
Implementing Joins using Extensible Pattern Matching?

Philipp Haller1, Tom Van Cutsem2??

1 LAMP-REPORT-2007-004
EPFL

firstname.lastname@epfl.ch
2 Vrije Universiteit Brussel, Belgium

Abstract. Join patterns are an attractive declarative way to synchronize both threads
and asynchronous distributed computations. We explore joins in the context of ex-
tensible pattern matching that recently appeared in languages such as F# and Scala.
Our implementation supports join patterns with multiple synchronous events, and
guards. Furthermore, we integrated joins into an existing actor-based concurrency
framework. It enables join patterns to be used in the context of more advanced
synchronization modes, such as future-type message sending and token-passing
continuations.

Keywords: Concurrent Programming, Join Patterns, Chords, Actors

1 Introduction

Recently, the pattern matching facilities of languages such as Scala and F# have been gen-
eralized to allow representation independence for objects used in pattern matching [6,20].
Extensible patterns open up new possibilities for implementing abstractions in libraries
which were previously only accessible as language features. More specifically, we claim
that extensible pattern matching eases the construction of declarative approaches to syn-
chronization in libraries rather than languages. To support this claim, we show how a con-
crete declarative synchronization construct, join patterns, can be implemented in Scala,
a language with extensible pattern matching.

Join patterns [8,9] offer a declarative way of synchronizing both threads and asyn-
chronous distributed computations that is simple and powerful at the same time. They
form part of languages such as JoCaml [7] and Funnel [14]. Join patterns have also been
implemented as extensions to existing languages [3,23]. Recently, Russo [17] and Singh
[18] have shown that advanced programming language features, such as generics or soft-
ware transactional memory, make it feasible to provide join patterns as libraries rather
than language extensions.

We motivate that our implementation based on extensible pattern matching is an in-
teresting third way to provide join patterns in a library since it has a number of desirable
properties. More concretely, we make the following contributions:
? to appear at 10th International Conference on Coordination Models and Languages (COORDI-

NATION 2008).
?? supported by a Ph.D. fellowship of the Research Foundation Flanders (FWO).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147930145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


– We present a novel implementation technique for joins based on extensible pattern
matching. We show that it allows programmers to avoid certain kinds of boilerplate
code that are inevitable when using existing approaches.

– We discuss a concrete implementation of our approach in Scala. A complete im-
plementation that supports join patterns with multiple synchronous events and a re-
stricted form of guards is available on the web.3

– We integrate our library into an existing actor-based concurrency framework. This
enables expressive join patterns to be used in the context of more advanced synchro-
nization modes, such as future-type message sending and token-passing continua-
tions.

The rest of this paper is structured as follows. In the following section we briefly
highlight join patterns as a declarative synchronization abstraction, how they have been
integrated in other languages before, and how combining them with pattern matching can
improve this integration. Section 3 shows how to synchronize both threads and actors us-
ing our new Scala Joins framework. In section 4 we discuss a concrete implementation
of expressive join patterns in Scala. Section 5 discusses related work, and section 6 con-
cludes.

2 Motivation

Background: Join Patterns. A join pattern consists of a body guarded by a linear set
of events. The body is executed only when all of the events in the set have been signaled
to an object. Threads may signal synchronous or asynchronous events to objects. By
signaling a synchronous event to an object, threads may implicitly suspend. The simplest
illustrative example of a join pattern is that of an unbounded FIFO buffer. In Cω [3], it is
expressed as follows:

public class Buffer {
public async Put(int x);
public int Get() & Put(int x) { return x; }

}

A detailed explanation of join patterns is outside the scope of this paper. For the purposes
of this paper, it suffices to understand the operational effect of a join pattern. Threads
may put values into a buffer b by invoking b.Put(v). They may also read values from
the buffer by invoking b.Get(). The join pattern Get() & Put(int x) (called a
chord in Cω) specifies that a call to Get may only proceed if a Put event has previously
been signaled. Hence, if there are no pending Put events, a thread invoking Get is
automatically suspended until such an event is signaled.

The advantage of join patterns is that they allow a declarative specification of the
synchronization between different threads. Often, the join patterns correspond closely to
a finite state machine that specifies the valid states of an object [3]. In the following, we
explain the benefits of our new implementation by means of an example.

3 See http://lamp.epfl.ch/˜phaller/joins/.

2



Example. Consider the traditional problem of synchronizing multiple concurrent readers
with one or more writers who need exclusive access to a resource. In Cω, join patterns are
supported as a language extension through a dedicated compiler. With the introduction
of generics in C# 2.0, Russo has made join patterns available in a C# library called Joins
[17]. In that library, a multiple reader/one writer lock can be implemented as follows:

public class ReaderWriter {
public Synchronous.Channel Exclusive, ReleaseExclusive;
public Synchronous.Channel Shared, ReleaseShared;
private Asynchronous.Channel Idle;
private Asynchronous.Channel<int> Sharing;
public ReaderWriter() {
Join j = Join.Create(); ... // Boilerplate omitted
j.When(Exclusive).And(Idle).Do(delegate {});
j.When(ReleaseExclusive).Do(delegate{ Idle(); });
j.When(Shared).And(Idle).Do(delegate{ Sharing(1); });
j.When(Shared).And(Sharing).Do(delegate(int n) {
Sharing(n+1); });

j.When(ReleaseShared).And(Sharing).Do(delegate(int n) {
if (n==1) Idle(); else Sharing(n-1); });

Idle(); } }

In C# Joins, join patterns consist of linear combinations of channels and a delegate (a
function object) which encapsulates the join body. Join patterns are triggered by invoking
channels which are special delegates.

In the example, channels are declared as fields of the ReaderWriter class. Chan-
nel types are either synchronous or asynchronous. Asynchronous channels correspond
to asynchronous methods in Cω (e.g. Put in the previous example). Channels may take
arguments which are specified using type parameters. For example, the Sharing chan-
nel is asynchronous and takes a single int argument. Channels are often used to model
(parts of) the internal state of an object. For example, the Idle and Sharing chan-
nels keep track of concurrent readers (if any), and are therefore declared as private.
To declare a set of join patterns, one first has to create an instance of the Join class.
Individual join patterns are then created by chaining a number of method calls invoked
on that Join instance. For example, the first join pattern is created by combining the
Exclusive and Idle channels with an empty delegate; this means that invoking the
synchronous Exclusive channel (a request to acquire the lock in exclusive mode) will
not block the caller if the Idle channel has been invoked (the lock has not been ac-
quired).

Even though the verbosity of programs written using C# Joins is slightly higher com-
pared to Cω, basically all the advantages of join patterns are preserved. However, this
code still has a number of drawbacks: first, the encoding of the internal state is redun-

3



dant. Logically, a lock in idle state can be represented either by the non-empty Idle
channel or the Sharing channel invoked with 0.4

Note that it is impossible in C# (and in Cω) to use only Sharing. Consider the first
join pattern. Implementing it using Sharing instead of Idle requires a delegate that
takes an integer argument (the number of concurrent readers):

j.When(Exclusive).And(Sharing).Do(delegate(int n) {...}

Inside the body we have to test whether n > 0 in which case the thread invoking
Exclusive has to block. Blocking without reverting to lower-level mechanisms such
as locks is only possible by invoking a synchronous channel; however, that channel has
to be different from Exclusive (since invoking Exclusive does not block when
Sharing has been invoked) which re-introduces the redundancy.

Another drawback of the above code is the fact that arguments are passed implicitly
between channels and join bodies: in the third case, the argument n passed to the delegate
is the argument of the Sharing channel. Contrast this with the Cω buffer example in
which the Put event explicitly binds its argument x. Not only are arguments passed im-
plicitly, the order in which they are passed is merely conventional and not checked by the
compiler. For example, the delegate of a (hypothetical) join pattern with two channels of
type Asynchronous.Channel<int>would have two int arguments. Accidentally
swapping the arguments in the body delegate would go unnoticed and result in errors.

In Scala Joins the join patterns of the above example are expressed as follows:

join {
case Exclusive() & Sharing(0) => Exclusive.reply()
case ReleaseExclusive() => Sharing(0); ReleaseExclusive.reply()
case Shared() & Sharing(n) => Sharing(n+1); Shared.reply()
case ReleaseShared() & Sharing(n) if n > 0 =>
Sharing(n-1); ReleaseShared.reply()

}

The internal state of the lock is now represented uniformly using only Sharing. More-
over, two formerly separate patterns are unified (patterns 3 and 4 in the C# example) and
the if-else statement is gone. (Inside join bodies, synchronous events are replied to
via their reply method; this is necessary since, contrary to C# and Cω, Scala Joins sup-
ports multiple synchronous events per pattern, cf. section 3.) The gain in expressivity is
due to nested pattern matching. In the first pattern, pattern matching constrains the argu-
ment of Sharing to 0, ensuring that this pattern only triggers when no other thread is
sharing the lock. Therefore, an additional Idle event is no longer necessary, which de-
creases the number of patterns. In the last pattern, a guard (if n > 0) prevents invalid
states (i.e. invoking Sharing(n) where n < 0).

Joins for Actors. While join patterns have been successfully used to synchronize
threads, to the best of our knowledge, join patterns have not yet been applied in the

4 The above implementation actually ensures that an idle lock is always represented as Idle and
never as Sharing(0). However, this close relationship between Idle and Sharing is not
explicit and has to be inferred from all the join patterns.

4



context of an actor-based concurrency model [1]. In Scala, actor-based concurrency is
supported by means of a library extension [11]. Because we provide join patterns as a
library as well, we have created the opportunity to combine join patterns with the concur-
rency model offered by actors. We give a more detailed explanation of this combination
in section 3. However, in order to understand this integration, we first briefly highlight
how to write concurrent programs using Scala’s actor framework.

Scala’s actors are largely inspired by Erlang’s model of concurrent processes commu-
nicating by message passing [2]. New actors are defined as classes extending the Actor
class. An actor’s life cycle is defined by its act method. The following code shows how
to implement the unbounded buffer as an actor:

class Buffer extends Actor {
def act() { loop(List()) }
def loop(buf: List[Int]) {
receive {
case Put(x) => loop(buf ::: List(x)) // append x to buf
case Get() if !buf.isEmpty =>
reply(buf.head); loop(buf.tail) }

} }

The receive method allows an actor to selectively wait for certain messages to arrive
in its mailbox. The actor processes at most one message at a time. Messages that are sent
concurrently to the actor are queued in its mailbox. Interacting with a buffer actor occurs
as follows:

val buffer = new Buffer; buffer.start()
buffer ! Put(42) // asynchronous send, returns nothing
println(buffer !? Get()) // synchronous send, waits for reply

Synchronous message sends make the sending process wait for the actor to reply to the
message (by means of reply(value)). Scala actors also offer more advanced syn-
chronization patterns such as futures [12,25]. actor !! msg denotes an asynchronous
send that immediately returns a future object. In Scala, a future is a nullary function that,
when applied, returns the future’s computed result value. If the future is applied before
the value is computed, the caller is blocked.

In the above example, the required synchronization between Put and Get is
achieved by means of a guard. The guard in the Get case disallows the processing of
any Get message while the buf queue is empty. In the implementation, all cases are se-
quentially checked against the incoming message. If no case matches, or all of the guards
for matching cases evaluate to false, the actor keeps the message stored in its mailbox
and awaits other messages.

Even though the above example remains simple enough to implement, the synchro-
nization between Put and Get remains very implicit. The actual intention of the pro-
grammer, i.e. the fact that an item can only be produced when the actor received both a
Get and a Put message, remains implicit in the code. Therefore, even actors can benefit
from the added declarative synchronization of join patterns, as we illustrate in section 3.

5



3 A Scala Joins Library

We discuss a Scala library (called Scala Joins) providing join patterns implemented via
extensible pattern matching. First, we explain how Scala Joins enables declarative thread
synchronization, postponing joins for actors until the next section.

Joining Threads. Join patterns in Scala Joins are composed of synchronous and asyn-
chronous events. Events are strongly typed and can be invoked using standard method
invocation syntax. The FIFO buffer example is written in Scala Joins as follows:

class Buffer extends Joins {
val Put = new AsyncEvent[Int]
val Get = new SyncEvent[Int]
join { case Get() & Put(x) => Get reply x }

}

To enable join patterns, a class inherits from the Joins class.5 Events are declared as
regular fields. They are distinguished based on their (a)synchrony and the number and
types of arguments they take. For example, Put is an asynchronous event that takes a
single argument of type Int. Since it is asynchronous, no return type is specified (it
immediately returns unit when invoked). In the case of a synchronous event such as
Get, the first type parameter specifies the return type. Therefore, Get is a synchronous
event that takes no arguments and returns values of type Int.

Joins are declared using the join { ... } construct.6 This construct enables pat-
tern matching via a list of case declarations that each consist of a left-hand side and
a right-hand side, separated by =>. The left-hand side defines a join pattern through
the juxtaposition of a linear combination of asynchronous and synchronous events. As
is common in the joins literature, we use & as the juxtaposition operator. Arguments of
events are usually specified as variable patterns. For example, the variable pattern x in the
Put event can bind to any value (of type Int). This means that on the right-hand side,
x is bound to the argument of the Put event when the join pattern matches. Standard
pattern matching can be used to constrain the match even further (see section 2).

The right-hand side of a join pattern defines the join body (an ordinary block of code)
that is executed when the join pattern matches. Like JoCaml, but unlike Cω and C# Joins,
Scala Joins allows any number of synchronous events to appear in a join pattern. Because
of this, it is impossible to use the return value of the body to implicitly reply to the single
synchronous event in the join pattern. Instead, the body of a join pattern explicitly replies
to all synchronous events that are part of the join pattern on the left-hand side. This is
done by invoking those events’ replymethod, which wakes up the thread that originally
signaled that event.

5 Actually, Joins is a trait that can be mixed into any class.
6 As explained in section 4, join is a method of the Joins class. In Scala, the body of a class

definition serves as the primary constructor of the class which allows this freestanding call to
join.

6



Joining Actors. We now describe an integration of our joins library with Scala’s actor
framework. The following example shows how to re-implement the unbounded buffer
example using joins:

val Put = new Join1[Int]
val Get = new Join
class Buffer extends JoinActor {
def act() {
receive { case Get() & Put(x) => Get reply x }

} }

It differs from the thread-based bounded buffer using joins in the following ways:

– The Buffer class inherits from the JoinActor class to declare itself to be an
actor capable of processing join patterns.

– Rather than defining Put and Get as synchronous or asynchronous events, they are
all defined as join messages which may support both kinds of synchrony (this is
explained in more detail below).

– The Buffer actor defines act and awaits incoming messages by means of
receive. It is still possible for the actor to serve regular messages within the
receive block. Logically, regular messages can be regarded as unary join patterns.
However, they don’t have to be declared as joinable messages.

We illustrate below how the buffer actor can be used as a coordinator between a con-
sumer and a producer actor. The producer sends an asynchronous Put message while
the consumer awaits the reply to a Get message by invoking it synchronously (using
!?).

val buffer = new Buffer; buffer.start()
val prod = actor { buffer ! Put(42) }
val cons = actor { process(buffer !? Get()) }

By applying joins to actors, the synchronization dependencies between Get and Put can
be specified declaratively by the buffer actor. The actor receives Get and Put messages
by queuing them in its mailbox. Only when all of the messages specified in the join
pattern have been received is the body executed by the actor. Before processing the body,
the actor atomically removes all of the participating messages from its mailbox. Replies
may be sent to any or all of the messages participating in the join pattern. This is similar
to the way replies are sent to events in the thread-based joins library described previously.

Contrary to the way events are defined in the thread-based joins library, an actor
does not explicitly define a join message to be synchronous or asynchronous. We say
that join messages are “synchronization-agnostic” because they can be used in different
synchronization modes between the sender and receiver actors. However, when they are
used in a particular join pattern, the sender and receiver actors have to agree upon a
valid synchronization mode. In the previous example, the Put join message was sent
asynchronously, while the Get join message was sent synchronously. In the body of a
join pattern, the receiver actor replied to Get, but not to Put.

The disadvantage of making join messages synchronization-agnostic is that it in-
troduces the possibility for errors. For example, if a receiver does not reply to a syn-
chronously sent message, the sender remains blocked. However, the advantage is that

7



join messages may be used in many different synchronization modes, including future-
type message sending [25] or Salsa’s token-passing continuations [22]. Every join mes-
sage has an associated reply destination which is an output channel on which processes
may listen for replies to the message. How the reply to a message is processed is deter-
mined by the way the message was sent. For example, if the message was sent purely
asynchronously, the reply is discarded; if it was sent synchronously, the reply awakes the
sender. If it was sent using a future-type message send, the reply resolves the future.

4 Integrating Joins and Extensible Pattern Matching

In this section we present a novel implementation that integrates joins into general
language-based pattern matching. We explain our technique using a concrete implemen-
tation in Scala. However, we expect that implementations based on, e.g., the active pat-
terns of F# [20] would not be much different.

In the following we first look at pattern matching in Scala; this provides some termi-
nology and background used in subsequent sections. After that we review the essentials
of Scala’s extensible patterns; the small set of necessary concepts suggests that our ap-
proach is readily transferable to languages with similar features. In section 4.1 we outline
the core of an implementation of joins that builds on extensible pattern matching. In sec-
tion 4.2 we highlight how joins have been integrated into Scala’s actor framework.

Partial Functions. In the previous section we used the join { ... } construct to
declare a set of join patterns. It has the following form:

join {
case pat1 => body1

...
case patn => bodyn

}

The patterns pati consist of a linear combination of events evt1 & ... & evtm.
Threads synchronize over a join pattern by invoking one or several of the events listed
in a pattern pati. When all events occurring in pati have been invoked, the join pattern
matches, and its corresponding join bodyi is executed.

In Scala, the pattern matching expression inside braces is treated as a first-class value
that is passed as an argument to the join function. The argument’s type is an instance of
PartialFunction, which is a subclass of Function1, the class of unary functions.
The two classes are defined as follows.

abstract class Function1[A, B] {
def apply(x: A): B }

abstract class PartialFunction[A, B] extends Function1[A, B] {
def isDefinedAt(x: A): Boolean }

Functions are objects which have an apply method. Partial functions are objects which
have in addition a method isDefinedAt which tests whether a function is defined for

8



a given argument. Both classes are parametrized; the first type parameter A indicates the
function’s argument type and the second type parameter B indicates its result type.

In Scala, each pattern matching expression

{ case p1 => e1; ...; case pn => en }

is compiled into a partial function whose methods are defined as follows.

– The isDefinedAt method returns true if one of the patterns pi matches the
argument, false otherwise.

– The apply method returns the value ei for the first pattern pi that matches its argu-
ment. If none of the patterns match, a MatchError exception is thrown.

Note that partial functions are not crucial for our implementation of joins. In fact,
Scala’s partial functions can be encoded using only higher-order functions as follows.
The idea is to define a partial function as a regular function that returns an option;7 either
the partial function is defined at the given value, in which case it returns its body as
a thunk (i.e. a function with an empty parameter list) wrapped in Some. If the partial
function is not defined, it returns None. Operations for testing whether a partial function
is defined at a given value, and for applying it are defined accordingly:

type PartFun[A, R] = A => Option[() => R]
def isDefAt[A, R](fun: PartFun[A, R], arg: A) = fun(arg) match {
case Some(_) => true
case None => false }

def apply[A, R](fun: PartFun[A, R], arg: A) = fun(arg) match {
case Some(res) => res()
case None => error("PartFun not defined") }

Using this encoding, the native Scala partial function

{ case x :: xs => println("head: "+x) }

can then be represented as follows:

(l: List[Int]) => l match {
case x :: xs => Some(() => println("head: "+x))
case _ => None }

Join patterns as partial functions. Whenever a thread invokes an event, each join pattern
in which e occurs has to be checked for a potential match. Therefore, events have to be
associated with the set of join patterns in which they participate. As shown before, this set
of join patterns is represented as a partial function. Invoking join(pats) associates
each event occurring in the set of join patterns with pats.

When a thread invokes an event, the isDefinedAt method of pats is used to
check whether any of the associated join patterns match. If yes, the corresponding join

7 The optional value is of parameterized type Option[T] that has the two subclasses
Some[T](x: T) and None.

9



body is executed by invoking the apply method of pats. A question remains: what ar-
gument is passed to isDefinedAt and apply, respectively? To answer this question,
consider the simple buffer example from the previous section. It declares the following
join pattern:

join { case Get() & Put(x) => Get reply x }

Assume that no events have been invoked before, and a thread t invokes the Get event
to remove an element from the buffer. Clearly, the join pattern does not match, which
causes t to block since Get is a synchronous event (more on synchronous events later).
Assume that after thread t has gone to sleep, another thread s adds an element to the
buffer by invoking the Put event. Now, we want the join pattern to match since both
events have been invoked. However, the result of the matching does not only depend
on the event that was last invoked but also on the fact that other events have been in-
voked previously. Therefore, it is not sufficient to simply pass a Put message to the
isDefinedAt method of the partial function the represents the join patterns. Instead,
when the Put event is invoked, the Get event has to somehow “pretend” to also match,
even though it has nothing to do with the current event. While previous invocations can
simply be buffered inside the events, it is non-trivial to make the pattern matcher actually
consult this information during the matching, and “customize” the matching results based
on this information. To achieve this customization we use extensible pattern matching.

Extensible Pattern Matching. Emir et al. [6] recently introduced extractors for Scala
that provide representation independence for objects used in patterns. Extractors play
a role similar to views in functional programming languages [24,15] in that they allow
conversions from one data type to another to be applied implicitly during pattern match-
ing. As a simple example, consider the following object that can be used to match even
numbers:

object Twice {
def apply(x: Int) = x*2
def unapply(z: Int) = if (z%2 == 0) Some(z/2) else None }

Objects with applymethods are uniformly treated as functions in Scala. When the func-
tion invocation syntax Twice(x) is used, Scala implicitly calls Twice.apply(x).
The unapply method in Twice reverses the construction in a pattern match. It tests
its integer argument z. If z is even, it returns Some(z/2). If it is odd, it returns None.
The Twice object can be used in a pattern match as follows:

val x = Twice(21)
x match {
case Twice(y) => println(x+" is two times "+y)
case _ => println("x is odd") }

To see where the unapply method comes into play, consider the match against
Twice(y). First, the value to be matched (x in the above example) is passed as ar-
gument to the unapply method of Twice. This results in an optional value which is
matched subsequently. The preceding example is expanded as follows:

10



val x = Twice.apply(21)
Twice.unapply(x) match {
case Some(y) => println(x+" is two times "+y)
case None => println("x is odd") }

Extractor patterns with more than one argument correspond to unapply methods re-
turning an optional tuple. Nullary extractor patterns correspond to unapply methods
returning a Boolean.

In the following we show how extractors can be used to implement the matching se-
mantics of join patterns. In essence, we define appropriate unapply methods for events
which get implicitly called during the matching.

4.1 Matching Join Patterns

As shown previously, a set of join patterns is represented as a partial function. Its
isDefinedAt method is used to find out whether one of the join patterns matches.
In the following we are going to explain the code that the Scala compiler produces for
the body of this method. Let us revisit the join pattern that we have seen in the previous
section:

Get() & Put(x)

In our library, the & operator is an extractor that defines an unapply method; therefore,
the Scala compiler produces the following matching code:

&.unapply(m) match {
case Some((Get(), Put(x))) => true
case None => false }

We defer a discussion of the argument m that is passed to the & operator. For now, it is
important to understand the general scheme of the matching process. Basically, calling
the unapply method of the & operator produces a pair of intermediate results wrapped
in Some. Nested pattern matching matches the two components of the pair against the
Get and Put events. Only if both of them match, the overall pattern matches. Since the
& operator is left-associative, matching more than two events proceeds by first calling
the unapply methods of all the & operators from right to left, and then matching the
intermediate results with the corresponding events from left to right.

Since events are objects that have an unapply method, we can expand the code
further:

&.unapply(m) match {
case Some((u, v)) =>
Get.unapply(u) match {
case true => Put.unapply(v) match {
case Some(x) => true
case None => false }

case false => false }
case None => false }

11



As we can see, the intermediate results produced by the unapply method of the &
operator are passed as arguments to the unapply methods of the corresponding events.
Since the Get event is parameter-less, its unapply method returns a Boolean, telling
whether it matches or not. The Put event, on the other hand, takes a parameter; when
the pattern matches, this parameter gets bound to a concrete value that is produced by the
unapply method.

The unapply method of a parameter-less event such as Get essentially checks
whether it has been invoked previously. The unapply method of an event that takes pa-
rameters such as Put returns the argument of a previous invocation (wrapped in Some),
or signals failure if there is no previous invocation. In both cases, previous invocations
have to be buffered inside the event.

Firing join patterns. As mentioned before, executing the right-hand side of a pattern that
is part of a partial function amounts to invoking the apply method of that partial func-
tion. Basically, this repeats the matching process, thereby binding any pattern variables
to concrete values in the pattern body. When firing a join pattern, the events’ unapply
methods have to dequeue the corresponding invocations from their buffers. In contrast,
invoking isDefinedAt does not have any effect on the state of the invocation buffers.
To signal to the events in which context their unapply methods are invoked, we there-
fore need some way to propagate out-of-band information through the matching. For this,
we use the argument m that is passed to the isDefinedAt and apply methods of the
partial function. The & operator propagates this information verbatim to its two children
(its unapply method receives m as argument and produces a pair with two copies of
m wrapped in Some). Eventually, this information is passed to the events’ unapply
methods.

Implementation Details. Events are represented as classes that contain queues to buffer
invocations. The Event class is the super class of all synchronous and asynchronous
events:8

abstract class Event[R, Arg](owner: Joins) {
val tag = owner.freshTag()
val argQ = new Queue[Arg]
def apply(arg: Arg): R = synchronized { argQ += arg; invoke() }
def invoke(): R
def unapply(isDryRun: Boolean): Option[Arg] =
if (isDryRun && !argQ.isEmpty)
Some(argQ.front)

else if (!isDryRun)
Some(argQ.dequeue())

else None }

The Event class takes two type arguments R and Arg that indicate the result type and
parameter type of event invocations, respectively. Events have a unique owner which is

8 In our actual implementation the fact whether an event is parameter-less is factored out for
efficiency. Due to lack of space, we show a simplified class hierarchy.

12



passed as argument of the primary constructor of the Event class.9 An event can appear
in several join patterns declared by its owner. The tag field holds an identifier which
is unique with respect to a given owner instance; it is used to check the linearity of
patterns (i.e. ensuring that an event occurs at most once in a pattern).

Whenever the event is invoked via its apply method, we append the provided argu-
ment to the argQ. The abstract invoke method is used to run synchronization-specific
code; synchronous and asynchronous events differ mainly in their implementation of the
invoke method (we show a concrete implementation for synchronous events below). In
the unapply method we test whether matching occurs during a dry run. If it does not
we dequeue an event invocation.

Synchronous events are implemented as follows:

abstract class SyncEvent[R, Arg] extends Event[R, Arg] {
val waitQ = new Queue[SyncVar[R]]
def invoke(): R = { val res = new SyncVar[R]
waitQ += res; owner.matchAndRun(); res.get }

def reply(res: R) = waitQ.dequeue().set(res) }

Synchronous events contain a logical queue of waiting threads, waitQ, which is im-
plemented using the implicit wait set of synchronous variables.10 The invoke method
is run whenever the event is invoked. It creates a new SyncVar and appends it to the
waitQ. Then, the owner’s matchAndRun method is invoked to check whether the
event invocation triggers a complete join pattern. After that, the current thread waits
for the SyncVar to become initialized by accessing it. If the owner detects (during
owner.matchAndRun()) that a join pattern triggers, it will apply the join, thereby
re-executing the pattern match (binding variables etc.) and running the join body. Inside
the body, synchronous events are replied to by invoking their reply method. Replying
means dequeuing a SyncVar and setting its value to the supplied argument. If none
of the join patterns matches, the thread that invoked the synchronous event is blocked
(upon calling res.get) until another thread triggers a join pattern that contains the
same synchronous event.

Thread-safety. Our implementation avoids races when multiple threads try to match a
join pattern at the same time; checking whether a join pattern matches (and, if so, running
its body) is an atomic operation. Notably, the isDefinedAt/apply methods of the
join set are only called from within the synchronized matchAndRun method of the
Joins class. The unapply methods of events, in turn, are only called from within the
matching code inside the partial function, and are thus guarded by the same lock. The
internal state of individual events is updated consistently: the apply method is atomic,
and the reply method is called only from within join bodies which are guarded by the

9 To allow the short syntax for declaring events that we have seen before, the owner is passed
implicitly in the actual implementation. It is defined to be the current object this of the pattern-
declaring class that inherits from Joins. A detailed account of implicit parameters in Scala is
out of scope of this paper; the interested reader is referred to the Scala language specification.

10 A SyncVar is an atomically updatable reference cell; it blocks threads trying to access an
uninitialized cell.

13



owner’s lock. We don’t assume any concurrency properties of the argQ and waitQ
queues.

Optimization. Efficient join implementations represent patterns using bit sets [3,17].
An event with tag n forms part of a pattern iff bit n is set in the corresponding bit set.
This representation allows one to efficiently check whether an event invocation triggers
a join pattern.

The above implementation cannot use such an optimization as is, since the abstract
PartialFunction class is the only way to interact with the set of join patterns; for
instance the number of patterns is not known a priori. However, it is possible to gradually
construct an efficient bit set representation during the matching process. The idea is to
keep track of event invocations while matching a pattern. When a pattern matches, the
tags of matched events give rise to a bit set that uniquely represents the pattern. At the
point where each pattern has matched at least once, the bit sets are used to efficiently
check for a match. If the set of events with queued invocations is represented as a bit set
ib, then invoking an event with tag n triggers a pattern represented as pb iff pb ⊆ ib∪{n}.

To test the effectiveness of the above optimization, we compared the performance
of a bounded buffer implementation using our library without the optimization with a
second one using the optimized library. Concurrently reading/writing 106 items from/to
a bounded buffer of size 100 is about 28% faster using the optimized library. However,
this is only a first step towards an efficient implementation. Further optimizations are a
worthwhile topic for future work.

4.2 Implementation of Actor-based Joins

Actor-based joins integrate with Scala’s pattern matching in essentially the same way
as the thread-based joins, making both implementations very similar. We highlight how
joins are integrated into the actor library, and how reply destinations are supported.

In the Scala actors library, receive is a method that takes a PartialFunction
as a sole argument, similar to the join method defined previously. To make receive
aware of join patterns, the abstract JoinActor class overrides these methods by wrap-
ping the partial function into a specialized partial function that understands join mes-
sages. JoinActor also overrides send to set the reply destination of a join message.
When an actor executes a!msg, it invokes the ! method of a. This method invokes
a.send, implicitly passing the reply channel of the sender actor as a second argument.

abstract class JoinActor extends Actor {
override def receive[R](f: PartialFunction[Any, R]): R =
super.receive(new JoinPatterns(f))

override def send(msg: Any, replyTo: OutputChannel[Any]) {
setReplyDest(msg, replyTo)
super.send(msg, replyTo) }

def setReplyDest(msg: Any, replyTo: OutputChannel[Any]) {...} }

JoinPatterns is a special partial function that detects whether its argument message
is a join message. If it is, then the argument message is transformed to include out-of-
band information that will be passed to the pattern matcher, as is the case for events in

14



the thread-based joins library. The boolean argument passed to the asJoinMessage
method indicates to the pattern matcher whether or not join message arguments should
be dequeued upon successful pattern matching. If the msg argument is not a join mes-
sage, asJoinMessage passes the original message to the pattern matcher unchanged,
enabling regular actor messages to be processed as normal.

class JoinPatterns[R](f: PartialFunction[Any, R])
extends PartialFunction[Any, R] {
def asJoinMessage(msg: Any, isDryRun: Boolean): Any =
...

override def isDefinedAt(msg: Any) =
f.isDefinedAt(asJoinMessage(msg, true))

override def apply(msg: Any) =
f(asJoinMessage(msg, false))

}

Recall from the implementation of synchronous events that thread-based joins used con-
structs such as SyncVars to synchronize the sender of an event with the receiver. Actor-
based joins do not use such constructs. In order to synchronize sender and receiver, every
join message has a reply destination (which is an OutputChannel, set when the mes-
sage is sent in the actor’s send method) on which a sender may listen for replies. The
reply method of a JoinMessage simply forwards its argument value to this encap-
sulated reply destination. This wakes up an actor that performed a synchronous send
(a!?msg) or that was waiting on a future (a!!msg).

5 Discussion and Related Work

Benton et al. [3] note that supporting general guards in join patterns is difficult to im-
plement efficiently as it requires testing all possible combinations of queued messages
to find a match. Side effects pose another problem. Benton et al. suggest a restricted
language for guards to overcome these issues. However, to the best of our knowledge,
there is currently no joins framework that supports a sufficiently restrictive yet expres-
sive guard language to implement efficient guarded joins. Our current implementation
handles (side-effect free) guards that only depend on arguments of events that queue at
most one invocation at a time.

Cω [3] is a language extension of C# supporting chords, linear combinations of meth-
ods. In contrast to Scala Joins, Cω allows at most one synchronous method in a chord.
The thread invoking this method is the thread that eventually executes the chord’s body.
The benefits of Cω as a language extension over Scala Joins are that chords can be en-
forced to be well-formed and that their matching code can be optimized ahead of time.
In Scala Joins, the joins are only analyzed at pattern-matching time. The benefit of Scala
Joins as a library extension is that it provides more flexibility, such as multiple syn-
chronous events. Russo’s C# Joins library [17] exploits the expressiveness of C# 2.0’s
generics to implement Cω’s synchronization constructs. Piggy-backing on an existing
variable binding mechanism allows us to avoid problems with C# Joins’ delegates where
the order in which arguments are passed is merely conventional. Scala Joins extends both

15



Cω and C# Joins with nested patterns that can avoid certain redundancies by generalizing
events and patterns.

CCR [4] is a C# library for asynchronous concurrency that supports join patterns
without synchronous components. Join bodies are scheduled for execution in a thread
pool. Our library integrates with JVM threads using synchronous variables, and supports
event-based programming through its integration with Scala Actors. Singh [18] shows
how a small set of higher-order combinators based on Haskell’s software transactional
memory (STM) can encode expressive join patterns. CML [16] allows threads to syn-
chronize on first-class composable events; because all events have a single commit point,
certain protocols may not be specified in a modular way (for example when an event
occurs in several join patterns). By combining CML’s events with all-or-nothing transac-
tions, transactional events [5] overcome this restriction but may have a higher overhead
than join patterns.

Synchronization in actor-based languages is a well-studied domain. Salsa [22] is a
Java language extension with support for actors. It introduces the notion of a join contin-
uation. However, join continuations are not to be mistaken with join patterns: the former
only allow an actor to synchronize on multiple replies to previously sent messages. Acti-
vation based on message sets [10] is more general than joins since events/channels have a
fixed owner, which enables important optimizations. Other actor-based languages allow
for a synchronization style similar to that supported by join patterns. For example, behav-
ior sets in Act++ [13] or enabled sets in Rosette [21] allow an actor to restrict the set of
messages which it may process. They do so by partitioning messages into different sets
representing different actor states. Joins do not make these states explicit, but rather allow
state transitions to be encoded in terms of sending messages. The novelty of Scala Joins
for actors is that such synchronization is integrated with the actor’s standard message re-
ception operation using extensible pattern matching. Recent work by Sulzmann et al. [19]
extends Erlang-style actors with receive patterns consisting of multiple messages, which
is very similar to our join-based actors. The two approaches are complementary: their
work focuses on providing a formal matching semantics in form of Constraint Handling
Rules whereas the emphasis of our work lies on the integration of joins with extensible
pattern matching; Scala Joins additionally permits joins for standard (non-actor) threads
that do not have a mailbox.

6 Conclusion

We presented a novel implementation of join patterns based on extensible pattern match-
ing constructs of languages such as Scala and F#. The embedding into general pattern
matching provides expressive features such as nested patterns and guards. The resulting
programs are often as concise as if written in more specialized language extensions. We
implemented our approach as a Scala library that supports join patterns with multiple
synchronous events and guards and furthermore integrated it with the Scala Actors con-
currency framework without changing the syntax and semantics of existing programs.

16



References
1. Gul A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, Massachusetts, 1986.
2. Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent Program-

ming in Erlang, Second Edition. Prentice-Hall, 1996.
3. Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions for C#.

ACM Trans. Program. Lang. Syst, 26(5):769–804, 2004.
4. Georgio Chrysanthakopoulos and Satnam Singh. An asynchronous messaging library for C#.

In Proc. SCOOL Workshop, OOPSLA, 2005.
5. Kevin Donnelly and Matthew Fluet. Transactional events. In Proc. ICFP, pages 124–135.

ACM, 2006.
6. Burak Emir, Martin Odersky, and John Williams. Matching objects with patterns. In Proc.

ECOOP, volume 4609 of LNCS, pages 273–298. Springer, 2007.
7. Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. JoCaml: A language

for concurrent distributed and mobile programming. In Advanced Functional Programming,
volume 2638 of LNCS, pages 129–158. Springer, 2002.

8. Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the join-
calculus. In Proc. POPL, pages 372–385. ACM, January 1996.

9. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
Calculus of Mobile Agents. In Proc. CONCUR, pages 406–421. Springer, August 1996.

10. Svend Frølund and Gul Agha. Abstracting interactions based on message sets. In Object-
Based Models and Languages for Concurrent Systems, volume 924 of LNCS, pages 107–124.
Springer, 1994.

11. Philipp Haller and Martin Odersky. Actors that unify threads and events. In Proc. COORDI-
NATION, volume 4467 of LNCS, pages 171–190. Springer, 2007.

12. Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, 1985.

13. D. Kafura, M. Mukherji, and G. Lavender. ACT++: A Class Library for Concurrent Program-
ming in C++ using Actors. J. of Object-Oriented Programming, 6(6), 1993.

14. Martin Odersky. Functional Nets. In Proc. ESOP, LNCS. Springer, 2000.
15. Chris Okasaki. Views for Standard ML. In Proc. SIGPLAN Workshop on ML, 1998.
16. John H. Reppy. CML: A higher-order concurrent language. In Proc. PLDI, pages 293–305.

ACM, 1991.
17. Claudio V. Russo. The Joins concurrency library. In Proc. PADL, pages 260–274, 2007.
18. Satnam Singh. Higher-order combinators for join patterns using STM. In Proc. TRANSACT

Workshop, OOPSLA, 2006.
19. Martin Sulzmann, Edmund S. L. Lam, and Peter Van Weert. Actors with multi-headed mes-

sage receive patterns. In Proc. COORDINATION, LNCS. Springer, 2008.
20. Don Syme, Gregory Neverov, and James Margetson. Extensible pattern matching via a

lightweight language extension. In Proc. ICFP, pages 29–40. ACM, 2007.
21. C. Tomlinson and V. Singh. Inheritance and synchronization with enabled-sets. ACM SIG-

PLAN Notices, 24(10):103–112, 1989.
22. Carlos Varela and Gul Agha. Programming dynamically reconfigurable open systems with

SALSA. ACM SIGPLAN Notices, 36(12):20–34, 2001.
23. G.S. von Itzstein and David Kearney. Join Java: An alternative concurrency semantic for Java.

Technical report, University of South Australia, 2001.
24. Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In Proc.

POPL, pages 307–313, 1987.
25. Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented concurrent pro-

gramming in ABCL/1. In Proc. OOPSLA, pages 258–268, 1986.

17


	Implementing Joins using Extensible Pattern Matching
	Philipp Haller, Tom Van Cutsem

