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Abstract

Convex parameterization of fixed-order robust stabilizingcontrollers for systems with polytopic

uncertainty is represented as an LMI using KYP Lemma. This parameterization is a convex inner-

approximation of the whole non-convex set of stabilizing controllers and depends on the choice of a

central polynomial. It is shown that with an appropriate choice of the central polynomial, the set of

all stabilizing fixed-order controllers that place the closed-loop poles of a polytopic system in a disk

centered on the real axis, can be outbounded with some LMIs. These LMIs can be used for robust pole

placement of polytopic systems.

I. INTRODUCTION

Nowadays, many control design problems are formulated as convex optimization problems and

solved efficiently using recently developed numerical algorithms. Yet, a challenging problem is

the design of restricted-order controllers by convex optimization methods. The main problem

stems from the fundamental algebraic property that the stability domain in the space of polyno-

mial’s parameters is non-convex for polynomials with orderhigher than two [1]. To overcome

the non-convexity, there are different strategies, which are explained in [2]. One possibility

is to consider an approximation of the non-convex domain with an outer-or-inner convex set.

Although an inner approximation introduces some conservatism in the design method, it is

preferred because the stability is ensured. Several convexinner approximations of the stability

domain around a central polynomial have been proposed in theliterature. However, the LMI
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approximations are more flexible since they can represent the other convex sets like polytopes,

spheres and ellipsoids.

The problem becomes more complicated when a fixed-order controller should stabilize a model

with structured polytopic uncertainty. This problem is usually studied in the state space repre-

sentation of the system for the full-order controllers using Lyapunov equation. A conservative

solution is to find one Lyapunov function to stabilize all models. The other solution which is

less conservative is to design a parameter dependent Lyapunov function. However, it is not easy

to find this Lyapunov function for polytopic systems. The stabilization problem can be converted

to regional pole placement using the concept of D-stability. It is to define a subregion of the

stability domain and to modify accordingly the structure ofthe Lyapunov equation and then

design a stabilizing controller [3]. The desired regions are restricted to strips, circles, sectors

and hyperbolas. In [4] a unified robust pole placement designmethod for both continuous and

discrete-time systems is introduced. The controller meetsthe H2 and/orH∞ specifications for

a nominal plant model and assigns the closed-loop poles in anLMI region which is introduced

in [5] and covers many desired regions, using LMI constraints. This problem is extended to the

case of systems with a specific type of unstructured uncertainty in [6]. Recently, design of a

state feedback controller for a polytopic uncertain systemwhich assigns the closed-loop poles

in the same LMI regions is proposed using a non-convex optimization method [7]. However, the

final controller does not even guarantee the stability of thesystem and a robust stability analysis

should be carried out after the design is completed. In [8], asufficient condition via a non-convex

optimization is given to design a state feedback controller, which assigns the closed-loop poles of

all the vertices of the system polytope in a sector. In [9], a state feedback controller which brings

the closed-loop poles to the desired multi-constraints region via a non-convex optimization is

designed. The only convex parameterization of fixed-order stabilizing controllers for polytopic

systems is given in [10]. Using polynomial positivity, an LMI inner approximation of the stability

domain in the polynomial parameter space is proposed. The design method relies on a central

polynomial whose choice has not been really investigated.

In this paper, a similar approach is adopted based on the strict positive realness of transfer

functions using the KYP Lemma. The derivation of the LMIs from the KYP Lemma is very

straightforward and similar to those of [10] and [11]. On theother hand, it has been recently

shown that the LMIs originated from the KYP Lemma can be solved very efficiently even with
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a large number of parameters [12], [13]. Furthermore, it will be shown that a particular choice

of the central polynomial makes the LMI an outer approximation of all controllers which bring

the closed-loop poles of a polytopic system to a desired diskcentered on the real axis. As a

result, the proposed LMI gives a sufficient constraint for the stability of the polytopic system

and a necessary constraint for the robust regional pole placement.

It should be mentioned that a circle centered on the real axishas already been considered

as the desired region for pole clustering [14], [15], [16]. However, state or output feedback

controllers have been studied only for systems with unstructured uncertainty.

The paper is organized as follows. The preliminaries and problem formulation can be found

in Section II. In Section III, a convex parameterization of fixed-order stabilizing controllers for

a polytopic system is given via LMIs. Section IV proposes a choice of central polynomial to

parameterize all controllers that cluster the closed-looppoles of the polytope into a desired

circular region together with some simulation examples. The concluding remarks are given in

Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Polytopic systems

In order to build up the background of the proposed method, some basics on the polytopes

are recalled.

A polytope in an n-dimensional space is the convex hull of a set of points called generators in

this space. The minimal set of generators is unique and constitute the vertex set of polytope. An

exposed edge of a polytope is the line between two vertices ofthe polytope, such that the whole

polytope lies on just one side of it [17]. If the generators are the coefficients of a polynomial, a

polytope of polynomials is obtained. A discrete-timen-th order polytopic system can be defined

by a set of transfer functions as follows :

Gi (z) =
bi (z)

ai (z)
=

b0

i z
n + b1

i z
n−1 + · · ·+ bn

i

zn + a1

i z
n−1 + · · ·+ an

i

(1)

with aj
i , b

j
i ∈ R, i = 1, · · · , q, j = 0, · · · , n, whereR is the set of real numbers andq is the

number of2n+2 dimensional polytope vertices[1 a1

i · · · an
i b0

i b1

i · · · bn
i ]. This polytopic system

covers a wide variety of structured uncertainties, like multiple models and interval uncertainty.
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It should be mentioned that in this paper only the discrete-time polytopic systems are consid-

ered. However, the continuous-time systems can also be treated in a very similar way.

B. Strictly positive real systems

A real rational transfer functionH (z) is strictly positive real (SPR) if and only if [18]

1) H (z) is analytic in|z| > 1 and

2) Re H (z) > 0 ∀z, such that|z| = 1

Hence, for SPRness of a Schur stable real transfer function it is enough to check positivity of

its real part on|z| = 1. With a simple application of Nyquist criterion, it can be easily shown

that if H(z) = c(z)/d(z) is SPR thenc (z) is Schur stable. This means that to test the Schur

stability of a polynomialc (z), it is sufficient to check that its ratio to another Schur polynomial

d (z) is SPR.

The SPR condition for a stable transfer function is closely related to the phase of its numerator

and denominator as formulated in the following lemma :

Lemma 1 H(z) = c(z)/d(z) with Schur stabled(z) is SPR if and only if∀z, such that|z| = 1

|φ (c (z)) − φ (d (z)) | <
π

2
(2)

whereφ (·) denotes the phase.

As a result, polynomialc (z) is Schur stable if and only if there exists a Schur stable polynomial

d (z) such that Inequality (2) is satisfied (See also Lemma 1 in [10]).

The SPR condition can be given in the state space by the Kalman-Yakubovich-Popov Lemma :

Lemma 2 (KYP Lemma for discrete-time systems)A transfer functionH (z) = C (zI − A)−1 B+

D is SPR if and only if there exists a matrixP = P T > 0 such that [19], [18] :




AT PA − P AT PB − CT

BT PA − C −D − DT + BT PB



 < 0 (3)

Therefore, all SPR transfer functions with fixed denominator (which leads to a fixedA and

B using controllable canonical form realization) can be parameterized by an LMI. Since the

numerator of an SPR transfer function is stable, this LMI represents also a convex set of

Schur stable polynomials. (See [10] for a similar set of LMIsfor SPRness using positivity

in polynomials.)
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C. Problem formulation

Consider the discrete-time SISO LTI polytopic system in (1). The goal is to design a fixed-

order controller

K (z) =
y (z)

x (z)
=

y0z
m + y1z

m−1 + · · ·+ ym

zm + x1zm−1 + · · ·+ xm
(4)

which stabilizes and places the closed-loop poles of the whole polytope, in a disk centered on

the real axis inside the unit circle.

The method proposed in this paper gives a convex set of fixed-order stabilizing controllers

that contains (if there exists any) all the fixed-order controllers that place the closed-loop poles

in the desired circular region.

III. CONVEX PARAMETERIZATION OF FIXED-ORDER STABILIZING CONTROLLERS

Consider the vertices of the system polytope given in (1) andthe fixed-order controller in (4).

Then,

ci (z) = ai (z) x (z) + bi (z) y (z) i = 1, . . . , q (5)

are thencl-th order (ncl = n + m) characteristic polynomials of the vertices of the system

polytope. Since characteristic polynomial is affine with respect to the system parameters, the

whole characteristic polynomials of the system polytope develop a new polytope of closed-loop

characteristic polynomials whose vertices are contained in (5) [17].

To proceed, a convex set of stabilizing controllers is obtained using the KYP lemma (see [11],

[10] for similar results). Consider that a Schur stable polynomial d(z) (central polynomial) is

given. Then, by parameterizing allci(z), which makeci(z)/d(z) SPR, a convex set of stable

characteristic polynomials in terms of controller parameters can be given by a set of LMIs. This

result is stated in the following proposition :

Proposition 1 Consider the polytopic system in (1), the fixed-order controller in (4), the charac-

teristic polynomials in (5) and a given Schur stable polynomial d(z) = zncl +d1z
ncl−1+ · · ·+dncl

of orderncl. Suppose that the transfer functionsci(z)/d(z) are represented in the state space by

the controllable canonical realization (A, B, Ci, Di). Therefore,A andB are fixed,Di = 1+y0b
0

i

and Ci = kT Si − dT Di, which depend linearly on controller parameters and plant model

parameters, wherekT = [x1, . . . , xm, y0, y1, . . . , ym] is the vector of the controller parameters,
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dT = [d1, d2, . . . , dncl
] contains the parameters ofd(z) andSi is a Sylvester matrix of dimension

(2m + 1) × ncl, which is composed of the system parametersai and bi. Then the set of all

controller parameters which makeci(z)/d(z) SPR fori = 1, . . . , q, and hence, stabilizes the

whole system polytope is given by the following LMIs :

Pi = P T
i > 0,





AT PiA − Pi AT PiB − CT
i

BT PiA − Ci −Di − DT
i + BT PiB



 < 0
(6)

Remarks :

• A feasible point of the LMIs in (6) gives the parameters of a controller that stabilizes not

only theq vertices (1), but also all the models in their convex hull (the polytope made by them).

The reason is that this set of LMIs is affine with respect to theparameters of the plant model.

(Notice that Edge theorem [17] is not used to prove the stability of the whole polytope.)

• Note that the set of all fixed-order stabilizing controllersis a non-convex set. However,

for each fixedd (z) the feasible set of inequality (6) gives an LMI inner approximation of

this non-convex set. Thus, the choice ofd (z) (central polynomial) is crucial to have a logical

approximation, to minimize the conservatism of the method and more important, to bring the

closed-loop poles of the whole system polytope to a desired region.

Before discussing about the choice of the central polynomial, it is interesting to state that if

there is a controller which stabilizes a polytopic system, there exists always ad(z) that makes the

LMIs in (6) feasible. The reason is that for any stable polytope (here, polytope of characteristic

polynomials), there always exists a polynomiald(z) (an SPR-maker) that produces SPR transfer

functions when divided by any member of the polytope (See theproof of Theorem 2.1 in [20]).

The existence of an SPR-maker gives enough motivation to investigate for finding a suitable

central polynomial.

The following lemma is needed in the sequel :

Lemma 3 [17], [21] Let p1 (z) and p2 (z) be two monic Schur stable polynomials of the same

degree. The whole line between these polynomials :pλ(z) = λp1(z) + (1 − λ)p2(z), λ ∈ [0, 1]

is stable if and only if∀z, such that|z| = 1,

|φ(p1(z)) − φ(p2(z))| < π (7)
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It means that the phase difference between any two members ofa polytope of polynomials, does

not exceedπ.

Now, a specific polytope of polynomials is considered. It canbe proved that for a polynomial

of orderncl, the polytope made from thencl + 1 vertices

vi (z) = (z + 1)i (z − 1)ncl−i i = 0, . . . , ncl (8)

is the smallest polytope outbounding the stability domain of polynomials of orderncl in parameter

space [22]. It can be easily verified that the phase difference between the verticesvi (z) and

vj (z) becomes greater thanπ for |i − j| > 2, which happens whenncl > 2. Therefore, the

line between them is not even the boundary of stability domain which confirms the fact that

the stability domain of the parameters of the polynomials with order greater than two is not

convex. However, for the second-order polynomials, the mentioned phase difference reaches at

most toπ and hence, the lines between these vertices are the boundaryof the stability domain

in parameter space.

Next, consider the polytope in (8), withα andβ (|α|, |β| < 1) instead of±1 :

vi (z) = (z − α)i (z − β)ncl−i i = 0, · · · , ncl (9)

This polytope has some interesting specifications :

1) Its stability analysis is very easy, using the following lemma :

Lemma 4 [21], [22] The polytope made by vertices (9) is Schur stable if and only if the

line betweenv0 (z) and vncl
(z) is stable.

Whenα = −β, then Lemma 4 leads to the following simple condition :

Corollary 1 ([21], Corollary 1) The polytope made by vertices (9) withα = −β is Schur

stable if and only ifα < tan(π/2ncl).

2) For ncl even, it is easy to find ad(z), whose phase lies exactly in the midmost of the

phase plot of the whole polytope :

Lemma 5 [22] For ncl even, phase plot of

d(z) = (z − α)ncl/2 (z − β)ncl/2 (10)
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lies exactly in the midmost of the phase plot of the whole polytope made by vertices (9).

As a result, if the whole polytope defined by (9) is stable, thephase difference between

each member of the polytope and (10) is less thanπ/2 (Lemma 3). Therefore, taking into

account Lemma 1,d(z) in (10) is an SPR-maker for this polytope.

3) It contains all the polynomials whose roots are located inthe disk centered on the real axis

on the midmost ofα andβ. The following lemma explains this important specification:

Lemma 6 ([22], Corollary 1) Consider a closed bounded region of complex plane which

is symmetric with respect to the real axis and intersects thereal axis atα and β. Then if

this region is outbounded by a circle, which is centered on the real axis and passes through

the real pointsα and β, all monic polynomials of degreencl whose roots lie inside this

region are inside the polytope defined by the vertices (9).

Now, suppose that there exists a controller, which leads to acharacteristic polynomial polytope

inside the polytope defined by (9). Such a controller is certainly a feasible point of LMIs (6),

with (10) as its central polynomial. Therefore, forncl even, and withα andβ chosen such that

the polytope defined by (9) becomes as large as possible, i.e.it touches the stability boundary,

then (10) is an SPR-maker of the same order, which can be chosen as the central polynomial.

The following example emphasizes the importance of the choice of the central polynomial.

Example:The objective is to find the set of all second-order stable polynomials using LMIs

(6). The stability domain of the second-order polynomials in parameter space is the interior

of the polytope (a triangle) with three vertices(z − 1)2 , (z − 1) (z + 1) , (z + 1)2, which is a

convex set [1]. To exploit LMIs (6), we should first fix a Schur stable d (z) to have fixedA

and B. Let d (z) = z2 be chosen as proposed in [10] for the same example. For this choice

of central polynomial, the feasible set of LMIs (6) deos not cover the whole stability domain

(See Fig. 1). However, for this convex stability domain, onecan expect to find an LMI, whose

feasibility domain covers the whole triangle. Indeed, choosing v1 (z) = (z − 1) (z + 1) as the

central polynomial, the feasible set of non-strict LMIs in (3) becomes exactly the stability triangle.

After the first submission of this paper, we were informed that the same result about usingv1(z)

as an SPR-maker has been already observed in [23]. However, the uniqueness of this choice is

proved in this paper.
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Fig. 1. Stability domain ofc (z) = z2 + c1z + c0 in parameter space, which is almost the same as feasibility set of LMIs (6)

with d(z) = (z − 1)(z + 1) (Triangle) and their feasibility set withd (z) = z2 (shaded)

IV. CONTROLLER PARAMETERIZATION FORROBUST POLE PLACEMENT

The main objective of this paper is to parameterize all controllers that place the closed-loop

poles of a polytopic system in a specified region of the complex plane. Since the set of these

controllers is not convex in the space of the controller parameters, an outer convex approximation

of this set which is an inner approximation of all stabilizing controllers is given by a set of LMIs.

This set will contain all controllers that place the closed-loop poles in the desired region and

does not contain any destabilizing controller.

Consider then-th order polytopic system given in (1) and them-th order controller in (4)

such thatncl = n + m is even. The main results are presented in the following theorems :
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Theorem 1 Suppose that there exists anm-th order controller that clusters the closed-loop

poles of the system polytope in a disk centered at the origin with radius r = tan(π/2ncl), then,

this controller is in the feasible set of LMIs (6) by choosingthe central polynomial as :

d(z) = (z − r)ncl/2(z + r)ncl/2 (11)

Proof: Taking into account Lemma 6 and Corollary 1, all polynomialsof degreencl, whose

roots lie in the disk centered at the origin with radiusr = tan(π/2ncl), are contained in the

stable polytope defined by (9), withα = −β = r. Then, according to Lemma 5,d(z) in (11),

is an SPR-maker of this polytope. Thus, taking into account Proposition 1, all controllers that

place the closed-loop poles in the mentioned region are contained in the feasible set of (6).

This result can be extended to the case that the desired region is a disk centered on the real axis

at z = p and is formulated in the next theorem.

Theorem 2 Consider a disk centered atz = p with radiusr defined as a solution to the following

set of equations :

sin

(

r

p
cot

(

π

ncl

))

= ρ(r, θ) sin(θ) (12)

cos

(

r

p
cot

(

π

ncl

))

= p + ρ(r, θ) cos(θ) (13)

ρ(r, θ) = r

[

sin(θ) cot

(

π

ncl

)

+

√

sin2(θ) cot2
(

π

ncl

)

+ 1

]

(14)

wherez = p + ρ(r, θ)e±jθ, 0 ≤ θ ≤ π, is the boundary of the root locus of the polytope defined

by the following vertices :

vi(z) = (z − (p + r))i(z − (p − r))ncl−i, i = 0, . . . , ncl (15)

Suppose that there exists anm-th order controller that places the closed-loop poles of the

system polytope in the disk defined above, then, this controller is in the feasible set of LMIs (6)

by choosing the central polynomial as :

d(z) = (z − (p + r))ncl/2(z − (p − r))ncl/2 (16)

Proof: Based on Lemmas 4 and 5, it is necessary to findr such that the whole polytope

defined by (15) becomes stable. In this case, according to Lemma 3 the phase difference between

each pair of its members becomes less thanπ and thus taking into account Lemmas 5 and 1, (16)
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replacements
z = ρ(r, θ)e±jθ

z − (p + r)z − (p − r)

θ

p p + rp − r

z − p

Fig. 2. Phasor ofz − (p − r) and z − (p + r) and z − p, wherez is a point on the boundary of the root locus of the edge

between verticesv0(z) andvncl
(z), p is the center of desired disk andr is its radius.

is an SPR-maker of this polytope. Taking into account Lemma 4, to have a stable polytope, the

root locus of the edge betweenv0(z) andvncl
(z), which outbounds all the roots of the polytope,

should be inside the unit circle. Now, according to Lemma 3, to compute the root locus of the

mentioned edge, it is necesary to put :max |φ(v0(z)) − φ(vncl
(z))| = π, ∀z, such that|z| = 1.

Noting Fig. 2, it is easy to show that :

|φ(z − (p + r)) − φ(z − (p − r))| =

π − arctan
ρ(r, θ) sin(θ)

r + ρ(r, θ) cos(θ)
− arctan

ρ(r, θ) sin(θ)

−r + ρ(r, θ) cos(θ)
=

π

ncl
(17)

where0 6 arctan(·) < π. With some straightforward calculations over (17), it can be shown

that the root locus of the mentioned edge is :

z = p + ρ(r, θ)e±jθ 0 6 θ 6 π (18)

with ρ(r, θ) defined in (14). Now, in order to force (18) to lie inside the unit circle, the distance

from the origin to its farthest point should be equal to one. The distanceℓ of the root locus (18)

to the origin can be easily computed as :ℓ2 = (p + ρ(r, θ) cos(θ))2 + (ρ(r, θ) sin(θ))2 , where

0 6 θ < π, andθ = θmax corresponding to the farthest point, can be computed by maximizing

the distanceℓ with respect toθ. After straightforward but tedious calculations the following
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result can be obtained :

sin(θmax)

p + cos(θmax)
= tan(γmax) =

r

p
cot

(

π

ncl

)

where γmax is the phase of the farthest point of the root locus. Thus, to find the maximum

stabilizingr, it is sufficient to solve the following equations:

sin(γ) = ρ(r, θ) sin(θ) (19)

cos(γ) = p + ρ(r, θ) cos(θ) (20)

The rest of the proof is similar to the proof of Theorem 1.

Remarks :

• It should be mentioned thatr depends only onncl and p and can be easily computed by

standard equation solvers from Eqs (12)-(14). It can be observed thatr is a decreasing

function of ncl andp (Fig. 3).

• In the case thatncl is not even, we can augmentm by 1, or we can just accept more

conservatism and solve the set of LMIs (6) for a strictly proper transfer functionc(z)/d(z),

where the order ofd(z) is ncl + 1.

• The root locus of feasible set of LMIs (6), depends on the place of the roots of central

polynomial. Simulation results show that by movingp, for example to the right, the roots of

feasible characteristic polynomials move also to the right. The reason is that the feasibility

set of LMIs (6) moves according to the movement of the root locus of the moved polytope

in (15). In the next example, this effect is shown for a polytopic system with 16 vertices.

A. Example

Consider the problem of robust controller design for a third-order system, which is affected

by polytopic uncertainty. The vertices of the polytope are given in Table I , where

G =
b0z

2 + b1z + b2

z3 + a1z2 + a2z + a3

, Ts = 1

Consider a controller of order three, which is supposed to place the closed-loop poles of these

vertices inside the desired circle aroundz = 0.5. The radius of such a disk can be easily

computed asr = 0.1972. Therefore, the proposed central polynomial is near tod1(z) = (z −

0.31)3(z − 0.69)3. The stabilizing controller :

K(z) =
2z3 − 1.8z2 + .16z

z3 − 2.1z2 + 1.28z − .18
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1
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p=0

p=0.4

p=0.7

Fig. 3. r versusncl for different p

clusters the poles of these two vertices atz = 0.31 and z = 0.69 respectively. Takingd2(z) =

(z−0.5)6 or d3(z) = z6 as the central polynomial, this controller is not a feasiblepoint of LMIs

6, whereas withd1(z) this controller is a feasible point of LMIs (6).

V. CONCLUSION

An LMI parameterization of all controllers that put the closed-loop pole of a polytopic system

in a disk centered on the real axis is given. The proposed LMI gives a sufficient stability condition

for the polytopic system and a necessary condition for the robust regional pole placement. It is

shown that the radius of this disk decreases when the closed-loop order increases or the distance

between the origin and the disk center is augmented. The capability of the proposed method is

illustrated via some simulation examples.
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TABLE I

PARAMETERS OF TWO VERTICES OFEXAMPLE IV-A

a1

1 = 1.115100244722316 a2

1 = −0.024899755277851 b1

0 = −0.437550122361158 b2

0 = −1.007550122361074

a1

2 = −0.0841162256667 a2

2 = 0.12953602988889 b1

1 = 0.89986825966674 b2

1 = 1.933042131888844

a1

3 = −0.004930576005557 a2

3 = −0.59954535045 b1

2 = −0.16254546208058 b2

2 = −0.923026721524995

−0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

Fig. 4. Nyquist diagrams for Example IV-A,c2(z)/d1(z) (dashed) andc2(z)/d2(z) (solid) that is not SPR.
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