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ABSTRACT
Accurate, reliable timestamping which is also convenient and in-
expensive is needed in many important areas including real-time
network applications and network measurement. Recently the TSC
register, which counts CPU cycles in popular PC architectures, was
proposed as the basis of a new software clock which in terms of
rate performance performs as well as more expensive GPS alterna-
tives. Smooth and precise clock rate is essential to measuretime
differences accurately. We show how to define a TSC based clock
which is also accurate with respect toabsolute time. The clock is
calibrated by processing, in a novel way, timestamps contained in
the usual flow of Network Time Protocol (NTP) packets betweena
NTP server and the existing software clock, and TSC timestamps
made independently on the host side. Using real measurements
over 4 months, validated with a GPS synchronized hardware tim-
ing solution, the algorithm measured absolute time with a median
error of only 30 microseconds when using a nearby stratum-1 NTP
server. Results for two other servers are given. We also provide new
algorithms for the robust determination of clock rate. We exploit
the reliability of the available hardware to design synchronization
algorithms which are inherently robust to many factors including
packet loss, server outages, route changes, temperature environ-
ment, and network congestion.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscellaneous;
D.4.m [Operating Systems]: Miscellaneous

General Terms
Algorithms, Reliability

Keywords
timing, synchronization, software clock, NTP, GPS, network mea-
surement, round-trip time
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1. MOTIVATION
The availability of an accurate, reliable, and high resolution clock

is fundamental to most complex devices, and computers running
multi-tasking operating systems such as Unix are far from the ex-
ception. Ongoing synchronization to a time standard is necessary
to keep theoffset of such a clock, that is its departure from the true
time∗ at a given time, to within acceptable bounds. A common way
to achieve this for networked computers is to discipline thesystem
software clock (SW) through the algorithms associated withthe
Network Time Protocol (NTP) [1, 2], which allows NTP packets
containing timestamp information to be exchanged between NTP
time server(s) and the host across a network. The algorithmsfilter
and process these timestamps, determine the offset, and deliver rate
and offset adjustment recommendations to the SW clock.

For many purposes thisSW-NTP clock and synchronization so-
lution works well. NTP is designed to provide offset accuracy
bounded by the round-trip time (RTT) between the server and the
client, and under ideal circumstances offset can be controlled to as
low as 1ms. For more demanding applications however, the per-
formance of the SW-NTP clock is insufficient. Offset errors can
be well in excess of RTT’s in practice, and more importantly,are
susceptible to occasional larger reset adjustments which can in ex-
treme cases be of the order of seconds. In other words, the SW-NTP
clock is not reliable enough and lacks robustness. In addition, in the
SW-NTP solution therate or frequency of the clock is deliberately
varied as a means to adjust offset. Whilst this convenientlypre-
serves ‘causality’ (assuming no resets), it results in erratic rate per-
formance. A smooth and accurate clock rate is a highly desirable
feature as it determines the relative accuracy of timedifferences.
Taking differences of timestamps is basic to most applications, and
in the case where they are made by the same clock, any constant
error in offset is cancelled, leaving rate as the key clock character-
istic.

One application where these issues are important is inexpensive
measurement of packet switched networks, where off the shelf PC’s
are used to monitor data packets as they pass by the network inter-
face. The drawbacks of the SW-NTP clock, as for example reported
in [3, 4, 5], are widely recognised in the network measurement
community. They have led many networking researchers to return
to local rather than remote clock synchronization. The TestTraffic
Measurement network of RIPE NCC for example [6], consisting
of over 100 customised PC’s across Europe and elsewhere, uses

∗Newtonian space-time will be assumed in this paper.
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locally attached Global Positioning System (GPS) based disciplin-
ing of the standard SW clock, which improves synchronization to
around 10µs. The simple active probing based measurements of
this network do not require high accuracy, and nominally theSW-
NTP clock would have been sufficient (for example to give one-way
delays to a few milliseconds). Instead, the effort was made to install
GPS synchronization in every node. Although GPS is no longeran
expensive technology as such, the need for roof access to avoid
intermittent reception results in long installation delays (and may
not be possible), and potentially high installation costs,making a
multi-node measurement effort such as RIPE NCC’s extremelyam-
bitious, and even modest measurement efforts problematic.The ex-
ploitation of radio based alternatives for synchronization relies on
the presence of the appropriate network and also implies additional
hardware. To avoid these problems, it is desirable to provide im-
proved network based synchronization with ‘GPS-like’ reliability,
and increased accuracy, using inexpensive PC’s with no additional
hardware.

In [5] a new clock was proposed which made significant progress
towards this aim. It is based on theTimeStamp Counter (TSC) reg-
ister, found in Pentium class PCs and other architectures, which
counts CPU cycles†. The essence of this clock is very simple. The
TSC register is used to keep track of time at very high resolution,
for example 1 nanosecond for a 1 gigahertz processor. Updating
of this register is a hardware operation, and reading it and storing
its value involves only very fast memory accesses. Providedthat
we have an accurate estimate of the true duration,p, of a clock
cycle, time differences measured in TSC units can readily becon-
verted to time intervals in seconds:∆(t) = ∆(TSC) ∗ p. This
simple idea is feasible because of the fact that CPU oscillators have
high stability, so that the cycle period is, to high precision, constant
over quite long time periods, and residual offset errors accumulate
only slowly. Note that the TSC is already routinely employedin
software clock solutions, although typically its role is tointerpo-
late between the timer interrupts generated by another hardware
timing source on the motherboard, rather than being the primary
source. By ‘TSC clock’ we are really referring to the overallso-
lution described here, its principles and methods, and in particular
to the synchronization algorithms used and the techniques insuring
robustness, andnot simply to the fact that the TSC is employed.

There are two areas in which our clock differs markedly from the
SW-NTP alternative, even though, as we describe in detail later, we
propose a synchronization technique which also makes use ofthe
NTP protocol and server network. The first is that in SW-NTP the
emphasis is firmly on offset, rate performance is not independently
considered, whereas in our TSC clock, rate is seen not only asthe
more important of the two, but also the logical foundation stone
on which to construct a robust clock. Another way of expressing
this key difference is that we keep frequency and offset calibration
as decoupled as possible, instead of closely integrating them into
a single dynamical system. The second is that SW-NTP implicitly
follows the philosophy that the host clock is inherently inaccurate,
so that it must be constantly disciplined by a reference source. In
our approach the view is that, on the contrary, the host clockis in-
herently ‘good’, it simply must be calibrated. This dramatic change
of viewpoint strongly influences the filtering and estimation pro-
cedures used to extract the reference timing information from the
timestamps received across the network, and both motivatesand
justifies a revisiting of this question.

The first aim of this paper is to address in detail the questionof
robust absolute oroffset synchronization in the context of the TSC

†A more specific term which is sometimes used is CPU Clock
Counter (CCC)

clock. Offset synchronization is a very different, and morediffi-
cult problem than that ofrate synchronization/calibration, which
was not addressed at all in our previous work [5]. Here we describe
principles, a methodology, and filtering procedures which make ac-
curate offset measurement and thereby reliable absolute synchro-
nization possible. We work within the context of the TSC based
clock, however the algorithms could be applied more generally to
other timing sources. We make use of the timestamps contained in
the normal flow of NTP packets to and from the SW-NTP clock and
a nearby NTP server. This allows the system and applicationsto run
as normal, and no change to the NTP protocol itself is required. In
parallel, TSC timestamps of the NTP packets are also made, and
processed in a new way to produce theTSC-NTP clock. In fact we
explain the need for, and propose, two clocks: adifference clock
used for measuring time differences (up to a certain scale),and an
absolute clock when absolute timestamps are required, for exam-
ple when measuring one-way delay in networks. We believe that
pointing out the need for this differentiation, which arises directly
from a rate centric view, is in itself of some importance. TheSW-
NTP clock is an absolute clock only, and is therefore fundamentally
unsuitable for many applications.

Two methods of remote calibration over a network were given
in our earlier work [5] for determining the periodp of the TSC
cycle. One of these was based on NTP servers, and shares some
features with the method we propose here (software is available
at [7]), however neither were robust enough for unsupervised use
under real-world conditions, and neither dealt with offsetmeasure-
ment/calibration. The second aim of this paper is to provideal-
gorithms both for rate synchronization (p measurement), and offset
synchronization, which are not just accurate, but also highly robust.
By this we understand an ability to provide accurate resultseven
under less than ideal conditions, as well as reasonable performance
even under ‘catastrophic’ conditions. In this regard the ‘local clock
is good’ viewpoint is invaluable. If something goes wrong with the
remote timestamp data, our reaction can legitimately be ‘change
nothing’, rather than continuing to adjust the clock according to
faulty or extremely variable timestamps. The algorithms wede-
scribe here take into account a variety of factors which our earlier
work did not, and are substantially different, although based on the
same core ideas.

The end result is a set of algorithms which, provided basic but
reasonable conditions are satisfied, give reliable rate performance
to better than 1 part in107, or 0.1 Parts Per Million (PPM), and
offset accuracy which under achievable conditions can be ofthe
order of0.1 ms. Using a nearby NTP server, over a period of 3
months a median offset error of around0.03 ms was obtained, with
an inter-quartile range of only 15µs. Although not sufficient to
address all needs, particularly for high performance and high rate
network monitoring where a specialist solution such as of use of lo-
cally synchronised DAG cards [8] is required, it considerably raises
the bar for the accuracy, and more importantly, the reliability, of
synchronization achievable inexpensively across a network. It is
more than sufficient, for example, to enable the removal of the GPS
receivers from the measurement machines in the RIPE NCC test-
box network. Other potential applications abound. In networking
they include network tomography, enhancing the performance of
services and protocols based on one-way or round-trip delay, and
improving the performance of adhoc and sensor networks.

This paper reexamines the synchronization problem in consid-
erable depth and detail. Although at a high level the topic isnot
new by any means, and solutions exist, we believe that a thorough
treatment, with careful attention to detail at each stage, was essen-
tial to arrive at a solution which delivers a significant stepup in



robustness and accuracy. The rate centric treatment is new and is
the cornerstone of this ability.

2. PRELIMINARIES
In this section we provide background on the infrastructureun-

derlying our clock, its synchronization and characterization.

2.1 Terminology
The natural or true clock, denoted simply byt, runs at a rate of

1 second per second, and has an origint = 0 at some arbitrary
instant. In practice one must use an imperfect clock, which we
refer to as ‘the clock’, which readsC(t) at the true instantt. The
resolution of C(t) is the smallest unit by which it is updated. The
offset θ(t) of the clock is its error at true timet:

θ(t) ≡ C(t) − t. (1)

The skew γ is roughly the difference between the clock’s rate and
the reference rate of 1. The model which captures this idea inits
simplest form we call theSimple Skew Model (SKM). It assumes
that

SKM: θ(t) = θ0 + γ t. (2)

To refine the concept of skew consider the following general model

θ(t) = θ0 + γ t + ω(t), (3)

where the ‘simple skew’γ is just the coefficient of the deterministic
linear part,ω(t) being a remainder with no linear component obey-
ing ω(0) = 0 which encapsulates the deviations from the SKM. It
can contain both deterministic and random components.

The oscillator stability [9] partially characterizesω(t) via the
family, indexed by time-scaleτ , of relative offset errors:

yτ (t) =
θ(t + τ ) − θ(t)

τ
= γ +

ω(t + τ ) − ω(t)

τ
. (4)

In other words,yτ (t) is the total rate error at timet when measured
over time scaleτ . The seriesyτ (t) can be thought of as the mean
skewγ arising from the SKM plus those random variations which
impact at time scaleτ .

Significant Time Interval Interval Error rate, PPM
Duration 0.02 0.1

Target RTT to NTP server 1ms 0.02ns 0.1ns
Typical Internet RTT 100ms 2ns 10ns

Standard unit 1s 20ns 0.1µs

Local SKM validity τ∗=1000s 20µs 0.1ms
1 Daily cycle 86400s 1.7ms 8.6ms

1 Weekly cycle 604800s 12.1ms 60.5ms

Table 1: Absolute errors at key error rates and intervals. The
most important examples are in bold.

To discuss the size of relative offset errors (rate errors),we use
the dimensionless unit ofParts Per Million (PPM). Table 1 trans-
lates this into absolute error over key time intervals:∆(offset) =
∆(t) ∗ (rate-error). The significance of the error rates in the ta-
ble, discussed in detail below, are i) target accuracy of ‘local’ rate
estimates: 0.02PPM, ii) bound on clock stability:0.1 PPM, For
comparison, the typical skew of CPU oscillators from nominal rate
is around 50PPM [9].

2.2 The TSC Clock
As described in the introduction, we propose a clock based onthe

TSC register which counts CPU cycles. The value of this register
at timet is denoted by TSC(t), and we set TSC0 = TSC(0). The
construction of the clockC(t) from the counter is based on the
intuition of the simple skew model, for which the oscillatorhas
a constant periodp, implying that t = (TSC(t) − TSC0)p. In
practice we must obtain estimates,p̂ of p, and dTSC0 of TSC0. The
definition of the clockC(t) is therefore

SKM: C(t) ≡ (TSC(t) − dTSC0)p̂ = TSC(t)p̂ + C, (5)

where the constantC ≡ −dTSC0p̂ tries to align the origins ofC(t)
andt, but with some error. It is easy to show that the errorpε ≡

p̂ − p in the period estimate and TSCε ≡ dTSC0 − TSC0 in the
origin estimate leads to an offset ofθ(t) = pε/p · t − p̂ TSCε,
which, comparing to equation (2), identifiesγ = pε/p = p̂/p − 1
andθ0 = C(0) = TSC0 p̂ + C.

As we explore below in detail, the SKM idea does not hold over
all timescales, so the above estimates must be taken as time vary-
ing. A key consequence is that the variation of offset over time
is no longer a simple function ofγ, and so must be measured in-
dependently, that is the clock drift must be tracked. In practice we
therefore use two forms of a corrected clock, depending on whether
time differences are needed (valid up to SKM timescales, butalso
useful well beyond it, as described below), or absolute time:

difference:Cd(t) ≡ TSC(t)p̂(t), (6)

absolute:Ca(t) ≡ TSC(t)p̂(t) + C − θ̂(t) = C(t) − θ̂(t), (7)

where p̂(t) is the current period estimate, andθ̂(t) is the current
estimate of the offset ofC(t), which we then correct for. Only
by defining two clocks in this way can we provide an absolute or
‘offset calibrated’ clock without disturbing the smooth rate of the
underlying TSC clock, which is the basis of its excellent rate perfor-
mance as described in [5]. The less accurate absolute clock should
only be used for applications which truly require it. The difference
clock, used to measure time differences, is much more accurate
when used to measure intervals∆(t) which are small compared
to the critical ‘SKM scale’τ∗, defined below. Asτ∗ ≈ 1000
[sec], this includes most cases of importance to traffic measure-
ment. Above this scale however, clock drift is significant and the
time difference will be more accurately measured using the abso-
lute clock.

In implementations, care must be taken to avoid losing precision
when recording timestamps. For example, the TSC register istyp-
ically 64 bits. If a 32 bit counter is used to manipulate it, overflow
can occur after around 4 seconds on a 1Ghz machine (see [5] fora
discussion on this point).

2.2.1 Timestamping
Even a perfect clock is of little use if one is unable to read itclose

to when the event of interest occurs. This is the issue oftimes-
tamping, and its optimisation is application dependent. Here, for
the purpose of remote clock synchronization, the application is the
timestamping of the arrival of NTP packets.

In [5] (see also [10]), this issue was explored in detail for the ap-
plication of timing the arrival of packets on the Ethernet network in-
terface (a 600Mhz Pentium PC was used). The timestamping solu-
tions described range from using purely user-space code, through to
the use of RT-Linux under Linux, a real-time operating system [11],
which entirely avoids the scheduling problems which plaguepre-
cision timing under multi-tasking operating systems. It was found
that timestamping early in the driver-code for the network interface



card provided an excellent compromise of almost no scheduling
problems (1 timestamp per 10,000, and then usually with an error
under 1ms), and with timestamping noise (dominated by interrupt
latency) of the order of at worst 15µs, whilst keeping the code sim-
ple and almost entirely at the user-level. In contrast, the standard
gettimeofday system call to obtain timestamps from the SW
clock under Linux suffers from much higher ‘system’ noise due to
the above and other effects.

We adopt the same driver based timestamping approach here.
The kernel-level code required consists of just a few lines to en-
able a raw timestamp (the TSC counter value) to be passed up from
the driver to a user process, where it can be stored, processed, or
converted to a time in seconds as required without hard time con-
straints. In [5] this was done under Linux by exploiting the existing
API, in this paper it is done via a modified Berkely Packet Filter
data structure under BSD Unix. The timestamping errors which re-
main, especially if of significant size (such as larger than0.1 ms)
will be seen as network delay by the generic filtering mechanisms
we develop here, and thereby rejected or damped. For the samerea-
son, if instead user-level timestamping were used, the algorithms
would still work, albeit with higher estimation variance, as the er-
rors will always increase round-trip times and therefore beseen as
positive network ‘noise’.

2.3 The NTP Server
Network Time Protocol (NTP) servers are networked comput-

ers whose clocks are deemed to be well synchronized. Different
levels of synchronization accuracy are defined. We will be con-
cerned only withstratum-1 servers, whose clocks are synchronized
by a local reference time source (using the GPS timescale, which
can be converted to UNIX time). Three such are used in this pa-
per. ServerLoc is in our laboratory on the same local network as
the host. ServerInt is located in the same organization, but in a
distinct network and GPS receiver in a different building. Finally,
ServerExt is located over a thousand kilometres away in another
city, and is synchronized by atomic clock. The distances between
the host and the servers are given in table 2 in terms of physical dis-
tance, the minimum RTT of NTP packets over at least a week, and
in the number of IP hops as reported by thetraceroute utility.
We also give the path asymmetry∆, which as discussed in detail
in section 4.2 is the difference of the minimum one-way delays to
and from the server.

Server Reference Distance RTT Hops ∆
ServerLoc GPS 3 m 0.38 ms 2 50µs
ServerInt GPS 300 m 0.89 ms 5 50µs
ServerExt Atomic 1000 km 14.2 ms ≈ 10 500µs

Table 2: Characteristics of the stratum-1 NTP servers.

Hosts wishing to synchronize their clocks can do so by running a
NTP application which communicates with a NTP server via NTP
packets. These are User Datagram Packets (UDP) with a 48 byte
payload including four 8-byte Unix timestamp fields (90 bytes in
total for the Ethernet frame which transports the datagram). The
usual exchange works as follows (refer to figure 1). Theith NTP
packet is generated in the host. Just before being sent, the times-
tampTa,i is generated by the SW clock and is placed in the packet
payload. Upon arrival at the server, the timestampTb,i is made
by the server clock and inserted into the payload. The serverthen
immediately sends the packet back to the host, adding a new de-
parture timestampTe,i, and the host timestamps its return asTf,i.
The four timestamps{Ta,i, Tb,i, Te,i, Tf,i} are the raw data from

theith exchange from which the host clock must be synchronized.
None of these timestamps are perfect however due to clock and/or
timestamping limitations. Theactual times of the corresponding
events we denote by{ta,i, tb,i, te,i, tf,i}. The NTP payload also
contains processed data related to estimated clock drift which we
do not use, and server identity information which we plan to use as
part of route change (level shift) detection in the future.

At the host, we donot use the usual timestamps made by the
SW-NTP clock, but instead take separate raw TSC timestamps.We
denote these by the symbolsTa,i, Tf,i as above even though they
are in ‘TSC units’, rather than seconds.

Server

Host

DAG

timeta,i

tb,i te,i

tf,i

tg,i

ri

d↑id→i d←i

Figure 1: Timeline of the host-server exchange of theith NTP
packet. The components of forward path delay (d→i ), server
delay (d↑i ), backward path delay (d←i ) and their sum, the round-
trip time ( ri = d→i + d↑i + d←i ) are shown.

Being a stratum-1 NTP server, the server’s clock should be syn-
chronized, and so we could expect thatTb,i = tb,i andTe,i = te,i.
However timestamping errors nonetheless make these unequal even
for the server. Indeed, as servers are often just PC’s, theirtimes-
tamping may not have the quality of the driver based TSC times-
tamping of our host. This is the case here, and we discuss its con-
sequences below.

As stated in the introduction, we rely on the normal flow of NTP
packets between host and server, to minimize the disruptionto nor-
mal system operations. For much of this paper we use a pollingrate
of 16 seconds, which is higher than the usual default, but which
provides a detailed data base from which to examine both the clock
and synchronization performance. In the last two sections we give
examples of performance using a range of polling rates whichin-
cludes the usual default values. A conservative polling rate is in
keeping with the need to avoid placing excessive load on the net-
work and the NTP server. In a more generic solution where the
usual software clock would be entirely replaced by the TSC-NTP
clock, the emission of NTP packets could be controlled, which
would enable the synchronization performance to be furtherop-
timized, and warmup procedures simplified.

We provide a generic synchronization mechanism in this paper,
but our work is nonetheless aimed at applications and users for
whom accuracy matters. We therefore nominally assume that an
initial effort has been made to find a nearby, reliable stratum-1
NTP server. TheServerInt is representative of such, as it has a
RTT of the order of only 1ms, but is not on the local network. It
also has the advantage of a verifiably symmetric route in the for-
ward and reverse directions. This is a very important asset as we
explain in detail in section 4.2. We believe that such a server can
be readily found for the majority of tertiary educational institutions
and commercial organizations with significant networking infras-
tructure. We stress however that the presence of such an ‘optimal’
server is not required for very good results in most cases.

2.4 Reference Timing
Validation of timing methods would not be possible without a

reliable timing reference. We used a ‘DAG3.2e’ series measure-



ment card designed for high accuracy and high performance pas-
sive monitoring of 10/100 Mbps Ethernet, yielding a time stamping
accuracy around 100ns [8]. The card was synchronized to the Trim-
bale Acutime 2000 GPS receiver, the same one used byServerLoc,
with the antenna permanently mounted on the roof of the building
housing the laboratory.

The DAG card was positioned to timestamp the returning NTP
packets via a passive tap on the Ethernet cable just before itenters
the host’s interface card. Unfortunately the DAG and TSC clocks
are still timestamping different events, so thattg,i < tf,i. One com-
ponent of this difference is that the DAG timestamps the firstbit
of each packet, whereas TSC timestamping occurs after a packet
has fully arrived. Accordingly byTg,i we denote a DAG timestamp
which has been corrected by the addition of the corresponding in-
terval of90 ∗ 8/100 = 7.2µs. The remaining difference includes
the additional length of cable (negligible), the minimum process-
ing time of the card, and the interrupt latency of the host. Toes-
timate the size of these latter effects, we examined a histogram of
the difference, with respect toi, of the measured offset discrep-
ancyTf,i − Tg,i. The (overwhelmingly) dominant mode, centered
at zero as expected, has width 5µs. In addition to large departures
due to rare scheduling errors, which are easy to detect and exclude
if required, there are small but clearly defined side modes symmet-
rically located at 10 and 31µs from the origin. These smaller yet
significant timestamping errors are due to interrupt latencies, and
can also be reliably detected and corrected for. The final limit of
the verifiability of the offset (but not rate) results is therefore of the
order of 5µs.

The DAG timestamps are the basis of all the ‘actual performance’
results presented here.

3. DATA CHARACTERIZATION
Any synchronization algorithm must begin with a knowledge of

the nature of the data collected. In this section we study thebasic
features of the key quantities, the offset of the TSC clockC(t), the
network delay, and also the delay at the NTP server.

3.1 The Clock
We examine the clock offset of the same600Mhz CPU host

in two different temperature environments,laboratory: an open
plan area in a building which was not airconditioned, andmachine-
room: a closed temperature controlled environment.

To calculate the offset of the clock from the TSC counter times-
tamp Tf,i, we are immediately faced with the issue of prior rate
estimation: without a value of̂p the clockC(t)= TSC(t)p̂ + C
cannot be calculated. In figure 2 we usep̂ = 1.82263812 ∗ 10−9

(548.65527 Mhz) for measurements made in the laboratory, and
p̂ = 1.82263832 ∗ 10−9 (548.65521 Mhz) in the machine-room,
and then calculate the offset viaθ(tf,i) = Tf,i ∗ p̂ − Tg,i for each.
These estimates ‘detrend’ (in fact they force the first and last offset
values to be the same, normalised to be zero), facilitating an initial
inspection of the (small) residual clock drifts, which depend on the
temperature environment.

From the right plot in figure 2 it is clear that the SKM model
fails over day timescales, as the residual errors are far from lin-
ear, although the variations fall within the narrow cone emanating
from the origin defined byγ = ±0.1PPM. In the left plot how-
ever we see that over smaller time scales the residual offseterror
grows approximately linearly with time, suggesting that the SKM
could be accepted and the above ‘global’ estimates replacedwith a
considerably more accurate localp̂ values (the microsecond scale
irregularities are due to timestamping noise in the host, ashere cor-
rectedTf,i timestamps, described in section 2.4, were not used). We

have found these observations to hold for all traces collected over
many months. In [5] the same result was reported for a host in an
airconditioned (but not temperature controlled) office environment
over a continuous 100 day period.
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Figure 2: Offset variations θ(t) of C(t) in two different tem-
perature environments (each set to 0 att = 0 for comparison)
always fall within the cone corresponding to a steady error rate
of γ = 0.1PPM. Left: over a 1000 [sec] period, Right: over 1
week (legend applies to both).

The above discussion is only an illustration of the underlying
behaviour we must understand and deal with. In fact depending
on the time scale and̂p value chosen,θ(t) can take on very differ-
ent appearances. To examine offset over all scales simultaneously,
and to avoid the need for a somewhat arbitrary prior rate estimate,
we return to the concept of oscillator stability (equation (4)). A
particular estimator of the variance ofyτ (t), known as theAllan
variance‡, calculated over a range ofτ values, is a traditional char-
acterization of oscillator stability [9]. We term the square root of
the Allan variance theAllan deviation, and interpret it as the typi-
cal size of variations of time scale dependent ‘rate’. A study over a
range of time-scales is essential as the source and nature oftiming
errors vary according to the measurement interval. At very small
timescales,γ will not be readily visible inyτ (t) as the ‘rate’ error
will essentially correspond to system noise affecting timestamping.
At intermediate timescalesγ may seem well defined and constant
with some measurement noise, as in the left plot in figure 2. At
large scale where daily and weekly cycles enter, the issue isnot
noise in estimates ofγ but rather variations inγ itself.
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Figure 3: Allan variation plots. From small scales to around
τ = 1000 seconds, the SKM applies, and rate estimates are
meaningful down to0.01PPM.
‡This is essentially a Haar wavelet spectral analysis [12]



Four Allan deviation plots for the host oscillator are givenin fig-
ure 3, for traces taken under different conditions ranging from 1 to
3 weeks in length. One is when the host was in the laboratory, and
usesServerInt. The others are from the machine room, using each
of the 3 servers. CorrectedTf,i timestamps were used here, as oth-
erwise the timestamping noise adds considerable spurious variation
at small scales (due to the strong wavelet signatures of discontinu-
ities).

Over small scales the plots show a consistent1/τ decrease, con-
sistent with the results of [5], where a similar plot showed this lin-
ear zone to extend at least down toτ = 1 second. This is exactly
what we would expect if the SKM were true in the presence of sys-
tem noise, and corresponds to equation (3) ifω(t) was considered
to be white noise. The plots agree as the hardware, operatingsys-
tem, and timestamping solution are the same in each case, andthe
dominant noises arise from them.

The plots diverge, and all rise, at larger scales as new sources
of variation enter in, such as temperature variations arising over the
day and the diurnal cycle itself. The curves begin to flatten as major
new sources of variation cease at the weekly timescale, but remain
below the horizontal line marking0.1 PPM.

From figure 3 the picture emerges that the SKM model holds true
for timescales up to around1000 seconds. For any value within
this range, we can interpret the corresponding value on the vertical
axis as the level of precision to which the rate can be measured.
The greatest precision is obtained at the minimum point, andis of
the order of0.01PPM. It is not meaningful to speak of rate errors
smaller than this, as the validity of the SKM model itself cannot be
verified to this level of precision.

In the machine-room the environmental control bounds temper-
ature variations within a2oC band. We therefore expect that the
laboratory data would be more variable, and therefore that the cor-
responding curve lie above each of those from the machine-room.
This is indeed the case at large scales, as the temperature variations,
and therefore the main source of rate fluctuations, are bounded.
At intermediate scales however it was true in only 1 of 3 cases.
We found this to be due to the presence of a low amplitude (≈
0.05PPM) but distinct oscillatory noise component of variable pe-
riod between 100 to 200 minutes (clearly visible in figure 8) which
creates additional variability over a broad range of scales. The pos-
sibility of this being due to the airconditioning cycle was investi-
gated through checking with a digital temperature logger making
measurements every minute, with mixed results. The true cause
(and possible elimination) of this effect is under investigation. It
is not expected to be truly server dependent and may be linkedto
hardware and software controlling cooling fans in the host.The
performance of the synchronisation algorithms reported below is
despite the presence of this (possibly very unusual) noise compo-
nent.

In conclusion, in three different temperature environments: un-
controlled laboratory, temperature controlled, and from [5], building-
wide airconditioning, the SKM model holds over timescales up to
1000 seconds. Henceforth we useSKM scale, or τ∗, to refer to
this value. Over larger timescales the model fails but the rate error
remains bounded by0.1 PPM. Indeed, to within this level of ac-
curacy we can say that the SKM model holds over all time scales.
This fact, and the values of the rate error bound and the SKM scale,
are the fundamental hardware characterizations on which the syn-
chronization is based. To the best of our knowledge this is the first
time that synchronization algorithms have been built on a well de-
fined hardware abstraction in this way.

The above measurements are consistent with the results of [9]
stating that the clockstability of commercial PCs is typically of the

order of0.1 PPM. If a class of oscillators were used which were sig-
nificantly different (for example less stable) then they would need
to be characterised by calculating curves such as those in figure 3,
to determine the two key metrics. As these appear as parameters in
the synchronization algorithms, our clock solution would continue
to work, with altered performance.

To characterise rate beyondτ∗, one cannot hope to measure an
expected or stationary value, as it does not exist. If one measured a
long term average rate over much larger timescales such as several
weeks, its variability would itself be well under0.1 PPM, however
this apparent stability does not reflect a meaningful convergence,
and does not enable more accurate synchronisation in any sense.
We donot attempt to measure a (meaningless) ‘long term’ rate as
such in this paper, however as described below, wedo make used
of estimates made over large time intervals, correspondingto an
average ofmeaningful local rates, as a means of reducing errors
due to timestamping and network congestion. We denote such es-
timates in section 5.2 bȳp, where we discuss local rates in more
detail. Such average rates may be used as surrogates for local rates,
with an error which is bounded by0.1 PPM.

3.2 Network and Server Delay
Following figure 1, we decompose the history of packeti as:

Forward network delay: d→i ≡ tb,i − ta,i (8)

Server Delay: d↑i ≡ te,i − tb,i (9)

Backward network delay: d←i ≡ tf,i − te,i (10)

Round Trip Time: ri ≡ tf,i − ta,i = d→i + d↑i + d←i .(11)

Figure 4 gives representative examples of 1000 successive val-
ues of the backward network delay and server delay for the host
in the machine-room, usingServerLoc, calculated asd←i (te,i) =

Tg,i − Te,i andd↑i (te,i) = Te,i − Tb,i respectively. These time se-
ries appear roughly stationary, with a marginal distribution which
seems consistent with a deterministic minimum value plus a pos-
itive random component. The main difference between them is
that the server delay has much lower minimum and average val-
ues: microseconds rather than milliseconds. These observations
make physical sense. The minimum in network delay could corre-
spond to propagation delay, and the random component to queue-
ing in network switching elements, which is not unexpectedly very
small for such a short route, but which can takes 10’s of millisec-
onds during periods of congestion. For the server, there will be a
minimum processing time and a variable time due to timestamping
issues both in theµs range, and rare delays due to scheduling in the
millisecond range. We formalise these observations in

Forward network delay: d→i = d→ + q→i (12)

Server Delay: d↑i = d↑ + q↑i (13)

Backward network delay: d←i = d← + q←i (14)

Round Trip Time: ri = r + (q→i + q↑i + q←i ) (15)

whered→, d↑, andd← are the respective minima andq→i , q↑i and
q←i are the positive variable components. The minimum RTT is
thereforer ≡ d→ + d↑ + d←. These simple models provide the
basic conceptional framework and notation for what follows.

4. SYNCHRONIZATION: THE SKM WORLD
In this section we examine simple synchronization ideas based

on the SKM. We detail the weaknesses of these ‘naive’ approachs,
which are addressed in subsequent sections. We use the first day
of the same 7 day machine-room data set (July 4–10) used in the
previous section.
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Figure 4: Examples of backward Network delayd←i (left) and Serverd↑i delay (right) time series.

4.1 Rate Synchronization
We wish to exploit the relation∆(t) = ∆(TSC) ∗ p. More

precisely, assuming the SKM the following relation holds for the
forward path:

p =
tb,i − tb,j − (q→i − q→j )

TSC(ta,i) − TSC(ta,j)
(16)

wherei > j. This inspires the naive estimate

p̂→i,j ≡
Tb,i − Tb,j

Ta,i − Ta,j

(17)

which suffers from the neglect of the queueing terms and the pres-
ence of timestamping errors. An analogous expression provides an
independent estimatêp←i,j from the backward path. In practice we
average these two to form our final estimate:p̂i,j = (p̂→i,j+p̂←i,j)/2.

In figure 5 backward estimates normalised as(p̂←i,j−p̄)/p̄ (where
p̄ denotes the ‘detrending’̂p estimates from section 3.1) are given
for all packets collected. Thei-th estimate compares thei-th packet
against the first (j = 1), and is plotted against the timestampTe,i

of its departure from the server. Thus∆(TSC) = Ta,i − Ta,j

steadily increases as more packets are collected. Superimposed
are the corresponding reference rate values, calculated asp̂g =
(Tf,i − Tf,j)/(Tg,i − Tg,j) which show some timestamping noise
(Tf,i is not corrected here), but are not subject to network delay.
We immediately see that the bulk of the estimates very quickly fall
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Figure 5: Naive per-packet rate estimates compared with ref-
erence measurements with steadily increasing∆(TSC).

within 0.1 PPM of the reference curve, as the size of errors due
to both network delay and timestamping noise are damped at rate
1/∆(t). The estimates from packets which experienced high net-
work delay can nonetheless be very poor. Table 1 tells us thateven
when measured over a timescale of a day, the bound of0.1 PPM
will be broken when a combined network queueing delay exceeds
only 8.6 ms.

If the SKM held exactly, these errors would eventually be damped
as much as desired, however, we know that is not the case. We wish
∆(t) to grow large, so that the estimates will become increasingly
immune to both network delay and timestamping errors. However,
we cannot let it grow without bound, as the drift in the rate would
then be masked. The estimate would appear to become increasingly

stable, but would not be converging to any meaningful value,and
both long term and medium term changes could be hidden. For ex-
ample, there is always the possibility that the local environment will
change, and ultimately, the CPU oscillator is also subject to aging.
Thus some kind of windowing must be employed which enables
the past to be forgotten, which limits the degree of error damp-
ing available from a large∆(t). The naive estimates are therefore
unreliable, as their errors, althoughlikely to be small, can not be
controlled or bounded.

4.2 Offset Synchronization
We wish to exploit the fact that the SKM holds over small timescales

to simplify the measurement ofθ(t). Since we can assume that
γ < 0.1 PPM, the increase in offset error over a host-server round-
trip time of 1ms is under0.1ns (see table 1). Even if the RTT was
huge, such as 1 second, the error increase would be under0.1µs,
which is well below timestamping noise.

Two important observations follow from the above. First, atRTT
timescales we can assume that rate is constant and thereforeuse
a ‘global’ estimatēp measured over a large∆(t) to convert TSC
timestamps to time and thereby calculate offset. We do not have to
try to calculate a local estimate, which is a far more complextask.
Second, offset error accumulates so slowly that we can associate to
each packeti a single constant valueθi.

From packeti we have two relations involvingθi: θi = C(ta,i)−
ta,i = C(ta,i)− (tb,i−d→i ), andθi = C(tf,i)− (te,i +d←i ), from
which θi cannot be recovered as the one-way delays cannot be in-
dependently measured. If we add these to obtain

θi =
1

2
(C(ta,i)+C(tf,i))−

1

2
(tb,i + te,i)+

1

2
∆+

1

2
(q→i − q←i ),

(18)
the problem remains that thepath asymmetry, ∆ ≡ d→ − d←, is
not measurable. There is in fact a fundamental problem of ambi-
guity here, differences in theθi due to∆ > 0 are impossible to
distinguish from true offset errors. However, clearly the ‘causal-
ity’ bound ∆ ∈ (−(r − d↑), (r − d↑)) ⊂ (−r, r) holds, i.e. we
require the packet events at the server to occur inbetween those at
the host. Note thatr andd↑ can be measured as they each are time
differences measured by a single clock.

In the absence of independent knowledge of∆, a naive estimate
based on equation (18) is

θ̂i =
1

2
(C(ta,i) + C(tf,i)) −

1

2
(Tb,i + Te,i), (19)

which implicitly assumes that∆ = 0, and is equivalent to align-
ing the midpoints(tb,i + te,i)/2 and(C(ta,i) + C(tf,i))/2 of the
server and host event times respectively. In figure 6 estimates obey-
ing equation (19) are shown, along with reference values calculated
as in section 3.1. Errors due to network delay are readily apparent,
but are more significant than in the naive rate estimate case because
they are not damped by a large∆(t) baseline. A histogram of the
deviations of the estimates from their reference values is essentially
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Figure 6: Naive per-packet offset estimatesθi compared with
reference measurements.

identical to a histogram of(q←i −q→i )/2, and is biased towards neg-
ative values in this case because the forward path is more heavily
utilised than the backward one.

The value of∆ places a hard limit on the accuracy of offset
measurement. The choice of server is therefore very important.
A nearby server will have a smaller RTT, and therefore a tighter
bound. More importantly however, a nearby server is likely to have
a path which is symmetric or close to it, which would result in
∆ � r. This is in fact the case forServerLoc and ServerInt,
which we measured (see table 2) to be of the order of0.05 ms.
Estimating∆ however is non-trivial. With only a single refer-
ence clock positioned as in figure 1, we use∆ = d→ − d← =
r − d↑ − 2d← which in terms of available timestamps reduces to
∆̂i = (Tf,i −Ta,i) ∗ p̂− 2Tg,i +Tb,i +Te,i. With i chosen to min-
imize ri, we obtain measurements with close to minimal network
and server delays, however timestamping errors remain, which are
significant compared to the small size of∆. SinceTa,i < ta,i

andTf,i > tf,i, minimising ri will also tend to minimize times-
tamping errors at the host. At the server however, although clearly
Tb,i > tb,i (recall we assume the server is synchronised), the er-
ror Tb,i − tb,i is only bounded by the server delayd↑ and is not
influenced by minimisingri, and more seriously, the relationship
betweenTe,i andte,i is a priori unknown. Outliers in the reference
backward delay values{Tg,i−Te,i} suggest that in factTe,i > te,i,
in very rare cases by as much as 1ms, larger even than the RTT! In
the future we will make a more reliable determination by reposi-
tioning the tap of the reference monitor. The results of the offset
estimation algorithm described in section 5.3 provide an alterna-
tive, indirect, way of estimating∆ which agrees broadly with the
values in table 2).

5. SYNCHRONIZATION: THE REAL WORLD
It is intuitively clear from figures 5 and 6 that the packets carry-

ing large network delays can be detected, and therefore dealt with.
We show how this can be achieved even for small network delays,
and exploited to evolve the naive estimators into accurate ones. For
clarity of exposition, we leave some on the considerations needed
for an on-line implementation to the final section, and focuson
the principles and performance of the underlying algorithms. In
particular, when measuring offset we use a constant rate estimate
made over the entire trace, rather than using the on-line evolving
rate estimatêp(t) (this makes little difference in practice), and for
convenience we set TSC0 = 0.

5.1 Approach to Filtering
We need to measure the degree to which, for each packeti, the

available timestamps are affected by network queueing and other
factors. To do so we work with the round-trip time series{ri},
which has a number of important intrinsic advantages over the one-
way delays,{d→i } and{d←i }.

As discussed above, sinceTa,i, Tf,i, are measured by the same
clock, and since round-trip times are very small, neither the un-
knownθ(t) norp(t) are needed to accurately measureri. The same
is true for determining thequality of ri, only a reasonable estimate
such as an averagēp is required. This creates a near complete de-
coupling of the underlying basis of filtering from the estimation
tasks, thus avoiding the possibility of undesirable feedback dynam-
ics.

The absolutepoint error of a packet is taken to be simplyri − r.
The minimum can be effectively estimated byr̂(t) = min

btc
i=1

ri,
leading to an estimated errorEi = ri − r̂(t) which is highly robust
to packet loss. Error will be calibrated in units of the maximum
timestamping error at the host, which we take to beδ = 15µs.

In contrast, one-way delays are measured by different clocks, so
that the ‘minimum’ inherits the wander ofθ(t) (recall figure 2),
greatly complicating assessments of quality. On the other hand,
consider that with independent symmetric paths, if the probability
that one-way quality exceeds a given level isq, andq′ for server
delay, then the corresponding probability drops belowq′q2 for the
RTT, which can be much smaller thanq under congested condi-
tions. Thus quality packets are rarer when judged by the RTT
alone, making accurate estimation more challenging. An alterna-
tive which retains the inherent advantages of RTT whilst in princi-
ple increasing the proportion of quality packets is{ri − d↑i }. How-
ever, although the server is synchronized, its timestamping errors
serve only to add noise to the more reliable driver based timestamps
made at the host from which we derive{ri}.

5.2 Rate Synchronization
To bound the error on the estimatêp(t), we use equation (17)

but restrict ourselves to packets with bounded point error.The base
algorithm is simple. To initialise, setj and i to be the first and
second packets with point errors below someE∗. Equation (17)
then defines the first value of̂p(t) which we assign tot = tf,i. This
estimate holds fort ≥ tf,i up until i is updated at the next accepted
packet, and so on. An estimate of the error of the current estimate is
(Ei+Ej)/((Tf,i−Tf,j)p̄) and should be bounded by2E∗/((Tf,i−
Tf,j)p̄). As before the above procedure is independently applied to
both the forward and backward paths, and the results averaged.

This scheme is inherently robust, since even if many packetsare
rejected, error reduction is guaranteed through the growing ∆(t) =
Tf,i −Tf,j , without any need for complex filtering. Even if connec-
tivity to the server were lost completely, the current valueof p̂ re-
mains valid for meaningful filtering, allowing estimation to recom-
mence at any time with no warm-up required.

Figure 7 plots the relative error of the resulting estimateswith
respect to the corresponding reference rates for thosei selected.
Two sets of results are given, forE∗ = 20δ and5δ (resulting in
72% and3.9% of packets being selected respectively), to show the
insensitivity of the scheme toE∗. In each case errors rapidly fall
below the desired bound of0.1 PPM and do not return, in contrast
to figure 5 based on the same raw data. The solid lines give ex-
pected upper bounds on the error based on2E∗/(Tg,i − Tg,j). To
put this performance into context, note that for the measurement
of time differences over a few seconds and below, the estimate p̂
above gives an accuracy better than 1µs, which is the same order of
magnitude as a GPS synchronized software clock, after only afew
minutes! For example inter-arrival times, round-trip times, and the
delay variation of network packets all fall into this category.

It is important to understand that the estimatep̂ above is really
that of the average rate over a large∆(t) � τ∗ window, and is thus
an average of many different local or ‘true’ rates in the sense of the
SKM. From figure 3, true local rates can be meaningfully defined
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Figure 7: Relative error in p̄ estimates forE∗ = [20, 5] ·δ =
[0.3, 0.075] ms. Errors fall below 0.1 PPM and remain there.

down to accuracies ofε = 0.01 PPM, over scales belowτ∗. How-
ever, there is no need for local rate estimates in order to obtain p̂,
and p̂ is sufficient to support filtering and both the difference and
absolute clocks. This is an advantage since the estimation of local
rates is much more difficult due to the small number of samples
available. However, there are two reasons why their measurement
may be worthwhile: (i) they could extend the time intervals over
which the difference clockCd(t) can be used to measure time dif-
ferences, and (ii) to optimize the performance ofθ̂(t) and hence
that of the absolute clockCa(t).

In order to measure local rate to an accuracy close to the optimal
ε = 0.01 PPM however, given that withServerInt point error values
descend into noise forE∗ < 0.1 ms, it is necessary to use intervals
of width greater thanτ∗, in fact τ̄ ≡ 5000sec= 5τ∗ in this case
(one can even use larger values,τ̄ = 20τ∗, to reduce estimation
variance, although results are insensitive). Thus, such estimates are
again not truly local in the sense of the SKM but are also averages,
this time however over nearby local values. As changes in local
rate occur slowly, these ‘trends’ are nonetheless local in compar-
ison with the time-scales used in the estimatep̂. We denote the
corresponding quasi-local period values bypl(t).

The algorithm calculates a local value for each packetk over a
window of effective widthτ̄ stretching back fromt = tf,k. Unlike
for p̄ where packets were selected based on a fixed quality, here
it is essential to maintain the timescale of the estimate fixed. The
actual window is therefore divided into near, central, and far sub-
windows of widthτ̄ /W , τ̄(W − 2)/W , and2τ̄ /W respectively
(the far window has length twice the expectedτ̄ /W so that the ac-
tual window will begin att = tf,k − τ̄ on average). In each of the
near (indexi) and far (indexj) windows, the packets with the low-
est point errors are selected, and used in equation (17) to calculate
a candidate estimatêpl(tf,k). As before, a bound on the error of the
estimate is calculated as(Ei +Ej)/((Tf,i −Tf,j)p̄). If it lies under
a target quality valueγ∗ (which we choose to beγ∗ = 0.05 PPM
> 0.01 PPM to allow for estimation error) we accept the estimate,
else we are conservative and setp̂l(tf,k) = p̂l(tf,k−1). We then set
p̂l(t) = p̂l(tf,k), where packetk is the most recent packet arriving
before timet.

To ensure that any unexpected failures of the estimation proce-
dure cannot force the rate estimates to contradict the knownphys-
ical behaviour of the hardware, if the relative difference between
two succesive rate estimates ever exceeds some multiple of the
0.1 PPM rate bound, we use3 ∗ 10−7, then the previous value will
be duplicated as above:̂pl(t) = p̂l(tf,k). This guarantees that the
local rate estimate cannot vary too wildly no matter what data it
receives. One situation where this is needed is when the server
timestamps themselves are in error. This actually occurredin our
data set, as shown in the next section.

As it is important that the estimate be local to the packetk, W
should be chosen small. On the other handW should be large
enough so that packets of reasonable quality will lie withinit. By
selecting the best candidates in the near and far windows, weguar-
antee that there is an estimate for eachk. Good quality is designed
into the scheme through the width of the central window. Robust-
ness to outliers is provided by the monitoring of the expected qual-
ity of the candidate estimate, and the high level sanity checking.
Consequently, we found that the results are not sensitive tothe ex-
act value ofW (we useW = 30).

The algorithm closely tracks the corresponding reference rate
values made over the same timescale. Using the same data as in
figure 7, withγ∗ = 0.05 PPM,τ̄ = 5τ∗ andW = 30, over 99% of
the relative descrepancies from the reference were contained within
0.023 PPM. The outliers were due mainly to errors in the reference
rates, not instabilities in the estimation algorithm. Only0.6% of
values were rejected by the quality threshold, and the sanity check
was not triggered.

5.3 Offset Synchronization
Our aim is to estimateθ(t) for arbitaryt, using the naivêθi es-

timates frompast packets as a basis. Note that for many applica-
tions, post processing of data would allow both future and past val-
ues to be used to improve estimates. In particular this makesgood
performance immediately following long periods of congestion or
sequential packet loss much easier to achieve.

In this section we use data collected continuously in the machine-
room over the last 3 weeks of September 2003. The host was con-
nected toServerInt, and 169 of the 113401 packets were lost (or
failed to have matching reference timestamps). We also present
comparative results from a week long trace usingServerLoc where
299 packets were unavailable, and a trace 2.7 weeks long using
ServerExt where 666 packets were missing.

For the estimatêp, large∆(t) values were an asset. In contrast,
sinceθ(t) must be tracked, large time intervals between quality
packets would imply that the accepted̂θi would be out of date.
This fundamental difference suggests a paradigm of using estimates
derived foreach packet. Our approach consists of four stages: (i)
determining a total per-packet errorET

i which combines point error
and packet age, (ii) assigning a weightwi based on the total error,
(iii) combining the weighted point estimates to form̂θ(t), and (iv)
a sanity check to ensure thatθ̂(t) will not evolve faster than the
known hardware performance for any reason.

(i) Based on a packeti arriving before timet, the simplest ap-
proach is simply to set̂θ(t) = θ̂i. The magnitude of the result-
ing error can be estimated by inflating the point error by a bound
on its growth over time:ET

i = Ei + 10−7(Cd(t) − Cd(Tf,i)).
This however is overly pessimistic as the residual rate error (from
the p̂ used to calculatêθi) is more likely to be of the order ofε
(from section 5.2). We therefore estimate the total error asET

i =
Ei + ε(Cd(t) − Cd(Tf,i)).

(ii) First we consider only those packets which fall into a SKM
related windowτ ′ seconds wide beforet, as we only know how
to relate current and past offset values within the context of the
SKM. For each packeti within the window we penalise poor to-
tal quality very heavily by assigning a quality weight viawi =
exp(−(ET

i /E)2), which has a maximum of 1, and becomes very
small as soon as the total quality lies away from a band definedby
the size ofE > 0. The graphs below justify the particular choices
τ ′ = τ∗ andE = 4δ.

(iii) An estimate can now be formed through a weighted sum



over the window:

θ̂(t) =
X

i

wiθ̂i/
X

i

wi, (20)

which amounts to a constant predictor on a packet by packet basis.
The local rate estimates can be used to introduce linear prediction
instead:

θ̂(t) =
“ X

i

wi(θ̂i − γ̂l (Cd(t) − Cd(Tf,i)))
”
/

X

i

wi (21)

whereγ̂l = p̂l(tf,i)/p̄ − 1 is the estimate of the residual rate error
relative top̄ (implicitly already present in̂θi).

If all the packets in the window have poor quality then even the
weighted estimate can perform poorly. Indeed, under periods of
high congestion we may find that

P
i
wi = 0 to machine precision.

To avoid being influenced in such cases, whenmini(E
T
i ) > E∗∗,

we instead base the estimate on the last weighted estimate taken.
In the case where this is at the last packet (we always evaluate the
offset at packet times), this gives

θ̂(t) = θ̂(tf,i) (22)

θ̂(t) = θ̂(tf,i) − γ̂l ∗ (Cd(t) − Cd(Tf,i)), (23)

depending upon whether the local rate refinement is used or not
(herei is the last packet). We setE∗∗ = 6E, which is about 3
‘standard deviations’ away in the Gaussian-like weight function,
so that the weighted estimate will only be abandoned when quality
is extremely poor.

(iv) Just as for local rates, we put in place a high level san-
ity check to ensure that the offset estimate cannot vary in a way
which we know is impossible, no matter what data it receives.If
successive offset estimates differ by more than a thresholdthen the
most recent trusted value will simply be duplicated, for example
θ̂(t) = θ̂(tf,i) if the last such was at packeti. We set the thresh-
old at Es = 1ms, which is orders of magnitude beyond the ex-
pected offset increment between neighboring packets. It isvery
important that such a simple thresholding be used only as a sanity
check, meaning that the threshold be set very high. Attempting to
reduce this value to ‘tune’ its performance would be tantamount to
replacing the main filtering algorithm with a crude alternative dan-
gerously subject to ‘lock-out’, where an old estimate is duplicated
ad infinitum. An instance when the sanity check was needed will
be given in the next section.

An example of estimates made at successive packet arrivals is
given in figure 8. The performance is very satisfactory: the al-
gorithm succeeds in filtering out the noise in the naive estimates
(shown in the background), producing estimates which are only
around 30µs away from the reference values.
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Figure 8: Time series of θ̂i using the algorithm (without lo-
cal rates) against reference values, with naive estimates in the
background. The isolated jumps in the reference values are due
to timestamping noise in the (uncorrected)Tf,i.

In figure 9 the central curve shows the median of the difference of
the estimates from the corrected reference valuesθg(t), as a func-
tion of τ ′, calculated over the entire 3 weeks. It is around 28µs over
a wide range of window sizes, and the inter-quartile range (the lines
above and below) is likewise very small, of the order of 11µs for the
optimal value atτ ′/τ∗ = 0.5, again with low sensitivity to window
size. Even the range from the topmost (99th percentile) to the bot-
tommost (1st percentile) curve is only of the order of 50µs. Given
that our best current evaluation of the path asymmetry is around
∆ ≈ 50µs, which implies an ambiguity in offset of∆/2 ≈ 25µs
(equation (18)), and that timestamping issues limit the verifiability
of our results to around 5µs in any case, figure 9 suggest that the
algorithm is working very well in eliminating the variability in net-
work delay. Essentially identical results were obtained over the 3
month period of continuous monitoring (with gaps, see section 6)
usingServerInt, of which the current 3 week trace is a subset.

Figure 9(a) also compares the estimation with and without the
use of local rates. The differences are marginal, with localrate we
only gain some immunity to the effects of choosing a window size
too large. In either case, the insensitivity of the results to the precise
value ofτ ′ is encouraging, and the fact the optimum is close toτ ′ =
τ∗ is precisely what we would expect from our SKM formulation,
and a natural validation of it.

Figure 9(b) examines the results as a function of the qualityas-
sessment parameterE. Again very low sensitivity is found, with
optimal results being achieved at a small multiples ofδ, as one
would expect. Sinceτ ′ = τ∗/2 here, the fact that using local rates
makes a negligible difference is consistent with figure 9(a).

We also performed sensitivity analyses with respect to the aging
rate parameterε, and the local rate window width̄τ . For each, the
sensitivity is so low for this relatively well behaved data that they
could be omitted entirely with little effect. These refinements bring
tangible benefits only under certain conditions, such as high loss,
where packets in theτ ′ window may be much further in the past
than intended (see ‘lost packets’ in section 6.1), or when parame-
ters have not been optimised for a given set of circumstances. For
example we found that using local rate also helped stabiliseesti-
mates whenE was selected too low.

We next examined the performance of the algorithm with respect
to polling period. We do not give results using the local raterefine-
ment (they were very similar). We compare the period of 16 sec-
onds used so far with others, including the usual range of allowed
default values: 64 to 256. The sensitivity results with respect to
τ ′ were very similar to those reported in figure 9(a), although the
optimal ‘kink’ position moves to slightly larger values. The results
for E were unchanged beyond a slight spreading of the error distri-
bution.

We now keep the other parameters fixed atτ ′ = τ∗, E = 4δ,
and ε = 0.02 PPM and vary the polling rate. Figure 9(c) shows
again that the sensitivity is very low. In particular the median error
(thick central line) only changed by a few microseconds despite a
reduction of raw information by a factor of 32 across the plot. This
is significant since it is essential that NTP servers not be excessively
loaded. It also reduces the memory and computational burdenat the
host.

Finally, we examine the performance of the algorithm over the
four different traces, representing different host-server environments,
used in figure 3. We useτ ′ = τ∗, E = 4δ, andτ̄ = 5τ∗, and a
polling period of 64. We see the reduction in variability when mov-
ing from the laboratory into the more stable machine room, and
a further improvement when moving fromServerInt to the even
closer local server. The jump in median error whenServerExt is
used is due to the much increased path asymmetry. As before, the
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Figure 9: Sensitivity analysis of offset estimate errors with respect to key parameters: (a) window sizeτ ′, (E = 4δ, with and without
local rate: τ̄ = 20τ∗) (b) quality assessmentE (τ ′ = τ∗/2, with and without local rate: τ̄ = 20τ∗), and (c) polling period (τ ′ = τ∗,
E = 4δ without local rate). From top to bottom the curves are the 99%, 75%, 50% (the median) 25% and 1% percentiles of the
empirical errors θ̂(t) − θg(t) . The sensitivity is very low in each case.
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Figure 10: Performance over four different operating envi-
ronments (same data sets as figure 3). Top to bottom: 99%,
75%, 50% 25% and 1% percentiles of the empirical errors
θ̂(t) − θg(t).

error is approximately∆/2 using the values from table 2, much
smaller than the round-trip time of14.2 ms. The increased vari-
ability is due to the higher noise resulting from the larger number
of hops, making quality packets much rarer. We should recallat
this point that here we are testing the algorithm in the extreme case
of a server that is much further away in all senses than necessary.

6. A ROBUST WORKING SYSTEM
In this section we address additional issues that are important to

complete the algorithms, and present results from a workingon-
line implementation written inC. We also describe additional ro-
bustness issues and our solutions to them. For space reasons, we
cannot present detailed flow diagrams. Full details will be made
available at [7] by way of a heavily structured and commentedref-
erenceC implementation.

6.1 Additional Issues
Warmup Phase: Each part of the estimation algorithms which
uses a window, or requires a minimum quality to first be reached,
needs a ‘warm up phase’ during which the full window of data
and/or quality is established for the first time. We describebriefly

the main features of our approach, under the assumption thatesti-
mates must be made available immediately (offset and the absolute
clock from the first packet, and̂p and the difference clock from the
second).

• r̂(t): Requires no warmup, but point error estimates based
on it should not be trusted for small sample size→ define
warmup windowTw calibrated innumber of RTT samples.

• p̂(t): In Tw, use a local rate type algorithm to exploit∆(t)
increase whilst managing delay errors, where the width of
the near and far windows is initially 1 and grows as∆(t)/4.
The first estimate is just the naive estimatep̂2,1. After Tw,
the initialisation of section 5.2 applies. There are interac-
tions with windowing and level shift detection which must
be carefully managed.

• pl(t): Just a refinement, so no special warmup→ only acti-
vated once a full window̄τ availableafter Tw.

• θ̂(t): In Tw, the quality assessment parameterE is increased,
and the SKM window is filled up, otherwise no change. The
first estimate is just the server timestampTb,1.

Windowing: As discussed at the end of section 4.1, despite the
high stability of the CPU oscillator, conditions may changeover
time for many reasons, and so one must eventually forget the past.
This is also necessary in practice in order to limit the amount of
per-packet historical data thatmay be stored. We implement this
as a top level ‘sliding’ window of widthT , updated at intervals of
T/2 to limit the computational burden. We setT to 1 week below.

The top level window only impacts directly on̂p(t) and the min-
imum estimatêr(t), asp̂l(t) andθ̂(t) are already based on limited
(and much smaller) windows. When the window reaches full size,
the oldest half of the data is discarded and the updates occuras
follows:

• r̂(t): This operation is performed first. A new value is cal-
culated (actuallywas calculated on-line) based on the full set
(nowT/2 wide) of historical data. If an upward level shift(s)
occurred during the window (see below), then the new value
will be based only on values beyond the last detected shift
point.

• p̂(t): If the first packetj of the current pair defining the
estimate was discarded, then it is replaced by the first packet
in the new window of similar or better point quality. The
total quality using the new pair (which will be high as∆(t)



will be of the order ofT/2) is then calculated, and̂p(t) is
updated if it exceeds the current quality.

Re-evaluation of Point Errors: Whenever the estimateŝp(t) and
r̂(t) are updated the past point errors effectively change, whichim-
pacts on estimates of all quantities. For the purposes of future es-
timates the new point errors are used, however for simplicity we
do not retrospectively alter estimates already calculated. For rate
estimates, this means that the current packetsj andi used in the es-
timate may actually be rejected if they were assessed again.We do
not do so: they remain the current indices, however the quality of
the rate estimate is reassessed and used as normal in the algorithms.

The above principle holds true regardless of the cause of a change
in p̂(t) andr̂(t): normal on-line updating, window change, or level
shift (see below).

Clock Offset Consistency: Updating p̂(t) effectively redefines
the C(t) and results in a jump in the offset estimate. Although
this is cancelled in the absolute clockCa(t) of equation (7), we
preserve the continuity of̂θ(t) by adding TSC(t−)(p̂(t−) − p̂(t))
to the constantC, effectively redefining the clock again so it agrees
with the old one just before the update.

Lost Packets: Any lost packets are simply excluded from the
analysis. The windows:(τ∗, τ ′, τ̄ , T, Ts), although nominally de-
fined as time intervals, are in practice based on maintaininga fixed
number of packets calculated by dividing the nominal interval size
by the known polling period. As the proportion of lost packets is
typically very low, this results in very little drift in the control of
time-scale, and greatly simplifies the details of the algorithms.

To guard against the possibility of loss of time-scale control when
using the local rate refinement, theTf,i timestamps are used to mon-
itor the time since the previous packet. If it is too large compared
to the local rate scale (we use a thresholdgap size ofτ̄/2) then the
local rate is deemed out of date and is not used. Furthermore,if
in addition the quality of packets in the window is too low (inthe
precise sense defined in point (iii) of the algorithm in section 5.3),
the estimate is formed slightly differently in order to increase the
importance of the new data: a weighted sum is made between the
new naive estimate, using its point error, and the most recent θ̂(t),
using an aged form of its estimated error.

Figure 12 summarises the performance of the full on-line algo-
rithm over a continuous 3 month period for standard default polling
periods of 64 and 256 seconds. During this time, two major gaps
occured in our trace collection, of duration around 1.5 hours and
3.8 days, in addition to a server error event. Despite these anoma-
lies, the performance remained uniformly very good to excellent,
and did not change greatly with polling rate.
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Figure 12: Performance of offset errors over a 3 month period
using ServerInt, with polling period: 64 (left) and 256 (right)
seconds. The histograms shows exactly 99% of all values (note
scale change).τ ′ = 2τ∗
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Unforseen Events: There is a need to ensure robustness to un-
foreseen and extreme events including loss of connectivity, a change
in the route to host or a change in server, unexpected change of the
temperature environment, or even errors in the server’s clock.

As it is impossible to forsee all scenarios, it is important that the
robustness is built in in very generic ways, rather than via dedicated
algorithmic branches. Many such robustness features have already
been described in the previous section. An important additional
consideration which we have yet to address is that of level shifts in
the data, which can occur due to route or server changes. Exam-
ples of each of these occured in our experimental data. Due toits
importance and relative complexity we devote the next subsection
to this topic.

Figure 11 zooms in on extreme events which occurred during
a continuous measurement period which extends that of figure12
to include an additional gap of 6 days, followed by the changeto
ServerLoc for 1 week, and then toServerExt. Figure 11(a) demon-
strates the fast recovery of the algorithm even after the 3.8day gap
in data collection (simulating server unavailability). Figure 11(b)
shows the impact of a server error lasting a few minutes, during
whichTb,i andTe,i were each offset by 150ms. As errors in server
timestamps do not affect the RTT measurements at the host, this is
very difficult to detect and account for. However, the offset(and
local rate) sanity check algorithm was triggered, which limited the
damage to a millisecond or less.

6.2 Robustness to Level Shifts
By level shift we mean principally a change in any of the mini-

mum delaysd→, d↑ or d← (see equation (12)), and hencer, which
results in a change in minimum level in some or all of the observed
d→i , d↑i , d←i or ri. We will continue to restrict ourselves to RTT as
the basis of packet quality measurement, and therefore level shift
detection.

We first discuss the key issues governing level shifts.

Asymmetry of shift direction:
These are fundamentally distinct and must be treated differently:
Down: congestion cannot result in a downward movement, so the
two can be unambiguously distinguished→ easy detection.
Up: indistinguishable from congestion at small scales, becomes
reliable only at large scales→ difficult detection.

Asymmetry of detection errors:
The impact of an incorrect decision is dramatically different:
Judge quality packet as bad: an undetected upward shift looks like
congestion, to which the algorithms must already be robust→ non-
critical.
Judge bad quality packet as good: falsely interpreting congestion
as an upward shift immediately corrupts estimates, perhapsvery
badly→ critical to avoid.

Asymmetry of offset and rate:
Offset: underlying naive estimateŝθi remain valid to the θ̂(t) al-
gorithm even after a future shift.→ store past estimates and their
point errors relative to thêr estimate made at the time.
Rate: p̂ and p̂l estimates are made between apair of packets, so
must compare them using a common point error base→ use point
errors relative to current error level (after any shifts).

If the procedures of the last paragraph are followed, few addi-
tional steps are needed to assemble a robust detection and reaction
scheme for level shifts.
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Figure 11: Performance of algorithm under extreme conditions (smooth thicker curves are reference offsets, variable curves with
arrows are estimated offsets): (a) loss of data over 3 days, (b) level shift error of 150 ms in the server clock (triggers sanity check),
(c) artificial temporary and permanent upward level shifts inducing change in∆, (d) real permanent downward level shift using
ServerExt with ∆ constant.τ ′ = 2τ∗, τ̄ = 5τ∗, Ts = τ̄/2.

The Level Shift Algorithm:
The two shift directions are treated separately:

Down:
Detection: Automatic and immediate when usinĝr.
Reaction: Offset: no additional steps required.
Rate: No additional steps required. The algorithms will seethe
shift as poor quality of past packets and react normally. In time, in-
creasing∆(t) and windowing will improve packet qualities again.

Up:
Detection: Based on maintaining a local minimum estimater̂l over
a sliding window of widthTs. Unambiguous detection is difficult
and the consequences of incorrect detection serious. We therefore
chooseTs large,Ts = τ̄ /2, and detect a shift (att = C(Tf,i)−Ts)
if |r̂l − r̂| > 4E.
Reaction: First updatêr = r̂l (and on-line window estimate), and
recalculatêθi values and reassess their point qualities back to the
shift point. Otherwise no additional steps required. Before detec-
tion, the algorithms will see the packets as having poor quality, and
react as normal. Since the window is large, estimates may start to
degrade toward the end of the window.

In figure 11(c) two upward shifts of0.9ms were artificially intro-
duced. The first, being underTs in duration, was never detected and
makes little impact on the estimates. The second was permanent.
Occurring at80.04 days, it was detected a timeTs later, resulting
in a jump in subsequent offset estimates (the original on-line es-
timates, not the recalculated ones, are shown). Most of thisjump
is due not to estimation difficulties resulting from the shift but to
the change in∆ of 0.9/2 = 0.45 ms, as the shifts were induced
in the host→server direction only. In constrast, the natural perma-
nent shift in figure 11(d) occurs equally in each direction, so that
∆ does not change, and is also downward, so that detection and
reaction are immediate. The result is no observable change in es-
timation quality, the shift is absorbed with no impact on estimates
and with no level-shift specific actions being taken.

7. CONCLUSION
We have presented a detailed reexamination of the problem of

inexpensive, convenient yet accurate clock synchronization for net-
worked PCs. It is based on a thorough understanding of the sta-
bility of the CPU oscillator as a timing source, accessible via the
TSC register. Using the NTP server network together with TSC
timestamps, we showed how to calibrate a clock based on the TSC
both in terms of rate, essential to the measurement of time differ-
ences, and offset, that is absolute time. We explained the impor-
tance of maintaining distinct software clocks for each of these dis-
tinct tasks. Our approach is new in several respects, notably in its

being explicitly rate rather than offset-centric, grounded in a mean-
ingful time-scale analysis of the drift in the underlying hardware,
and through the development of filtering algorithmns built explic-
itly on the above with relatively few additional ad-hoc elements.
Together these allow considerably higher levels of accuracy and
more importantly, reliability.

Using months of real data from 3 different NTP servers, we pro-
vided a systematic and thorough testing of the algorithm, its ab-
solute performance and sensitivity to parameters. Using a nearby
server, we were able to reliably absolutely synchronize to the order
of 30µs, and obtain rate accuracy of around 0.02 PPM. We demon-
strated the robustness of the techniques to such effects as packet
loss and loss of server connectivity, changes in server, network con-
gestion, temperature environment, timestamping noise, and even
faulty server timestamps. The approach should allow many appli-
cations requiring accurate and reliable timing, in particular network
measurement, to do away with the cost of hardware based synchro-
nization, such as using GPS receivers. The stability analysis, fil-
tering principles, and algorithms discussed here also provide a firm
basis for a new generation of software clock, with NTP serverbased
synchronization, for networked PCs and other devices. Theycould
easily be adapted for use with other kinds of oscillators, and other
kinds of reference time servers. They could also be used to im-
prove the existing SW clock, however the simplest way to do sois
to simply replace it with a complete TSC-NTP clock solution.

Both the RIPE NCC Test Traffic Measurement project [6], and
CAIDA’s Skitter project [13], have agreed to trial the methods de-
scribed here, the former to enable the expensive GPS component to
be replaced (or made more reliable by replacing the SW-GPS with
a ‘TSC-GPS’ clock), and the latter to replace the existing SW-NTP
solution which was found to be unreliable. In future work we hope
to collaborate with RIPE NCC and CAIDA to benchmark the per-
formance of their implementations, and comprehensively compare
them to those of the original clocks. Software will be made avail-
able for download, for trial and use by the community at [7]. It is
expected that a version will be available in time for IMC-2004.
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