
TCHo: a Hardware-Oriented Trapdoor Cipher

Jean-Philippe Aumasson1?, Matthieu Finiasz2, Willi Meier1??, and Serge
Vaudenay3

1 FHNW, Windisch, Switzerland
2 ENSTA, Paris, France

3 EPFL, Lausanne, Switzerland, http://lasecwww.epfl.ch/

Abstract. This paper improves the Finiasz-Vaudenay construction of
TCHo, a hardware-oriented public-key cryptosystem, whose security re-
lies on the hardness of finding a low-weight multiple of a given poly-
nomial, and on the decoding of certain noisy cyclic linear codes. Our
improvement makes it possible to decrypt in polynomial time (instead
of exponential time), to directly prove semantic security (instead of one-
wayness), and to achieve pretty good asymptotic performances. We fur-
ther build IND-CCA secure schemes using the KEM/DEM and Fujisaki-
Okamoto hybrid encryption frameworks in the random oracle model.
This can encrypt an arbitrary message with an overhead of about 5 Kb
in less than 15 ms, on an ASIC of about 10 000 gates at 4 MHz.

Keywords: public-key cryptosystem, post-quantum cryptography, hard-
ware, linear feedback shift register, polynomial multiples.

1 Introduction

Since the introduction of public-key cryptography [12, 13], dozens of cryptosys-
tems appeared, based on hard problems like integer factorization, discrete log-
arithms, lattice reduction, knapsacks, etc., in various algebraic structures. But
their non-trivial constructions made their use somewhat difficult in constrained
environments (PDAs, RFID tags, etc.), where stream ciphers used to rule. In that
sense, a secure public-key cryptosystem with stream cipher-like design would be
a breakthrough. Furthermore, studying alternate designs for public-key encryp-
tion not based on factoring or discrete logarithm is an important duty for the
academic research community to prepare a post-quantum era [25].

In [14], Finiasz and Vaudenay introduced a new public-key cryptosystem
called TCHo, where the public key is a high-degree binary polynomial, and the
private key a sparse multiple of the latter. Security relies on the ad-hoc problem

? Supported by the Swiss National Science Foundation under project number 113329.
?? Supported by Hasler Foundation http://www.haslerfoundation.ch under project

number 2005.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147930236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J.-Ph. Aumasson, M. Finiasz, W. Meier, S. Vaudenay

of finding a low-weight multiple of a certain degree. This problem, or its vari-
ants, has been important in LFSR cryptanalysis since some attacks are possible
only when the feedback polynomial or one of its multiples is sparse [24]. A few
works [16, 18, 22] study the distribution of multiples of a given weight.

In this article, TCHo1 designates the original cryptosystem from [14] whereas
TCHo2 designates our variant. By default, TCHo refers to TCHo2.

TCHo1 encryption is probabilistic, and can be roughly described as the trans-
mission of a codeword over a noisy channel: one small LFSR encodes the message,
while a large one randomly initialized, along with a source of biased random bits,
produces the noise. A ciphertext is a XOR of the three bitstreams. The private
key is used to “delete” the bitstream of the large LFSR by a kind of convolution
product, thereby reducing the noise over the coded message, so as to be able to
decode the cyclic linear code spanned by the first LFSR. Although the design of
TCHo1 is very simple and well fitted for hardware, some major disadvantages are
its prohibitive decryption time complexity, of exponential cost, the absence in
[14] of an estimate of incorrect decryption probability, and the lack of asymptotic
complexities. In this paper, we

– propose a variant leading us to polynomial decryption time,
– estimate the error probability in decryption,
– study asymptotic parameters,
– prove semantic security of this new scheme, under certain assumptions,
– and suggest two hybrid constructions to reach IND-CCA security.

Finally we present performances of TCHo in a software implementation.

2 Preliminaries

2.1 Notations

The logarithm in base 2 is denoted log2, and log is the natural logarithm.
A bitstring x is a sequence of bits. Its length |x| is its number of bits, and

may be finite or infinite. Its Hamming weight, or simply weight, is its number of
ones. The concatenation of x and y is x||y. The sum over F2 is denoted +, and
the product ×. A bitstring x can be written (x1, x2, . . . , xn), and (0, . . . , 0) can
simply be denoted 0. The sum (also denoted +) of two bitstrings of equal length
produces a bitstring of same length, and is defined as a bitwise sum. A bitstream
is a bitstring of unspecified (possibly infinite) length produced by some device
or bit source, and shall be denoted by the symbol S with contextual subscript.
The symbol S` refers to the bitstream S truncated to its first ` bits.

The degree of a polynomial P in F2[X] is denoted deg(P), and its weight is
its number of non-zero coefficients.

If we speak about random bits, or random sequence, etc., it is either uniform
or biased randomness, and the distribution is specified only where the meaning
can be ambiguous. A random source of independent bits with bias γ produces
a zero with probability 1

2 (1 + γ) (and a one with probability 1
2 (1 − γ)). The

TCHo: a Hardware-Oriented Trapdoor Cipher 3

produced bitstream is denoted Sγ , and Sγ(r) if we specify the seed r of the
generator. S0 is a uniform random bitstream.

When no probability distribution or space is explicitly set, randomly chosen
means randomly chosen among all the objects of this kind, with respect to a
uniform probability law.

A linear feedback shift register (LFSR) is entirely characterized by its feed-
back function, defined by a feedback polynomial P =

∑∞
i=0 piX

i, the size of
the LFSR being the degree of this polynomial. We use the notation LP for
the LFSR with feedback polynomial P . The bitstream determined by the ini-
tial state s = (s0, . . . , sdeg(P)−1) is denoted SLP (s) = (s0, . . . , si, . . .), such that
si+deg(P) =

∑deg(P)−1
k=0 pksi+k.

We define the product of a binary polynomial K =
∑∞
i=0 kiX

i of degree d
and a bitstream Sd+N = (s0, . . . , sd+N−1) as

K ⊗ Sd+N = (s′0, . . . , s
′
N−1)

with s′i = sik0 + si+1k1 + · · ·+ si+dkd. The operator thus defined is distributive
over the bitstring sum, it verifies (PQ)⊗S = P ⊗ (Q⊗S) and P ⊗SLP (x) = 0,
for all P,Q ∈ F2[X], x ∈ Fdeg(P)

2 , and S. As a consequence, if P divides K, for
any `, x, s we have K ⊗ (S`LP (x) + s) = K ⊗ s.

We shall use the acronyms CCA, CPA, IND, OW, respectively standing for the
usual notions of Adaptive Chosen Ciphertext Attack, Chosen Plaintext Attack,
Indistinguishability, and One-Wayness.

2.2 Computational Problem

Like TCHo1, the main problem on which TCHo relies can be stated as follows:

Low Weight Polynomial Multiple (lwpm)
Parameters: Three naturals w, d and dP , such that 0 < dP < d and w < d.
Instance: P ∈ F2[X] of degree dP .
Question: Find a multiple K of P of degree at most d and weight at most w.

In [14] the authors suggest several strategies to solve this problem (namely
birthday paradox [28], syndrome decoding [6, 21], and exhaustive search). In-
spired from this, we make the following average-case assumption:4

Assumption 1. Let Gen be a random generator which generates a random poly-
nomial K of degree dK and weight wK until it has an irreducible factor P whose
degree dP is in a given interval [dmin, dmax]. The output of Gen is P . We as-
sume that wK log2

dK

dmax
≥ λ. For any d and w such that

(
d

w−1

) ≤ 2dmin and
w log2

d
dmax

≥ λ, the lwpm problem for an instance generated by Gen needs at
least 2λ operations to solve.

4 In [14], P is assumed to be primitive. Here, we only assume that it is irreducible as
discussed later.

4 J.-Ph. Aumasson, M. Finiasz, W. Meier, S. Vaudenay

More concretely, the best algorithm to find one solution has a complexity
within the order of (d/dP)w−1 when the existence of a solution is unexpected
and 2dP (d/dP)w−1/

(
d

w−1

)
when many solutions exist.

As a nominal example, we will use wK = Θ(λ), dmin = Θ(λ2), dmax = Θ(λ2),
and dK = Θ(λ3). The assumption seemingly suggests that the problem needs
exponential time (in λ) to solve lwpm with w and d asymptotically equivalent
to the parameters of K. Hence, K can be used as a hidden trapdoor.

3 Description of the TCHo Scheme

3.1 Presentation

Just like TCHo1, TCHo uses a polynomial K of degree dK and weight wK as
a secret key; a polynomial P of degree dP ∈ [dmin, dmax] as a public key; it
produces ciphertexts of ` bits and uses a random source of bias γ. We use in
TCHo a new parameter k (which replaces the old dQ from TCHo1 because it is
no longer the degree of a polynomial). It is the length of the plaintext.

TCHo differs from TCHo1 in the coding applied to the plaintext. In TCHo1,
a code spanned by an LFSR with an arbitrary primitive polynomial Q was used,
leading to an expensive decryption procedure. We can generalize TCHo1 and use
an arbitrary code C of dimension k and length ` for which an efficient decoding
procedure exists, and denote C(x) the codeword of x in C. This code is subject
to many constraints and cannot be chosen at random. In the decryption process
of TCHo1, the ciphertext is multiplied by K to suppress S`LP

. In this process,
the noise source S`γ becomes like S`−dK

γwK . In the general case, the multiplication
by K being a linear operation, we will have K⊗C(x) = C̃(x), where C̃ is a new
linear code of dimension k and length `−dK . This means that when decrypting a
ciphertext, one will have to decode in the modified code C̃. The only case where
decoding in C̃ can be efficient for an arbitrary K is when C is a truncated cyclic
linear code, that is, C is the output of an LFSR.5 In that case, as for TCHo1,
K⊗C(x) is equal to C(x′) truncated to `−dK bits, where x′ is obtained from x
exactly as with TCHo1. TCHo is a particular instance of this generalized TCHo1

construction with a repetition code. These codes offer straightforward encoding
and decoding algorithms.

Another innovation of TCHo is that the need for P to be primitive is obviated;
let n be the order of the polynomial P . In [14] primitivity is required so as not to
have Xn + 1 as a trivial solution of lwpm, when n ≤ `. However, for randomly
chosen P , the order n is smaller than ` with probability about `/2dP , which is
close to zero. Hence lwpm may remain as hard when P is a random irreducible
polynomial, not necessarily primitive.

Parameters. A security parameter λ defines a parameter vector

(k, dmin, dmax, dK , wK , γ, `).
5 Appendix A provides more discussion on the code selection.

TCHo: a Hardware-Oriented Trapdoor Cipher 5

Key Generation. We generate a random polynomial K of degree dK and
weight wK with constant term 1 until it has a primitive factor P of degree
dP belonging to the interval [dmin, dmax]. This works just like TCHo1, in time
O

(
dmax

dmax−dmin
d2
K log dK log log dK

)
using the Cantor-Zassenhaus algorithm [8]

and the probabilistic primitivity test from [14].

Encryption. TCHo encrypts a plaintext x of length k in the following way:

TCHoenc(x, r1||r2) = C(x) + S`LP (r1)
+ S`γ(r2).

The codeword C(x) of a bitstring x of length k is formed of contiguous repetitions
of x truncated to ` bits, and so the minimum distance of the code is b`/kc. It
has length ` and the code has dimension k. Complexity is O (` · dP), provided
that the random generator has no higher complexity. The ciphertext length is `.
Note that `/k is the expansion factor of the message.

Decryption. Given y = TCHoenc(x, r1||r2), decryption works as follows:

1. K is used to delete SLP in y:6

K ⊗ y ≈ C̃(x) + S`−dK
γwK

where C̃(x) is equal to a truncated codeword C(x′), with x′ = f(x) for some
linear map f . Complexity is O (wK · `) for this operation only.

2. K ⊗ y is decoded to find x′. Decoding is performed using majority logic
decoding (MJD), which is equivalent to maximum likelihood decoding for
these codes, but runs in time O (`− dK), instead of O (

k · 2k). It allows to
encrypt larger blocks.

3. TCHodec(y) = f−1(x′) = x is computed. This operation takes O (
k3

)
com-

plexity. Note that the matrix of f−1 can be precomputed from K and C.

The overall decryption complexity thus becomes O (
wK · `+ k3

)
.

3.2 Reliability

Here C̃ has minimum distance δ = b(`− dK)/kc, but decoding more than b(δ −
1)/2c errors will of course be possible. The probability of erroneous decoding is
exactly the probability that at least one bit is more frequently erroneous than
correct, that is (under the heuristic assumption that the correlation in K ⊗ S`γ
is similar to the correlation in S`−dK

γwK),

ρ ≈ 1−

δ∑

i=dδ/2e
2−δ(1 + γwK)i(1− γwK)δ−i

(
δ

i

)

k

. (1)

6 Each bit of the word obtained after multiplying by K by S`
γ is the sum of wK bits

with bias γ. Hence they have a bias of γwK . However, the noisy bits are correlated,
depending on the offsets of the non-zero coefficients of K, but experiment shows that
K ⊗ S`

γ behaves mostly like S`−dK
γwK . So we write K ⊗ S`

γ ≈ S`−dK
γwK .

6 J.-Ph. Aumasson, M. Finiasz, W. Meier, S. Vaudenay

This probability can also be expressed using the central limit theorem (sum-
ming k times on the δ bits), and we get

ρ ≈ k · ϕ
(
−

√
γ2wK

1− γ2wK
× `− dK

k

)
. (2)

where ϕ is the cumulative distribution function of a normal distribution:

ϕ(z) =
1√
2π

∫ z

−∞
e−t

2/2dt.

Table 1. Examples of TCHo parameters vectors.

k dmin–dmax dK wK γ 1
2
(1− γwK) ` ρ

I65 128 5 800–7 000 25 820 45 0.981 0.289 50 000 2−26.5

II65 128 8 500–12 470 24 730 67 0.987 0.292 68 000 2−48.5

III 128 3 010–4 433 44 677 25 1− 3
64

0.349 90 000 2−22.4

IV 128 7 150–8 000 24 500 51 0.98 0.322 56 000 2−22.9

V 128 6 000–8 795 17 600 81 1− 3
128

0.427 150 000 2−13.0

VI 128 9 000–13 200 31 500 65 1− 1
64

0.320 100 000 2−54.7

3.3 Selecting the Parameters

Table 1 shows some parameters suiting the security constraints for λ = 80.
Asymptotically, we choose the parameters in terms of λ and k as follows.

wK = Θ(λ) dK = Θ(λ2 · k) ` = Θ(λ2 · k)
dmin = Θ(λ2) dmax = Θ(λ2) γ = 1−Θ(1

λ)

In addition to this, the plaintext length k must satisfy k = O (λ). We do not
provide any fixed relation between k and λ because, depending on the applica-
tion, we may either want to encrypt a constant-size plaintext (i.e. k = O (1)) or
a plaintext as long as possible (i.e. k = Θ(λ)). With those parameters

– key generation takes O (
λ4 · k2 · log λ · log log λ

)
,

– encryption takes O (
λ4 · k),

– decryption takes O (
λ3 · k),

– the unreliability is ρ = O
(
k
λ · 2−λ

2
)

(heuristically),
– the private key length is wK log2 dK = O (λ log λ),
– the public key length is dP = O (

λ2
)
,

– the plaintext length is k,
– the ciphertext length is ` = O (

λ2 · k).

TCHo: a Hardware-Oriented Trapdoor Cipher 7

4 Security

Clearly, TCHo is not OW-CCA secure: given a valid ciphertext, it suffices to
modify one bit and ask an oracle to decrypt it to get with high probability the
plaintext corresponding to the original ciphertext. Thus it is not IND-CCA secure
either. Like RSA, TCHo is malleable, given a single ciphertext: if y is a ciphertext
of x, then y + C(x̃) is a valid ciphertext of x + x̃, for any x̃ ∈ {0, 1}k. In what
follows we study semantic security.

Lemma 2. There exists a constant ν such that for any λ, t, ε and TCHo param-
eters, if, for a random P generated by TCHo key generation, S`LP

+ S`γ cannot
be distinguished from S`0 in time t with an advantage larger than ε, then TCHo

encryption is (t− ν · `, ε)-IND-CPA secure.

On the asymptotic side, letting t be polynomial and ε be exponentially small in
terms of λ, we obtain that TCHo is IND-CPA secure.

Proof. We proceed by reduction: let Aror = (Aror
1 ,Aror

2) be an adversary in a real-
or-random game, which, given a chosen plaintext x = Aror

1 (1λ) and a bitstring z
of length `, decides whether z is a ciphertext of x or of an unknown randomly
chosen plaintext x′; this adversary returns Aror

2 (z) ∈ {0, 1}, and succeeds with
an advantage ε, in time t. Since a ciphertext of TCHo consists of some bitstring
noised with a random source, the ciphertexts space is equal to {0, 1}`, so there
are no trivial instances of the problem, and every element of {0, 1}` can be a
ciphertext of one or several messages.

We build a distinguisher between S`LP
+S`γ and S`0 in the following way: given

an unknown instance S`?, choose a plaintext x = Aror
1 (1λ) independently of S`?,

and compute z = C(x) + S`?, then return Aror
2 (z). If S`? is random, then so is z,

otherwise z is a valid ciphertext of x, therefore we got an adversary distinguishing
a noised LFSR stream from random with exactly the same advantage than a real-
or-random one, in time greater than t. As real-or-random security implies [5]
semantic security, TCHo is IND-CPA secure.

The cost of simulation is O (`) so if Aror has complexity t− ν · `, for ν large
enough, the distinguisher has complexity bounded by t. ut

Let P be a random polynomial of degree dP ∈ [dmin, dmax] and weight wP . In
order to determine whether a bitstring is S`LP

+ S`γ or S`0, one strategy consists
in multiplying the stream by P , and deciding whether the obtained stream has
bias γwP or not. It is infeasible to distinguish a random source with bias γwP

from a uniform one as soon as γwP < 2−λ/2. Instead of multiplying by P , one
can multiply by multiples of P of lower weight and degree less than ` and use
the obtained bits. For a random P there are on average

(
d−1
w−2

)
2−dP multiples of

weight w and degree d with non-zero constant term. Hence the total number of
bits of bias γw one can obtain using all the multiples of weight w is approximately

Nw ≈ 2−dP

`−1∑

d=w−1

(`− d)
(
d− 1
w − 2

)
= 2−dP

(
`

w

)
.

8 J.-Ph. Aumasson, M. Finiasz, W. Meier, S. Vaudenay

When there are too many such bits, we must reduce this number. Let N be the
number of used bits. We have N ≤ Nw. If γw is small, the advantage of the
best distinguisher using N bits is [4] Adv ≈ γw

√
N/(2π). The complexity of the

distinguisher using these N bits can be lower-bounded by the sum of

– wN (we have to calculate all bits),
– the cost of finding at least one multiple of P with degree up to ` and weight
w, which can be lower bounded by (`/dP)w−1× 2dP /

(
`

w−1

)
(we use here the

lower bound for syndrome decoding from [14]).

By optimizing over the choice of w and N , the best advantage-over-complexity
ratio for this strategy is

R = max
w∈[0,dP]
N≥1

γw/
√

2π

w
√
N + 1√

N

(
`
dP

)w−1

× 2dP

(`
w)

.

Given the optimal w, the maximum in dependence of N is reached when

N = max

(
1,

(
`

dP

)w−1

× 2dP

w
(
`
w

)
)
.

By using the approximation
(
`
w

) ≈ `w/w! and the Stirling approximation we can
show that for w ∈ [0.33dP , 1.88dP] this N is equal to 1. But then, R is bounded
by γw/w

√
2π which is maximal for the smallest w. On the other hand, for w <

0.33dP we can show that the R ratio increases with w so the best ratio is for the
threshold w such that N decreases to 1. We deduce that R = O (

γΩ(dmin)/dmin

)
.

With our asymptotic parameters, we obtain R = exp(−Ω(λ))/λ2.
For a more precise bound we shall use

R = max
w∈[0,dmax]
N≥1

γw/
√

2π

w
√
N + 1√

N

(
`

dmin

)w−1

× 2dmin

(`
w)

. (3)

Experience shows this is reached for N = 1. Intuitively, this means that using
a single multiple polynomial which is essentially easy to get is the best strategy
because the advantage benefit is not worth working hard on lowering w.

As an example, the parameter vector I65 (as well as II65) in Table 1 gives
R ≤ 2−65 for the optimal w = 1936 and N = 1. (Actually, all other parameter
vectors satisfy R ≤ 2−80.) Note that in the worst case where dP = dmin, “random
multiples” of P with degree close to dmin have random weights with expected
value dmin/2 = 2900 and standard deviation

√
dmin/2 = 38. So, a weight of 1936

is within 25 standard deviations, which is pretty large. With higher degrees, the
distance is more important. As our computation assumes that getting a bit of
bias γw is easy, our analysis may still be pessimistic. So, those parameters may
be more secure than what this R ≤ 2−65 bound suggests.

TCHo: a Hardware-Oriented Trapdoor Cipher 9

Assumption 3. Suppose dmin ≥ 2λ and γ ≤ 21−λ/dmin − 1 and the conditions
of Assumption 1 are met. Then, for any `, on average over P generated by Gen
as defined in Assumption 1, a distinguisher between S`LP

+ S`γ and S`0 has an
advantage/complexity ratio lower than R as defined by Eq. (3).

This leads to the following result.

Theorem 4. Under Assumptions 1 and 3, there exists ν such that for any λ
and t and any TCHo parameters satisfying the conditions in Assumptions 1 and
3, TCHo is (t− ν · `, R · t)-IND-CPA secure.

Security Level Assessment. The above parameters provide semantic security
against adversaries with an advantage/complexity ratio upper bounded by R
as given by Eq. (3). More precisely, to compare this with a security level of
an exhaustive key search for an s-bit key, we should set R = 2−s in Eq. (3).
Asymptotically, we have s = Θ(λ). For the parameter vectors I65 and II65 we
have s ≥ 65. For all others we have s ≥ 80.

5 Construction of an IND-CCA Secure Scheme

We propose a generic hybrid construction by using the (revisited) Fujisaki-
Okamoto paradigm based on tag-KEM [1, 2, 15]. The encryption scheme obtained
offers IND-CCA security when the public encryption scheme is OW-CPA and Γ -
uniform, and the symmetric cipher one-time secure. For instance, one can simply
choose Symenc(ψ)(x) = x + F (ψ) for some random oracle F . The construction
requires two random oracles H and G. The IND-CPA security of TCHo implies
OW-CPA security, and the proof of Γ -uniformity of TCHo1 [14] applies to TCHo

as well. So the following hybrid encryption scheme is IND-CCA secure.

Encryption. Given a message x:

1. Choose a random σ uniformly in {0, 1}k
2. Compute the symmetric key: ψ ← G(σ)
3. Encrypt the message x: y ← Symenc(ψ)(x)
4. Encapsulate the key: χ← TCHoenc(σ,H(σ||y))
5. Output the ciphertext (χ, y).

Decryption. Given a ciphertext (χ, y):

1. Compute the encapsulated key: ψ ← G(TCHodec(χ))
2. Decrypt the message: x← Symdec(ψ)(y)
3. Output the plaintext x.

Table 1 shows examples of parameters for a symmetric encryption key of typical
length 128 bits. So the construction encrypts a message with an overhead of `
bits (the length of a ciphertext in TCHo).

10 J.-Ph. Aumasson, M. Finiasz, W. Meier, S. Vaudenay

6 Implementation of TCHo

TCHo was implemented in C++, using the NTL library [26] for arithmetic over
F2[X], including GCD and factorization algorithms. All performances were mea-
sured on 1.5 GHz Pentium 4 computer.

6.1 Choice of Parameters

Here we summarize the inequalities that must hold to get IND-CPA and 2Θ(λ)

security, deduced from Assumptions 1 and 3, when using block repetition codes.

• To correctly decrypt, ρ, given by Eq. (2), must be small.
• K must be impossible to recover from P :

(
dK

wK−1

) ≤ 2dmin and wK log2
dK

dmax
≥ λ.

• Semantic security is assumed to hold when

dmin ≥ 2λ, γ ≤ 21−λ/dmin − 1 and R ≤ 2−λ,

where R is given by Eq. (3).

In practice, one may fix a block size k, a security level λ, and a ciphertext
length `, then deduce the degree and weight of K, an interval for the degree of a
public key P , and a bias γ for the pseudo-random bits. But there is no strict rule
to choose parameters (k, dmin, dmax, dK , wK , γ, `), indeed TCHo is very flexible,
and one may adapt them to its requirements, e.g. by allowing an average failure
probability so as to reduce the expansion, or by setting a high degree d for the
private key K and a high expansion in order to get a negligible error probability
ρ, at the price of a very long key generation. Experiments in Section 6.3 will give
concrete examples of these trade-offs.

6.2 Chosen Algorithms

Our LFSR implementation uses a variant of the block-oriented algorithm intro-
duced in [9, 10]. In software, LFSR’s are slower than in hardware; for a random
polynomial of degree 6 000, our implementation could only reach a rate of 150
Kb/s. The number of bitwise operations required to compute a bitstream of
length ` is roughly 1

16`dP . Our generator for Sγ uses a source of uniform pseudo-
random bits to produce blocks of n bits in two steps:

1. pick a weight q ∈ [0, n] (with suitable probability distribution),
2. pick a word of weight q (uniformly).

The first step is accomplished by partitioning the interval [0, 1] ⊂ Q into n
intervals with respect to the weight distribution induced by the bias, and then
picking a random, uniform rational number in this interval with high enough
precision. For blocks of 32 bits and precision 2−64, the statistical distance to

TCHo: a Hardware-Oriented Trapdoor Cipher 11

the ideal generator is negligible. The pseudo-random generator ISAAC [19] is
used as a source of random bits7. Compared to the LFSR, our generator is quite
efficient: more than 28 Mb of biased random bits are produced per second.

6.3 Software Implementation Results

Table 2 shows performances for the repetition codes scenarios described in Ta-
ble 1. Encryption time is roughly equal to the time needed to compute S`LP (r1)

(in all scenarios S`γ is computed in less than 1 ms), while for decryption the most
expensive operation is the multiplication by K (majority decoding and product
by the precomputed matrix require less than 1 ms).

Table 2. Performances of TCHo with repetition codes.

enc. dec. kgen. unreliability sec. key pub. key plaintext ciphertext
(ms) (ms) (s) (bit) (bit) (bit) (bit)

I65 38.7 47.4 1 180 2−26.5 455 7 000 128 50 000
II65 148.0 115.4 361 2−48.5 507 12 470 128 68 000
III 75.5 49.0 2 290 2−22.4 281 4 433 128 90 000
IV 90.1 65.1 1 970 2−22.9 506 8 000 128 56 000
V 228.4 423.7 200 2−13.0 726 8 795 128 150 000
VI 232.5 178.7 870 2−54.7 652 13 200 128 100 000

Using precomputed look-up tables could speed up encryption: given a P , we
can compute a table of dP × ` bits, containing the bitstreams produced by each
initial state of LP of weight 1. Computing such a table takes less than a second
using optimized algorithms, then the generation of a bitstream requires roughly
`
32 × dP

2 XOR operations (in our implementation, with a 32 bits processor).
Experimentally the time gain is not significant, since memory access takes a non-
negligible time (about 70 megabytes are precomputed for common parameters).

Results in Table 2 show that a trade-off must be made between key generation
time, encryption and decryption time, ciphertext expansion, and reliability. The
parameter sets proposed all tend to optimize one of these points while keeping
the others at a reasonable level. Depending on the application, users should
choose one set or an other.

– I65: Fast encryption/decryption for low security requirements of 265.
– II65: Well balanced parameters for low security requirements.
– III: Fast encryption/decryption. This also implies smaller key sizes.
– IV: Smaller message expansion and reasonably fast encryption/decryption.
– V: “Fast” key generation.
– VI: Negligible unreliability is reached.

7 Some weaknesses on ISAAC were reported in [3]. So the question whether ISAAC is
still appropriate for our design is left open.

12 J.-Ph. Aumasson, M. Finiasz, W. Meier, S. Vaudenay

One can note that, even though it is possible to improve them a little, the
ciphertext expansion and the key generation time will always remain very high.
Concerning ciphertext expansion it is possible to improve it significantly by en-
crypting larger blocks. For a standard 128 bit key exchange, it seems impossible
to go below blocks of 50 000 bits (for a security of 280 operations), but if more
data needs to be exchanged, using larger blocks (while adjusting ` so as to keep
the same unreliability) can decrease expansion to a factor of about 100.

In contrast, not much can be done concerning the prohibitive key generation
time. Given the values of dmin and wK , while keeping the security constant, it
is possible to choose optimal values for dmax and dK . These values will always
correspond to dmax ≈ 1.5 dmin (it would be an equality if factorization was done
in quadratic time). However, factoring a polynomial of degree over 20 000 is a
costly operation which is difficult to speed-up.

6.4 Hardware Implementation

Encryption requires the computation of ` bits from a large LFSR, as many bits
with bias γ, and the repetition of the plaintext b`/kc times. Let’s examine those
three operations.

– LFSR’s can be very fast in integrated circuits: the number of gates required
is roughly equal to the length of the register, and it outputs one bit per clock
cycle. We assume that the over-cost induced by our large registers does not
dramatically slow down the computation, and remains feasible in spite of
the unusual size.

– To compute the non-uniform random bitstream, one may use a specially
tuned generator fed with physical entropy; otherwise, a solution is to use an
algorithm producing non-uniform random sequence from a uniform one. For
instance, to generate words of given length, one may use a binary search tree
(precomputed) where each leaf is labeled with a word, and go through the
tree by successive coin flips in order to simulate the bias. Such a construction
roughly requires as many uniform bits as biased bits produced (in compar-
ison, our software generator needs about three uniform bits to compute a
biased one).

– Repetition of a word is straightforward.

Note that, since the operations are independent, parallelization is possible.
Decryption looks more complicated to implement, but it only consists of lin-

ear operations over F2, usually easily implemented. For instance, there exists [29]
a library for FPGA devices performing matrix-vector product and dot product
efficiently (note that the product K ⊗ S is simply a sequence of dot products).
It also requires a small amount of additional memory to perform the majority
decoding (namely k log2

`−dK

k bits to count the number of occurrences of each
bit of m̃).

It thus appears that TCHo’s encryption and decryption only need hardware-
friendly operations (no integer multiplication or addition, no modular arith-
metic). However, the implementation should be flexible, so as to be adaptable

TCHo: a Hardware-Oriented Trapdoor Cipher 13

to any public key – that is, tune the LFSR taps. Unfortunately, we could not
implement TCHo in a hardware environment, but we can estimate requirements
and performances: looking at the parameters in Table 1, a 128-bit key can be
encrypted with a circuit of about 10 000 gates (for the LFSR and the repeti-
tion), with an external source of randomness. With an ASIC running at 4 MHz
(0.25 µs cycle time), we roughly estimate encryption time to 15 ms. The power
consumption is estimated to be of at most 20-100µW, which is suitable for RFID.

7 Comparison with Other Cryptosystems

The security of TCHo relies mostly on results from coding theory and it is thus
tempting to compare it to the famous code based cryptosystem of McEliece [23].
The two cryptosystems function in a similar way: first the message is encoded
using a public code, then some random noise is added to it. However, the two
constructions are quite different in the way noise is added: in McEliece’s cryp-
tosystem, a small amount of completely random noise is added to the codeword,
whereas in TCHo a huge amount of structured noise is added. In TCHo, this noise
should even be indistinguishable from an unbiased random binary sequence: de-
coding is only possible because this noise has a hidden structure. In McEliece,
it is the code which contains a hidden structure which make decoding possible.

To measure the efficiency of TCHo, we need to compare both the timing we
obtained for practical parameters and the asymptotic complexities of TCHo with
those of other ciphers. For practical comparisons we used the benchmark feature
of the Crypto++ library [11] running on the same 1.5 GHz Pentium 4 as our tests.
We then use RSA 1024/2048 as a reference for comparison with other systems.
Results are presented in Table 3. The key generation time of TCHo is of course
way higher than for any other public key cryptosystem, however, encryption and
decryption speed are close to those of RSA or elliptic curve cryptosystems [20].
NTRU [17] is however much faster. Anyway, we believe that for a hardware
oriented cryptosystem these performances are not bad.

From an asymptotic point of view, things are a little different. We need to
compare parameters yielding an equivalent asymptotic security of 2λ. For RSA
this means that we use a modulus of size O (

λ3
)

and for EC a group of order

Table 3. Comparison of TCHo with other public-key cryptosystems.

security enc. dec. kgen. sk/pk pt ct
(ms) (ms) (s) (bit) (bit) (bit)

TCHo I65 265 38.7 47.4 1 180 455/7 000 128 50 000
TCHo IV 280 90.1 65.1 1 970 506/8 000 128 56 000

RSA 1024 272 0.4 12.8 0.3 2 048/1 024 1 024 1 024
RSA 2048 2102 1.0 75.0 1.8 4 096/2 048 2 048 2 048

EC on GF (2163) 278 16.9 10.2 – 160/326 160 326
NTRU ees251ep4 280 ∼ 0.1 ∼ 0.2 ∼ 0.003 502/2 008 251 2 008

14 J.-Ph. Aumasson, M. Finiasz, W. Meier, S. Vaudenay

Table 4. Asymptotic comparison of TCHo with other cryptosystems (the O ()’s have
been omitted).

security enc. dec. kgen. sk/pk pt ct

TCHo 2λ λ5 λ4 λ6 · log λ · log log λ λ · log λ/λ2 λ λ3

RSA 2λ λ6 λ9 λ12 λ3/λ3 λ3 λ3

EC 2λ λ3 λ3 λ3 λ/λ λ λ

NTRU 2λ λ2 λ2 λ2 λ/λ λ λ

McEliece 2λ λ2 λ2 · log λ λ3 λ2/λ2 λ λ

2O(λ). For NTRU, the asymptotic complexity is not explicitly known, but it is
assumed that a length of O (λ) can achieve a security of 2λ. The results obtained
are reported in Table 4, where we also added the McEliece cryptosystem8 [23]. It
appears that TCHo is better than RSA on all points, including the key generation
complexity. However, some alternate public-key cryptosystems remain better
asymptotically.

8 Conclusion

Our TCHo cryptosystem is much more efficient than TCHo1: encryption and de-
cryption algorithms are faster, larger blocks can be encrypted, a precise estimate
of the decryption failure probability can be given, and experimental results are
much better than for TCHo1. Meanwhile, TCHo performs pretty well asymp-
totically. It is semantically secure, which makes it possible to use it to build
an IND-CCA secure hybrid encryption scheme using the KEM/DEM framework.
However, it inherits some undesirable properties of the original scheme: first the
key generation is still heavy and the expansion rate remains huge.

As TCHo seems well suited for tiny hardware we may consider using it for
ensuring strong privacy in RFID as suggested in [27].

Finally, as TCHo security only relies on heuristic assumptions, further work
could be devoted to giving concrete elements of proof or attack.

References

1. Masayuki Abe, Rosario Gennaro, and Kaoru Kurosawa. Tag-KEM/DEM: A new
framework for hybrid encryption. IACR ePrint archive 2005/027, 2005. Available
at http://eprint.iacr.org/2005/027. Newer version in [2].

2. Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. Tag-
KEM/DEM: A new framework for hybrid encryption and a new analysis of
Kurosawa-Desmedt KEM. In EUROCRYPT’05, pages 128–146, 2005. Older ver-
sion in [1].

8 We could not find any practical timings to include in Table 3. For asymptotic
behavior we use a code of length 2m correcting t errors, with t = O` λ

log λ

´
and

m = O (log t + log log t).

TCHo: a Hardware-Oriented Trapdoor Cipher 15

3. Jean-Philippe Aumasson. On the pseudo-random generator ISAAC. IACR ePrint
archive 2006/438, 2006. Available at http://eprint.iacr.org/2006/438.

4. Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far can we go beyond
linear cryptanalysis? In P.J. Lee, editor, ASIACRYPT’04, volume 3329 of Lecture
Notes in Computer Science, pages 432–450. Springer, 2004.

5. Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In Proceedings of the 38th Annual Symposium
on Foundations of Computer Science (FOCS’97), page 394. IEEE Computer Soci-
ety, 1997.

6. Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-
weight words in a linear code: Application to McEliece’s cryptosystem and to
narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory,
44(1):367–378, 1998.

7. Anne Canteaut and Michaël Trabbia. Improved fast correlation attacks using parity
check equations of weight 4 and 5. In B. Preneel, editor, EUROCRYPT’00, volume
1807 of Lecture Notes in Computer Science, pages 573–588. Springer, 2000.

8. David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials
over finite fields. Mathematics of Computation, 36(154):587–592, 1981.

9. Sandeepan Chowdhury and Subhamoy Maitra. Efficient software implementation
of linear feedback shift registers. In C. Pandu Rangan and C. Ding, editors, IN-
DOCRYPT’01, volume 2247 of Lecture Notes in Computer Science, pages 297–307.
Springer, 2001.

10. Sandeepan Chowdhury and Subhamoy Maitra. Efficient software implementation
of LFSR and boolean function and its application in nonlinear combiner model. In
J. Zhou, M. Yung, and Y. Han, editors, ACNS 2003, volume 2846 of Lecture Notes
in Computer Science, pages 387–402. Springer, 2003.

11. Wei Dai. Crypto++ library. http://www.eskimo.com/∼weidai/.
12. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, 1976.
13. James H. Ellis. The possibility of secure non-secret digital encryption. GCHQ-

CESG publication, 1970.
14. Matthieu Finiasz and Serge Vaudenay. When stream cipher analysis meets public-

key cryptography (invited talk). To appear in the Proceedings of SAC 2006, Lecture
Notes in Computer Science.

15. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In M. Wiener, editor, CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 537–554. Springer, 1999.

16. Kishan Chand Gupta and Subhamoy Maitra. Multiples of primitive polynomials
over GF(2). In C. Pandu Rangan and C. Ding, editors, INDOCRYPT’01, volume
2247 of Lecture Notes in Computer Science, pages 62–72. Springer, 2001.

17. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In J. Buhler, editor, ANTS-III, volume 1423 of Lecture Notes
in Computer Science, pages 267–288. Springer, 1998.

18. K Jambunathan. On choice of connection-polynominals for LFSR-based stream
ciphers. In B. K. Roy and E. Okamoto, editors, INDOCRYPT’00, volume 1977 of
Lecture Notes in Computer Science, pages 9–18. Springer, 2000.

19. Robert J. Jenkins, Jr. ISAAC. In D. Gollmann, editor, FSE’96, volume 1039 of
Lecture Notes in Computer Science, pages 41–49. Springer, 1996.

20. Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

16 J.-Ph. Aumasson, M. Finiasz, W. Meier, S. Vaudenay

21. Pil Joong Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In C. G. Günther, editor, EUROCRYPT’88, volume 330
of Lecture Notes in Computer Science, pages 275–280. Springer, 1988.

22. Subhamoy Maitra, Kishan Chand Gupta, and Ayineedi Venkateswarlu. Results
on multiples of primitive polynomials and their products over GF(2). Theoretical
Computer Science, 341(1-3):311–343, 2005.

23. Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory.
DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pages
114–116, January 1978.

24. Willi Meier and Othmar Staffelbach. Fast correlation attacks on stream ciphers. In
C. G. Günther, editor, EUROCRYPT’88, volume 330 of Lecture Notes in Computer
Science, pages 301–314. Springer, 1988.

25. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

26. Victor Shoup. NTL: A library for doing number theory. http://shoup.net/ntl/.
27. Serge Vaudenay. RFID privacy based on public-key cryptography (invited talk). In

Min Surp Rhee and Byoungcheon Lee, editors, ICISC’06, volume 4296 of Lecture
Notes in Computer Science, pages 1–6. Springer, 2006.

28. David Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO’02,
volume 2442 of Lecture Notes in Computer Science, pages 288–304. Springer, 2002.

29. Ling Zhuo and Viktor K. Prasanna. High performance linear algebra operations on
reconfigurable systems. In SC’05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, page 2. IEEE Computer Society, 2005.

A On the Choice of the Code

TCHo1 uses a code C generated by L`Q with a primitive polynomial Q of degree
k. The drawback of this code is that decoding requires O (

k2k
)
.

Note that if Q is a trinomial, decoding algorithms more efficient than MLD
exist; the Algorithm B in [24] or Gallager decoding as used, e.g., in [7] for fast
correlation attacks can be applied. The success probability of these algorithms
depends on the weight of the feedback polynomial of the LFSR, the bias γwK ,
and the ratio between the length of known output and the size of the LFSR
for which the initial state is searched for. Again, concerning the reliability of
these iterative algorithms, only experimental results seem to be available. For
trinomials it can be seen from Table 3 in [24] that, for example, correct decoding
is expected if the known output has length 100 times the LFSR-length, and
1
2 (1 + γwK) is 0.6 or larger.

We rather use block repetition codes which is equivalent to settingQ = Xk+1
in TCHo1 although this would be illegal in TCHo1 since Xk +1 is not primitive.

