Direct Fourier Tomographic Reconstruction
Image-to-lmage Filter

Release 1.0
Dominique Zosso, Meritxell Bach Cuadra, Jean-Philippe Thiran

August 24, 2007

Ecole Polytechnique Fédérale de Lausanne (EPFL), Signal Processing Institute LTSS
Batiment ELD Station 11, CH-1015 Lausanne (Switzerland)
{dominique.zosso, meri.bach, jp.thiran}@epfl.ch

Abstract

We present an open-source ITK implementation of a direct Fourier method for tomographic re-
construction, applicable to parallel-beam x-ray images. Direct Fourier reconstruction makes use
of the central-slice theorem to build a polar 2D Fourier space from the 1D transformed projec-
tions of the scanned object, that is resampled into a Cartesian grid. Inverse 2D Fourier trans-
form eventually yields the reconstructed image. Additionally, we provide a complex wrapper to the
BSplinelInterpolateImageFunction to overcome ITK’s current lack for image interpolators dealing
with complex data types. A sample application is presented and extensively illustrated on the Shepp-
Logan head phantom. We show that appropriate input zeropadding and 2D-DFT oversampling rates
together with radial cubic b-spline interpolation improve 2D-DFT interpolation quality and are efficient

remedies to reduce reconstruction artifacts.

Contents

1 Introduction 2
1.1 Parallel-beam Computed tomography 2
1.2 Direct Fourier Reconstruction L L 2

2 Algorithm 3

3 Implementation 5
3.1 itk::DirectFourierReconstructionImageFilter 5
3.2 itk::ComplexBSplineInterpolateImageFunction 6

4 Example 7
4.1 Direct Fourier reconstruction example application 7
4.2 Shepp-Logan Phantom 9

5 Conclusions 13

1 Introduction

Direct Fourier reconstruction (DFR) is one of several reconstruction methods applied in parallel-beam com-
puted tomography[6, 1]. An overview of different, transform-based — in contrast to algebraic or iterative —
reconstruction methods can be found in [2].

1.1 Parallel-beam Computed tomography

In parallel-beam x-ray computed tomography (first generation CT), x-ray source and detector acquire paral-
lel projections, then rotate circularly around the scanned object to the next frame. Most often the acquisition
is performed slice by slice along the rotational axis (1D source and detector), several slices can however be
scanned simultaneously by using a 2D source and detector.

The acquired data p are a discretely sampled cylindrical (in-slice) Radon transform of the scanned volume
f, as illustrated in figure 1:

p(r0.2) = [[1(x.3.2)8(xcos(6) + ysin(8) — r)dxdy 1)
and accordingly have the following 3 dimensions:

1. The angle of projection 6
2. The distance from the center r

3. The axial position z

From the Radon projections the image of the scanned volume can be reconstructed using different tech-
niques.

1.2 Direct Fourier Reconstruction

Direct Fourier Reconstruction uses 3 major steps to reconstruct the image of the scanned object (per axial
slice):

1. 1D-FFT of the projection to build a polar 2D Fourier space using the central-slice theorem.
2. Polar to Cartesian resampling.

3. Inverse 2D-FFT to obtain the reconstructed slice.

The central-slice theorem states that the Fourier transform in r of a Radon projection at a given angle is
equal to the axial slice at the same angle of the Fourier transform of the original volume:

Py ; (k) = F,(k,cos(8),k,sin(0)) (2)

where Pp ;(k,) is the 1D Fourier transform in r of the projection acquired at angle 8 and axial position z,
and where F,(u,v) is the in-plane 2D Fourier transform of the volume at axial position z. This relation is
illustrated in figure 1.

1D-FFT v
L
S
J{J
AP
i “,"' u
Fiu,v) e

Figure 1: Left: Parallel-beam x-ray tomography. For each slice z, the projections p(r,0,z) are made up by the line
integrals from source to detector (A — B) through the object. Right: Central-slice theorem. The 1D Fourier transform
Py(k,) of a parallel projection p(r,0) of an image f(x,y) taken at an angle 6 gives a slice of the 2D Fourier transform,
F(u,v), subtending the same angle 6 with the u-axis.

The most striking advantage of DFR is its O(N*1logN) complexity imposed by the inverse 2D-FFT in step
3, whereas the more widely used filtered backprojection (FBP) algorithm usually performs in O(N3)!. The
major drawback of DFR lies in step 2: inappropriate interpolation during the Cartesian resampling may
cause important image artifacts[3]. However, the same source mentions some remedies to overcome these
artifacts: Zeropadding of the input data and oversampling of the 2D Cartesian Fourier space.

The following sections report on the exact algorithm and its parameters, the contributed class implementa-
tions, and an example with some synthetic test results.

2 Algorithm

A formal description of our direct Fourier reconstruction method is given in algorithm 1. An illustration
of the different symbols can be found in figure 2. In general the computations are index-based, rather than
in physical space, with array indices beginning at 0. As first step, the number of effectively required input
samples along the angular dimension is determined in line 1. The relative oversize A of the last angular
segment (between the last angular sample and 180°) is determined (2). The dimensions of the zeropadded
projection line and 1D-DFT, as well as the oversampled 2D-DFT are computed (3), and the radial lowpass
cutoff frequency gives a maximal polar radius beyond which 2D Fourier samples are set to zero (4). For each
input line, data is shifted to the line ends around the origin (8) and modulated to shift the DC to the center of
the Fourier line (9). Once all projections of a slice have been transformed into Fourier space, the 2D-DFT is
resampled. The oversampling rate n, shortens the effective polar radius (19), while the angle is determined
using atan2? (21). The angle is then converted into a floating point index (26), used to linearly interpolate
between the two adjacent angular samples. Prior radial interpolation is obtained using b-splines of order
np (28). Note that, if the upper angular index overflows, the modified interval size A applies, the angle is
trimmed and the radius changes sign (30). After the inverse 2D-FFT, the requested region is collected from
the edges of the image (36) and demodulated to undo the FFT-shift (37).

'Modified FBP versions exist, offering O(N*logN) as well
Zcmath (math.h): atan2 (y, x) returns the principal arc tangent of y/x, in the interval [—m, 4] radians. To compute the value,
the function uses the sign of both arguments to determine the quadrant.

Algorithm 1 Direct Fourier Reconstruction

Require: CT data as p(r,0,z). a, b and c are the size of the input data (along z, 6 and r, respectively).
o is the angular range in degrees covered by the image series. The input projections are zero-padded
n,-times, and the 2D DFT is n,-fold oversampled. f. € [0, 1] is the relative radial cutoff frequency. x,
yo and m,n are the requested output offset and size. B-spline interpolation is of order 7.

Ensure: Reconstructed image f(x,y,z)

1: ¥ < [180-b/0] Cover just less than 180°
2: A<= 1+180-b/o—b Size of last angular interval
3 d<=cn, <= n Zeropad and oversample
4 rpge = foo)21 Radial cutoff frequency
5: forz=0toa—1do
6: for0=0tod' —1do
7: forr=0toc—1do
8: ¥ < (r+cd—c/2) modd Shift data to line ends (origin)
9: if ¥ mod2 =0 then Modulate to shift DC to DFT center
10 P'(r) < p(r,6,2)
11: else
12: p'(r) < —p(r,0,7)
13: end if
14: end for
15: Py <= FFT(p') Compute 1D-FFT
16: end for
17. foru,y=0toc”"—1do Re-sample Cartesian 2D-DFT
18: Ww<su-7J"7/72 Vev-()2 Set origin to image center
19: r = Vu?+v'"? /ng Oversample
20: if ' < ryqc then Lowpass filtering
21: ® «tan, ' (Vi) Get angle |-, 7|
22: if ® < 0 then Flip second half
23: O=0+m
24: =7
25: end if
26: 0<=b-O/n Convert angle to (float) index
27: if |8] +1 < ' then Radially b-spline and angular linear interpolation
2%, Flu,v) = (1 (8~ [01))B" [Py (' +¢'/2)] + (6 — 0] B [Plojr (" +¢'/2)]
29: else 6-overflow: enlarged angular skip (A)
0. F(u,v) < (1— A1 (8= [0])B™ [Pl (" +¢'/2)] + A~ (8~ [0]) B [Ploj 1_p(c'/2—)
31: end if
32 end if
33: end for
34: f' < FFT™Y(F) Inverse 2D-FFT
35: forx=xptoxo+(m—1),y=yptoyo+(n—1)do Copy requested region
36: X =x+c(n;-ng—1/2) modc”, y =y+ec(n;-ng—1/2) modc” Get corners
37: if (' +)’) mod 2 =0 then Demodulate (reverse FFT-shift)
38: fleyz) = f'(x,y)
39: else
40: f(x,y,z) = 7f/(xlvy,)
41: end if
42: end for

43: end for

p(r,0,2) p'(r’) Py(r) f(x%y’) f(x,y,2)
=zeropad =demodulate
=*modulate —~—"unpad
[T r'{0..c-1} = = A
I I N . 3 , .\
Q u < =
=) | wrr g g A)
s ‘o
= %?’ 2D FFT! RS u
A =oversample = =z
0{0..b*-1} =interpolate u{0..c-1} x‘{0..c”-1} X {Xg.-Xg+m-1}

Figure 2: Direct Fourier reconstruction algorithm overview. For each slice, each radial line of the sinogram is ze-
ropadded, shifted and modulated before transforming it in 1D Fourier domain. Modulation shifts the DC to the Nyquist
frequency, i.e. the line center in Fourier domain. The Cartesian 2D Fourier space is resampled from the polar data.
After inverse 2D Fourier transformation, the image is unpadded and demodulated, and the requested region is copied
into the corresponding output slice.

3 Implementation

The presented algorithm has been implemented as the image-to-image filter class
itk::DirectFourierReconstructionImageFilter. As currently no image interpolator exists in
ITK supporting complex images, the wrapper class itk::ComplexBSplineInterpolateImageFunction
is equally contributed thus providing b-spline interpolation of complex images. Both classes are briefly
described in the following sections.

3.1 itk::DirectFourierReconstructionImageFilter

The proposed itk::DirectFourierReconstructionImageFilter «class is derived from
itk::ImageToImageFilter and is templated over the input and output pixel type. The dimension
of input and output images is fixed to 3. The resulting input and output image types are provided
as public traits typedef Image< TInputPixelType, 3 > InputImageType and typedef Image<
TOutputPixelType, 3 > OutputImageType, respectively.

Class dependencies further include:

e itk::VnlFFTRealToComplexConjugateImageFilter and
e itk::VnlFFTComplexConjugateToRealImageFilter,

e itk::ImageRegionIteratorWithIndex and

e itk::ImageSliceConstIteratorWithIndex,

e math.h, as well as

the provided itk::ComplexBSplineInterpolateImageFunction.
Several Get/Set methods allow configuring the reconstruction parameters:

e RDirection: image direction along r (projection lines)

e ZDirection: axial image direction (slices)

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VnlFFTRealToComplexConjugateImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VnlFFTComplexConjugateToRealImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIteratorWithIndex.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageSliceConstIteratorWithIndex.html

3.2 itk::ComplexBSplinelInterpolateImageFunction 6

AlphaDirection: image direction along angles®

AlphaRange: angular range covered by the device in degrees (at least 180) o

ZeroPadding: projection zeropadding rate n,

e Oversample: 2D DFT oversampling rate ng

Cutoff: radial cutoff frequency f

RadialSplineOrder: radial b-spline order ny,
The class is currently not multithread-enabled* and overrides the following 3 image-to-image filter methods:

e void GenerateOutputInformation(),
e void GenerateInputRequestedRegion () and

e void GenerateData().

While the first two methods allow propagating region information along the pipeline (provided output re-
gions and necessary input data, respectively), the GenerateData () contains the actual algorithm imple-
mentation.

The reader may refer to the source code and comments for further implementation details.

3.2 itk::ComplexBSplineInterpolateImageFunction

As can be seen in the examples below, an appropriate interpolation scheme in Fourier domain is crucial
for good reconstruction quality. As currently the ITK interpolate image functions are unable to deal with
complex images, we provide a complex wrapper around itk::BSplinelnterpolateImageFunction.
The itk::ComplexBSplinelInterpolateImageFunction splits a complex input image into its real
and imaginary parts and interpolates them using the existing scalar b-spline interpolator. It de-
rives from itk::InterpolateImageFunction and is templated over TImageType, TCoordRep and
TCoefficientType.

It instantiates a itk::ComplexToRealImageFilter anda itk::ComplexToImaginarylImageFilter, as
well as two respective b-spline-interpolators as member objects. Upon construction, these member objects
are initialized. itk::BSplineInterpolatelImageFunction requires the spline order to be set prior to in-
put image connection. In consequence the same restrictions apply to the wrapper as well. SetSplineOrder
propagates the spline order to the underlying real-type interpolators, while Set Input Image connects the
input image to the complex decomposition filters, and their output to the respective interpolators. Internally,
the interpolators will at this point update their interpolation coefficients.

The overridden EvaluateAtContinuousIndex method becomes then particularly simple, as it only returns
the merged results of two underlying calls to the scalar member interpolators:

3In the code, we consistently use alpha instead of theta to denote the angular index, while theta denotes the actual angle 6.
4Reconstruction of the different slices is embarrassingly parallel, and multi-threading would be easy to implement if regions
were split along the z-axis only.

http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1InterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1ComplexToRealImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ComplexToImaginaryImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolateImageFunction.html

return typename ComplexBSplineInterpolateImageFunction<
TImageType, TCoordRep, TCoefficientType >::0utputType (
m_RealInterpolator->EvaluateAtContinuousIndex(x),
m_ImaginaryInterpolator->EvaluateAtContinuousIndex(x)
)i

4 Example

An example that shows how to use the itk::DirectFourierReconstructionImageFilter class is pro-
vided in DirectFourierReconstruct.cxx. The following section explains the incorporation of the filter
in a small example application. We then illustrate its performance on a sample image.

4.1 Direct Fourier reconstruction example application

First, include some standard libraries used for image 10:

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

Then include the DirectFourierReconstructionImageToImageFilter headers:
#include "itkDirectFourierReconstructionImageToImageFilter.h"

We define the pixel type. For the sake of precision, it should be real rather than integer:
typedef double PixelType;

As the image dimension is fixed to 3, the reconstruction filter is only templated over the input and output
pixel types:

typedef itk::DirectFourierReconstructionImageToImageFilter<
PixelType, PixelType > ReconstructionFilterType;

We then derive the corresponding input and output image types:

typedef ReconstructionFilterType::InputImageType InputImageType;
typedef ReconstructionFilterType::OutputImageType OutputlImageType;

and define the 1O types:
typedef itk::ImageFileReader< InputlImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImagelype > WriterType;

The sinogram image is read:

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName ("sinogram.hdr");

4.1 Direct Fourier reconstruction example application 8

Now let’s setup the reconstruction filter

ReconstructionFilterType::Pointer reconstruct = ReconstructionFilterType: :New();
and connect the sinogram as its input

reconstruct->SetInput (reader->GetOutput());

The image directions are set to the corresponding values:

reconstruct->SetRDirection(r_direction); // r
reconstruct->SetZDirection(z_direction); // slices
reconstruct->SetAlphaDirection(alpha_direction); // angle

Zeropadding the input projections and oversampling the 2D DFT are two means of reducing aliasing artifacts
in the reconstructed images (setting these factors, as well as the radial input size to powers of 2 allows for
an efficient FFT calculation).

reconstruct->SetZeroPadding(2);
reconstruct->SetOverSampling(2);

Setting the radial cutoff frequency to values below 1.0 would allow low-pass filtering the reconstructed
images (however, mind Gibb’s phenomena):

reconstruct->SetCutoff(1.0);

While the angular interpolation is strictly linear, the degree of the radial b-splines interpolation can be set
by the user. Degree O corresponds to a nearest neighbor interpolation, degree 1 equals linear interpolation.
While values up to 5 are currently accepted, degree 3 (cubic b-spline) is most often an appropriate choice:

reconstruct->SetRadialSplineOrder(3);

Finally, the angular range covered by the projections has to be specified (at least 180 degree, depending on
the imaging device):

reconstruct->SetAlphaRange(180);
After connecting the pipeline to the image writer, the pipeline update can finally be invoked:

WriterType::Pointer writer = WriterType::New();
writer->SetFileName ("reconstructed.hdr");
writer->SetInput (reconstruct->GetOutput ());

try
{
writer->Update () ;
}
catch (itk::ExceptionObject err)
{
std::cerr << "An error occurred somewhere:" << std::endl;
std::cerr << err << std::endl;
return 1;

4.2 Shepp-Logan Phantom 9

Figure 3: Left: Shepp-Logan phantom. Standard slice in 512 x 512 pixel resolution, provided by Matlab®). Top right:
Shepp-Logan sinogram. 180 projections of the Shepp-Logan phantom, stepped at 1°. Bottom right: Sinogram with
additive Gaussian noise.

4.2 Shepp-Logan Phantom

Input data. The most widely known reconstruction-from-projections test image is the Shepp-Logan phan-
tom [4]. Introduced in 1974 it is still in common use today as a reference image for reconstruction algo-
rithms. We obtained a 512 x 512 resolution image and calculated its projections using the phantom and
radon functions provided by Matlab®). The radon projection (sinogram) generates 180 projections from 0
to 179°. After cropping to 512 x 180 pixels (the original sinogram is 729 x 180, respecting the size of the im-
age diagonal), two instances, a noise-free and a version with additive Gaussian noise, have been stacked into
a 512 x 180 x 2 3D volume to comply with the filter dimensionality requirements. The native Shepp-Logan
phantom and the derived sinogram is shown in figure 3.

Zeropadding and oversampling. Figure 4 illustrates the reconstructed images obtained for a range of dif-
ferent zeropadding and DFT-oversampling configurations using radial nearest neighbor interpolation only.
Images reconstructed with a low zeropadding and oversampling rate suffer from heavy interpolation arti-
facts, than can be mitigated at relatively high rates only.

Interpolation. A comparison of images reconstructed using different interpolation schemes in the radial
direction are shown in figure 5. Although the ITK b-spline interpolate image function currently accepts
spline orders up to 5, a good reconstruction quality can in general be obtained using cubic splines only,
in combination with medium zeropadding and oversampling rates. A good interpolation scheme improves
reconstruction quality and allows reducing the n, and ny rates.

Angular sampling rate. Figure 6 shows the reconstruction results for cubic b-spline interpolation and rel-
atively high n, = n, = 4 rates. Although the overall reconstruction looks very convincing, narrowing of the
optical window reveals high-frequency artifacts present over the whole image. They are equally reflected in
the image intensity histogram: the sharp peaks of the original phantom are widened in the reconstructed im-
age. These streak artifacts are due to the main weakness common to direct Fourier reconstruction methods:
the limited high-frequency sample density in polar Fourier space degrades the interpolation due to angular
undersampling with respect to bandwidth[5]. In figure 7 we show reconstructions from different numbers
of views, illustrating the relation between streak artifacts and angular sampling rate.

4.2 Shepp-Logan Phantom 10

8 AN

Figure 4: Zeropadding and oversampling rates. Zeropadding rates n, increase from left to right, oversampling rates
ne increase with lines. Configurations using n; - n, > 16 could not be run due to memory limitations. A significant
improvement in image quality can be observed for the price of increasing resource requirements: while zeropadding
removes time-domain overlap, DFT oversampling reduces interpolation noise.

Filtering. The angular bandwidth can be reduced by pre-filtering the projections with a low-pass smoothing
filter. We used a Gaussian kernel along the radial (sic!) direction to smooth the sinogram before recon-
struction. For the price of reduced contour sharpness, streak artifacts can be reduced significantly in the
reconstructions, as illustrated in figure 8. In contrast, smoothing in the angular direction has a far more
severe impact on contour sharpness, in particular further away from the image center, and does not result in
the desired artifact reduction.

Noise. The important additive Gaussian noise is similarly affecting direct Fourier reconstruction, without
any smoothing, and the commonly used filtered back projection (see figure 9). Prior radial smoothing with
a Gaussian kernel cannot entirely remove the noise from the output images.

4.2 Shepp-Logan Phantom 11

Figure 5: DFT interpolation artifacts. B-splines degree n;, increases from left to right, zeropadding rate increases with
lines. Oversampling rate is set to n, = 1. Increasing the degree of the interpolation scheme allows to achieve weak
image artifacts even with low zeropadding and oversampling rates.

2

(Count)

10

log
o

- ...O

R 0]

R —— ...0

Intensity

Figure 6: Left: High-quality reconstruction. Reconstruction with cubic b-spline interpolation and rates n, = n, = 4.
Center: Streak artifacts. The optical window focuses on the background, revealing high-frequency streak artifacts.
Right: Image intensity histogram. Image intensities of the reconstruction (solid line) spread around the phantom peaks
(circles).

)

2 4 10

60 90 180
Figure 7: Angular sampling and streak artifacts. Reconstruction based on different numbers of views: Above 10 views,

the reconstructed image exhibits the characteristic shape of the original phantom. With increasing number of views, the
image quality improves and streak artifacts decrease.

360 720

4.2 Shepp-Logan Phantom 12

(Count)

10

log
w0

Intensity

Figure 8: Left: Reconstruction without band limiting pre-filtering. Cubic b-spline interpolation and rates n, = ng =4
Center: Streak artifact reduction by Gaussian filtering. A Gaussian kernel with ¢ = 1 is applied to the sinogram in radial
direction to reduce the angular bandwidth. The reconstructed image shows less artifacts, but the contour sharpness
has decreased. Right: Improved image intensity histogram. Filtering of input data drastically reduces the intensity
spread in the reconstruction histogram.

Figure 9: Left: Direct Fourier reconstruction of noisy sinogram. Configuration is n, = 3, n, = 2, ng = 2, no smoothing.
Important image degradation is apparent, the ring artifact results from the background-to-zero contrast. Center: Filtered
back projection of noiseless sinogram. Obtained using Matlab® iradon function. Notice the streak artifacts. Right:
FBP of noisy sinogram. The reconstructed image is severely affected by noise.

13

5 Conclusions

In this paper we reported on our ITK implementation of a direct Fourier tomographic recon-
struction method for parallel-beam x-ray projections. We presented the overall structure of direct
Fourier reconstruction and detailed the algorithm we developed. This algorithm was implemented
as a itk::ImageTolmageFilter class for 3D image processing. In addition, as currently no
itk::InterpolateImageFunction is able to deal with complex datatypes, we provide a complex wrapper
around the itk::BSplinelInterpolateImageFunction.

The use of our DirectFourierReconstructionImageFilter class has been illustrated with a simple test
application. We then provide extensive results based on the standard Shepp-Logan phantom image. We
discuss the different reconstruction parameters and show their respective impact on the reconstruction out-
come. We show how input zeropadding reduces signal domain replication (aliasing tails) and 2D-DFT
oversampling reduces the dishing effect of Fourier domain interpolation (cyclic convolution). Chosing an
appropriate radial interpolation spline order for Fourier domain resampling further improves the reconstruc-
tion quality. We finally compare the reconstruction results to a standard filtered back-projection method
provided by Matlab®), confirming the high image quality of our DFR implementation.

References

[1] D. Gottlieb, B. Gustafsson, and P. Forssén. On the Direct Fourier Method for Computer Tomography.
IEEFE Transactions on Medical Imaging, 19(3):223-232, march 2000. 1

[2] R. M. Lewitt. Reconstruction Algorithms: Transform Methods. In Proceedings of the IEEE, volume 71,
pages 390—408, march 1983. 1

[3] M. Magnusson, P.-E. Danielsson, and P. Edholm. Artefacts and Remedies in Direct Fourier Tomo-
graphic Reconstruction. Nuclear Science Symposium and Medical Imaging Conference, 2:1138-1140,
october 1992. 1.2

[4] L. A. Shepp and B. F. Logan. The Fourier reconstruction of a head section. IEEE Transactions on
Nuclear Science, 21:21-43, 1974. 4.2

[5] H. Stark. Sampling theorems in polar coordinates. Journal of the Optical Society of America,
69(11):1519-1525, nov 1979. 4.2

[6] H. Stark, J. Woods, I. Paul, and R. Hingorani. Direct Fourier reconstruction in computer tomography.
IEEE Transactions on Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal
Processing], 29(2):237-245, April 1981. 1

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1InterpolateImageFunction.html
http://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolateImageFunction.html

	Introduction
	Parallel-beam Computed tomography
	Direct Fourier Reconstruction

	Algorithm
	Implementation
	itk::DirectFourierReconstructionImageFilter
	itk::ComplexBSplineInterpolateImageFunction

	Example
	Direct Fourier reconstruction example application
	Shepp-Logan Phantom

	Conclusions

