nontarget stimulus. The two stimuli are presented
in a random sequence and the target stimulus appears only rarely. Subjects are instructed to respond

to each occurrence of the target stimulus and to ignore the nontarget stimuli. For example subjects
can be instructed to react with a button press to each 1000 Hz tone in a random sequence of 1000
Hz and 2000 Hz tones.

The three-stimulus paradigm is a modified oddball paradigm in which a so-called distracter
stimulus appears infrequently in the sequence of target andnontarget stimuli (Courchesneet al.,

1975). The distracter stimulus is usually not mentioned when giving instructions to the subjects and
so it surprises subjects when it first appears in a sequence. To increase the effect of surprise, several

unique distracter stimuli are used and each distracter stimulus is presented only once. The distracter
stimuli are perceptually different from the target and nontarget stimuli. For example dog-barks or

other environmental sounds can be used in an oddball sequence consisting of 1000 Hz and 2000 Hz
tones.

Different types of P300 can be observed in the two paradigms described above. In the classical
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Figure 4.2— Paradigms for evoking the P300. Left: In the oddball paradigm a sequence of target (T) and
nontarget (N) stimuli is presented in random order. The probability for target stimuli is low, and subjects
are instructed to react to the targets, either by a button press or by silently counting the targets. Each target
stimulus evokes a P3b. Right: In the three-stimulus paradigm distracter stimuli are added to the sequence of
target and nontarget stimuli. A P3a is evoked by surprising distracter stimuli.

oddball paradigm, target stimuli evoke the so-called P3b. The P3b has a latency of about 300-500
ms and can be observed mostly over centro-parietal brain regions. The P3b appears only if subjects

pay attention to stimuli and disappears if subjects do not pay attention to stimuli. When subjects
do not pay attention to stimuli, the target stimuli in the oddball paradigm evoke a different type of

P300 - the so-called P3a (Squireset al., 1975). The P3a has a latency of about 200-400 ms and
can be observed mostly over fronto-central brain regions. In the three-stimulus paradigm the target

stimuli also evoke a P3b. The distracter stimuli however evoke a P3a (Courchesneet al., 1975). The
relation between the different paradigms and the P3a and P3b is summarized in Fig. 4.2.

In addition to the dependence on different experimental paradigms, the P300 is also influenced
by many other factors. The dependence of the P300 on these factors shows that the P300 is not

a static, fixed phenomenon but rather an inherently variableresponse of the brain, occurring in
situations in which novel or improbable and task-relevant stimuli have to be processed. Some

important factors influencing the P300 are listed below.

• Target Probability

The P3b peak amplitude is inversely related to the probability of the evoking stimulus. High
amplitude P3b waves are evoked when the probability of the target stimulus is low. Low

amplitude P3b waves are evoked when the probability of the target stimulus is high. In
practice, the probability for target stimuli is usually setto values around 10% in order to

reliably evoke the P300. In addition to the effect of global target probability, the amplitude of
the P3b is also affected by local target probability. This means that amplitude is high when

many nontarget stimuli precede a target stimulus and that amplitude is low if a small number
of nontarget stimuli precedes a target stimulus (Squireset al., 1976).

• Interstimulus Interval

The amplitude of the P3b wave is positively correlated to theinterstimulus interval (ISI),
i.e. to the amount of time between two consecutive stimuli. Long ISIs lead to high ampli-

tudes, short ISIs lead to smaller amplitudes.



44 C 4. R  P300-B B-C I

• Habituation

The amplitude of the P3a habituates. After presentation of many distracter stimuli subjects

get used to these stimuli and P3a amplitude decreases (Courchesne, 1978). The amplitude of
the P3b is mostly unaffected by long-term repetition of stimuli.

• Attention

The amplitude of the P3b wave depends on how much attention subjects pay to stimuli and

on how concentrated subjects are. In fact, the P3b wave completely disappears if subjects
are not actively engaged in an oddball task. The P3a wave on the contrary remains mostly

unaffected by changes in attention and can be observed even if subjects completely ignore the
stimuli.

• Task Difficulty

The latency of the P3b increases and the amplitude decreaseswith increasing task difficulty.

For example target tones being very different from nontarget tones yield higher P3b ampli-
tudes than target tones being only a little different from nontarget tones (Polich, 1987). For

the P3a the effect of task difficulty is different from the effects for the P3b. Increasing the
difficulty of discrimination between target and nontarget tonesin a three-stimulus paradigm

will lead to increased P3a amplitudes. In addition to stimulus novelty the P3a thus also seems
to be related to perceptual discrimination difficulty between target and nontarget stimuli. The

P3b amplitude decreases in such a setup as expected (Hagenet al., 2006).

The paradigms used for evoking the P3a and P3b, together withthe factors influencing the shape

of the P3a and P3b, allow to draw conclusions about the psychological and physiological meaning of
these ERPs. In general the P3a seems to be related to frontal lobe function and is evoked by stimuli

that require attention and subsequent processing. In particular, it has been proposed that the P3a is a
part of the so-called orienting response, i.e. the responseof the human body to novel, surprising or

potentially threatening situations, consisting of rapid changes in heart rate, skin conductance, and
other physiological parameters (Courchesneet al., 1975; Knight, 1996). The P3b is thought to be

related to processes for context updating, processes for updating “models of the environment”, and
to stimulus evaluation. In contrast to overt, immediate responses to a stimulus these processes (and
the P3b) are thought to be part of high-level, metacontrol processing (Donchin and Coles, 1988).

Note however, that the context updating model of Donchin andColes has been criticized by Verleger
(1988) who promotes a theory in which the P300 is a sign of context closure. In this theory the P300

is linked to expected events, instead of unexpected events as in the theory of Donchin and Coles. In
summary, a conclusive theory about the role of P3a and P3b in human information processing has

yet to be established.

4.3 P300-Based BCI Systems

The basic idea underlying P300-based BCI systems is to use anoddball-like paradigm and to let the
user decide which stimulus plays the role of the target stimulus. As the P300 (P3b) occurs only if

a subject voluntarily reacts to a target stimulus, the target chosen by the user can be automatically
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Figure 4.3 — Working principle of the P300 speller. Left: Example for a symbol matrix that can be used
in the P300 speller. Flashes of rows or columns are used as stimuli. The stimuli are numbered from 1 to 12.
Right: A random stimulus sequence. If the user concentratesfor example on the letter ’B’, a P3b will be
evoked for stimuli 2 and 7.

inferred from the EEG recorded during stimulus presentation. More specifically, the sequence of

events in a P300-based BCI is usually as follows. First, the user decides on a command he wants
to execute with the help of the BCI. Then, stimuli are presented and the user concentrates on

the stimulus associated to the desired command. After stimulus presentation the recorded EEG is
analyzed with the help of a classification algorithm (see Section 4.4). The goal of this analysis is

to infer which stimulus was chosen as target by the user. If the analysis is successful the command
associated to the chosen stimulus is executed by the BCI system. Below we present several systems
that implement this idea.

4.3.1 P300 Speller

The first P300-based BCI has been presented by Farwell and Donchin (1988). In their work a 6×6

matrix containing the letters of the alphabet and some othersymbols was displayed on a computer
screen. Rows and columns of the matrix were flashed in random order, and subjects could choose

a symbol from the matrix by counting how often it was flashed. Flashes of the row or column
containing the desired symbol constituted target stimuli and evoked a P300 while all other flashes of

rows and columns constituted nontarget stimuli and did not evoke a P300. To infer which symbol the
user wanted to select, it was thus sufficient to find out which flashes evoked a P300. The principle

underlying the P300 speller is depicted in Fig. 4.3.

Since the work of Farwell and Donchin several researchers have proposed extensions and mod-
ifications of the basic P300 speller paradigm. Allison and Pineda (2003) tested the impact of dif-

ferent matrix sizes on the amplitude and latency of the P300.They presented matrices of size
4×4, 8×8, and 12×12 to their subjects. Instead of single symbols the entries in the matrix were

digrams, i.e. pairs of letters. The outcome of their study was that P300 latency decreased and am-
plitude increased as matrix size was increased. Note that this is in line with the relation between

target probability and P300 amplitude described in Section4.2: the smaller the target probability,
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the higher the P300 amplitude. Unfortunately in the study ofAllison and Pineda classification of
the P300 signals and thus the automatic detection of the symbol the user wanted so select was not

attempted. The impact of different matrix sizes on the communication speed achievable with the
P300 speller thus remained unclear.

Another modification of the basic P300 speller, the so-called single display paradigm, was pro-
posed by Guanet al. (2004). In their system, instead of flashing whole rows and columns of the

symbol matrix, single symbols were used as stimuli. This hasthe effect of reducing the probability
for the target stimulus. In the basic P300 speller paradigm the target probability is 1/6 ≈ 0.16,

while in the single display paradigm it is 1/36≈ 0.03. In the experiments performed by Guanet al.

the lower target probability led to higher P300 amplitudes and better classification accuracy than in

the basic P300 speller.

Many other studies were concerned with classification algorithms for the P300 speller and payed
less attention to stimulus display aspects. These studies are described in Section 4.4.

4.3.2 Virtual Apartment

A departure from the P300 speller paradigm was initiated by Bayliss (2003) who tested if the P300

could be evoked in a virtual reality environment. In the system presented by Bayliss, subjects
viewed a virtual apartment alternatively on a monitor or through a head-mounted display. Control
of several items in the virtual apartment, for example switching on/off a lamp, was possible by

concentrating on small spheres that were flashing in random order over the controllable items. The
outcome of the study was that only small differences existed between the P300 waves recorded in

the monitor and head-mounted display conditions. It was thus shown that virtual reality, which
allows for complex, yet controllable experimental environments, is an interesting alternative to

other, simpler P300 BCI paradigms.

4.3.3 Cursor Control

Yet another P300 BCI paradigm was presented by Polikoff et al.(1995). The idea behind the system

described by Polikoff et al. is to allow users to control a two-dimensional cursor with the help of
the P300. To implement this idea a fixation cross with target arms in the north, east, south, and

west directions was displayed on a monitor. At the end of eacharm small crosses were displayed
and temporarily replaced by asterisks. The replacement of crosses occurred in random order, and

to move the cursor in a given direction subjects were instructed to count the number of asterisks
appearing at the corresponding target arm. While in the study of Polikoff et al. actual cursor

movement was not implemented, an offline analysis showed that cursor control with the help of the
P300 was in principle possible.

4.3.4 Systems for Disabled Subjects

The cursor control paradigm was further explored by Piccione et al. (2006). Flashing arrows were
displayed in the peripheral area of a screen and subjects could move a cursor by concentrating on

one of the arrows. Piccioneet al. tested their system with five severely handicapped and seven
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able-bodied subjects. The outcome of their study was that handicapped as well as able-bodied
subjects were able to control cursor movement with their P300 signals. The communication speed

achieved by the severely handicapped subjects was significantly lower than that of the able-bodied
subjects. Nevertheless, the study of Piccioneet al. (2006) was one of the first studies showing that

P300-based communication is possible for severely handicapped subjects.

Another study testing P300 based communication with severely disabled subjects was presented
by Sellers and Donchin (2006). A paradigm similar to the P300speller was used by Sellers and

Donchin (2006), however the matrix size was reduced to 2×2. The motivation for reducing the
matrix size was to simplify use of the system for disabled subjects who might have visual deficits

and thus might not be able to concentrate on a small item on a screen. Sellers and Donchin also
tested auditory stimuli and combinations of visual and auditory stimuli. The results obtained in the

study showed that communication with the help of the P300 waspossible in the auditory, the visual,
and in the combined auditory-visual modality. Furthermoreit was shown that communication was

possible for the handicapped as well as for the able-bodied subjects.

4.4 Algorithms for P300-Based BCI Systems

Clearly, in all of the systems described above, algorithms are necessary that can infer the command
a user wants to execute from the EEG recorded during stimuluspresentation. The input for these

algorithms is the EEG recorded during presentation of stimuli, together with the sequence and
timing of stimuli. The required output is the identity of thestimulus that was chosen by the user,

i.e. the identity of the target stimulus. To compute this output in all algorithms described in the
literature the same general approach is employed. First, for each presentation of a stimulus a short
EEG segment, a so-called single trial, is extracted. Then the single trials are classified with the help

of a (non-probabilistic) machine learning algorithm. The outcome of the classification is a score
that indicates for each single trial if a P300 is present or not. Finally the scores from all single trials

are aggregated in order to form a decision about the identityof the target stimulus. In the following
we first describe algorithms that have been used to aggregateinformation from several single trials

(see Section 4.4.1). Then, in Section 4.4.2 we describe the machine learning methods that have
been used to classify single trials.

4.4.1 Algorithms for Aggregating Information from Single Trials

In the simplest type of algorithms the information from single trials is directly used, without aggre-

gating information from several stimuli, i.e. the EEG recorded after each stimulus presentation is
immediately translated into a command (see Fig. 4.4.).

For example in the cursor control system described by Piccioneet al. the following three steps

are repeated until the system is stopped by an operator:

1. One of the four arrows in the peripheral area of the screen is randomly chosen and flashed.

2. The EEG segment recorded during the flash of the arrow is analyzed with a classifier. The

output of the classifier is a score that indicates if a P300 is present in the analyzed segment.
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Figure 4.4— Immediate translation of EEG into commands. Four different stimuli are presented in random
order with an ISI of 500 ms (1,2,3,4). The EEG segment corresponding to each stimulus presentation is
classified (C); the output of the classifier is a score indicating how similar the EEG segment is to a P300. The
classifier scores are immediately used to take decisions (D), i.e. if the classifier score indicates that a P300 is
present, the command associated to the stimulus that evokedthe P300 is executed.

3. If the classifier output is larger than a preset threshold,the cursor moves into the direction of
the arrow chosen in step 1. Otherwise the cursor remains still.

This algorithm has the advantage that the user almost immediately obtains feedback from the sys-
tem. A disadvantage is however that wrong decisions will be taken relatively often. This is the

case because the EEG is a noisy signal and consequently the classifier output for single trials also
contains noise.

To allow for more complex application scenarios, a method that was first described by Farwell

and Donchin (1988) is often used (see Fig. 4.5). In this method stimulus presentation also has to be
started by an operator and stops after all stimuli have been presented a certain number of times (in a

random sequence). To infer a command from the EEG, first the classifier-outputs corresponding to
multiple presentations of one stimulus are summed. Then, the command associated to the stimulus

with the maximal summed classifier score is executed. The main advantage of this approach is
that summing the classifier scores obtained from multiple presentations of a stimulus reduces noise.

The danger of executing an unwanted command is thus greatly reduced. In the original P300 speller
system of Farwell and Donchin for example, flashing each row and column of the symbol matrix

fifteen times allowed for perfect classification. The disadvantage of repeating each stimulus several
times is that sending a command takes more time than when decisions are taken immediately. For

example, if an ISI of 500 ms is used in the P300 speller system and each row and column is flashed
fifteen times, selecting one character takes 15×12×500 ms= 90 s. An additional disadvantage is
that the number of stimulus presentations has to be fixed a priori. This is problematic because

the system cannot take into account fluctuations in the signal-to-noise ratio of the EEG. These
fluctuations can arise for example from changes in the level of concentration of the user or changes

in the electrode-skin connection.

An algorithm that is able to dynamically adapt to fluctuations in the signal-to-noise ratio has

been described by Serbyet al. (2005). In the system of Serbyet al. stimulus presentation is started
by an operator and stops as soon as “enough” data has been acquired or after a fixed maximal

number of stimuli has been presented. Enough data here meansthat the system can take a reliable
decision, i.e. the system presents more stimuli if it is unsure which command the user wants to

send and stops stimulus presentation as soon as it is sure about the desired command (see Fig. 4.6).
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Figure 4.5— Translation of EEG into commands after a fixed number of stimulus presentations (symbols in
squares represent operations, symbols in circles represent variables). Four different stimuli are presented in
random order with an ISI of 500 ms (1,2,3,4). The EEG segment corresponding to each stimulus presentation
is classified (C). The classifier scores from the second blockof stimuli are summed with the scores from the
first block (+). The maximum of the summed scores is computed (M) and the command associated to the
stimulus with the largest summed score is executed (D). In this example each stimulus is presented twice,
however different numbers of stimulus presentations can be used to optimize performance for a given user.

As has been shown by Serbyet al., adapting the number of stimulus presentation to the signal-to-

noise ratio significantly improves the speed of communication achievable with a P300-based BCI.
However, instead of fixing the number of stimulus presentations a priori as in the system of Farwell

and Donchin, now a criterion has to be chosen that allows one to decide how much data the system
requires to take a reliable decision. In the system of Serbyet al. a thresholding technique was

used to decide if more stimuli have to be presented or not but no details about the algorithm for
computing optimal thresholds were given.

4.4.2 Classification Algorithms

All of the methods for aggregating information from single trials, presented in the previous section,
depend on algorithms that can transform a EEG segment into a score which indicates if a P300 is

present or not. Discrimination of P300 and non-P300 EEG segments is a surprisingly problematic
task because the amplitude of the P300 wave is relatively small when compared to the background

EEG activity and because the latency, topography, and amplitude of the P300 differ from subject
to subject. The approach that is usually taken in P300 BCIs tosolve these problems is to use

supervised machine learning algorithms. This means that first in one or several training sessions
a training dataset is acquired that contains many examples of P300 and non-P300 EEG segments

from a specific user. Then, a classifier that can solve the discrimination task is learned from the
training dataset.

A straightforward classification algorithm that has been used with good success in several P300

BCIs consists of the following steps. First, a subset of electrodes positioned at the locations on
the scalp where one expects strong P300 amplitudes is selected. Then the raw signals from these

electrodes are bandpass filtered and downsampled. Finally the filtered and downsampled signals
from the selected electrode subset are concatenated into feature vectors and fed into a machine

learning algorithm.
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Figure 4.6— Decision after a variable number of blocks (symbols in squares represent operations, symbols
in circles represent variables). Four different stimuli are presented in random order with an ISI of 500ms
(1,2,3,4). The EEG segment corresponding to each stimulus presentation is classified (C); the output of the
classifier is a score indicating how similar the EEG segment is to a P300. After the first block of stimulus
presentations, the maximum of the classifier scores is computed (M). If the maximum is larger than a certain
threshold (T), a decision is taken (D), i.e. the systems executes the command associated to the stimulus with
the largest score. If the maximum is smaller than the threshold, an additional block of stimuli is presented.
The classifier scores from the second block of stimuli are summed with the scores from the first block (+).
The maximum of the summed scores is computed and the command associated to the stimulus with the
largest summed score is executed.

This general approach was used in the algorithms described by Kaperet al. (2004) and Thu-
lasidaset al. (2006). In the method described by Kaperet al. (2004) a ten electrode configuration
consisting of the midline electrodes, the parietal-occipital electrodes PO7, P08, P3, P4 and the cen-

tral electrodes C3, C4 was used. A support vector machine (SVM) with Gaussian kernels was used
for classification. The method described by Kaperet al. (2004) was one of the winning entries for

the P300 dataset from the BCI competition 2003 (Blankertzet al., 2004). The algorithm described
by Kaperet al. (2004) was also employed in another study. In this study (Kaper and Ritter, 2004),

classifiers were trained from a pool of data from several subjects and then tested with data from
new, unseen subjects. This is different from the usual approach in which training data from only

one subject is used. The results described by Kaper and Ritter (2004) showed that generalizing to
new subjects without subject-specific training data is in principle possible, however significantly

lower classification accuracies than in the standard approach were achieved.

In the method described by Thulasidaset al. a set of 25 central and parietal electrodes was
used. In addition to the downsampled signals also estimatesof the time-derivatives of the signals

were used. According to Thulasidaset al. the use of the time-derivatives improves classification
accuracy. A SVM with a Gaussian kernel was used for classification. The method described by

Thulasidaset al. was tested with several P300 speller datasets and showed very good performance.
Unfortunately the method was not tested with publicly available datasets and thus a direct compar-

ison with the method of Kaperet al. is impossible.

An alternative to manually fixing parameters for feature extraction (e.g. filter settings and subset

of electrodes) is to let an algorithm select the optimal features from a set of predefined features.
This idea is implemented in the stepwise discriminant analysis (SWDA) algorithm and was used

in the studies described by Farwell and Donchin (1988), Donchin et al. (2000), and Sellers and
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Donchin (2006). In these studies filter settings and a subsetof electrodes were fixed, however
SWDA was used to select timepoints relevant for P300 classification within EEG segments. In a

recent comparison of classification methods for the P300 speller, SWDA turned out to be one of the
best methods in terms of classification performance and in terms of effort needed for implementation

of the method (Krusienskiet al., 2006).

The principle of automatically selecting features was alsoused by Bostanov (2004). In the

algorithm of Bostanov an overcomplete dictionary of continuous wavelets was used to transform
the raw EEG signals into the time-scale space. During training a t-test was used to identify points

in time-scale space at which the difference between the mean wavelet coefficients from P300 seg-
ments and non-P300 segments is high and at which at the same time the variance around these

means is small. The wavelet coefficients with the best t-test results were fed into an linear discrim-
inant analysis (LDA) classifier for classification. The method of Bostanov (2004) was tested with

slow cortical potentials (SCP) and P300 datasets in the BCI competition 2003 and was among the
winning entries for both datasets.

Still another algorithm which used the principle of automatic feature selection was presented by
Rakotomamonjyet al. (2005). In this algorithm recursive feature selection withthe SVM was used

to find an optimal subset of electrodes. To further improve performance several SVM classifiers
were learned from different subsets of the training data. This approach is based onthe assumption

that the distribution of the P300 and non-P300 segments in the training set is variable and thus
cannot be appropriately modeled by a single classifier. The method of Rakotomamonjyet al.(2005)

was tested with very good results on the 2003 BCI competitionP300 dataset and was the winning
entry for the 2004 BCI competition P300 dataset.

In addition to the algorithms based on filtering for feature extraction and the algorithms based
on feature selection a third group of algorithms can be identified. The algorithms in this group use

independent component analysis (ICA) for spatial feature extraction (Piccioneet al., 2006; Serby
et al., 2005; Xuet al., 2004). The first step in all algorithms using ICA is to compute independent

components from the training data. Then the components thatpresent well the P300 are selected.
This can be either done manually, i.e. by inspecting the data(Serbyet al., 2005), or by defining

criteria that allow to automatically select P300 like components (Piccioneet al., 2006; Xuet al.,
2004). When the algorithm is applied to new data, the data is projected on the retained independent
components and then classified. Different types of classifiers were used in combination with ICA as

feature extraction method. Xuet al. proposed to use LDA, Serbyet al. tested matched filters and a
maximum-likelihood based classifier, and Piccioneet al. used a neural network. While the methods

of Serbyet al. and Piccioneet al. were only tested on proprietary datasets, the algorithm described
by Xu et al. was tested on the 2003 P300 competition datasets and was one of the winning entries

in this competition.

4.5 Evaluation of Systems and Algorithms

In the previous sections we have seen that to build a P300-based BCI a lot of different approaches
can be taken. Different approaches exist for stimulus presentation, for the aggregation of informa-

tion from single trials, and for discriminating P300 from non-P300 segments. As a consequence,
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it is virtually impossible to find a sensible metric with which all the different systems can be com-
pared and evaluated. Nevertheless, it is possible to describe the properties of P300-based systems

that should enter in a metric for comparison and evaluation.In the following we mention some of
these properties, concentrating especially on aspects related to the practicality and suitability for

daily use of BCI systems.

A certainly very important aspect of any BCI system is the achievable speed of communication.
In a P300-based BCI the speed of communication depends on theISI, the number of different

stimuli, the classification accuracy, and the control flow algorithm. To abstract from all these factors
it is useful to use the information transfer rate (also knownas bitrate, or capacity) as a metric for

the speed of communication. Roughly speaking the bitrate measures the number of bits that can
be transferred from a user to the system in a given amount of time. It is also commonly used to

evaluate other, non-P300 BCI systems. The bitrate b in bits/min has also been used to characterize
other types of BCI systems and can be computed according to the following equation (Wolpaw

et al., 2002):

b(N, p, t) =

(

log2(N) + p log2(p) + (1− p) log2

(

1− p
N − 1

))

60
t
. (4.1)

HereN denotes the number of different commands a user can send,p denotes the probability that a
command is correctly recognized by the system, andt is the time in seconds that is needed to send

one command. Note that according to the noisy-channel coding theorem, the bitrate is an upper limit
on the number of bits that can be transmitted, given the characteristics of the transmission channel

(MacKay, 2003). This limit can only be attained if optimal encoding and decoding algorithms are
used. Since in a BCI the encoding has to be performed by the user and since optimal encoding

algorithms are relatively complex, the bitrate is mostly oftheoretical value.

Other than the bitrate, several important characteristicsconcern the overall practical usability of
a BCI system, particularly with regard to usage of a system byseverely handicapped users. Clearly,

any system for handicapped users should be adapted to their often limited cognitive abilities. For
example, using a large number of different stimuli, possibly in combination with very short ISIs

might strongly limit the usability for subjects with visualimpairments. In other words, the number
of different stimuli, the size of the stimuli, and the ISI should be adapted to a user. In general any

BCI system targeted for use by handicapped subjects should also be tested by such subjects.

A further point influencing the practicality of a given system is the time and effort needed to
setup and adapt the system for a new user. Clearly, systems that use only few electrodes take less

time for setup and are more user friendly than systems with many electrodes. However, if too few
electrodes are used not all features that are necessary for accurate classification can be captured and

communication speed decreases. A good tradeoff between time needed for setup and classification
accuracy thus has to be found. Moreover, it is important to minimize the time and effort needed

to train a classifier for a specific user. If a system is to be accepted by end users, lengthy training
sessions should be avoided. Therefore, the amount of training data that is necessary to achieve a
certain communication speed is probably as important a characteristic as the communication speed

itself.

In addition it is important to limit the amount of user intervention necessary during setup of a

system. Several of the prototype systems described in the previous section rely on the intervention
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of a trained technician during setup, for example to select ICA components or to choose hyperpa-
rameters for classification. This is clearly undesirable and a practical system should be able to adapt

to new users according to a simple and fully automatic protocol.

4.6 Conclusion

In this chapter we have reviewed P300-based BCI systems. TheP300 is an endogenous ERP, which
appears approximately 300 ms after the presentation of rare, task-relevant or surprising stimuli.

While to analyze the psychological and physiological aspects of the P300 different experimental
paradigms can be used, in P300-based BCIs usually a variant of the classical oddball paradigm is

employed. In fact, the user can select one of several commands by concentrating on the stimulus
associated to the command. This basic principle has been used in different designs, targeted toward

different application scenarios. Besides developing new application scenarios much research in the
area of P300-based BCIs has also concentrated on the development and refinement of algorithms

for inferring the command a user wants to send. These algorithms usually consist of two modules,
one module controls stimulus presentation and the aggregation of information obtained from several

single trials. The second module has the task of transforming single trials into scores that indicate
if a P300 is present or not. Much research has been dedicated to the latter type of algorithms, i.e. to
feature extraction methods and supervised machine learning algorithms for discriminating target

trials from nontarget trials.
However, only little research has concentrated on the problem of optimally integrating infor-

mation from several trials. In fact, the most interesting scheme for aggregating information from
several trials, namely the scheme in which decisions are taken adaptively (cf. Fig. 4.6), has been

used in only one study (Serbyet al., 2005). Moreover, in this study no details have been given about
the exact implementation of this scheme. Another observation that can be made when reviewing

the supervised machine learning methods for P300-based BCIs is that when training classifiers for
a specific subject usually only data from that subject is used. The only exception is the study of

Kaper and Ritter (2004) in which SVM classifiers trained on data from a pool of subjects were used
to classify data from new, unseen subjects. A last observation is that all classification algorithms,

exclusively use features related to the P300 to perform classification. Side information for example
from bigram probabilities in a speller application or information from other phenomena than the
P300 is difficult to integrate in existing algorithms.

In the next chapter we present Bayesian classification algorithms that can be used in a P300-
based BCI. As we will see, these algorithms allows us to remove some of the above mentioned

limitations of classification algorithms for P300-based BCIs.



54 C 4. R  P300-B B-C I



Bayesian Algorithms for
EEG Classification 5
5.1 Introduction

In this chapter we describe Bayesian machine learning algorithms that are well suited for BCI
systems using EEG measurements. The algorithms are using a two-stage procedure in which first a

probability distribution over discriminant directions isinferred from training data using a Bayesian
approach. Then heuristics are used to estimate class probabilities for new input vectors from the

distribution over discriminant directions.

Before describing the Bayesian algorithms for EEG classification we discuss simpler, related
algorithms, namely least squares regression and Fisher’s discriminant analysis (FDA). This discus-

sion can be found in Section 5.2, where in particular it is shown that FDA is a special case of least
squares regression. After the introductory material, an algorithm is discussed that we have termed

Bayesian linear discriminant analysis (BDA) (see Section 5.3). BDA is especially interesting for
use in BCIs because it is robust to noise in the training data and because it can learn classifiers

quickly and without intervention of expert users. The technical basis for BDA is the so-called
evidence framework for Bayesian regression (MacKay, 1992).

In Section 5.4 we show how a technique that is known as automatic relevance determination

(ARD) in the machine learning literature (MacKay, 1995; Tipping, 2001) can be used to perform
electrode selection in our BCI application. The resulting algorithm is termed sparse Bayesian linear

discriminant analysis (SBDA) and is a simple extension of BDA.

Finally, in Section 5.5 we describe algorithms that allow tocompute class probabilities from

the distribution over discriminant directions learned with BDA or SBDA. We also show how these
probabilities can be used to build a straightforward implementation of a P300-based BCI in which

the number of presented stimuli is dynamically adapted suchthat a preset, approximate bound
on the probability of classification errors is not exceeded.A summary of the chapter is given in
Section 5.6.
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5.2 From Least Squares Regression to Fisher’s Discriminant

5.2.1 Least Squares Regression

Regression analysis is arguably one of the most often used tools in science and engineering. While

many different linear and nonlinear methods for regression analysisexist, here we concentrate on
methods that are relevant for the developments in later sections of this chapter, namely on linear
regression and ridge regression. Other, more extended reviews of regression can for example be

found in (Hastieet al., 2001) or in (Bishop, 2006).

In linear regression one is given a training set of target valuesti ∈ R, i ∈ {1 . . .N} and corre-
sponding input vectorsxi ∈ RD+1, i ∈ {1 . . .N}. The goal is to find a weight vectorw ∈ RD+1 that

can be used to map the input vectors to target values. To this end, the sum of squared errors between
regression targets and mapped input vectors is minimized:

J(w) =
N

∑

i=1

(ti − wTxi)
2. (5.1)

To unclutter the notation, we assume here that the (D + 1)st entry in the input vectors is equal to 1

for all i. Consequently, the (D + 1)st entry of the weight vector is equivalent to the bias value as is
usually done in regression.

By setting the derivative of J with respect tow to zero it can be shown that the weights and bias
that minimize the sum of squared errors on the training set satisfy the following equation:

w = (XXT)−1Xt , (5.2)

where

X =
[

x1 x2 · · · xN

]

, t =
[

t1 t2 · · · tN
]T
. (5.3)

If the dimensionalityD of the input vectors is nearly as big as the number of trainingexamplesN,
one can observe the effect of overfitting. This means that on the training set a near to perfect fit is
achieved, however, for pairs of input vectors and target values that are not in the training set typically

large errors will be observed (see Chapter 3 for a discussionof overfitting). If the dimensionality
is bigger than the number of training examples, the matrixXXT becomes singular and cannot be

inverted. One approach to avoid overfitting and singular matrices is regularization. The canonical
approach to regularized regression is called ridge regression (Hoerl and Kennard, 1970). In ridge

regression a modified objective function is used:

J(w) =
N

∑

i=1

(ti − wTxi)
2 + λwTI ′w. (5.4)

HereI ′ is an identity matrix in which the (D + 1)st diagonal element is set to zero. The regulariza-
tion termλwTI ′w has the effect of shrinking the optimal solution for the firstD weights towards the

origin, while leaving the solution for the bias unconstrained. For a correct choice of the hyperpa-
rameterλ weight vectors with a large norm and overfitting are thus avoided. To chooseλ one can

use cross-validation or other model selection methods. As for regression without regularization, one
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can set the derivative of J to zero in order to find the solutionthat minimizes the objective function.
The solution to the ridge regression problem satisfies the following equation:

w = (XXT + λI ′)−1Xt . (5.5)

Once the weights and the bias have been estimated from training data, either by using regression

or ridge regression, the target valuest̂ for new input vectorŝx are computed as follows:

t̂ = wTx̂. (5.6)

5.2.2 Fisher’s Discriminant

While in regression the goal is to map input vectors to targetvalues, the goal in FDA is to compute

a discriminant vector that separates two or more classes as well as possible (Fisher, 1936). Here
we consider only the two-class case. We are given a set of input vectorsxi ∈ RD, i ∈ {1 . . .N}
and corresponding class-labelsyi ∈ {−1, 1}1. We denote byN1 the number of training examples
from class 1 (i.e. examples for whichyi = 1), byC1 the set containing the indices of the training
examples belonging to class 1, and use analogous definitionsfor N2, C2. The objective function for

computing a discriminant vectorw ∈ RD then is

J(w) =
(µ1 − µ2)2

σ2
1 + σ

2
2

, (5.7)

where

µk =
1
Nk

∑

i∈Ck

wTxi , σ
2
k =

∑

i∈Ck

(wTxi − µk)
2. (5.8)

In FDA the objective function is maximized. This amounts to searching for discriminant vectors

that result in a large distance between the projected means and small variance around the projected
means (small within-class variance). To compute directly the optimal discriminant vector for a

training dataset, matrix equations for the quantities (µ1−µ2)2 andσ2
1+σ

2
2 can be used. To this end,

we first define the class meansmk for k ∈ {1, 2}.

mk =
1
Nk

∑

i∈Ck

xi (5.9)

Now we can define the between-class scatter matrixSB and the within-class scatter matrixSW.

SB =(m1 −m2)(m1 −m2)T (5.10)

SW =

2
∑

k=1

∑

i∈Ck

(xi −mk)(xi −mk)
T (5.11)

With the help of these two matrices the objective function for FDA can be written as a Rayleigh

quotient:

J(w) =
wTSBw
wTSWw

. (5.12)

1In this section, we slightly change our notation and denote by xi input vectors without appended ones and byw
weight vectors without appended bias value.
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By computing the derivative of J and setting it to zero, one can show that the optimal solution forw
satisfies the following equation:

w ∝ S−1
W (m1 −m2). (5.13)

The discriminant vectorw is thus equal to the difference between the class means, scaled by the in-

verse of the sum of the within-class scatter matrices. The effect of scaling byS−1
W is that discriminant

directionsw with small within-class variance are preferred, whereas directions with large within-

class variance are penalized. This is important whenever the within-class scatter is anisotropic. The
concept of FDA is illustrated in Fig. 5.1.

As in regression analysis, we run into problems when the number of training examples becomes

small compared to the dimensionality of the input vectors. If the dimensionality of the input vectors
is nearly as big as the number of training examples overfitting occurs. If the number of training

examples is smaller than the dimensionality of the input vectors, the within-class scatter matrix
becomes singular and cannot be inverted. Several solutionsto these problems exists. A solution

that is similar to the ridge regression approach is to add a multiple of the identity matrix to the
within-class scatter matrix. The objective function then reads

J(w) =
wTSBw

wT (SB + λI ) w
. (5.14)

The solution is then given by

w ∝ (SW + λI )−1(m1 −m2). (5.15)

Another possible solution, which has the advantage that no hyperparameters have to be specified, is
to replace the inverseS−1

W by the Moore-Penrose pseudo-inverseS†W (Tianet al., 1988). The solution

for w then reads:

w ∝ S†W(m1 −m2). (5.16)

Note that the discriminant vectorw alone cannot be used to perform classification. This is
becausew only defines a one-dimensional projection of the feature vectors in which classes are

maximally separated. In order to use FDA for classification,additionally a bias valueb has to be
inferred. This can be done for example by fitting one-dimensional Gaussian distributions to the
projections of the classes.

After inference of the discriminant vectorw and biasb new feature vectorŝx can be mapped to

outputs as follows:

f(x̂; w, b) = wTx̂ + b. (5.17)

Since the output of FDA is a continuous value it can for example be used to control a one-dimensional
cursor in a BCI. Another option is to convert the output of FDAinto class labels by using the sign

of f:

ŷ =



















1 if f( x̂; w, b) ≥ 0

−1 if f( x̂; w, b) < 0.
(5.18)

In BCI research FDA has been successfully applied in different scenarios. Examples include

the use of FDA for classification of data from motor imagery experiments (Blankertzet al., 2002;
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Figure 5.1— Illustration of FDA. The left panel shows examples drawn from two two-dimensional Gaussian
distributions with identical covariance but different means. Also shown are the direction ofw computed
with FDA and the corresponding discriminating hyperplane (dashed line). The thin dotted line shows the
discriminating hyperplane that is obtained ifw ∝ m1 − m2. The right panel shows the distributions of the
projected data. The weight vectorw computed with FDA leads to a smaller overlap between classesthan a
weight vector equal to the difference of the class means.

Pfurtscheller and Neuper, 2001), the use of FDA for classification of data from P300 and slow
cortical potentials (SCP) experiments (Bostanov, 2004; Kaper, 2006), and the use of FDA for clas-

sification of data from steady-state visual evoked potentials (SSVEP) experiments (Laloret al.,
2005).

The main advantages of FDA are its computational and conceptual simplicity. More specifi-

cally, FDA is computationally efficient for situations in which the number of featuresD is small,
and the number of training examplesN is large. This is the case because the only complex oper-

ation required for FDA is the inversion of the within-class scatter matrix, which scales as O(D3).
Situations in whichD ≤ N are relatively often found in BCI applications.

Note that in BCI applications often plain FDA, i.e. FDA without regularization is used. This
is problematic because data from BCI experiments often contains outliers, resulting for example
from eyeblinks or muscle activity, and hence there is an increased tendency for overfitting. A

possible remedy to this problem is to use a regularized version of FDA. However, regularized
FDA is surprisingly seldom used in the context of BCI. An exception is the work by (Blankertz

et al., 2002), in which a non=probabilistic, regularized version of FDA is compared withother
classification methods. A Bayesian version of regularized FDA, in which regularization parameters

are estimated with Bayesian model selection, is described in Section 5.3 of the present chapter.

5.2.3 Relation between Regression and Fisher’s Discriminant

A deeper understanding of least squares regression and FDA can be obtained by investigating the
connection between the two methods. It turns out that FDA is equivalent to linear regression with

target values representing (modified) class-labels. This fact will be used in the next section in order
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to motivate an algorithm for BDA. We show below that by setting target valuesti for training
examples in class 1 toN/N1 and to−N/N2 for class 2, regularized linear regression is equivalent

to regularized FDA1. The proof is adapted from the proof given in (Dudaet al., 2001) but a little
more general (it also considers the case of regularized regression and regularized FDA, instead of

considering only regression and FDA).
To show the relation between the two methods, we first write down the matrix equations for

ridge regression with target valuesti = N/N1 for i ∈ C1 andti = −N/N2 for i ∈ C2
2.













(XXT + λI ) N1m1 + N2m2

N1mT
1 + N2mT

2 N

























w
b













=













N(m1 −m2)

0













(5.19)

This can be interpreted as a set of two equations, one forb and one forw. Solving forb we obtain

b = − 1
N

(N1m1 + N2m2)Tw. (5.20)

Inserting the solution forb in the equation forw we obtain













XXT + λI −
N2

1

N
m1mT

1 −
N1N2

N
m1mT

2 −
N2N1

N
m2mT

1 −
N2

2

N
m2m2

T













w = N(m1 −m2). (5.21)

Using the identities

Sw = XXT − N1m1mT
1 − N2m2mT

2, and N1 −
N2

1

N1 + N2
=

N1N2

N1 + N2
(5.22)

it follows that
(

Sw + λI +
N1N2

N
(m1 −m2)(m1 −m2)T

)

w = N(m1 −m2). (5.23)

Since (m1 −m2)(m1 −m2)Tw is always in the direction of (m1 −m2) we can write

w ∝ (SW + λI )−1(m1 −m2). (5.24)

The discriminant vector obtained by performing ridge regression to target values±N/Nk is thus in
the same direction as the one obtained by regularized FDA. Bysettingλ to zero, we also see that the
discriminant vector obtained by performing regression is in the same direction as the one obtained

by FDA.

5.3 Bayesian Discriminant Analysis

Given the connection between ridge regression and regularized FDA, we are now ready to describe
BDA. In short, BDA is equivalent to performing Bayesian regression and setting target values

to N/N1 for examples from class 1 and to−N/N2 for examples from class 2. BDA is relatively
robust to noise in the training data because regularizationis used during learning. Additionally,

1Actually, it is sufficient to use any two distinct values for the target values of class 1 and 2. The advantage of using
N/N1 and−N/N2 is that the proof becomes a little bit simpler.

2As in the previous section, in this sectionw is aD-dimensional vector without appended bias value. Accordingly the
matrixX has dimensionsD × N andb denotes the bias value.
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the regularization parameters are estimated automatically and quickly, without the need for time-
consuming cross-valdiation. These facts make BDA an interesting alternative to FDA which is

popular for BCI applications.

The basis for BDA is the evidence framework for Bayesian regression, which was first intro-

duced to the machine learning community by MacKay (1992). A good description of Bayesian
regression and the evidence framework is given in the book ofBishop (2006). The evidence frame-

work was used in a variety of contexts, for example for Bayesian regression (MacKay, 1992), for
the development of Bayesian neural network algorithms (MacKay, 1995), for the estimation of

regularization parameters and kernel parameters in support vector machines (Kwok, 2000), for the
estimation of regularization parameters and kernel parameters in least squares support vector ma-
chines (Van Gestelet al., 2002), and for a Bayesian implementation of FDA in which theclass

means are treated as latent parameters (Centeno and Lawrence, 2006).

It has to be noted that the developments in this section are almost equivalent to the work on

Bayesian regression presented by MacKay and are also similar to the work of Van Gestelet al..
One difference to the neural networks and kernel methods presented by MacKay and by Van Gestel

et al. is that here only linear discriminants are considered. Thissimplification is motivated by the
observation that for EEG classification often linear discriminants are sufficient (Mülleret al., 2003).

The main aim of this section is thus not to introduce a new machine learning algorithm but rather
to give a simple introduction to linear Bayesian regressionand to show the relation to BDA. An
earlier version of the material presented in this section can be found in (Hoffmannet al., 2004).

5.3.1 Prior, Posterior, and Predictive Distribution

The basic idea behind Bayesian regression and consequentlybehind BDA is to interpret the objec-

tive function for ridge regression as the exponent of a probability distribution from the exponential
family. We can write

p(w) =
1
Z

exp(−J(w)), (5.25)

whereZ is a suitable normalization constant and J is the objective function for ridge regression,
from equation 5.4. The distribution forw can also be written as the product of two distributions.

One distribution is associated to the sum of squared errors and the other distribution is associated
to the regularization term.

p(w) =
1
Z

exp(−
N

∑

i=1

(ti − wTxi)
2) exp(−λwTI ′w) (5.26)

Under the assumption that regression targets and input vectors are linearly related with additive
white Gaussian noise, the first term on the right hand side of the above equation can be identified

as the likelihood function forw. Denoting byβ the inverse variance of the noise and byD the pair
{X, t}, the proper, normalized expression for the likelihood function is

p(D|β,w) =
(

β

2π

)

N
2

exp(−β
2
‖XTw − t‖2). (5.27)
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The second term from the right hand side of equation 5.26 can be interpreted as the prior distri-
bution forw. In Bayesian analysis the prior distribution is used to specify the prior belief we have

about the values ofw. The expression for the normalized prior distribution is:

p(w|α) =
(

α

2π

)D
2
(

ε

2π

) 1
2

exp(−1
2

wTI ′(α)w), (5.28)

whereI ′(α) is aD + 1 dimensional, diagonal matrix:

I ′(α) =









































α 0 . . . 0
0 α . . . 0
...
...
. . .

...

0 0 . . . ε









































. (5.29)

The prior for the weights is thus an isotropic, zero-mean Gaussian distribution with variance1
α
.

The effect of using a zero-mean Gaussian prior for the weights is similar to the effect of applying

regularization in ridge regression and FDA. The estimates for w are shrunk towards the origin and
overfitting is avoided. The prior for the bias, which is the last entry inw is a zero-mean univariate

Gaussian with variance1
ε
. Settingε to a very small value, the prior for the bias is practically

flat, which expresses that we do not make assumptions about the location of the discriminating

hyperplane.
Given likelihood and prior, the posterior distribution ofw can be computed using Bayes rule:

p(w|β, α,D) =
p(D|β,w)p(w|α)

∫

p(D|β,w)p(w|α) dw
. (5.30)

Since both prior and likelihood are Gaussian, the posterioris also Gaussian and its parameters can
be derived from likelihood and prior by completing the square (cf. Bishop (2006)). The meanm
and covarianceC of the posterior satisfy the following equations.

m = β(βXXT + I ′(α))−1Xt (5.31)

C = (βXXT + I ′(α))−1 (5.32)

By multiplying the likelihood function for a new input vector x̂ with the posterior distribution and

integrating overw we obtain the predictive distribution, i.e. the probability distribution over regres-
sion targets given the input vector.

p(t̂|β, α, x,D) =
∫

p(t̂|β, x̂,w)p(w|β, α,D) dw (5.33)

The predictive distribution is again Gaussian and can be characterized by its meanµ and its variance

σ2.

µ = mTx̂ (5.34)

σ2 =
1
β
+ x̂TCx̂ (5.35)

How the predictive distribution can be used for classification and specifically how it can be used
for classification of sequences of EEG trials in the framework of a P300 BCI will be discussed in

section 5.5.
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5.3.2 Estimation of Hyperparameters

Both the posterior distribution ofw and the predictive distribution depend on the hyperparametersα
andβ. The strict Bayesian approach to eliminate this dependencewould be to compute the posterior

distribution of the hyperparameters and to integrate out the hyperparameters. Assuming we have
already computed the posteriorp(β, α|D) of the hyperparameters, the posterior ofw could then be

expressed as follows:

p(w|D) =
∫

p(w|β, α,D)p(β, α|D) dβdα. (5.36)

The problem with this approach is that except for trivial cases no closed-form solution is available
for the posterior distribution ofw. The solution used in the evidence framework is to assume that the

posterior over the hyperparameters is unimodal and sharplypeaked (MacKay, 1992). The posterior
of w can then be approximated as

p(w|D) ≈ p(w|β̂, α̂,D), (5.37)

whereβ̂, α̂ are maximum a posteriori (MAP) estimates of the hyperparameters. Moreover, in the

evidence framework usually a flat priorp(β, α) = c is used, hence the MAP estimates are equal
to maximum-likelihood (ML) estimates. Estimating hyperparameters with maximum-likelihood is
also known as type-II maximum-likelihood in the statisticsliterature (Berger, 1988).

To computêβ, α̂we write down the likelihood for the hyperparameters. The likelihoodp(D|β, α)
is the normalizing integral from equation 5.30.

p(D|β, α) =
∫

p(D|β,w)p(w|α) dw (5.38)

The quantityp(D|β, α) is also known as the evidence, or the marginal likelihood, and corresponds to
the probability of the data given the hyperparametersβ andα. The integral in equation 5.38 can be

solved by noting that everything is Gaussian and using standard expressions for Gaussian integrals.
After computing the integral, it is convenient to use the logarithm of the likelihood function for

further analysis.

log(p(D|β, α)) =D
2

log(α) +
1
2

log(ε) +
N
2

log(β) − N
2

log(2π) +
1
2

log(det(C)) (5.39)

− β
2
‖XTm − t‖2 − 1

2
mTI ′(α)m

To maximize the log-likelihood, partial derivatives with respect toα andβ are taken and equated to

zero. To compute the derivative with respect toα andβ, the following identity for the derivative of
the logarithm of the determinant of a matrixA is useful (cf. Bishop (2006); MacKay (1992)):

∂

∂x
log detA = tr

(

A−1∂A
∂x

)

. (5.40)

Using this identity we obtain

∂ log(p(D|β, α))
∂α

=
D
2α
− 1

2

D
∑

i=1

cii −
1
2

D
∑

i=1

m2
i , (5.41)
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where thecii are the values on the diagonal ofC and themi are the elements ofm. Taking the
derivative with respect toβ yields

∂ log(p(D|β, α))
∂β

=
N
2β
− 1

2
tr(XXTC) − 1

2
‖XTm − t‖2. (5.42)

Setting the derivatives to zero and solving forα andβ we obtain the update equations:

α =
D

∑D
i=1 cii +m2

i

(5.43)

β =
N

tr(XXTC) + ‖XTm − t‖2
. (5.44)

The partial derivatives forα and β depend on the posterior meanm which itself depends onα

andβ. Equations 5.43 and 5.44 thus represent implicit solutionsfor the hyperparameters. Thus,
to maximize the log-likelihood an iterative scheme is used in which firstC andm are computed

for a given setting of the hyperparameters and then the hyperparameters are updated according to
equations 5.43 and 5.44. After a few iterations the values for the hyperparameters converge to the
maximum-likelihood solution. More specifically, for the EEG datasets we tested, hyperparameter

optimization typically converged after twenty to fifty iterations.

5.4 Sparse Bayesian Discriminant Analysis

5.4.1 Electrode Selection via Automatic Relevance Determination

Having discussed a basic version of BDA in the previous section, we now turn our attention to an
extension of BDA that allows to perform feature selection. Feature selection is a strategy that is

often used in machine learning to reduce the dimensionalityof a given learning problem and to
enhance classification accuracy. Feature selection also reduces the computational cost of classifi-

cation algorithms and allows to gain insights into the structure of learning problems by examining
the selected features. In particular, we will use the feature selection capabilities of the algorithm

presented in this section to perform electrode selection. As we have seen during the review of clas-
sification algorithms for P300-based BCIs, electrode selection has led to good results and thus is

interesting to investigate.
To implement electrode selection, we make use of a method that is known as automatic rele-

vance determination (ARD) in the neural networks literature or as the relevance vector machine in

the area of kernel methods (MacKay, 1995; Tipping, 2001). The idea underlying the ARD method
is to associate a hyperparameterαi to each feature instead of using oneα for all features (as in the

basic BDA method). The effect of this modification to the basic BDA algorithm is that therelevance
of each feature can be determined separately via the optimization of the hyperparameterαi . As we

will see, theαi corresponding to irrelevant features will take very large values and hence irrelevant
features will be effectively switched off.

To write down the equations for electrode selection via ARD,we first need to state more pre-
cisely the structure of the feature vectorsxi . Let us assume that we want to classify EEG trials

containing data fromNe electrodes andNs temporal samples. Let us assume further that the feature
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vectors are built by vertically concatenating the signals from all electrodes. The feature vectors then
have dimensionD = NeNs and the firstNs entries of a feature vector correspond to samples from

the first electrode, entriesNs + 1 to 2Ns correspond to samples from the second electrode, and so
forth. With this structure of feature vectors the prior distribution used for electrode selection can be

expressed as follows (cf. Equation 5.28):

p(w|α) =
Ne
∏

i=1

(

αi

2π

)
Ns
2

(

ε

2π

)
1
2

exp

(

−1
2

wTI ′(α)w
)

. (5.45)

HereI ′ is aD + 1 dimensional, diagonal matrix with the following diagonal:

diag(I ′) = [α1 . . . α1 α2 . . . α2 . . . αNe . . . αNe ε]
T. (5.46)

The prior for the weights is thus an axis-aligned, zero mean Gaussian distribution with variance
1
αi

for the weights corresponding to electrodei. The effect of this prior is that weights are shrunk
towards the origin, however in contrast to the prior specified in Equation 5.28 the shrinkage factor

can now be determined separately for each electrode. As before, ε is set to a small value in order to
leave the bias value unconstrained.

The posterior distribution and the predictive distribution resulting from the use of a prior as
specified in Equation 5.45 can be calculated as in the case of an isotropic prior, i.e. with the help

of Equations 5.30 and 5.34 which are not repeated here. What slightly changes with respect to
the use of an isotropic prior is the expression for the likelihood of the hyperparameters and conse-

quently the expressions that are necessary to optimize the hyperparameters. The likelihood of the
hyperparameters can be expressed as follows:

log(p(D|β,α)) =
Ns

2

Ne
∑

i=1

log(αi) +
1
2

log(ε) +
N
2

log(β) − N
2

log(2π) +
1
2

log(det(C)) (5.47)

− β
2
‖XTm − t‖2 − 1

2
mTI ′(α)m.

The partial derivative of the hyperparameter likelihood with respect toαi is:

∂ log(p(D|β,α))
∂αi

=
Ns

2αi
− 1

2

ki+Ns
∑

j=ki

c j j −
1
2

ki+Ns
∑

j=ki

m2
j , (5.48)

where the summation is over the posterior parametersc j j ,mj corresponding toαi , i.e. ki = (i −
1)Ns + 1. The partial derivative with respect toβ is the same as in the case of an isotropic prior,

i.e. Equation 5.42 can be used. Setting the derivative with respect toαi to zero yields the following
update equation:

αi =
Ns

∑ki+Ns
j=ki

c j j +m2
j

. (5.49)

To optimize the hyperparameters it is sufficient to sequentially update all theαi and β until

convergence. The result of this optimization is a set of optimal values for the hyperparameters
αi andβ. Smallαi are equivalent to a large prior variance and allow large values for the weights

corresponding to electrodei. Largeαi are equivalent to small prior variance and allow only small
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values for the weights corresponding to electrodei. In other words theαi can be used to rank
electrodes by their importance for classification: electrodes with smallαi are more important than

electrodes with largeαi .

A straightforward strategy to choose a subset of electrodesfrom the ranking given by theαi is

to specify a thresholdτ and to retain only electrodes for whichαi ≤ τ. Actually it is advantageous
to apply the threshold already during optimization of hyperparameters, i.e. to remove rows and

columns from the matricesXXT andI ′ as soon as theαi corresponding to these rows and columns
start to take values larger thanτ. The effect of this is that the inversion of the posterior precision

matrix which is necessary during each iteration of the optimization procedure is speeded up and
hence the optimization converges faster. The choice ofτ is relatively uncritical because theαi of

irrelevant electrodes tend to take on very large values during optimization and hence it is sufficient
to simply choose aτ that is large compared to the scale of the data. We choseτ = 108 during the

experiments with the SBDA algorithm. The results of these experiments are described in Chapter 7.

5.4.2 Automatic Relevance Determination and Backward Selection

A task that cannot be directly solved with the method for electrode selection described above, is
to select a predetermined number of electrodes. This is the case because the number of electrodes

retained by the SBDA algorithm depends on the thresholdτ and on the dataset at hand. To allow
for selection of electrode subsets with predetermined size, we use a strategy that is similar to what

is known as backward selection in the feature selection literature. In this strategy first ARD is
applied to the initial electrode set, i.e. the updates from Equations 5.49 and 5.44 are executed until
the changes of theαi and β become sufficiently small. Typically, during this first run of ARD

someαi take very large values and thus some electrodes are removed.If the desired number of
electrodes is attained after the first run of ARD, the algorithm is stopped. Otherwise, the electrode

with the largestαi is removed and ARD is run again on the remaining electrodes. The motivation
for removing the electrode with the largestαi is that the weights corresponding to this electrode are

constrained to be small and thus the electrode is unimportant. Running ARD after removal of the
electrode with the largestαi can either result in some small adjustments to theαi andβ or can lead

to removal of further electrodes as the correspondingαi take values larger than the threshold. The
strategy of alternately removing the electrode with the largestαi and running ARD on the subset of

remaining electrodes is repeated until the desired number of electrodes is attained.

5.5 Classifying Single Trials and Sequences of Trials

The result of running the BDA or SBDA algorithms are maximum-likelihood values for the hyper-
parametersβ andα and a posterior distribution for the weights and the bias value. The posterior

distribution can be used to compute the predictive distribution of target values given a new in-
put vector. However, what is ultimately needed are class probabilities, i.e. the probabilities that

p(ŷ = 1|x̂) andp(ŷ = −1|x̂) = 1− p(ŷ = 1|x̂). Furthermore, in a P300-based BCI we not only need
to classify data from single EEG trials but also need to aggregate classification results from several

single trials into a final decision. As explained in Chapter 4, aggregation of classification results is
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often used in P300-based BCIs in order to improve classification accuracy.
In the next section we first describe the steps that are necessary to perform single trial classifi-

cation with the help of BDA or SBDA. In the following section we then describe how classification
results can be combined, i.e. how sequences of trials can be classified.

5.5.1 Single Trials

To obtain class probabilities for single trials we make use of the predictive distribution given by the

BDA and SBDA algorithms. As shown in equations 5.33 and 5.34,the predictive distribution is a
Gaussian distribution describing how probable different target valueŝt are, given a new input vector
x̂. Recalling that during training the target valuesN/N1 and−N/N2 were used for examples from

class 1 and 2, a canonical way to compute the probability for class 1 is:

p(ŷ = 1|β, α, x̂,D) =
p(t̂ = N

N1
|β, α, x̂,D)

p(t̂ = N
N1
|β, α, x̂,D) + p(t̂ = − N

N2
|β, α, x̂,D)

. (5.50)

Note that the accuracy of the above approach depends on the accuracy of the predictive distributions.
In other words, using this approach is equivalent to assuming that p(t̂ = N

N1
|β, α, x̂,D) takes large

values for exampleŝx from class 1 and thatp(t̂ = −N
N2
|β, α, x̂,D) takes large values for examples

from class 2.

For the datasets with which we performed tests, we found thatthe predictive probabilities were
slightly inaccurate. In particular, we observed that the means of the predictive distributions were

biased towards zero, when compared to the target values usedduring training. This is probably an
effect of using a zero mean Gaussian prior for regularization and is difficult to avoid if one wants

to avoid overfitting. Furthermore, investigation of the regression residuals showed that these were
larger for examples from class 1 than from class 2. This can beexplained if one takes into account
that in P300 datasets there are typically less target trials(class 1) than nontarget trials (class 2). This

imbalance typically leads to larger errors for the minorityclass, which are however not taken into
account in the predictive distribution.

In the following we present two approaches that allow to dealwith the aforementioned problems
and yield relatively accurate class probabilities. An experimental comparison of the quality of the

two approaches can be found in Chapter 7.

Van Gestel’s Method

The first approach is used for least-squares support vector machines in the work of Van Gestelet al.

(2002). Van Gestelet al. use the following equation for computing the probability ofa new input

vectorx̂, given the class labely and parametersw andβ∗1:

p(x̂|y = 1, β∗,w) =
(

β∗
2π

)

1
2

exp
(

−β∗
2

(wT(x̂ − c1))2
)

. (5.51)

Herec1 is the mean of the training examples of class 1. The class-conditional probability for x̂
thus depends on the difference between class meanc and examplêx and on the angle between this

1An analogous expression is used for class 2, i.e. fory = −1.
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difference and the discriminant directionw. The precisionβ∗ corresponds roughly to the inverse
variance of the projected differences between class means and training examples and is computed

as follows in the approach of Van Gestelet al.:

β∗ =
N − γeff

∑

i∈C1
(mT(xi − c1))2 +

∑

i∈C2
(mT(xi − c2))2

. (5.52)

Herem is the mode of the posterior distribution ofw (cf. Equation 5.31) andγeff is the effective
number of parameters (see (Bishop, 2006; MacKay, 1992; Van Gestelet al., 2002) for an explana-
tion).

To remove the dependence on the discriminant direction, VanGestelet al. integrate over the
posterior distribution ofw.

p(x̂|y = 1, β∗) =
∫

p(x̂|y = 1, β∗,w)p(w|β, α,D) dw (5.53)

This integral can be solved by noting that under the posterior distribution p(w|β, α,D), the ex-
pressionwT(x̂ − c1) corresponds to a univariate Gaussian with meanmT(x̂ − c1) and variance

(x̂ − c1)TC(x̂ − c1). Using additionally the fact that a convolution of two Gaussians is another
Gaussian, with variance equal to the sum of the variances of the two original Gaussians and mean

equal to the sum of the two means, the probability forx̂ then is

p(x̂|y = 1, β∗) =
1

√

2π(β−1
∗ + σ

2
1)

exp













− (mT(x̂ − c1))2

2(β−1
∗ + σ

2
1)













, (5.54)

with
σ2

1 = (x̂ − c1)TC(x̂ − c1). (5.55)

Now using Bayes’ rule the probabilities for the class labelscan be computed as

p(y|x̂, β∗) =
p(x̂|y, β∗)p(y)

∑

y∈Y p(x̂|y, β∗)p(y)
, (5.56)

whereY = {−1, 1} and thep(y) allow to take into account prior class probabilities.

A Leave-One-Out Approach

While Van Gestel’s method is sound and yields good results, other possibilities exist for the com-

putation of class probabilities. One such possibility is the leave-one-out approach presented in the
following. An important difference to Van Gestel’s method is that the contribution to thevari-

ance from the posterior uncertainty in the parameters, i.e.Equation 5.55 is completely ignored in
the leave-one-out approach. The motivation for this is thatfor reasonably large training sets this

contribution is very small when compared toβ∗ (Qazazet al., 1996). Hence, the solution of Equa-
tion 5.55 for each test example can be avoided and time can be saved during prediction. Moreover

the mean projection of the classes is computed with a leave-one-out method instead of using simply
the training examples as in Van Gestel’s method. The potential advantage of this is that overfitting

effects due to the use of the same training examples for the computation of discriminant directions
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as well as for the mean projections are avoided. The disadvantage is that a considerable amount of
computational complexity is added to the training stage of classifiers by the leave-one-out approach.

The leave-one-out approach uses univariate generative Gaussian models to capture the between-
class and within-class variation of the mean of the predictive distribution. Denoting bym the mean

of the posterior distribution (Equation 5.31), byx̂ the new input vector we want to classify, by
t̂ = mTx̂ the mean of the predictive distribution, and byµ1,µ2 andσ2

1,σ2
2 the parameters of the

Gaussians, the class probability can be expressed as follows:

p(y|t̂, µ1, µ2, σ
2
1, σ

2
2) =

p(t̂|µ1, µ2, σ
2
1, σ

2
2, y)p(y)

∑

y∈Y p(t̂|µ1, µ2, σ
2
1, σ

2
2, y)p(y)

. (5.57)

Herep(t̂|µ1, µ2, σ
2
1, σ

2
2, y) are univariate Gaussian probabilities, i.e. :

p(t̂|µ1, µ2, σ
2
1, σ

2
2, y = 1) =

1
√

2πσ1

exp













− 1

2σ2
1

(t̂ − µ1)2













(5.58)

p(t̂|µ1, µ2, σ
2
1, σ

2
2, y = −1) =

1
√

2πσ2

exp













− 1

2σ2
2

(t̂ − µ2)2













(5.59)

The accuracy of class probabilities computed with this approach depends of course on realistic
estimates for the meansµ1, µ2 and variancesσ2

1, σ2
2. One possibility to obtain such estimates would

be to simply use the training examples, i.e. one could use:

µk =
1
Nk

∑

i∈Ck

mTxi (5.60)

σ2
k =

1
Nk

∑

i∈Ck

(mTxi − µk)
2, (5.61)

whereNk denotes the number of training examples in classk, andCk denotes the set containing the
indices of the training examples belonging to classk. This is however not advisable because using

the training set for computing the posterior mean and for computing the varianceσ2
k of the projected

training examples typically leads to overly optimistic (too small) estimates for the variances.

To obtain realistic estimates forσ2
k, we employed a leave-one-out procedure, in which each

training example is removed once from the training set. Denoting the mean of the posterior distri-

bution computed without training examplei by m\i , we can compute class conditional estimates of
the mean and variance of the mean of the predictive distribution by the following equations:

µk =
1
Nk

∑

i∈Ck

mT
\ixi (5.62)

σ2
k =

1
Nk

∑

i∈Ck

(mT
\ixi − µk)

2. (5.63)

Note that to exactly compute the posterior meanm\i we need to compute the hyperparameters

β\i andα\i and additionally the covariance matrixC\i . Since this has to be done once for each
training example, a naive implementation of the leave-one-out procedure would be computation-

ally very demanding. To reduce the computational complexity we assume that the changes in the
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hyperparameters resulting from the removal of one trainingexample are negligible, i.e.β\i ≈ β and
α\i ≈ α. Furthermore, to compute the covarianceC\i we use the Woodbury identity (see for exam-

ple Golub and Van Loan (1996)), which allows to quickly compute rank-1 updates (or downdates)
of the covariance matrixC.

C\i = C −
CxixT

i C

−1
β
+ xT

i Cxi
(5.64)

5.5.2 Sequences of Trials

Given the algorithms for computing class probabilities presented in the previous section, the classi-

fication of sequences of trials is relatively straightforward. Assuming independence of single trials,
the probability for a sequence of class labels given a sequence of input vectors can in general be

expressed as follows:

p(ŷ = y1 . . . yT |x̂1 . . . x̂T) =

∏T
i=1 p(ŷ = yt |x̂t)

∑

l∈L
∏T

i=1 p(ŷ = lt |x̂t)
for ŷ ∈ L. (5.65)

Herel = l1 . . . lT is a sequence of labels of lengthT,L is the set of all possible class label sequences

of lengthT, and we have omitted the conditioning onµ1, µ2, σ2
1, andσ2

2. The reader might object
that the computation of the denominator in the above equation becomes computationally infeasible
for largeT because|L| = 2T . The objection is correct, however it is not relevant for theapplication

we are envisaging here, namely P300-based BCIs. In P300-based BCIs the number of possible label
sequences is equal to the number of different stimuli and hence the denominator can be computed

easily.

To see how the probabilities for sequences of class labels can be used in a P300-based BCI,

let us recall the scheme for aggregating information from a variable number of trials which was
reviewed in Chapter 4 on page 50. In this scheme stimuli are presented blockwise until a reliable

decision about the target stimulus can be taken. The advantage of this scheme over the other de-
cision schemes presented in Chapter 4 is that the number of stimuli can be dynamically adapted
to the performance of the user and the noise level in the signals. To implement the scheme, Serby

et al. (2005) used nonprobabilistic classifiers and combined information from several trials by av-
eraging classifier outputs. Decisions were taken when the averaged classifier outputs exceeded a

threshold. Thresholds depended on the number of averaged classifier outputs and were computed
with a method that is not specified in detail in the paper of Serby et al. (2005).

The probabilities for sequences of class labels allow us to implement the scheme of Serbyet al.

in a more straightforward way. Taking as example the four-stimuli setup depicted in Fig. 5.2, the

probability that the user was concentrating on stimulus 1 can be easily computed. In particular after
the first block of stimulus presentations this probability can be obtained by using Equation 5.65
with
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Figure 5.2— Decision after a variable number of blocks using a probabilistic approach (symbols in squares
represent operations, symbols in circles represent variables). Four different stimuli are presented in random
order with an interstimulus interval of 500 ms (1,2,3,4). The EEG segment corresponding to each stimulus
presentation is classified (C); the output of the classifier is a probability indicating how similar the EEG
segment is to a P300. After the first block of stimulus presentations, the classifier outputs are combined in
order to compute for each stimulus the probability that the user was concentrating on it (P). If the maximum
of these probabilities is larger than a certain threshold a decision is taken (D), i.e. the systems executes the
command associated to the stimulus with the largest probability. If the maximum is smaller than the threshold
a second block of stimuli is presented. The classifier outputs from the second block of stimuli are combined
with the outputs from the first block (P). The command associated to the stimulus with the largest probability
is executed (D).

The probabilities for the other stimuli can be computed by accordingly changinĝy. Adaptive deci-
sions are taken by comparing the maximum of the probabilities for all four stimuli to a threshold. If

the maximum of the probabilities is smaller than the threshold a new block of stimuli is presented
and the probabilities are recomputed using all blocks presented so far. If the maximum of the

probabilities is larger than the threshold the system decides that the user was concentrating on the
stimulus corresponding to the maximal probability (see Fig. 5.2). Compared to the implementation

of the adaptive decision scheme described by Serbyet al. our implementation has the advantage
that only one threshold has to be specified and that this threshold has an intuitive meaning. Setting

the threshold to a valueτ means that one accepts approximately 100(1− τ)% wrong decisions.

Note however, that using a fixed threshold to decide when to stop sampling data is not neces-
sarily optimal. In fact, the problem of deciding for one of several hypotheses after evaluating a

variable number of samples is relatively complex and is known as sequential analysis or sequen-
tial hypothesis testing in the decision theory literature.A decision theory based analysis of the
threshold procedure we used can be found in (Dragliaet al., 1999). Note also, that the approach

we presented for classification of sequences of trials is certainly not the only possible one. While
the advantages of our approach are that it is simple and straightforward and leads to good results,

other possible approaches exist. In particular, it would beinteresting to test methods for combining
results obtained from multiple classifiers (Kittleret al., 1998). For example the majority voting rule

could be used in the context presented here, by first finding for each stimulus block the stimulus
with the maximal score. Then, a decision about the target stimulus could be taken by finding the

stimulus that has the maximal score in the majority of blocks.

Apart from using probabilities for taking adaptive decisions, other, extended, applications can
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be envisaged. For example in the P300 speller system, it might be interesting to combine the proba-
bilities computed from the EEG with probabilities computedfrom a language model. This approach

could also be combined with adaptive decisions, i.e. if the language model strongly reduces the a
priori uncertainty for the next symbol to be spelled, the number of stimuli would be small. If the lan-

guage model is unsure about the next symbol the number of stimuli would be large. Another area
in which the probabilistic approach to classification mightbe useful is the area of asynchronous

BCI systems. More generally, every BCI application in whicha priori probabilities for commands
can be computed could profit from the probabilistic approachto classification presented in the last

sections.

5.6 Conclusion

In this chapter we have discussed algorithms for learning classifiers from training data and for per-
forming classification of new data not used during training.The algorithms we discussed can be
seen as linear versions of the well-known relevance vector machine (Tipping, 2001) and are based

on the evidence framework presented originally by MacKay (1992). Starting from least squares
regression and FDA we have described BDA, an algorithm whichis obtained by applying the ev-

idence framework to the discriminant analysis scenario. When compared to other algorithms that
have been used in BCI systems, the main advantages of BDA are that a regularized discriminant is

computed and that regularization constants are estimated automatically. Compared to simple algo-
rithms such as FDA, which work without regularization, the advantage is that high-dimensional data

can be used for training without the danger of overfitting. Compared to regularized algorithms such
as for example regularized FDA or the support vector machine(SVM) the advantage is that regular-

ization constants are estimated automatically. Time-consuming and cumbersome cross-validation
procedures are thus not necessary. As an extension of the basic BDA algorithm we have described

the SBDA algorithm which is based on a technique known as automatic relevance determination
and can be employed to perform electrode selection when learning classifiers from EEG datasets.

After the description of the inference algorithms BDA and SBDA we have described probabilis-
tic approaches for the classification of single trials and for the classification of sequences of trials.

The first approach for probabilistic single trial classification we described, is the approach used in
the work of Van Gestelet al. on Bayesian least-squares support vector machines. The main idea

underlying the second approach is to use a leave-one-out procedure to estimate Gaussian probability
models for the one-dimensional projections of feature vectors.

Building on the class probabilities for single trials, we have presented a probabilistic approach
to classification of sequences of trials. As we have seen, this can be used for a straightforward im-

plementation of a P300-based BCI system, in which the numberof stimuli is automatically adapted
to the noise level of the signals and to the performance of theuser.

In the next two chapters the algorithms that were described in the present chapter will be tested
with different datasets. In Chapter 6 we describe a BCI system which was used to record P300

datasets from several disabled and able-bodied subjects. These datasets are then used to compare
BDA with FDA and to test different (static) electrode configurations. In Chapter 7 we usethe

data from disabled and able-bodied subjects to test electrode selection with SBDA and the adaptive
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decision scheme. Additionally, in order to test how the algorithms presented here compare to the
state-of-the-art, experiments are performed with BCI competition datasets in Chapter 7.
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An Efficient Brain-Computer
Interface for Disabled
Subjects 6
6.1 Introduction

In this chapter we present an efficient BCI for disabled subjects. The system is based on the P300
evoked potential and is tested with data from five disabled and four able-bodied subjects. Except

for some minor modifications in Sections 6.4 and 6.5, the material in this chapter is identical to that
presented in (Hoffmannet al., 2007).

The chapter starts in Section 6.2 with a brief review on BCIs for disabled subjects. Then, in
Section 6.3 the materials and methods used for recording andanalyzing data are discussed. In Sec-

tion 6.4 results are presented. An important result is that the classification accuracy and bitrate
achieved for the disabled subjects are significantly beyondthose previously reported in the liter-

ature. Additional results concern the classification accuracy and bitrate achievable with Bayesian
linear discriminant analysis (BDA) and Fisher’s discriminant analysis (FDA) and a comparison of

different, static electrode configurations. In Section 6.5 the results are discussed and reasons for the
good classification accuracy and bitrate achieved for disabled subjects are sought. The chapter is

summarized in Section 6.6.

6.2 Related Work

One of the earliest systems that used the EEG and was tested with disabled subjects was described

by Birbaumeret al.(1999). In their pioneering work, Birbaumeret al. showed that patients suffering
from amyotrophic lateral sclerosis (ALS) can use a BCI to control a spelling device and communi-

cate with their environment. The system relied on the fact that patients were able to learn voluntary
regulation of slow cortical potentials (SCP), i.e. voltageshifts of the cerebral cortex which occur

in the frequency range 1-2 Hz (cf. Chapter 2, page 16). Drawbacks of the system were that it usu-

75
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ally took several months of patient training before the subjects could control the system and that
communication was relatively slow.

Parallel to the work of Birbaumeret al. BCI systems were developed that used changes in brain

activity correlated to motor imagery (Pfurtscheller and Neuper, 2001). While these systems were
for a long time tested exclusively with able-bodied and quadriplegic subjects, recently tests have

been performed with ALS patients and other disabled subjects. Positive results have been obtained
by Kübler et al. (2005) who showed that ALS patients can learn to control motor imagery based

BCI systems. However, as for the system based on SCP, users were trained over several months
and communication was relatively slow. Negative results have been obtained by Hillet al. (2006),
who tested a motor imagery based BCI with several completelylocked-in patients and could not

obtain signals that were suitable for communication. One possible reason for the different results
is the fact that in the study of Kübleret al. the patients were not completely locked-in whereas the

patients in the study of Hillet al. were completely locked in. Furthermore, in the study of Kübler
et al. several training sessions were used whereas in the work of Hill et al. only one, relatively long

training session was used. In summary, it has thus been shownthat motor imagery based systems
can be used by disabled subjects, however positive evidenceis limited to cases in which subjects

were not completely locked-in and followed a long training protocol.

Recently, two studies have been published in which P300-based BCI systems were tested with
disabled subjects. Piccioneet al. (2006) tested a 2D cursor control system with five disabled and
seven able-bodied subjects. For cursor control, a four-choice P300 paradigm was used. Subjects

had to concentrate on one of four arrows flashing every 2.5 s inrandom order in the peripheral area
of a computer screen. Signals were recorded from one electrooculogram electrode and four EEG

electrodes, preprocessed with independent component analysis and classified with a neural network.
The results described by Piccioneet al. showed that the P300 is a viable control-signal for disabled

subjects. However, the average communication speed obtained in their study was relatively low
when compared to state-of-the-art systems, as for example the systems described by Kaperet al.

(2004); Thulasidaset al. (2006). This was the case for the disabled subjects, as well as for able-
bodied subjects and can probably be ascribed to the use of signals from only few electrodes, the

small number of different stimuli, and long interstimulus intervals (ISIs).

Sellers and Donchin (2006) also used a four-choice paradigmand tested their system with three

subjects suffering from ALS and three able-bodied subjects. In their study four stimuli (’YES’,
’NO’, ’PASS’, ’END’) were presented every 1.4 s in random order, either in the visual modality,

in the auditory modality, or in a combined auditory-visual modality. Signals from three electrodes
were classified with a stepwise linear discriminant algorithm. The research of Sellers and Donchin

showed that P300 based communication is possible for subjects suffering from ALS. The research
also showed that communication is possible in the visual, auditory, and combined auditory-visual

modality. However, as in the work of Piccioneet al., the achieved classification accuracy and
communication rate were low when compared to state-of-the-art results. This can again be ascribed

to the small number of electrodes, the small number of different stimuli, and long ISIs.



6.3. M M 77

Figure 6.1— The display used for evoking the P300. Images were flashed, one at a time, by changing the
overall brightness of images.

6.3 Materials and Methods

6.3.1 Experimental Setup

Users were facing a laptop screen on which six images were displayed (see Fig. 6.1). The images
showed a television, a telephone, a lamp, a door, a window, and a radio. The images were selected

according to an application scenario in which users can control electrical appliances via a BCI
system. The application scenario served however only as an example and was not pursued in further

detail.
The images were flashed in random sequences, one image at a time. Each flash of an image

lasted for 100 ms and during the following 300 ms none of the images was flashed, i.e. the ISI was
400 ms. The EEG was recorded at 2048 Hz sampling rate from thirty-two electrodes placed at the

standard positions of the 10-20 international system. A Biosemi Active Two amplifier was used for
amplification and analog to digital conversion of the EEG signals. Signal processing and machine

learning algorithms were implemented with MATLAB. The stimulus display and the online access
to the EEG signals were implemented as dynamic link libraries (DLLs) in C. The DLLs were
accessed from MATLAB via a MEX interface.

6.3.2 Subjects

The system was tested with five disabled and four able-bodiedsubjects. The disabled subjects

were all wheelchair-bound but had varying communication and limb muscle control abilities (see
Table 6.1). Subjects 1 and 2 were able to perform simple, slowmovements with their arms and

hands but were unable to control other extremities. Spoken communication with subjects 1 and 2
was possible, although both subjects suffered from mild dysarthria. Subject 3 was able to perform

restricted movements with his left hand but was unable to move his arms or other extremities.
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S1 S2 S3 S4 S5

Diagnosis Cerebral palsy Multiple scle-
rosis

Late-stage
amyotrophic
lateral sclerosis

Traumatic brain
and spinal-cord
injury, C4 level

Post-anoxic
encephalopathy

Age 56 51 47 33 43

Age at illness onset 0 (perinatal) 37 39 27 37

Sex M M M F M

Speech production Mild dysarthria Mild dysarthria Severe
dysarthria

Mild dysarthria Severe
hypophony

Limb muscle control Weak Weak Very weak Weak Very weak

Respiration control Normal Normal Weak Normal Normal

Voluntary eye move-
ment

Normal Mild nystag-
mus

Normal Normal Balint’s syn-
drome

Table 6.1 — Subjects from which data was recorded in the study of the environment control system.

Spoken communication with subject 3 was impossible. However the patient was able to answer
yes/no questions with eye blinks. Subject 4 had very little control over arm and hand movements.

Spoken communication was possible with subject 4, althougha mild dysarthria existed. Subject 5
was only able to perform extremely slow and relatively uncontrolled movements with hands and

arms. Due to a severe hypophony and large fluctuations in the level of alertness, communication
with subject 5 was very difficult. Subjects 6 to 9 were PhD students recruited from our laboratory

(all male, age 30± 2.3). None of subjects 6 to 9 had known neurological deficits.

6.3.3 Experimental Schedule

Each subject completed four recording sessions. The first two sessions were performed on one day
and the last two sessions on another day. For all subjects thetime between the first and the last

session was less than two weeks. Each of the sessions consisted of six runs, one run for each of the
six images. The following protocol was used in each of the runs.

1. Subjects were asked to count silently how often a prescribed image was flashed (For example:
"Now please count how often the image with the television is flashed").

2. The six images were displayed on the screen and a warning tone was issued.

3. Four seconds after the warning tone, a random sequence of flashes was started and the EEG

was recorded. The sequence of flashes was block-randomized,this means that after six flashes
each image was flashed once, after twelve flashes each image was flashed twice, etc.. The

number of blocks was chosen randomly between 20 and 25. On average 22.5 blocks of six
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flashes were displayed in one run, i.e. one run consisted on average of 22.5 target (P300)
trials and 22.5 · 5 = 112.5 nontarget (non P300) trials.

4. In the second, third, and fourth session the target image was inferred from the EEG with

a simple classifier. The classifier was trained from the data recorded in session one, one
to two, and one to three, respectively. The algorithm described in Hoffmannet al. (2006)

was used for preprocessing and the algorithm described in Hoffmannet al. (2004) was used
for classification. At the end of each run the image inferred by the classification algorithm

was flashed five times to give feedback to the user. The feedback served to keep the users
interested and concentrated during the training sessions.

5. After each run subjects were asked what their counting result was. This was done in order to

monitor performance of the subjects.

The duration of one run was approximately one minute and the duration of one session including
setup of electrodes and short breaks between runs was approximately 30 minutes. One session

comprised on average 810 trials, and the whole data for one subject consisted on average of 3240
trials.

6.3.4 Offline Analysis

The impact of different electrode configurations and machine learning algorithms on classification

accuracy was tested in an offline procedure. For each subject four-fold cross-validation was used to
estimate average classification accuracy. More specifically, the data from three recording sessions

were used to train a classifier and the data from the left-out session was used for validation. This
procedure was repeated four times so each session served once for validation.

Preprocessing

Before learning a classification function and before validation, several preprocessing operations
were applied to the data. The preprocessing operations wereapplied in the order stated below.

1. Referencing

The average signal from the two mastoid electrodes was used for referencing.

2. Filtering

A 6th order forward-backward Butterworth bandpass filter was used to filter the data. Cutoff
frequencies were set to 1.0 Hz and 12.0 Hz. The MATLAB function butter was used to

compute the filter coefficients and the functionfiltfilt was used for filtering.

3. Downsampling

The EEG was downsampled from 2048 Hz to 32 Hz by selecting each64th sample from the

bandpass-filtered data1.

1Note that a more robust approach to downsampling would be to use averaging with a window size of 64 samples.
Although, due to the preceding lowpass filtering, the improvement of averaging compared to selecting each 64th sample
is probably small, averaging should be used in future versions of the system presented here.
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4. Single Trial Extraction

Single trials of duration 1000 ms were extracted from the data. Single trials started at stim-

ulus onset, i.e. at the beginning of the intensification of animage, and ended 1000 ms after
stimulus onset. Due to the ISI of 400 ms, the last 600 ms of eachtrial were overlapping with

the first 600 ms of the following trial.

5. Windsorizing

Eye blinks, eye movement, muscle activity, or subject movement can cause large amplitude
outliers in the EEG. To reduce the effects of such outliers, the data from each electrode

were windsorized. For the samples from each electrode the 10th percentile and the 90th
percentile were computed. Amplitude values lying below the10th percentile or above the

90th percentile were then replaced by the 10th percentile orthe 90th percentile, respectively.

6. Scaling

The samples from each electrode were scaled to the interval [−1, 1]. Scaling constants were

computed for each electrode from all trials in the training set and then applied to the validation
data. Note that scaling wasnot done on a trial by trial basis. Instead the same scaling
constants were used for all trials. This is important since scaling each trial individually could

potentially destroy important amplitude information characterizing the P300.

7. Electrode Selection

Four static electrode configurations with different numbers of electrodes were tested. The

electrode configurations are shown in Fig. 6.2.

8. Feature Vector Construction

The samples from the selected electrodes were concatenatedinto feature vectors. The di-
mensionality of the feature vectors wasNe × Ns, whereNe denotes the number of electrodes

and Ns denotes the number of temporal samples in one trial. Due to the trial duration of
1000 ms and the downsampling to 32 Hz,Ns always equaled 32. Depending on the electrode

configuration,Ne equaled four, eight, sixteen, or thirty-two.

Machine Learning and Classification

Classifiers and the percentile values used for windsorizingwere trained on the data from three
sessions and validated on the left-out fourth session. Training datasets contained 405 target trials

and 2025 nontarget trials and validation datasets consisted of 135 target and 675 nontarget trials
(these are average values cf. Section 6.3.3). BDA was used tolearn classifiers (cf. Chapter 5, page

60). To compare the performance of BDA with a standard algorithm, in a second set of experiments
classifiers were computed with FDA. In particular the version of FDA based on the Moore-Penrose

pseudoinverse of the within-class scatter matrix was used (cf. Chapter 5, page 58). Both algorithms
were fully automatic, i.e. no user intervention was required to adjust hyperparameters, and the

computation of classifiers took less than one minute on a standard PC.
After the classifiers had been trained, they were applied to validation data in the following way.

For each run in the validation session, the single trials corresponding to the first twenty blocks of
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Figure 6.2— Electrode configurations used in the experiments. From topleft to bottom right: Configuration
I (four electrodes), configuration II (eight electrodes), configuration III (sixteen electrodes), and configuration
IV (thirty-two electrodes).

flashes were extracted using the preprocessing operations.Then the single trials were classified.

This resulted in twenty blocks of classifier outputs. Each block consisted of six classifier outputs,
one output for each image on the display. To decide which image the user was concentrating on, the

classifier outputs were summed over blocks for each image andthen the image with the maximum
summed classifier output was selected1. Different tradeoffs between the time needed to take a

decision and the classification accuracy were simulated by varying the number of summed classifier
outputs, i.e. the number of blocks. The performance measures used for comparing classifiers are

described in more detail in the next section.

6.4 Results

6.4.1 Performance Measures

To illustrate and compare the results obtained for different subjects, classifiers, and electrode con-
figurations we have used the following performance measures. All performance measures are based

1This decision scheme is described in more detail in Chapter 4and is depicted in Fig. 4.5 on page 49.
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on the cross-validation procedure presented in the previous section.

• Classification Accuracy Graphs

Classification accuracy graphs illustrate the dependence of classification accuracy on the

amount of aggregated data. This is best understood by considering the following notation.
Let trsb ∈ R denote the classifier output corresponding to the presentation of stimuluss, in

block b, during runr. The identity ts(r, B) of the target stimulus in runr, taking into account
data fromB blocks of stimulus presentations, is then computed as follows:

ts(r, B) = arg max
s

B
∑

b=1

trsb. (6.1)

The classification accuracy ac(B) as a function of the number of blocks can be expressed as:

ac(B) =
1
R

R
∑

r=1

I
(

ts(r, B) = gt(r)
)

. (6.2)

HereR denotes the number of runs in the validation set, I denotes the indicator function,
and gt(r) denotes the groundtruth identity of the target stimulus inrun r. The classification

accuracy as a function of the number of blocks can easily be converted into graphs depending
on time by noting that each block has a duration of 6× 400 ms= 2.4 s.

• Bitrate Graphs and Maximum Bitrate

The dependence of communication speed (the bitrate) on the amount of aggregated data was

computed by applying the definition of Wolpawet al. (2002) to the classification accuracy
graphs. Maximum bitrates were computed by finding the maximum of the bitrate graphs.

Note that in the bitrate definition of Wolpawet al. (cf. Chapter 4, page 51) it is assumed
that the user communicates an infinite amount of data and thathe encodes the data he wants

to transmit in an optimal way, such that eventual communication errors can be corrected by
a decoding algorithm. In the environment control application discussed here the amount of

transmitted data is limited and no encoding takes place. Hence, the bitrates depicted in the
graphs on page 84 are only actually achievable at points where the classification accuracy is

100%. When the classification accuracy is lower than 100% an optimal encoding procedure
would be necessary to actually achieve the depicted bitrates. Despite this drawback of the

bitrate definition of Wolpawet al. we have nevertheless used it as it is widely used for
comparisons between different types of BCI systems.

• Per Block Accuracy (PBA)

The principal performance measure used for comparing classifiers is what we have termed

“per block accuracy”. The motivation for introducing this performance measure is that it
is difficult to find a sensible metric for comparing graphs of accuracy or bitrate. Maximum

bitrate is also unsuitable as a performance measure becauseit depends mainly on the data
recorded during the first few stimulus presentations and thus might have high variance. The

PBA is computed from all blocks of EEG trials seen during cross-validation and hence should
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be more reliable. To define this performance measure more precisely, let us introduce the
following notation.

t̃s(r, b) = arg max
s

trsb. (6.3)

As beforetrsb denotes the classifier output for stimuluss, in blockb, during runr. Therefore,

t̃s(r, b) denotes the identity of the target stimulus computed only from blockb in run r. The
PBA is then computed as:

pba=
1

RB

R
∑

r=1

B
∑

b=1

I
(

t̃s(r, b) = gt(r)
)

. (6.4)

Here, by a slight abuse of notation,B denotes the total number of blocks in each run.

6.4.2 General Observations

Graphs of classification accuracy and bitrate are shown in Fig. 6.3. Electrode configuration (II) in

conjunction with BDA as classification method was used for these graphs1. The maximum bitrates
for all possible combinations of electrode configuration and classification algorithm are listed in

Table 6.2. The PBAs for all possible combinations of electrode configuration and classification
algorithm are listed in Table 6.3.

Data for subject 5 are not included in Fig. 6.3 , Table 6.2, andTable 6.3 because classification
accuracies above chance level could not be obtained. Duringthe experiments a speech therapist

helped to communicate with subject 5. However, it was not clear if the subject understood the in-
structions given before the experiments. Furthermore, thelevel of alertness of the subject fluctuated

strongly and rapidly during experiments.

All of the subjects, except for subjects 6 and 9, achieved an average classification accuracy of

100% after 12 or more blocks of stimulus presentations were averaged (i.e. after 28.8 s). Subject
6 reported that he accidentally concentrated on the wrong stimulus during one run in session 1.

This explains the lower average classification accuracy forthis subject. In all other runs the average
classification accuracy after more than 12 blocks was 100% for subject 6. The somewhat lower
performance for subject 9 is restricted to session 4, i.e. insessions 1 to 3 subject 9 always reached

100% classification accuracy. The reason for the lower performance in session 4 might be fatigue.

The best performance was achieved by subject 8. Subject 8 washighly concentrated and mo-
tivated during the experiments. It is known that motivationand arousal in general increase P300
amplitude (Carrillo-de-la Pena and Cadaveira, 2000). One possible explanation for the very good

performance of subject 8 might thus be the fact that the subject was very motivated.

6.4.3 Differences between Disabled and Able-bodied Subjects

The differences that can be observed between disabled and able-bodied subjects depend on the per-
formance measure used. If maximum classification accuracy is used as performance measure, no

1Electrode configuration (II) was chosen for plotting because it represents a good tradeoff between classification
performance and practical applicability of a BCI system. Tokeep the plots uncluttered, the curves for FDA, which for
electrode configuration (II) are very similar to those of BDA, are not shown.
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Figure 6.3— Classification accuracy and bitrate plotted vs. time. The panels show the classification accu-
racy obtained with BDA and the eight electrode configuration, averaged over four sessions (circles) and the
corresponding bitrate (crosses), for disabled subjects (S1-S4) and able-bodied subjects (S6-S9).



6.4. R 85

differences can be found between able-bodied and disabled subjects. This is shown for classification
with BDA and the eight electrodes configuration in Fig. 6.3. The same behavior was found for the

other combinations of classifier and electrode configuration (not shown). If bitrate is used as per-
formance measure, differences between disabled and able-bodied subjects can readily be observed.

Able-bodied subjects achieved higher maximum bitrates than disabled subjects. This was the case
for all combinations of classifier and electrode configuration (see Table 6.2). Differences between

disabled and able-bodied subjects were also found in the PBA(see Table 6.3). This indicates that
the smaller performance of disabled subjects is not restricted to the first few stimulus presentations

but persist also for stimuli presented later during a run.

6.4.4 Electrode Configurations and Classification Methods

Using different electrode configurations in conjunction with BDA and FDA yielded the results
shown in Fig. 6.4 and Table 6.3. For BDA one can observe that increasing the number of elec-

trodes always led to an increase in performance. The largestimprovements were obtained by using
eight instead of four electrodes and by using sixteen instead of eight electrodes. The increase in per-
formance obtained by using thirty-two electrodes was relatively small. For FDA the performance

was not directly related to the number of electrodes. Using eight electrodes led to a strong increase
in performance over the four electrode configuration. A further small improvement was obtained

by using sixteen electrodes. The thirty-two electrodes configuration, however, led to performance
below that of the eight electrode configuration. Concerningthe relative performance of FDA and

BDA it can be seen that BDA always outperformed FDA.

6.4.5 Averaged Waveforms

Detecting the target image from a sequence of EEG trials relies on differences between the wave-
forms of target and nontarget trials. To visualize these differences the averaged waveforms at elec-

Disabled Able-bodied Average

S1 S2 S3 S4 S6 S7 S8 S9 S1-S4 S6-S9 All

FDA-04 6 7 24 13 22 19 44 8 13±9 23±15 18±12
-08 7 13 28 17 22 19 56 13 16±9 28±19 22±15
-16 5 6 28 19 17 22 50 15 15±11 26±16 20±14
-32 7 6 19 15 13 19 39 13 12±7 21±12 16±10

BDA-04 9 7 22 15 26 22 39 17 13±7 26±9 20±10
-08 9 11 25 19 26 22 50 19 16±8 29±14 23±13
-16 8 11 25 22 26 39 56 22 16±8 36±15 26±15
-32 13 11 22 30 34 39 65 17 19±9 39±29 29±18

Table 6.2 — Maximum average bitrate per minute (rounded to integer values). Bitrates were computed
from average accuracy curves and are shown for all combinations of classification algorithm and electrode
configuration. Mean bitrate and standard deviations were computed for disabled subjects (S1-S4), able-
bodied subjects (S6-S9), and all subjects.



86 C 6. A E B-C I  D S

Disabled Able-bodied Average

S1 S2 S3 S4 S6 S7 S8 S9 S1-S4 S6-S9 All

FDA-04 41 37 63 40 48 56 66 45 45±12 54±10 49±10
-08 42 46 67 56 55 58 78 45 53±11 59±14 56±12
-16 41 39 67 56 58 63 77 49 49±13 62±12 56±13
-32 42 37 62 55 53 57 74 44 49±11 52±13 53±12

BDA-04 43 43 68 43 54 56 69 49 49±13 57±8 53±11
-08 46 53 71 63 60 61 80 51 49±11 63±12 60±11
-16 47 53 75 68 68 71 85 55 61±13 70±13 65±13
-32 57 51 76 70 70 72 87 58 64±12 72±12 68±12

Table 6.3 — Per block accuracy (PBA) in percent for all subjects. Shownare the mean PBA for each
subject, the mean and standard deviations for disabled subjects (S1-S4), able-bodied subjects (S6-S9), and
all subjects. All numbers were rounded to integer values to increase readability of the table.

FDA-32

FDA-16

FDA-08

FDA-04

BDA-32

BDA-16

BDA-08

BDA-04

35 40 45 50 55 60 65 70 75 80 85 90
Per Block Accuracy(%)

Figure 6.4 — Boxplots of the per block accuracy (PBA). Each boxplot summarizes the data from subjects
S1-S4 and subjects S6-S9. The leftmost vertical lines indicate the minimal PBA among subjects and the
rightmost vertical lines indicate the maximal PBA among subjects. Circles represent the median PBA among
subjects (filled circles were used for FDA, empty circles were used for BDA). White space around the circles
indicates the interquartile range of the PBA.

trode Pz are plotted in Fig. 6.51. As expected, disabled subjects and able-bodied subjects show a

P300-like peak in the target condition which is not present in the nontarget condition. The latency
of the P300 is higher for the disabled subjects (around 500 ms) when compared to the one from

able-bodied subjects (around 300 ms). The amplitude at the P300 peak is smaller for the disabled

1Electrode Pz was chosen for plotting because it typically shows the largest P300 amplitude.
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Figure 6.5 — Top: Average waveforms at electrode Pz for disabled subjects (S1-S4). Bottom: Average
waveforms at electrode Pz for able-bodied subjects (S6-S9). Shown are the average responses to target
stimuli (solid line) and nontarget stimuli (dashed line) from all four sessions. A prestimulus interval of 100
ms was used for baseline correction of single trials.

subjects (around 1.5µV) than for the able-bodied subjects (around 2µV).

6.5 Discussion

6.5.1 Differences to Other Studies

Compared to other P300-based BCI systems for disabled users, the classification accuracy and bi-
trate obtained in the current study are relatively high. In the work of Sellers and Donchin (2006)
the best classification accuracy for the able-bodied subjects was on average 85% and the best clas-

sification accuracy for the ALS patients was on average 72% (values taken from Table 3 in Sellers
and Donchin (2006)). In the present study the best classification accuracy for the able-bodied sub-

jects was on average close to 100% and the best classificationaccuracy for disabled subjects was
on average 100% (see Fig. 6.3). Bitrates in bits/min were not reported in the study of Sellers and

Donchin.

In the work of Piccioneet al. (2006) the definitions for bitrate and classification accuracy are
different from those used in this thesis. Therefore a direct comparison with the system of Piccione

et al. is impossible. However, given the number of stimuli (four) and the ISI (2.5 s) used in the
system of Piccioneet al., the maximal possible bitrate according to the definition inEquation 4.1

can be computed. This bitrate is 12 bits/min. In the present study the average bitrate obtained with
electrode configuration (II) was 15.9 bits/min for the disabled subjects and 29.3 bits/min for the

able-bodied subjects.

Due to differences in experimental paradigms and subject populationsthe classification accu-
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racy and bitrate obtained in the two studies described abovecannot be compared directly to those
obtained in the present study. Nevertheless, several factors that might have caused the differences

can be identified. These factors are described below.

• Number of Choices

In the present study a six-choice paradigm was used, whereasin the experiments of Sellers

and Donchin and Piccioneet al. four-choice paradigms were used. As a consequence the
target stimulus occurred with a probability of 0.25 in the experiments of Sellers and Donchin

and Piccioneet al., whereas in the present work it occurred with a probability of 0.16. Smaller
target probabilities correspond to higher P300 amplitudes(Duncan-Johnson and Donchin,
1977), thus the P300 in our system might have been easier to detect.

In general, when designing a P300-based BCI, one has to take into account that disabled
subjects might suffer from visual impairments. Systems such as the P300 spellerin which
users have to focus on a relatively small area of the display might thus not be appropriate for

disabled subjects. Reducing the number of choices enlargesthe area occupied by one item on
the screen and thus facilitates concentration on one item. This might be particularly important

for subjects who have little remaining control over their eye-movements. Such subjects might
use covert shifts of visual attention (Posner and Petersen,1990) to control a P300-based BCI,

which should be easier when a small number of large items is used.

• Interstimulus Interval

Several factors have to be kept in mind when choosing an ISI for a P300-based BCI system.

Regarding classification accuracy, longer ISIs theoretically yield better results. This should
be the case because longer ISIs (within some limits) cause larger P300 amplitude. On the

other hand, a consequence of long ISIs is a longer overall duration of runs. Disabled subjects
might have difficulties to stay concentrated during long runs and thus P300 amplitude and

classification accuracy might actually decrease for longerISIs.

Regarding bitrate, the factors described above have to be considered together with the fact that
for a given classification accuracy higher bitrates are obtained with shorter ISIs. Additionally

one has to consider that if the ISI is made too short, subjectswith cognitive deficits might
have problems to detect all target stimuli and classification accuracy might decrease.

Given the complex interrelationship of several factors an optimal ISI for P300-based BCIs

can only be determined experimentally. Here we have shown that an ISI of 400 ms yields
good results. Sellers and Donchin have used an ISI of 1.4 s, and Piccioneet al. have used an
ISI of 2.5 s. The results obtained in their studies seem to indicate that these ISIs are too long.

6.5.2 Visual Evoked Potentials

In the literature on P300-based BCI systems it is almost always assumed that the only factor al-
lowing to discriminate target trials from nontarget trialsis the P300 (see Kaperet al. (2004) for an

exception). However, for systems using visual stimuli thisassumption might be too limited. To
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understand this let us consider that in the system presentedhere and in any other visual P300 BCI,
users can use one of (at least) two strategies to select an item displayed on the screen. In the first

strategy, users gaze at a neutral position on the screen (forexample the center of the screen) and
use covert shifts of attention to concentrate on the flashes of the desired target item. For this strat-

egy, the assumption that the P300 is the main factor for discrimination of targets from nontargets is
probably correct. In the second strategy, users employ eye movements to gaze at the desired item

and to foveate this item. For this strategy, it is probable that the visual potentials evoked by the
target item are different from those evoked by nontarget items. The target item is at the center of

the visual field and influences a relatively large part of visual cortex whereas peripheral nontarget
items influence a smaller part of visual cortex. Hence, the visual evoked potentials (VEPs) corre-

sponding to target flashes can be expected to have a larger amplitude than the VEPs corresponding
to nontarget flashes. In the second strategy, discrimination of targets from nontargets might thus be
based on the P300andon differences in the VEPs.

For the system presented here, the plots of the average waveforms in the target and nontarget
conditions (cf. Fig. 6.5) provide evidence that the P300 plays an important role for the classification

of targets and nontargets. However, the possibility that the classification accuracy depends partly on
the ability to perform eye movements and to focus on an item cannot be excluded. Further research

is necessary to elucidate the role of P300 and VEPs in P300-based BCI systems.

6.5.3 Electrode Configurations

The electrode configuration used in a BCI determines the suitability of the system for daily use.
Clearly, systems that use only few electrodes take less timefor setup and are more user friendly

than systems with many electrodes. However, if too few electrodes are used not all features that are
necessary for accurate classification can be captured and communication speed decreases.

For P300-based BCI systems different electrode configurations have been described in the lit-
erature. Good results have been reported using only three orfour midline electrodes (Fz, Cz, Pz,
Oz) (Piccioneet al., 2006; Sellers and Donchin, 2006; Serbyet al., 2005). Krusienskiet al. (2006)

described an eight electrode configuration consisting of the midline electrodes and the four parietal-
occipital electrodes PO7, PO8, P3, and P4. Kaperet al. (2004) employed a ten electrode configura-

tion consisting of the midline electrodes, the parietal-occipital electrodes PO7, P08, P3, P4 and the
central electrodes C3, C4. Thulasidaset al. (2006) used a set of 25 central and parietal electrodes.

Here we have tested different electrode configurations, consisting of four, eight,sixteen, and
thirty-two electrodes, in combination with the BDA and FDA classification algorithms. The results

show that for both algorithms a significant increase in classification accuracy can be obtained by
augmenting the set of four midline electrodes with the parietal electrodes P7, P3, P4, and P8. For
most of the subjects, inspection of the average waveforms atthe parietal electrodes showed that

in target trials there was a negative peak with a latency of about 200 ms which was weaker in
the nontarget condition. This N200-like component probably is responsible for the increase of

classification accuracy when the parietal electrodes are included. Further research is needed to
clarify the possible functional significance of this component.

With the BDA algorithm a further increase in classification accuracy could be obtained by using
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the configurations consisting of sixteen or thirty-two electrodes. With the FDA algorithm, classi-
fication decreased when more than sixteen electrodes were used. This probably happened because

the FDA algorithm is unable to deal with training data sets inwhich the number of features is large
compared to the number of training examples.

In summary, regardless of the classification algorithm thatis used, the eight electrode configu-

ration represents a good compromise between suitability for daily use and classification accuracy
and seems to capture most of the important features for P300 classification.

6.5.4 Machine Learning Algorithms

Many of the characteristics of a BCI system depend critically on the employed machine learning
algorithm. Important characteristics that are influenced by the machine learning algorithm are clas-

sification accuracy and communication speed, as well as the amount of time and user intervention
necessary for setting up a classifier from training data.

A simple and efficient algorithm that has relatively often been used in P300-based and other BCI

systems is FDA (Bostanov, 2004; Kaper, 2006; Pfurtschellerand Neuper, 2001). In a comparison
of classification techniques (Krusienskiet al., 2006) for P300-based BCIs, FDA was among the
best methods in terms of classification accuracy and ease of use. However, using FDA becomes

impossible when the number of features becomes large, relative to the number of training examples.
This is known as the small sample size problem. The small sample size problem occurs because the

between-class scatter matrix used in FDA becomes singular when the number of features becomes
large. In the present study the solution to this problem was to use the Moore-Penrose pseudoinverse

of the between-class scatter matrix (cf. Chapter 5, page 58). This allows to use FDA, even if the
number of features is high. However, with this approach the performance deteriorated when the

number of electrodes was increased.

In BDA, the small sample size problem, and more generally theproblem of overfitting are

solved by using regularization. Through a Bayesian analysis, the degree of regularization can be
automatically estimated from training data without the need for user intervention or time consuming

cross-validation. With the datasets used in this work, the BDA algorithm is superior to FDA in terms
of classification accuracy and bitrates, especially if the number of features is large.

In summary, BDA offers good classification accuracy and does not constrain the practical ap-
plicability of a BCI system and is thus an interesting alternative to FDA.

6.6 Conclusion

In this chapter an efficient P300-based BCI system for disabled subjects was presented. It was
shown that high classification accuracies and bitrates can be obtained for severely disabled sub-
jects. Due to the use of the P300, only a small amount of training was required to achieve good

classification accuracy.

Concerning the relative performance of disabled and able-bodied subjects we have seen that
the data from able-bodied subjects can be classified with higher accuracy. Nevertheless, by inte-

grating information from many stimulus presentations it was possible to achieve communication
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without errors also for the disabled subjects. A comparisonbetween the machine learning algo-
rithms FDA and BDA revealed that BDA clearly outperforms FDA. This was especially the case

when high-dimensional feature vectors, resulting from theusage of many electrodes, were em-
ployed. Concerning the performance of different electrode configurations we concluded that the

eight electrode configuration represents a good compromisebetween practicality and achievable
classification accuracy.

In the next chapter experiments with the sparse Bayesian linear discriminant analysis (SBDA)
algorithm, which allows to adapt electrode configurations to specific subjects, will be presented.

Moreover, experiments conducted with the adaptive stopping algorithm will be presented.
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Experiments with Bayesian
Algorithms for EEG
Classification 7
7.1 Introduction

In this chapter we describe experiments with Bayesian linear discriminant analysis (BDA) and
sparse Bayesian linear discriminant analysis (SBDA), the adaptive stopping algorithm, and different
approaches for computing class probabilities from the output of BDA and SBDA. The theory

underlying these algorithms and methods is described in Chapter 5.

We start in Section 7.2 with a report about the classificationaccuracy that can be obtained with

SBDA and with a comparison of SBDA and BDA. Furthermore, we report on the electrodes that are
selected by SBDA, and compare the automatically selected electrodes to the predefined electrode
subsets proposed in Chapter 6. Then, BDA and SBDA are appliedto P300 datasets from past BCI

competitions. We show that both algorithms lead to classification accuracies that are competitive
with the state-of-the-art. In Section 7.3, experiments with the adaptive stopping algorithm and with

the algorithms for computing class probabilities are described. The adaptive stopping algorithm
dynamically adapts to the level of uncertainty in the signals by varying the amount of data used for

taking decisions. We show that the adaptive stopping algorithm allows to obtain higher communi-
cation speed than decision schemes in which a fixed amount of data is used. For the computation of

class probabilities it is shown that the leave-one-out approach performs slightly better than Van Ges-
tel’s method, this comes however at the cost of increased training time. The chapter is summarized

in Section 7.4.
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7.2 Sparse Bayesian Discriminant Analysis

7.2.1 Results with Proprietary Datasets

Comparison with BDA

Four versions of SBDA were compared with BDA. In the version that we refer to as SBDA-
32, the SBDA algorithm was used to select an optimal number ofelectrodes from all thirty-two

electrodes. In the versions that we refer to as SBDA-16, SBDA-08, and SBDA-04, the number
of selected electrodes was predetermined to be sixteen, eight, and four, respectively, and SBDA

was used to select electrode subsets of that size. The datasets used for the experiments, as well
as the preprocessing methods and the cross-validation procedure were the same as those used in

Chapter 6. As performance measure we used per block accuracy(PBA), as defined in Chapter 6,
on page 82.

The results obtained by running SBDA, together with the results obtained by running BDA, are

summarized in Fig. 7.1.

Detailed results for each subject and for different groups of subjects are provided in Table 7.1.

As can be seen in Fig. 7.1, SBDA in general outperformed BDA. The largest improvements were
obtained when the number of electrodes was small. In particular the improvement obtained by us-

ing SBDA-04 instead of BDA-04 was about 8% in the median PBA. The improvement obtained
for the configuration consisting of eight electrodes was about 6%. For the configurations consisting

SBDA-32

SBDA-16

SBDA-08

SBDA-04

BDA-32

BDA-16

BDA-08

BDA-04

40 45 50 55 60 65 70 75 80 85 90
Per Block Accuracy (%)

Figure 7.1 — Boxplots of per block accuracy (PBA) for BDA and SBDA. Each boxplot summarizes the
data from subjects S1-S4 and subjects S6-S9 (cf. Chapter 6, page 78). The leftmost vertical lines indicate
the minimal PBA among subjects. The rightmost vertical lines indicate the maximal PBA among subjects.
Circles represent the median PBA among subjects (filled circles were used for SBDA, empty circles were
used for BDA). White space around the circles indicates the interquartile range of the PBA.
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Disabled Able-bodied Average

S1 S2 S3 S4 S6 S7 S8 S9 S1-S4 S6-S9 All

BDA-04 43 43 68 43 54 56 69 49 49±13 57±8 53±11
-08 46 53 71 63 60 61 80 51 58±11 63±12 60±11
-16 47 53 75 68 68 71 85 55 61±13 70±13 65±13
-32 57 51 76 70 70 72 87 58 64±12 72±12 68±12

SBDA-04 52 48 65 57 64 62 76 52 56±8 63±10 60±9
-08 54 51 73 63 70 71 84 57 60±10 70±11 65±11
-16 56 53 74 71 69 74 89 62 64±11 73±11 69±11
-32 62 53 75 72 70 74 89 62 65±10 74±11 69±11

Table 7.1 — Per block accuracy (PBA) in percent for all subjects. Shownare the mean PBA for each
subject, the mean and standard deviations for disabled subjects (S1-S4), able-bodied subjects (S6-S9), and
all subjects. All numbers were rounded to integer values to improve readability of the table.

of sixteen and thirty-two electrodes, the differences between SBDA and BDA were smaller. Intu-

itively, this can be explained by assuming that for each subject a small set of electrodes is critical
for obtaining good results, while electrodes not in this setinterfere only little. For the static con-

figurations consisting of sixteen or thirty-two electrodes, the probability that the critical electrodes
are included is relatively high. However, for smaller numbers of electrodes the probability that the

important electrodes are included in a predetermined subset becomes smaller. The automatic adap-
tation of electrode subsets to a given subject thus is important whenever one wants to use only a

small number of electrodes.

Looking at Table 7.1, which contains the detailed results, we can make several additional ob-
servations. Regarding the improvements in classification accuracy, we can see that for nearly all

subjects SBDA yielded better results than BDA. The biggest increases in classification accuracy
were 14% and 10% and were obtained for subjects S4, S6, and S7.However, for subject S2 and

especially for subject S3, SBDA led in some cases to a decrease of between 1% and 3% in classifica-
tion accuracy. Possible reasons for the fact that SBDA decreased accuracy for some subjects while

it improved accuracy for other subjects will be given duringthe following discussion of electrode
rankings.

Electrode Rankings

To rank electrodes by their importance, we ran SBDA on the whole data from each subject and

restricted the number of retained electrodes to one. In other words, we used SBDA to sequentially
remove all electrodes from the initial configuration consisting of thirty-two electrodes. Electrodes
were then ranked in the order in which they were removed. Electrodes that were removed first

received low rankings, while electrodes that were retainedeven in small electrode subsets received
high rankings. The results of this procedure are shown in Table 7.2.

A first insight that can be gleaned from this table is related to the varying performance of SBDA
among subjects, which was mentioned above. As can be seen, subjects S4, S6, and S7, for which the

biggest increases in performance were obtained, are subjects for which many of the electrodes from
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Rank S1 S2 S3 S4 S6 S7 S8 S9 Avg.

1 Fp2 O1 O2 P7 Cz O2 Pz Pz O2
2 Fp1 P4 P3 FC2 P8 PO4 O2 O2 P7
3 P7 Pz Fz Cz CP2 Pz P7 O1 O1
4 Fz P8 O1 O1 O2 P8 Oz Oz Pz
5 AF4 P7 Cz Pz P7 PO3 FC2 Fp1 Cz
6 F3 P3 P7 CP1 CP1 C3 P3 P8 CP1
7 Cz AF3 PO3 O2 AF3 C4 PO4 FC2 Oz
8 Oz Oz Fp2 CP2 Oz O1 Fp2 Cz FC2
9 AF3 Fz CP1 Fz Fp2 P3 Cz PO3 Fp2
10 FC1 CP1 CP2 CP6 F4 FC6 CP6 C4 P8
11 O2 FP1 Oz CP5 FC2 FC5 FC6 P3 P3
12 FC5 CP2 Pz P4 Fp1 P7 CP1 C3 Fz
13 PO4 FC2 FC1 Fp2 O1 FC1 P4 CP1 CP2
14 FC6 Fp2 C3 C3 FC5 CP1 P8 CP6 Fp1
15 F4 O2 FC2 AF3 Fz FC2 C4 AF3 AF3
16 O1 F7 FC5 FC1 C4 F4 O1 P7 C3
17 CP1 Cz CP5 Fp1 F8 CP5 F4 F4 PO4
18 C3 F8 P8 Oz FC6 P4 CP2 Fz P4
19 CP2 AF4 CP6 T7 F7 CP2 CP5 F8 CP6
20 P3 FC6 PO4 T8 F3 AF3 Fz T8 C4
21 P4 C3 F7 F8 PO4 Fp2 F8 T7 PO3
22 F7 F4 F3 P3 T7 F7 Fp1 FC6 FC6
23 F8 CP6 Fp1 C4 T8 F3 AF4 FC5 F4
24 CP6 FC1 F8 F7 CP6 AF4 F3 FC1 FC5
25 Pz PO3 C4 PO4 C3 T7 PO3 AF4 FC1
26 T8 CP5 T8 FC5 Pz T8 T8 F7 F8
27 T7 FC5 T7 F3 PO3 CP6 T7 P4 F7
28 FC2 PO4 P4 P8 P4 Oz C3 Fp2 F3
29 P8 F3 AF3 AF4 AF4 Fz FC1 PO4 CP5
30 PO3 C4 F4 PO3 P3 Fp1 FC5 CP2 AF4
31 C4 T7 FC6 F4 FC1 Cz AF3 F3 T7
32 CP5 T8 AF4 FC6 CP5 F8 F7 CP5 T8

Table 7.2— Electrodes as ranked by the SBDA algorithm. Each column contains a ranking of electrodes
from most important to least important for one subject. The last column contains an average ranking com-
puted from the rankings of all subjects. Electrode names printed in bold font indicate the size of the electrode
subsets selected by SBDA. To show that the results are physiologically plausible, electrodes at which large
P300 amplitudes are expected are highlighted (these are theelectrodes from the eight electrode configuration
proposed in Chapter 6). On average 69% of the highlighted electrodes are ranked among the first sixteen
electrodes.

the static electrode configurations received low ranks. Hence, big increases in performance when

using SBDA instead of BDA might be expected for subjects who do not match the static electrode
configurations. Small differences in performance might be expected for subjects who match well

the static electrode configurations. Furthermore, we can see from Table 7.2 that the electrodes
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selected by SBDA correspond roughly to those at which we expect large P300 amplitudes. The
results returned by SBDA are thus physiologically plausible. In addition to electrodes related to the

P300, also the occipital electrodes O1 and O2 received consistently high rankings. This indicates
that besides the P300 also visual evoked potentials (VEPs) are important to classify EEG trials as

belonging to target or nontarget stimuli.

7.2.2 Results with BCI Competition Datasets

To test how BDA and SBDA compare to state-of-the-art classification algorithms, we performed

experiments with the P300 datasets from the BCI competitions 2003 and 2004 (Blankertzet al.,
2004, 2006a). All the competition datasets consist of a training set and a test set. Training set as

well as test set contain data recorded with the P300 speller paradigm (cf. Chapter 4, page 45). The
goal in the competition was to train a classifier on the training set and to predict the symbols in

the test set. We simulated the competition conditions and used only the training set to determine
classifier parameters and hyperparameters.

Preprocessing

Before learning classifiers and before performing classification, the data were preprocessed with
methods that were similar or equal to those used by the competition winners. This was done because

our goal was to do a fair comparison of BDA, SBDA, and other state-of-the-art machine learning
techniques for P300 datasets. In other words the preprocessing methods described in Chapter 6

were not used because it would not have been possible to differentiate between the contribution of
preprocessing to classification performance and the contribution of machine learning to classifica-
tion performance.

For the 2003 dataset an approach similar to the one describedby Kaperet al. (2004) was used.
The following preprocessing steps were used.

1. Filtering

The data were bandpass filtered between 0.5 Hz and 30 Hz with a 6-th order forward-

backward Butterworth filter.

2. Scaling

The data were scaled to the interval [−1, 1]. As already discussed in Chapter 6 on page 79,

the scaling was performed for the whole training and validation set and not on a trial by trial
basis.

3. Single Trial Extraction

Single trials of length 600 ms, starting at stimulus onset, were extracted from the data.

4. Downsampling

The data were downsampled from 240 Hz sampling rate to 60 Hz sampling rate by selecting

each 4th sample. This is the only done difference to the preprocessing proposed by Kaper
et al.. The downsampling was performed to reduce the dimension of feature vectors and thus

to make learning of classifiers computationally more efficient.
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5. Electrode Selection

The electrode subset described by Kaperet al. was used. The subset consists of the ten

electrodes Fz, Cz, Pz, Oz, C3, C4, P3, P4, PO7, and PO8. Additionally the electrode config-
urations from Chapter 6 and electrode selection with SBDA were tested.

6. Feature Vector Construction

The samples from the selected electrodes were concatenatedinto feature vectors. The dimen-
sionality of the feature vectors was 360 for the electrode configuration proposed by Kaper
et al. and varied accordingly for other electrode configurations.

For the 2004 dataset the approach described by Rakotomamonjy et al. (2005) has been used.
More specifically, the preprocessed data were downloaded from (Rakotomamonjy, 2007) and fed

into BDA and SBDA. Hence, the preprocessing was exactly identical to the one employed by
Rakotomamonjyet al.. The preprocessing steps used in the method of Rakotomamonjy et al. were
as follows.

1. Single Trial Extraction

Single trials of length 667 ms, starting at stimulus onset, were extracted from the data.

2. Filtering

The single trials were filtered with an 8-th order Chebyshev type I filter with cutoff frequen-

cies of 0.1 Hz and 20 Hz.

3. Decimation

The data were downsampled to a sampling rate of 20 Hz. This wasdone with the MATLAB
functiondecimatewhich involves an additional low pass filtering step.

4. Electrode Selection

The electrode subsets described in Chapter 6 were used. Additionally electrode selection
with SBDA was tested.

5. Feature Vector Construction

The samples from the selected electrodes were concatenatedinto feature vectors. The di-

mensionality of the feature vectors was 896 for the full electrode configuration and varied
accordingly for other electrode configurations.

Results

The results obtained on the competition data, together withthe results of the competition winners

are summarized in Table 7.3. For the data from the BCI competition 2003, perfect classification
after five and fifteen blocks was obtained with the BDA-64, BDA-32, BDA-16, and for the electrode

configuration used by Kaperet al. (2004), i.e. for BDA-10. For the data from the BCI competition
2004, 74.5% classification accuracy after five blocks and 97.5% after fifteen blocks were obtained

with SBDA-64. Very good results were also obtained with SBDA-32. This shows that in terms
of classification accuracy BDA and SBDA are competitive withthe algorithms of the competition

winners.
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2003 2004 A 2004 B

5 15 5 15 5 15

BDA-04 71 84 30 62 44 72
-08 97 100 41 81 51 83
-10 100 100 - - - -
-16 100 100 46 87 64 89
-32 100 100 56 98 78 94
-64 100 100 66 98 80 97

SBDA-04 74 87 37 79 70 87
-08 97 100 43 90 75 96
-16 97 100 52 94 79 96
-32 97 100 66 99 80 97
-64 97 100 67 98 82 97

Winner 2003 100 100 - - - -
Winner 2004 - - 73.5 96.5 73.5 96.5

Table 7.3— Classification results for the P300 datasets from BCI competitions 2003 and 2004. Shown is the
percentage of correctly predicted symbols on the test set after five blocks of stimulus presentations and after
fifteen blocks of stimulus presentations. The last two rows contain the results of the competition winners
according to Blankertzet al. (2004, 2006a). Note that for the BCI competition 2004 only averaged results
for datasets A and B are available. The average results are displayed for dataset A as well for dataset B.

At the same time the computational complexity of BDA and SBDAis quite low. Learning a

classifier from the competition data with an unoptimized MATLAB implementation of BDA took on
average four minutes on a PC with a 3.4 GHz processor and 1 GB ofRAM1. Computing parameters

of the univariate Gaussians for estimation of class probabilities, with the leave-one-out procedure
described in Chapter 5, took ten minutes. In total, the setupof a classifier that gives probabilistic

outputs thus took fourteen minutes. The amount of time needed for setting up classifiers with an
unoptimized version of SBDA-64 was only slightly higher than that needed for BDA.

To get an estimate of the computational complexity of support vector machine (SVM) based
solutions, proposed by the winners of the BCI competitions 2003 (Kaperet al., 2004) and 2004

(Rakotomamonjyet al., 2005), we used LIBSVM. LIBSVM is an optimized, state-of-the-art im-
plementation of the SVM (Chang and Lin, 2001). Linearν-SVMs were trained on the competition

training sets by performing a ten-fold cross-validation with ten different values forν. This proce-
dure took on average 4.5 hours on the PC used for testing BDA and SBDA. The time needed to train

an SVM-based classifier is thus much higher than the time needed for training BDA. The reason
for this is that training an SVM is computationally complex.In addition, regularization parameters
and kernel parameters have to be estimated via cross-validation.

A further advantage of BDA and SBDA when compared to the SVM isthat these algorithms
allow for simple and fast estimation of class probabilities(via the procedures presented in Chap-

ter 5). Experiments with the adaptive stopping algorithm, which uses these class probabilities, are
described next.

1The time required for setting up a classifier varied according to the different sizes of the competition training sets.
All runtimes reported here are averages.
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7.3 Adaptive Stopping

Up to now all experiments were based on a scheme in which an a priori fixed number of stimuli is

presented before classification of the recorded EEG signalsis attempted. In this scheme, a small
number of stimuli corresponded to low classification accuracy but also to fast decisions. A large

number of stimuli corresponded to high classification accuracy at the cost of slower decisions. Now,
instead of fixing the number of stimulus presentations a priori, we use thresholds on the probability
of misclassification to automatically adapt the number of stimulus presentations to the uncertainty

in the recorded signals. More specifically, in the followingwe report results that were obtained
with the algorithm for adaptive stopping and with probabilities computed with the leave-one out

approach (cf. Chapter 5, page 66)1. A comparison of the probabilities computed with the leave-
one-out approach and with Van Gestel’s method can be found atthe end of this section.

7.3.1 Results with Proprietary Datasets

Classification Accuracy and Bitrates

To get a first impression of the performance the adaptive stopping algorithm offers, we used BDA-
08 in an experiment with the datasets, preprocessing methods, and cross-validation procedure de-

scribed in Chapter 6. In this experiment, a set of six probabilities p1 . . . p6 was computed after each
block of stimulus presentations from all data recorded so far. In other words, after the first block

of stimulus presentations, the probabilities were computed from six EEG trials, after the second
block of stimulus presentations the probabilities were computed from twelve EEG trials, and so

forth. Thep1 . . . p6 corresponded to the probability of occurrence of six mutually exclusive events.
The event linked top1 was “The subject concentrated on stimulus 1” and the events corresponding

to p2 . . . p6 were defined accordingly. After each block of stimulus presentations the maximum of
p1 . . . p6 was compared to a preset threshold. If the maximumpm was larger than the threshold the

system decided that the user was concentrating on stimulusm. If the maximum was lower than the
threshold the next block of stimulus presentations was evaluated.

Decisions in whichmcorresponded to the ground-truth target stimulus were counted as correct.

Decisions in whichm was different from the ground-truth were counted as wrong. The accuracies,
i.e. the percentage of correct decisions, for the thresholds 0.15, 0.4, 0.65, 0.9, 0.95, and 0.99 are

plotted for each subject in Fig. 7.22. The accuracies are plotted at the stopping times corresponding
to the thresholds. The stopping time for a threshold is the average time that was needed until the

maximum ofp1 . . . p6 first exceeded the threshold. For comparison purposes also the accuracy and
bitrate obtained without adaptive stopping are plotted in Fig. 7.2.

Adaptive stopping led to improved classification accuracies and bitrates for almost all subjects.

In terms of classification accuracy the largest improvements were around 15% (subject S4). In
terms of maximal bitrate the largest improvements were around 5 bits/min (subjects S2, S4, S7).

1The leave-one-out approach was chosen because it yielded slightly better results than Van Gestel’s method.
2Sometimes, the large thresholds were not exceeded even after the maximum of 20 stimulus blocks. In this case

decisions were taken based on probabilities computed from all 20 stimulus blocks and the stopping time was adjusted
accordingly.
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Figure 7.2— Comparison of classification accuracy and bitrate obtainable with BDA-08 with and without
adaptive stopping. Thick, solid lines represent results obtained with adaptive stopping. Thin, dashed lines
represent results obtained without adaptive stopping. Thepanels show the classification accuracy, averaged
over four sessions (circles) and the corresponding bitrate(crosses), for disabled subjects (S1-S4) and able-
bodied subjects (S6-S9).
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Regarding the relation between threshold and resulting classification accuracy, one can see that
classification accuracy was almost always larger than the threshold. In other words, for a threshold

equal to 0.15 the classification accuracy was bigger than 15%, for a threshold equal to 0.4 the
classification accuracy was bigger than 40%, and so forth. This is a desirable behavior as it allows

to choose thresholds based on the percentage of errors one isready to accept. Exceptions to this
behavior can be found in the performance curves for subjectsS6, and S9. For these subjects,

classification accuracy resulting from thresholds equal to0.95 and 0.99 is lower than it should
be. For subject S6, this can be explained by the fact that the training and test data contain some

mislabeled trials (cf. Chapter 6, page 83). For subject S9, the cause for the lower than predicted
classification accuracy is at present unknown.

Calibration and Refinement

From the relation between thresholds and resulting classification accuracy it seems thatp1 . . . p6

computed with the leave-one-out approach arecalibrated, i.e. it seems thatp1 . . . p6 are realistic

estimates of the probability of occurrence of the corresponding events. However, this cannot be
checked thoroughly based on the results in Fig. 7.2 alone. Tocheck how well the probability esti-

mates were calibrated, we applied the following reasoning:If an event is predicted onN occasions
with a probability ofp it should occur aboutpN times. Hence, for all blocks of stimulus presenta-

tions tested during cross-validation, the probabilitiesp1 . . . p6 were computed and sorted into bins.
Then, for each bin the number of events that actually occurred was computed. The resulting plot is

shown in Fig. 7.3. As can be seen from this plot, the predictedprobabilities coincide relatively well
with the observed (true) probabilities. A possible reason for the small deviations between true and

predicted probabilities is that some of the model assumptions are wrong. In particular, the assump-
tions of Gaussian predictive distributions and independence of trials should be checked in order to
further improve the probability estimates.

The calibratedness ofp1 . . . p6 is an important feature of the adaptive stopping algorithm,as it
allows for an intuitive adjustment of the threshold values.In addition,

calibrated probabilities are important whenever probabilistic estimates from several systems or
applications have to be combined. In the BCI context this would for example be the case if one

wanted to build a spelling system in which different probabilities for different symbols are taken
into account.

Besides being calibrated, probabilistic classifier outputs and probability estimates derived from

these outputs should also berefined. Speaking abstractly, this means that probability estimates for
a certain event should allow to discriminate between occasions on which the event occurs and other

occasions. Translated to the BCI scenario considered here,this means that the probability estimates
p1 . . . p6 should allow to decide on which stimulus the user is concentrating. The difference between

refinement and calibration can be understood by noting that perfect calibration could be easily
achieved by predictingpi =

1
6 for i ∈ {1 . . . 6}. More generally, perfect calibration can always be

achieved by predicting the long run probability of an event.Such probability estimates are however
not useful, as they do not allow to discriminate between occasions on which the event in question

occurs and other occasions.
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Figure 7.3— Boxplots of true probabilities versus predicted probabilities (the leave-one-out approach was
used to compute class probabilities). Each boxplot summarizes the data from subjects S1-S4 and subjects
S6-S9. The uppermost horizontal lines indicate the maximaltrue probability among subjects. The lowermost
horizontal lines indicate the minimal true probability among subjects. Circles represent the median true
probability. White space around the circles indicates the interquartile range of the true probabilities.

A tool that allows to measure calibration as well as refinement is the so-called Brier score

(Brier, 1950; DeGroot and Fienberg, 1983). The Brier score has been routinely used for evaluation
of probabilistic forecast in economics and meteorology andhas more recently also been introduced

in machine learning (Cohen and Goldszmidt, 2004). The BrierscoreP is computed as follows:

P =
1
N

N
∑

i=1

E
∑

j=1

(pi j − ei j )
2. (7.1)

HereN is the number of observations,E is the number of events, andpi j is the predicted probability
that eventj occurs in observationi. Theei j indicate if events actually occur, i.e.ei j = 1 if event j

occurs in observationi andei j = 0 if event j does not occur in observationi. In the BCI scenario

considered here,N is equal to the number of stimulus blocks andE is equal to the number of stimuli,
i.e. E is equal to six. The average Brier scores for all subjects andfor all classifier configurations

are shown in Table 7.4. The Brier scores follow closely the behavior that was observed when testing
the PBA (cf. Table 7.1). In particular, classifiers using a large number of electrodes achieved better

Brier scores than classifiers using a small number of electrodes. Furthermore, the scores achieved
with SBDA were in general better than those achieved with BDA. This means that among the

algorithms we tested, the algorithms that were preferable for classification were also preferable
for producing probabilistic forecasts. This is not self-evident, as the tasks of discrimination and

assigning class probabilities are different tasks.
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Disabled Able-bodied Average

S1 S2 S3 S4 S6 S7 S8 S9 S1-S4 S6-S9 All

BDA-04 70 72 46 71 63 59 43 67 65±12 58±10 61±11
-08 67 62 39 50 54 51 28 64 55±13 49±15 52±13
-16 65 62 35 46 47 40 21 58 52±14 42±15 47±15
-32 57 62 33 41 44 40 19 56 48±14 39±15 44±14

SBDA-04 63 68 45 55 56 50 35 62 58±10 51±12 54±11
-08 59 62 38 48 47 41 24 57 52±11 42±14 47±13
-16 57 61 36 41 43 37 18 54 49±12 38±15 43±14
-32 57 61 34 39 43 36 17 53 48±13 37±15 43±14

Table 7.4— Brier scores for all subjects. Shown are the mean score for each subject, the mean score and
standard deviation for disabled subjects (S1-S4), able-bodied subjects (S6-S9), and all subjects. All values
were multiplied by 100 and rounded to integer values to increase readability of the table. The best possible
score is 0 and the worst possible score is 200.

Comparison of Van Gestel’s Method and the Leave-One-Out Approach

Having discussed results that can be achieved with the adaptive stopping algorithm and having
introduced the Brier score as a tool for evaluating estimates of probabilities, we now present a com-

parison of the quality of the probabilities computed with Van Gestel’s method and the leave-one-out
approach. For this comparison we used class probabilities instead of the probabilities for different

stimuli. This was done in order to avoid masking of differences between the two approaches by
the combination scheme for class probabilities. The Brier scores obtained with the two methods

are shown in Fig. 7.4. As one can see the Brier scores for the class probabilities are better than
the scores in Table 7.4, which can intuitively be explained by the fact that computing probabilities
for two different events is a much simpler task than computing probabilities for six different events.

Moreover, it can be seen from Fig. 7.4 that the leave-one-outapproach yielded slightly better scores
than Van Gestel’s method, especially so for subjects and classification methods with very good Brier

scores.
Given that the difference between the two methods is only small, computationalcomplexity is

the most important factor to choose between the two methods.The leave-one-out approach adds
complexity to the training phase of classifiers but is very efficient for computing class probabilities

for new feature vectors. Hence, it should be chosen for applications in which an increased training
time can be afforded and for which it is important to compute class probabilities for test examples

very fast. Van Gestel’s method does add only little complexity to the training phase but is less
efficient for the computation of class probabilities. Hence, itcan be used for applications in which

the training time should be as short as possible and in which slightly slower computation of class
probabilities for test examples can be accepted.

7.3.2 Results with BCI Competition Datasets

We now turn our attention to experiments performed with the BCI competition datasets and adaptive

stopping. The goal in these experiments was to test if the good results achieved with the SBDA
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Figure 7.4— Comparison of Brier scores obtained with Van Gestel’s method and the leave one-out approach
(cf. Chapter 5, page 66). The leave-one-out approach performs slightly better than Van Gestel’s method. Big
circles correspond to scores for BDA-32, intermediate circles correspond to scores for BDA-16 and BDA-08,
small circles correspond to scores for BDA-04. Crosses correspond to scores obtained with SBDA, size of
the crosses indicates the number of channels as for BDA. All scores were multiplied by 100, so the best
possible score is 0 and the worst possible score is 200.

algorithm on the competition datasets (cf. Table 7.3) couldbe pushed even further by using adaptive
stopping. We used thresholds equal to 0.02, 0.15, 0.4, 0.65,0.9, 0.95, and 0.99. The results of these

experiments are shown in Fig. 7.5. As can be seen, it was not possible to improve the maximal
classification accuracy with the adaptive stopping algorithm. However, the maximal classification

accuracy was obtained earlier than by the competition winners. For the 2003 dataset the maximal
accuracy was obtained on average after 7.5 s, whereas the competition winners needed 10.5 s. For

the 2004 datasets the maximal accuracy was obtained after 25s, instead of 31.5 s for the competition
winners. Using SBDA-64 in conjunction with adaptive stopping thus led to a slight improvement

over the results obtained by the competition winners.

7.4 Conclusion

In this chapter we have reported the results of experiments conducted with SBDA and the adaptive
stopping algorithm. Concerning SBDA, one of the main results was that electrode selection im-

proves classification accuracy over the BDA algorithm, which does not perform electrode selection.
Moreover, the electrode subsets selected by SBDA were physiologically plausible, i.e. the selected

electrodes coincided mostly with electrodes at which largeP300 amplitudes were expected. Ex-
periments were also conducted with publicly available datasets from past BCI competitions. These

experiments showed that SBDA and also BDA allow to achieve results that are in terms of clas-
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Figure 7.5 — Classification accuracy and bitrate obtained on the BCI competition datasets 2003 and 2004
with SBDA-64. Shown are the accuracy and bitrate obtained with adaptive stopping (thick solid lines) and
without adaptive stopping (thin dashed lines). The resultsof the competition winners are indicated by crosses.

sification accuracy as good as those of the competition winners. In addition, the computational

complexity of learning classifiers with SBDA and BDA is significantly lower than that of the SVM-
based solutions proposed by the competition winners.

Experiments conducted with the adaptive stopping algorithm showed that automatically adapt-
ing the amount of data is preferable to decision schemes in which a fixed amount of data is used. In

particular, in the setting of the BCI presented in Chapter 6,adaptive stopping allowed to improve
the communication speed while maintaining the classification accuracy. An investigation of the

class probabilities used in the adaptive stopping algorithm showed that these probabilities are ap-
proximately calibrated. This is important for selecting stopping thresholds in the adaptive stopping
algorithm and for interfacing with other probabilistic applications or systems. The comparison of

the leave-one-out approach and Van Gestel’s method for computing class probabilities showed that
the leave-one-out approach yields slightly more precise class probabilities. This comes however at

the cost of increased computational complexity during the training phase.
Using adaptive stopping with the BCI competition datasets showed that adaptive stopping al-

lows to improve upon the results of the competition winners.In particular, adaptive stopping per-
mitted to reduce the number of stimuli that are necessary forobtaining the maximal classification

accuracy.



Conclusion 8
8.1 Summary

In this thesis two closely related aspects of research on BCIsystems were discussed. These aspects
were the development of machine learning algorithms suitable for application in BCIs and the de-
velopment and analysis of BCIs for disabled subjects. In thefollowing, conclusions that can be

drawn from this research will be summarized.

Machine Learning Algorithms

In many publications on machine learning for BCI, the only performance measure that is employed
is the accuracy with which electroencephalogram (EEG) trials, or data from other sensors, can
be classified. The viewpoint taken in this thesis is that besides classification accuracy also other

properties are important for characterizing good algorithms. These properties are related to the
applicability of algorithms in systems suitable for daily use by disabled users.

A property that is important when adapting a system to a new user, is that classifiers can be
learned quickly, robustly, and without intervention from expert users. The Bayesian linear discrim-

inant analysis (BDA) algorithm presented in this thesis possesses this property. In BDA, hyper-
parameters are estimated quickly and automatically with a type-II maximum-likelihood formalism.

An extension of the algorithm allows to adapt electrode configurations to the peculiarities of a given
user. Adapting electrode configurations reduces the numberof electrodes necessary for successful

operation of a BCI. Moreover, it was shown that using user-specific electrode configurations in-
creases classification accuracy as compared to using static, preselected electrode configurations.

To test the algorithms proposed in this thesis, P300 data recorded from disabled and able-bodied
subjects and data from past BCI competitions were used. The experiments with data from the BCI

competitions demonstrated that the proposed algorithms are competitive with state-of-the-art algo-
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rithms for EEG classification. More specifically, it was shown that the classification accuracy of the
algorithms proposed in this thesis is equivalent to that of state-of-the-art solutions using the support

vector machine (SVM). In addition, the time needed for setting up classifiers is significantly lower
than that needed by solutions using the SVM.

When applying a classifier to new data it is important that classification can be done quickly
and without the need for computationally complex algorithms. This is ensured for the algorithms

proposed in this thesis because everything is linear. Hence, classifier outputs can be computed
quickly. Equally important is the form the classifier outputs take. We proposed to use probabilistic

outputs computed with the help of a leave-one-out scheme. Itwas shown how in the context of
P300-based BCIs probabilistic outputs can be used to adapt the amount of data such that a preset,

approximate bound on the probability of misclassificationsis not exceeded. Concerning the eval-
uation of machine learning algorithms with probabilistic outputs, we proposed to use Brier scores.
Brier scores measure calibration and refinement of probability estimates, and have been used with

success to evaluate algorithms and methods in areas other than BCI, such as for example economical
or meteorological forecasting.

Brain-Computer Interfaces for Disabled Subjects

To test the algorithms proposed in this thesis, data from disabled and able-bodied subjects was

recorded. Validating algorithms with data from disabled subjects is crucial, simply because dis-
abled subjects are the target population for BCI systems. Recording data also from able-bodied

subjects allowed to perform comparisons between disabled and able-bodied subjects in terms of the
recorded signals themselves and in terms of achievable BCI performance. Maybe most importantly,

interaction with disabled persons is crucial to get a feeling for factors that make BCIs suitable or
unsuitable for disabled subjects.

The BCI used for recording data was based on the well-known P300 paradigm. The main

difference between the proposed system and other P300-based systems, such as for example the
P300 speller, is that the number of items on the screen is smaller and that the interstimulus interval

(ISI) is longer. These modifications were motivated by the hope to simplify usage of the system
for disabled persons with cognitive deficits. Compared to other P300-based systems for disabled

subjects, the classification accuracy achieved with the system presented in this thesis is significantly
higher.

8.2 Perspectives

8.2.1 Short Term Perspectives

Machine Learning Algorithms

Based on the research in this thesis, extensions in the following areas immediately come into mind:

• Filtering Methods

For the filtering of the EEG data a forward-backward scheme using Butterworth filters was

employed that is being applied in one step to the integralityof the ingoing signal. This choice
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was made for reasons of simplicity, however in order to enable realtime classification in
online BCI systems, the filter should be realized either by using a windowed implementation

of the forward-backward scheme (Djokicet al., 1998; Kurosuet al., 2003), or by using a
traditional causal filtering scheme, for instance based on finite impulse response (FIR) filters.

• Handling of Outliers

To deal with outliers, a windsorizing approach was used in this thesis. The advantages of
this approach are that it is conceptually and computationally simple. Clear disadvantages are
however, that the proportion of outliers has to be specified manually and that it is assumed

that all electrodes have the same proportion of outliers. Moreover, it would be desirable to
have a method enabling adaptation to changing proportions of outliers. A method that seems

promising for dealing with such problems is to model EEG samples as a mixture of two or
more univariate Gaussians with zero mean and different variances. Gaussians with small

variance would then account for normal samples, whereas Gaussians with large variance
would account for outliers. Parameters of such a model can belearned and adapted with the

expectation-maximization (EM) algorithm (cf. Aitkin and Wilson (1980)).

• Electrode Selection

Concerning electrode selection, improvements may be possible in the algorithm for selecting
a predetermined number of electrodes. The approach proposed in Chapter 5 was to alternate

automatic relevance determination (ARD) and backward selection until the desired number
of electrodes is attained. A clear drawback of this procedure is that electrodes cannot reenter

the selected subset once they have been removed. This is problematic because already re-
moved electrodes might become important again as other electrodes are removed. A possible

solution to this problem, which is however not explored in this thesis, would be to use combi-
nations of ARD and more sophisticated procedures for feature selection, such as for example

floating search methods (Pudilet al., 1994). Another possible solution that might be worth
investigating is to use a parameterized hyperprior for theαi . In particular a hyperprior of the

following form might be of interest (cf. (Schmolck and Everson, 2007)):

p(α|c, β) ∝ exp
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Here the notation from Chapter 5 has been used. With such a hyperprior the number of

selected electrodes can be indirectly controlled by changing the sparsity constantc.

• Loss Functions

In this thesis, a Gaussian likelihood function has been usedfor learning classifiers from train-
ing data. Using a Gaussian likelihood is equivalent to usinga squared error loss function.

In other words, classification functions were learned that map training examples as close as
possible to their class labels. The advantage of using the Gaussian likelihood is that in com-

bination with a Gaussian prior, closed form expressions exist for the posterior. The only
complex operation necessary for computing the posterior isthe inversion of the correlation

matrix of the feature vectors.
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An alternative loss function that is often proposed for classification problems in the machine
learning literature is the logistic loss (cf. Bishop (2006)). The logistic loss might be more

suitable for classification problems than the squared errorwhich is rather used in the case
of regression problems. Moreover, the logistic loss might be advantageous because it is less

sensitive to outliers than the squared error loss. A disadvantage of the logistic loss is how-
ever, that no closed form expressions exist for the posterior distribution. Hence, optimization

algorithms have to be used to compute the mode of the posterior and in a full Bayesian setting
additionally approximation schemes have to be used to approximate the posterior. This makes

algorithms for logistic regression computationally and conceptually relatively complex. It re-
mains to be checked if the additional complexity is payed off by improved classification

accuracy or other advantages.

Brain-Computer Interfaces for Disabled Subjects

Concerning the BCI for disabled users presented in this thesis, the following extensions might be
of interest.

• Development of Dialog Systems

The BCI for disabled users presented in this thesis allows only for extremely simple interac-
tions with the environment. For example the system could be used to switch on/off a particular

set of devices. To overcome this restriction it would be interesting to develop a dialog-system
allowing a disabled user to perform everyday tasks and basiccommunication with other per-
sons. Dialog and communication systems for disabled users are a research area on its own

and it seems that using results from this area might be a fruitful approach to build better BCIs.
An example for a dialog- and environment-control system fordisabled users that might be

adapted to a BCI environment is the ScriptTalk system described by Dyeet al. (1998). In
the ScriptTalk system a set of useful scenarios for disabledpersons (e.g. a visit to the doctor,

calling help via the telephone, etc.) is predefined. Each scenario has a corresponding script
which allows to select from a sequence of communication steps that are typically performed

in that scenario. Scenarios and communication options can be chosen via a graphical user
interface.

Two techniques are used in the ScriptTalk system to speed up communication. Firstly the

communication options are limited to a prescribed set of reasonable size and secondly words
and sentences are predicted from the structure of communication scenarios and from past

communication. To transfer these techniques to a BCI for disabled persons, an algorithmic
framework should be developed in which a dialog-based communication can be performed

and which allows prediction of items that will be communicated next.

• Extended Testing

The system presented in this thesis was tested with five disabled subjects, out of which four
achieved good results. Clearly, more extended tests are necessary to build an optimal BCI

for disabled users. Acquisition of a large database with EEGrecords from disabled persons
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would allow to precisely define which cognitive abilities are necessary to control a BCI and
which cognitive disabilities might limit the use of BCIs.

8.2.2 Longer Term Perspectives

Using a BCI Without Training

In almost all current BCI systems, subjects first have to go through a training phase, in which they
concentrate on prescribed mental tasks or prescribed stimuli. After the training phase a classifier

is learned and used to classify new, unseen data. A drawback of this setup is that for many dis-
abled users a long training phase is an insurmountable obstacle due to cognitive impairments and

concentration problems. Another problem is caused by the fact that patterns of cerebral activity are
constantly changing, and hence new training sessions have to be performed periodically to adapt

classification rules.

To overcome these problems, we propose to develop learning algorithms, with which subjects
can immediately start using a BCI, without training. The basic idea to achieve this goal is to profit

from data that was recorded from other subjects while using the same BCI system. To build a
classifier from a large database of EEG records from different subjects, a mixture of experts model

could be used. Roughly speaking, training a mixture of experts model corresponds to a clustering of
data and to simultaneously learning classifiers for each of the clusters. After training, test instances

are first assigned to one of the clusters by a so-called gatingfunction, and then classified by the
expert responsible for the cluster (Jordan and Jacobs, 1994). In the BCI context it can be hoped
that the learning stage detects subgroups of subjects with highly similar EEG signals and that new

subjects are automatically assigned to the correct subgroup during application of the mixture of
experts of model.

Asynchronous P300 BCI

One significant limitation of the P300-based BCI presented in this thesis and of many other BCI

systems is that they only work in synchronous mode. This means that users can only communicate
via the BCI at time instants predetermined by the system. A possible solution to this problem

is to develop asynchronous BCI systems. Asynchronous BCI systems can detect autonomously
that a user is trying to communicate via the BCI and hence allow for more realistic application

scenarios than synchronous systems. To build an asynchronous P300 BCI several steps have to
be foreseen. First, experimental protocols and evaluationcriteria for asynchronous BCI systems

should be defined. Second, algorithms that can detect if the user wants to communicate via the BCI
or is engaged in other activity have to be developed. Such algorithms could possibly make use of

features other than the P300. For example visual evoked potentials (VEPs) could be used to detect
that a user is concentrating on the stimulus display and hence wants to communicate via the BCI.

Operant Conditioning of the P300

In systems employing slow cortical potentials or motor imagery, the use of feedback and operant

conditioning is very common. It was shown that classification accuracy significantly increases as
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subjects learn how to modulate their brain activity (Kübleret al., 2001). In evoked potential BCIs,
feedback and operant conditioning are currently not used, probably because evoked potentials are

natural responses of the brain and are sufficiently robust for accurate classification. However, the
possibility exists that feedback training could increase classification accuracy for systems based

on evoked potentials. Such an increase in classification accuracy would be especially helpful for
disabled subjects with a low base classification accuracy.

Evidence for the hypothesis that subjects can learn to control their evoked potentials is given in
several papers. Sommer and Schweinberger (1992) and Miltner et al. (1986) describe experiments

in which subjects learned, with the help of feedback, to increase or decrease the amplitude of their
P300 evoked potentials. In a related experiment stimulus presentation was stopped after a P300 was

evoked and subjects were asked to classify their brain response as small, medium or large (Sommer
and Matt, 1990). Averaging of the evoked potentials, according to the classification given by the
subjects, showed that P300 amplitude corresponded to the classification category. Subjects were

thus aware of the amplitude of the P300 they were producing. This awareness could be important
for learning to produce strong P300s.

One of the main challenges in building a P300 BCI system that uses operant conditioning is
probably the development of classification algorithms thatcan give results quickly after stimulus

presentation. Another challenge lies in the development ofa feedback display which does not evoke
unwanted EEG activity that could be confounded with activity relevant for classification.
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P. Pudil, J. Novovǐcová, J. Kittler (1994). Floating search methods in featureselection. Pattern

Recognition Letters15(11):1119–1125.

C. S. Qazaz, C. K. I. Williams, C. M. Bishop (1996).Mathematics of Neural Networks: Models,

Algorithms and Applications, chap. An Upper Bound on the Bayesian Error Bars for Generalized
Linear Regression. Kluwer.

A. Rakotomamonjy (2007). Ensemble of SVMs for BCI III P300 speller competition. Website:

http://asi.insa-rouen.fr/~arakotom/code/bciindex.html.

A. Rakotomamonjy, V. Guigue, G. Mallet, V. Alvarado (2005).Ensemble of SVMs for improving
brain-computer interface P300 speller performances. InProceedings of International Conference

on Neural Networks.

H. Ramoser, J. Müller-Gerking, G. Pfurtscheller (2000). Optimal spatial filtering of single trial EEG
during imagined hand movement.IEEE Transactions on Rehabilitation Engineering8(4):441–

446.

N. Ramsey, M. Van De Heuvel, K. Kho, F. Leijten (2006). Towards human BCI applications
based on cognitive brain systems: An investigation of neural signals recorded from the dorso-

lateral prefrontal cortex.IEEE Transactions on Neural Systems and Rehabilitation Engineering

14(2):214–217.

B. Rebsamenet al.(2006). A brain-controlled wheelchair based on P300 and path guidance. InPro-

ceedings of IEEE/RAS-EMBS International Conference on Biomedical Roboticsand Biomecha-

tronics.

S. Roberts, W. Penny (2000). Real-time brain-computer interfacing: A preliminary study using
Bayesian learning.Medical and Biological Engineering and Computing38(1):56–61.

R. Schereret al. (2004). An asynchronously controlled EEG-based virtual keyboard: Improvement

of the spelling rate.IEEE Transactions on Biomedical Engineering51:979–984.

A. Schlögl, F. Lee, H. Bischof, G. Pfurtscheller (2005). Characterization of four-class motor im-
agery EEG data for the BCI-competition 2005.Journal of Neural Engineering2(4):L14–L22.

A. Schmolck, R. Everson (2007). Smooth relevance vector machine: a smoothness prior extension

of the RVM. Machine Learning68(2):107–135.

E. Sellers, E. Donchin (2006). A P300-based brain-computerinterface: Initial tests by ALS patients.
Clinical Neurophysiology117(3):538–548.

H. Serby, E. Yom-Tov, G. Inbar (2005). An improved P300-based brain-computer interface.IEEE

Transactions on Neural Systems and Rehabilitation Engineering 13(1):89–98.

M. D. Serruyaet al. (2002). Instant neural control of a movement signal.Nature416:141–142.



B 121

R. Sitaramet al.(2007). Temporal classification of multichannel near-infrared spectroscopy signals
of motor imagery for developing a brain-computer interface. Neuroimage34(4):1416–1427.

W. Sommer, J. Matt (1990). Awareness of P300-related cognitive processes: A signal detection
approach.Psychophysiology27(5):575–585.

W. Sommer, S. Schweinberger (1992). Operant conditioning of P300. Biological Psychology

33(1):37–49.

K. C. Squires, C. Wickens, N. K. Squires, E. Donchin (1976). The effect of stimulus sequence on
the waveform of the cortical event-related potential.Science193(4258):1142–1146.

N. K. Squires, K. C. Squires, S. A. Hillyard (1975). Two varieties of long-latency positive waves
evoked by unpredictable auditory stimuli in man.Electroencephalography and Clinical Neuro-

physiology38:387 – 401.

R. Srinivasan (1999). Methods to improve the spatial resolution of EEG. International Journal of

Bioelectromagnetism1:102–111.

U. Strehlet al. (2006). Self-regulation of slow cortical potentials: A newtreatment for children

with attention-deficit/hyperactivity disorder.Pediatrics118(5):1530–1540.

S. Sutton, M. Braren, J. Zubin, E. John (1965). Evoked-potential correlates of stimulus uncertainty.

Science150(700):1187–1188.

P. Sykaceket al. (2003). Probabilistic methods in BCI research.IEEE Transactions on Neural

Systems and Rehabilitation Engineering11(2):192–194.

D. Taylor, S. Tillery, A. Schwartz (2002). Direct cortical control of 3D neuroprosthetic devices.
Science296(5574):1829–1832.

M. Thulasidas, C. Guan, J. Wu (2006). Robust classification of EEG signal for brain-computer
interface.IEEE Transactions on Neural Systems and Rehabilitation Engineering14(1):24–29.

Q. Tian, Y. Fainman, S. H. Lee (1988). Comparison of statistical pattern-recognition algorithms for
hybrid processing. II. Eigenvector-based algorithm.Journal of the Optical Society of America A

5:1670–1682.

M. Tipping (2001). Sparse bayesian learning and the relevance vector machine.Journal of Machine

Learning Research1(3):211–244.

T. Van Gestelet al.(2002). Bayesian framework for least-squares support vector machine classifiers,

gaussian processes, and kernel fisher discriminant analysis. Neural Computation14(5):1115–
1147.

T. Vaughan, J. Wolpaw (2006). The third international meeting on brain-computer interface technol-
ogy: Making a difference.IEEE Transactions on Neural Systems and Rehabilitation Engineering

14:126–127.



122 B

R. Verleger (1988). Event-related potentials and memory: Acritique of the context updating hy-
pothesis and an alternative interpretation of P3.Behavioral and Brain Sciences11:343–356.

J.-M. Vesin, U. Hoffmann, T. Ebrahimi (2006).Wiley Encyclopedia of Biomedical Engineering,
chap. Human-Brain Interface: Signal Processing and Machine-Learning. Wiley.

C. Vidaurreet al. (2006). A fully on-line adaptive BCI.IEEE Transactions on Biomedical Engi-

neering53(6):1214–1219.

N. Weiskopf et al. (2004). Principles of a brain-computer interface (BCI) based on real-time
functional magnetic resonance imaging (fMRI).IEEE Transactions on Biomedical Engineer-

ing 51(6):966–970.

J. Wilsonet al. (2006). ECoG factors underlying multimodal control of a brain-computer interface.
IEEE Transactions on Neural Systems and Rehabilitation Engineering14(2):246–250.

J. R. Wolpaw, D. J. McFarland (2004). Control of a two-dimensional movement signal by a non-
invasive brain-computer interface in humans.Proceedings of the National Academy of Sciences

(PNAS)101(51):17849–17854.

J. R. Wolpaw, D. J. McFarland, G. W. Neat, C. A. Forneris (1991). An EEG-based brain-computer
interface for cursor control.Electroencephalography and Clinical Neurophysiology78:252–259.

J. R. Wolpawet al. (2002). Brain-computer interfaces for communication and control. Clinical

Neurophysiology113(6):767–791.

N. Xu et al. (2004). BCI competition 2003 – Data Set IIb: Enhancing P300 wave detection us-
ing ICA-based subspace projections for BCI applications.IEEE Transactions on Biomedical

Engineering51(6):1067–1072.

S.-S. Yooet al. (2004). Brain-computer interface using fMRI:Spatial navigation by thoughts.Neu-

roreport 15(10):1591–1595.



Curriculum Vitae

Ulrich Hoffmann

Avenue Vinet 8, 1004 Lausanne, Switzerland
Tel.: +41 76 222 1831

Email: ulrich.hoffmann@epfl.ch

Personal

Date of birth: October 18, 1974

Nationality: German

Civil Status: Single

Education

2003 - 2007:Ph.D., Signal Processing Institute, School of Engineering, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Switzerland

1994 - 2001:Diploma, Informatics, with minor in medicine, University of Tübingen,
Germany

Professional Experience

2003 - 2007:Research and Teaching Assistant, Signal Processing Institute, School of

Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Assisted students in courses, supervised students for semester projects

Preparation of grant applications

2001 - 2002:Consultant and Programmer, Innovate GmbH, Wildberg, Germany

Teaching and consulting in the areas Java and SAP databases

Development of Java-based webinterfaces

1996 - 2000:Assistant Programmer, Data Center, University of Tübingen, Germany

Administration of UNIX systems, programming in C



Publications

Journal Papers

– U. Hoffmann, J.M. Vesin, T. Ebrahimi, and K. Diserens, “An Efficient P300-based
Brain-Computer Interface for Disabled Subjects”, accepted toJournal of

Neuroscience Methods, 2007

– D. Studer, U. Hoffmann, and T. Koenig, “From EEG Dependency Multichannel
Matching Pursuit to Sparse Topographic Decomposition”, Journal of Neuroscience

Methods, 153, pp. 261-275, 2006

Book Chapters

– J.M. Vesin, U. Hoffmann, and T. Ebrahimi, “Human Brain Interface: Signal
Processing and Machine Learning”, Wiley Encyclopedia of Biomedical Engineering,
2006

Conference Papers

– U. Hoffmann, J.M. Vesin, and T. Ebrahimi, “Spatial Filters for the Classification of
Event-Related Potentials”, European Symposium on Artificial Neural Networks, 2006

– U. Hoffmann, G.N. Garcia, J.M. Vesin, K. Diserens, and T. Ebrahimi,“A Boosting
Approach to P300 Detection with Application to Brain-Computer Interfaces”,

IEEE EMBS Conference on Neural Engineering, 2005

– U. Hoffmann, G.N. Garcia, J.M. Vesin, and T. Ebrahimi, “Application of the
Evidence Framework to Brain-Computer Interfaces”, IEEE EMBS Conference,
2004

– W. Stürzl, U. Hoffmann, H.A. Mallot,“Vergence Control and Disparity Estimation
with Energy Neurons: Theory and Implementation”, International Conference on

Artificial Neural Networks, 2002

Grant Applications

First author of three successful grant applications:

Towards Second Generation Brain-Computer Interfaces, Swiss National Science
Foundation, Research Project, Duration 36 months

A Mobile EEG Acquisition System, Ecole Polytechnique Fédérale de Lausanne (EPFL),

Funding for Equipment

Machine Learning and Signal Processing for Brain-ComputerInterfaces, Swiss
National Science Foundation, Research Project, Duration 18 months


	Abstract
	Version abrégée
	Acknowledgments
	Introduction
	Motivation
	Focus of the Thesis
	Main Contributions
	Outline of the Thesis

	Introduction to Brain-Computer Interfaces
	Introduction
	Signal Acquisition
	Electroencephalogram
	Electrocorticogram
	Microelectrode Arrays
	Other Methods for Measuring Brain Activity

	Neurophysiologic Signals
	Event-Related Potentials
	Oscillatory Brain Activity
	Slow Cortical Potentials
	Neuronal Ensemble Activity

	Extracting Features from Neurophysiologic Signals
	Time Domain Features
	Frequency Domain Features
	Spatial Domain Features

	Applications
	Spelling Devices
	Environment Control
	Wheelchair Control
	Neuromotor Prostheses
	Gaming and Virtual Reality

	Conclusion

	Review of Supervised Machine Learning for Brain-Computer Interfaces
	Introduction
	Basic Concepts
	Probabilistic Approaches
	Maximum-Likelihood Estimation
	Maximum A Posteriori Estimation
	Bayesian Estimation

	Algorithms for BCI Systems
	Support Vector Machines
	Generative Models
	Bayesian Algorithms

	Conclusion

	Review of P300-Based Brain-Computer Interfaces
	Introduction
	The P300 Event-Related Potential
	P300-Based BCI Systems
	P300 Speller
	Virtual Apartment
	Cursor Control
	Systems for Disabled Subjects

	Algorithms for P300-Based BCI Systems
	Algorithms for Aggregating Information from Single Trials
	Classification Algorithms

	Evaluation of Systems and Algorithms
	Conclusion

	Bayesian Algorithms for EEG Classification
	Introduction
	From Least Squares Regression to Fisher's Discriminant
	Least Squares Regression
	Fisher's Discriminant
	Relation between Regression and Fisher's Discriminant

	Bayesian Discriminant Analysis
	Prior, Posterior, and Predictive Distribution
	Estimation of Hyperparameters

	Sparse Bayesian Discriminant Analysis
	Electrode Selection via Automatic Relevance Determination
	Automatic Relevance Determination and Backward Selection

	Classifying Single Trials and Sequences of Trials
	Single Trials
	Sequences of Trials

	Conclusion

	An Efficient Brain-Computer Interface for Disabled Subjects
	Introduction
	Related Work
	Materials and Methods
	Experimental Setup
	Subjects
	Experimental Schedule
	Offline Analysis

	Results
	Performance Measures
	General Observations
	Differences between Disabled and Able-bodied Subjects
	Electrode Configurations and Classification Methods
	Averaged Waveforms

	Discussion
	Differences to Other Studies
	Visual Evoked Potentials
	Electrode Configurations
	Machine Learning Algorithms

	Conclusion

	Experiments with Bayesian Algorithms for EEG Classification
	Introduction
	Sparse Bayesian Discriminant Analysis
	Results with Proprietary Datasets
	Results with BCI Competition Datasets

	Adaptive Stopping
	Results with Proprietary Datasets
	Results with BCI Competition Datasets

	Conclusion

	Conclusion
	Summary
	Perspectives
	Short Term Perspectives
	Longer Term Perspectives


	Bibliography
	Curriculum Vitae



