
Polynomial Constraints for
Sets with Cardinality Bounds

Bruno Marnette1, Viktor Kuncak2, and Martin Rinard2

1 ENS de Cachan, France
bruno@marnette.fr

2 MIT CSAIL, Cambridge, USA
{vkuncak,rinard}@csail.mit.edu

Abstract. Logics that can reason about sets and their cardinality bounds are use-
ful in program analysis, program verification, databases, and knowledge bases.
This paper presents a class of constraints on sets and their cardinalities for which
the satisfiability and the entailment problems are computable in polynomial time.
Our class of constraints, based on tree-shaped formulas, isunique in being simul-
taneously tractable and able to express 1) that a set is a union of other sets, 2)
that sets are disjoint, and 3) that a set has cardinality within a given range. As the
main result we present a polynomial-time algorithm for checking entailment of
our constraints.

1 Introduction

Hierarchical representations of sets of entities are ubiquitous in computer science, aris-
ing in programming languages, program analysis, software engineering and knowledge
bases. When considering a class of constraints, we are interested in two main questions:

- satisfiability: is a set of constraints consistent (satisfiable)?
- entailment: does one set of constraints imply (entail) another set of constraints?

Note that a solution to the second problem is also a solution to the first problem: check-
ing whether a set of constraints entails a fixed contradictory constraint solves the satis-
fiability problem.

In object-oriented programming and software modelling, set hierarchies model clas-
sification of entities into classes and are an important component of object models rep-
resented using notations such as UML [10] and Alloy [13]. Theentailment problem for
set hierarchies arises when checking, for example, that oneUML diagram is a refine-
ment of another diagram. Satisfiability checking can detectcontradictory constraints
that indicate an error in the model or system requirements.

Set hierarchies are also essential in knowledge representation [23]. Entailment check-
ing allows one to check that the classification in a particular knowledge-base is a con-
sequence of the classification in a more general ontology.

Recently, researchers have considered the (typestate) generalization of static class
hierarchies in object-oriented languages to dynamically changing hierarchies of sets
of objects [9, 16]. Using the ideas of [18], we can staticallyapproximate dynamically
changing set hierarchy at each program point by propagatingconstraints between sets
of objects using a data-flow analysis. A modular approach to such analysis needs to
check that 1) each procedure precondition is satisfied at each procedure call site, and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147929826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2) the postcondition holds at the end of each procedure. Whenthe propagated informa-
tion encodes a set hierarchy, these two checks require deciding the entailment of such
hierarchies.
Sets with cardinality constraints. One often wishes to express constraints not only
on sets but also on certain distinguished elements of these sets. A simple and unified
way to reason about elements is to represent them as sets of cardinality one. Similarly,
it is often desirable to state that a set is non-empty or, moregenerally, that the number
of its elements is within given bounds. This motivates the use of cardinality constraints
on sets that participate in hierarchies.

We have previously considered expressive logics that can express such constraints
by combining the Boolean Algebra of sets with a cardinality operator and Presburger
Arithmetic [17], [15, Chapter 7]. However, the NP-hardnessof these constraints po-
tentially limits their practical use, which motivated us tofind constraints that have
polynomial-time algorithms. The result is the class presented in this paper, for which
we construct a polynomial-time algorithm for entailment (and therefore satisfiability).
This class can express a combination of constraints that, tothe best of our knowledge,
cannot be represented using existing polynomial-time formalisms (see Section 6).
Our result. We call our notion of set hierarchyitree, standing forinclusion tree, be-
cause the edges in the hierarchy represent set inclusionB ⊆ A and because the inclu-
sion edges in an itree form an inverted tree. Moreover, an itree can specify that a set is
covered by some of its subsets (A = B ∪C ∪D), or/and that these subsets are pairwise
disjoint (B ∩C = C ∩D = B ∩D = ∅). An itree can also specify multiple orthogonal
divisions of one set into subsets, such asA = B∪C∧A = D∪E∧D∩E = ∅. Finally,
an itree can specify constant cardinality constraints on sets, such as1 ≤ |A| ≤ 10000.
Our algorithm checks entailment of conjunctions of such constraints.

The key idea of our polynomial-time algorithm is to define a notion of normal
form where each tree node satisfies certain local constraints. We show that this nor-
mal form can be enforced in polynomial time using a set of rewrite rules. We then give
polynomial-time conditions for checking whether a normalized itree implies a given
constraint on variables. This yields an algorithm for checking whether an itree implies
a conjunction of such constraints, and we show that an itree can always be represented
as a conjunction of quantifier-free constraints. We therefore obtain a polynomial entail-
ment test for itree constraints.
Contributions. The contributions of our paper include the following:

– We introduce itree constraints for expressing hierarchiesof sets, and permitting a
simple form of existential quantification over sets (Section 2.2).

– We show that generalizing the definition of itrees to permit acyclic graphs yields
constraints whose satisfiability is NP-hard (Section 2.3).

– We give a polynomial-time algorithm for checking the satisfiability of itrees by
proving sufficient conditions for the existence of their models (Section 3).

– We give a polynomial-time algorithm for checking whether anitree entails a given
cardinality, inclusion or disjointness constraint (Section 4).

– We show that the quantifiers in an itree can be eliminated, which, with the previous
result, gives polynomial-time entailment for itrees (Section 5).

A preliminary version of the current polynomial-time results (including proofs) appears
in the technical report [20], using the same ideas but slightly different definitions. Due

2

to space limitations we here present only proof outlines, describing the main ideas and
revealing the underlying algorithms.

2 Constraints on sets and their graphical representation

The constraints that we consider in this paper are expressible using existentially quan-
tified conjunctions of boolean algebra formulas whose variables range over sets of un-
interpreted objects. We call these formulas Conjunctive constraints on Sets with Cardi-
nalities and denote themCSC.

Definition 1. CSC formulas are given by the following syntax:

φ ::= ∃ν1, . . . , νn. P1 ∧ . . . ∧ Pm
P := S1 ⊆ S2 | S1 ∩ S2 = ∅ | |ν|≤k | |ν|≥k
S := s | ν | S1 ∪ S2

Variables inCSC formulas denote sets and can be free set variables (denoteds, s′, si)
or bound set variables (denotedν, ν′,νi). Sets inCSC formulas are denoted by variables
or unions of variables. Cardinality constraints apply onlyto bound variables.

Lemma 1. Satisfiability ofCSC formulas is NP-hard.

Lemma 1 holds becauseCSC can express boolean algebra constraints on subsets of
a fixed set variableU . Namely, union together with disjointness fromU can define
set complement; union and complement then allow encoding arbitrary propositional
operations.

2.1 Graph representationIGRAPH for CSC

As a first step towards identifying polynomial constraints,we introduce a representa-
tion of CSC by igraphs(standing forinclusion graphs). In the following definition of
igraphs, the nodesVN are bound set variablesν and the edges represent the subset
inclusion of sets. Nodes are tagged with cardinality constraints and withmode symbols
establishing additional constraints between a node and itsdirect sons. Ifν is tagged with
the mode symbol©, the sons ofν are pairwise disjoint. Ifν is tagged with the mode
symbol�, the sons{ν1, . . . , νn} of ν cover entirelyν, that isν ⊆ ∪iνi. If ν is tagged
with the mode symbol�, thenν is equalto each of its sons. When a setν participates in
several atomic formulas, we can use the�mode to introduce synonyms forν. Finally, a
mappingσ establishes equalities between free set variabless ∈ SN and bound variables
ν ∈ VN. It also enables the encoding of set emptiness using a special symbol∅I .

Definition 2 (IGRAPH). An igraphG ∈ IGRAPH is either thefalse igraph⊥I or a
tuple(SN,VN, ,CInf,CSup,M, σ) such that

SN andVN are two disjoint sets of set variables

(VN,) is a directed graph

CInf : VN → N (N = {0, 1, 2, . . .})

CSup : VN → N ∪ {∞} (∀k ∈ N. k <∞)

M : VN → P({�,�,©})

σ : SN → VN ∪ {∅I}

3

The setSN corresponds to the free variabless of G. The elements ofVN correspond
to the bound variablesν and are also callednodesby graph analogy.P({�,�,©})
denotes the set of subsets of{�,�,©}. We writeν ν′ when(ν, ν′)∈ . We define
the set ofsonsof ν ∈ VN by Sons(ν) = {ν′|ν′ ν} and theincoming degreeof ν by
d(ν) = |Sons(ν)|.

Definition 3 (IGRAPH semantics).The semanticsSem(⊥I) of thefalse igraph⊥I is
by definition the formulafalse. With each igraphG 6=⊥I we associate a quantifier-free
CSC formulaSem0(G) as follows:

Sem0(G)
def
=

∧



































∧

{ν′⊆ν
∣

∣ ν, ν′∈VN ∧ ν′ ν}
∧

{ν′=ν
∣

∣ ν, ν′∈VN ∧ ν′ ν ∧ �∈M(ν)}
∧

{ν⊆
⋃

Sons(ν)
∣

∣ ν∈VN ∧ �∈M(ν)}
∧

{ν′∩ν′′=∅
∣

∣ ν∈VN ∧ ν′, ν′′∈Sons(ν) ∧ ν′ 6=ν′′ ∧©∈M(ν)}
∧

{CInf(ν)≤|ν|≤CSup(ν)
∣

∣ ν∈VN}

The semanticsSem(G) ofG is then:

Sem(G)
def
= ∃ν1, . . . , νn. Sem0(G) ∧

∧

s∈SN

{

s = ∅, if σ(s) = ∅I
s = ν, if σ(s) = ν

Figure 1 gives an example of an igraphG (represented graphically) with its semantics
Sem(G). Given two igraphsG andG′ we writeG |= G′ iff Sem(G) entailsSem(G′)
and we writeG ≡ G′ when bothG |= G′ andG′ |= G. We say thatG is satisfiable
iff Sem(G) is satisfiable. We also use the symbols|= and≡ to compare igraphs and
CSC formulas, identifying igraphsG with their semanticsSem(G). To avoid confusion
between the syntax and the semantics of formulas we use square brackets around for-
mulas. Thus, in the following sections,[ν = ν′] denotes an equality between two sets
while ν=ν′ only states thatν andν′ are the same variable symbol (or the same node).

By construction, the semantics of an igraph is expressible by a CSC formula. The
following lemma shows that the converse holds as well.

Lemma 2. For eachφ ∈ CSC we can compute in linear time an equivalent igraph.

As a consequence, the satisfiability of igraphs is also NP-hard.

2.2 Definition of itrees

We can now define our subclass of tree-shaped igraphs. We callthis subclassitrees.
Polynomial-time algorithms for satisfiability and entailment of itrees are the subject of
this paper.

Definition 4 (ITREE). A generalized itree(gitree)T is either the false igraph⊥I or an
igraphG ∈ IGRAPH such that(VN,) is a tree, oriented from the leaves to the root.
An itree is a generalized itree such that, for eachν ∈ VN

σ−1(ν) = ∅ ⇒ CInf(ν) = 0 ∧ CSup(ν) = ∞ (QE)

4

sMEDIA, ν0

[0..90]
�

νcontent

�

sVIDEO, sMOVIE, ν1

[5..∞]
sMUSIC, ν2

[25..∞]

νfile

�

νtype

©

sMP3, ν3 sAVI, ν4

νsize

�, ©

sSMALL, ν5

[0..50]
sBIG, ν6

[0..15]

∅I , sCENSORED

Sem(G) =
∃ν1, ν2, ν3, ν4, ν5, ν6,

νcontent, νfile, νtype, νsize.

νcontent⊆ν0 ∧ νfile⊆ν0∧
ν1⊆νcontent ∧ ν2⊆νcontent∧
νtype⊆νfile ∧ ν3⊆νtype∧
ν4⊆νtype ∧ νsize⊆νfile∧
ν5⊆νsize ∧ ν6⊆νsize

ν0 =νcontent =νfile ∧
νfile =νtype =νsize ∧
νcontent =ν1 ∪ ν2∧
νsize =ν5 ∪ ν6 ∧

ν3 ∩ ν4 =∅ ∧
ν5 ∩ ν6 =∅ ∧
|ν0|≤ 90 ∧ |ν1|≥5 ∧
|ν2|≥25∧

|ν5|≤ 50 ∧ |ν6|≤15 ∧
sMEDIA =ν0 ∧ sMOVIE =ν1∧
sVIDEO =ν1 ∧ sMUSIC =ν2∧
sMP3 =ν3 ∧ sAVI =ν4∧
sSMALL =ν5 ∧ sBIG =ν6∧
sCENSORED =∅

Fig. 1. An example of itree (a particular case of igraph) and its semantics

Thanks to the tree-shape condition, itrees (and even generalized itrees) satisfy some
important properties that are not true for general (or acyclic) igraphs. For example, it
follows from Lemma 10 of Section 4.2 that the semanticsφ of an itree always satisfies,
for all set variabless1, s2, s3, the following property:

φ |= [s1 ⊆ s2 ∧ s1 ⊆ s3] ⇒
(

φ |= [s1 = ∅] ∨ φ |= [s2 ⊆ s3] ∨ φ |= [s3 ⊆ s2]
)

This property allows us to prove, for example, that theCSC formula[A ⊆ B ∧A ⊆ C]
is not expressible as a (generalised) itree. Therefore, theclassITREE is a strict subclass
of IGRAPH and is a good candidate for a more efficient fragment ofIGRAPH.

TheQE condition (standing forquantifier elimination) in the definition ofITREE

ensures that the semantics of itrees can in fact be expressedusing a quantifier-freeCSC

formula, as proved in Section 5. Note that a sufficient condition forQE is thatσ−1(ν) 6=
∅ for eachν ∈ VN.

Because we can check whether a graph is a tree by depth-first traversal of the graph,
we have the following result.

Lemma 3. Deciding whether a given igraphG ∈ IGRAPH is an itree (G ∈ ITREE)
can be done in linear time.

2.3 Hardness of acyclic igraphs

We have observed that satisfiability of igraphs is NP-hard. In contrast, we prove in the
rest of this paper that itrees have polynomial-time satisfiability and entailment prob-

5

lems. A natural question to ask is whether we could obtain polynomial-time algorithms
for igraphs where inclusions are acyclic but not tree-like.The following lemma (see
also [20, Section 4, Lemma 4]) suggests a negative answer to this question.

Lemma 4. Let IDAG denote the class of igraphs for which(VN,) is a directed
acyclic graph (DAG). For each igraph inIGRAPH we can compute in polynomial time
an equivalent igraph inIDAG. Therefore, satisfiability inIDAG is NP-hard.

The essence of the proof of Lemma 4 is that we can collapse (in polynomial time)
cycles in an igraph to obtain an equivalent acyclic igraph. In addition to NP-hardness of
the class of acyclic igraphs, we can prove NP-hardness for several subclasses ofIDAG,
using the construction in [20, Section 5, Theorem 2]. We therefore believe that consider-
ing tree-like restrictions on igraphs is a reasonable approach to identifying polynomial
constraints.

3 Deciding satisfiability of generalized itrees in polynomial time

This section gives a linear-time algorithm for satisfiability of generalized itrees. This
result is a first step to an algorithm for checking entailment, which we describe in Sec-
tion 5, building on the results in this section. Moreover, the satisfiability algorithm is of
interest in itself.

We proceed by first showing (Lemma 5) that the bottom-up propagation of con-
straints (rewriting rulesR1 andR2) allows transforming in linear time any gitreeT
into an equivalent gitreeR↓

2
(T) such that eithera) R↓

2
(T) =⊥I , in which caseT is

clearly unsatisfiable, orb) R↓
2
(T) satisfies two propertiesC1 andC2. We then show

(Lemma 6) that any gitree for whichC1 andC2 hold is satisfiable. As a result, we
can decide in linear time whetherT is satisfiable by first computingR↓

2
(T) and then

returningsatisfiableif and only if R↓
2
(T) is different from⊥I .

Lemma 5. For each gitreeT we can compute in linear time an equivalent gitreeR↓
2
(T)

such that eitherR↓
2
(T) =⊥I or R↓

2
(T) satisfies (for each nodeν) both:

M(ν) ∈ {∅, {�}, {©}, {�}, {©,�}} (C1(ν))

and BUInf(ν) ≤ CInf(ν) ≤ CSup(ν) ≤ BUSup(ν) (C2(ν))

where, forSons(ν)={ν1, . . . , νn},

BUInf(ν)
def
=

{
∑

i CInf(νi), if © ∈ M(ν)
maxi CInf(νi), otherwise

BUSup(ν)
def
=







mini CSup(νi), if � ∈ M(ν)
∑

i CSup(νi), if � ∈ M(ν)
∞, otherwise

Proof. Such a formR↓
2
(T) can be obtained fromT in two steps. The first steps consists

in simplifying the mode combinations by applying the following rewriting ruleR1 to

6

every node (in any order).

if apply

d(ν) = 0 M(ν) := (M(ν) − {�})
d(ν) ≤ 1 M(ν) := (M(ν) − {©})
d(ν) ≥ 1 M(ν) := (M(ν) − {�})
� ∈ M(ν)
d(ν) ≥ 2 M(ν) := (M(ν) − {©})
{�,©} ⊆ M(ν) ∀ν′∈Sons(ν), CSup(ν′) := 0

(R1(ν))

The second step consists in applying the ruleR2 below to every node, proceedingfrom
the leaves towards the root, in order to 1) refine the cardinality bounds and 2) recognize
the contradictory bounds such thatCInf(ν) > CSup(ν).

CInf(ν) := Max(CInf(ν),BUInf(ν))
CSup(ν) := Min(CSup(ν),BUSup(ν))
If CInf(ν) > CSup(ν) then T :=⊥I

(R2(ν))

�

ν1, s1

[2..4]
�,�

ν2

[0..4]
�

ν4

[0..2]

ν3

[2..4]
©

ν5

[3..∞]

R1(ν1)
R1(ν3)

=⇒

ν1, s1

[2..4]
�

ν2

[0..4]
�

ν4

[0..2]

ν3

[2..4]

ν5

[3..∞]

R2(ν2)
R2(ν3)

=⇒

ν1, s1

[2..4]
�

ν2

[0..2]
�

ν4

[0..2]

ν3

[3..4]

ν5

[3..∞]

R2(ν1)
=⇒

ν1, s1

[3..2]
�

ν2

[0..2]
�

ν4

[0..2]

ν3

[3..4]

ν5

[3..∞]

R2(ν1)
=⇒ ⊥I

Fig. 2. Example ofR1 andR2 derivation

We say thatCi holds forT (i.e. “T satisfiesCi”) iff Ci(ν) holds for each nodeν of T .

Lemma 6. Every gitreeT 6=⊥I for which bothC1 andC2 hold is satisfiable.

Proof. We first note that a gitreeT such thatT 6=⊥I is satisfiable if and only if there
exists a model forSem0(T). Indeed, a model(∆,α : VN → P(∆)) for Sem0(T) can
be turned into a model(∆,α′ : SN → P(∆)) for Sem(T) by takingα′(s) = ∅ when
σ(s) = ∅I andα′(s) = α(σ(s)) whenσ(s) ∈ VN.

WhenT satisfies bothC1 andC2 we can build a model forSem0(T) in two steps.
We first choose (in linear time) relevant cardinalitiesψ(ν) ∈ N for the nodesν, pro-
ceedingfrom the root to the leaves. More precisely, we takeψ(ν) = CInf(ν) for the
root ν of T and define recursively the valuesψ(νi) for the sonsνi of a nodeν, for a

7

chosen ordering ofSons(ν) = {ν1, . . . , νn}, and by induction oni = 1..n:

ψ(νi)
def
=























CInf(νi) if M(ν) = ∅
CInf(νi) if M(ν) = {©}
ψ(ν) if M(ν) = {�}
min(CSup(νi), ψ(ν)) if M(ν) = {�}
min(CSup(νi), ψ(ν)−Σ

i′<i
ψ(νi′)−Σ

i′>i
CInf(νi′)) if M(ν) = {©,�}

The conditionsC1 andC2 guarantee that this cardinality choice satisfies the following
propertyHψ for every nodeν such thatSons(ν) = {ν1, . . . , νn}:

CInf(ν) ≤ ψ(ν) ≤ CSup(ν)
∧

i ψ(νi) ≤ ψ(ν)
� ∈ M(ν) ⇒

∧

i ψ(νi) = ψ(ν)
© ∈ M(ν) ⇒

∑

i ψ(νi) ≤ ψ(ν)
� ∈ M(ν) ⇒

∑

i ψ(νi) ≥ ψ(ν)



















(Hψ(ν))

When a cardinality choice satisfyingHψ(ν) for all nodesν of T is chosen, the
second step consists in building for every nodeν, taken from the leaves to the root, a
model for the formulaSem0(T |ν) whereT |ν denotes the sub-itreeT |ν of T of root ν.
The role played byHψ(ν) in this construction is the following: the propertyψ(νi) ≤
ψ(ν) ensures that the sonνi of ν is small enough to fit inν; whenM(ν) = {�}, the
propertyψ(νi) = ψ(ν) ensures that the sonsνi of ν have the right cardinality to be
made equal toν; when© ∈ M(ν) the property

∑

i ψ(νi) ≤ ψ(ν) ensures that the
disjoint union of the sons ofν can fit inν; when� ∈ M(ν), the property

∑

i ψ(νi) ≥
ψ(ν) ensures that the sons ofν contain enough elements to cover entirelyν; the property
CInf(ν) ≤ ψ(ν) ≤ CSup(ν) ensures that the cardinality constraints are not violated.�

Corollary 1. A gitreeT is satisfiable iffR↓
2
(T) 6=⊥I .

Corollary 2. We can decide the satisfiability of a gitree in linear time.

4 Entailment of quantifier-free formulas

The goal of this section is to show that for every gitreeT (and, in particular, for every
itreeT ∈ ITREE), and every formulaφ from a quantifier-free fragmentQFCSC of CSC

defined below, we can decide whetherT entailsφ in polynomial time.

Definition 5 (QFCSC). φ ::= P1 ∧ . . . ∧ Pm
P := S1 ⊆ S2 | S1 ∩ S2 = ∅ | |s|≤k | |s|≥k
S := s | S1 ∪ S2

BecauseQFCSC formulas are conjunctions of atomic formulas, we can decidewhether
T entails a formulaΦ = P1∧. . .∧Pn by checking whetherT |= Pi for all i = 1..n. For
decidingT |= P we start by applying additional rewriting rules that enforce stronger
properties on gitrees than in the previous section. For eachkind of atomic proposition
P (cardinality constraint, inclusion, or disjointness) we then define conditions on nor-
malized gitrees that 1) characterize the propertyT |= P , and 2) are computable in
polynomial time.

8

4.1 Checking cardinality constraints

Analogously to the definition ofBUInf andBUSup (in Lemma 5) we next define for
every nodeν of a gitreeT a lower boundTDInf(ν) and an upper boundTDSup(ν)
for the cardinality ofν, this time corresponding to top-down reasoning. Given a nodeν
such thatν = Root(T) or ν ν′ andSons(ν′) = {ν, ν1, . . . , νn} we define

TDInf(ν)
def
=















0, if ν = Root(T)
0, if M(ν′) ∈ {∅, {�}}

CInf(ν′), if M(ν′) = {�}
CInf(ν′)−

∑

i CSup(νi), if M(ν′) ∈ {{©}, {©,�}}

TDSup(ν)
def
=







∞, if ν = Root(T)
CSup(ν′), if M(ν′) ∈ {∅, {�}, {©}}

CSup(ν′)−
∑

i CInf(νi), if M(ν′) ∈ {{�}, {©,�}}

Lemma 7. For each satisfiable gitreeT we can compute in linear time an equivalent
gitreeR↓

3
(T) satisfyingC1, C2, and, for eachν ∈ VN,

TDInf(ν) ≤ CInf(ν) ∧ CSup(ν) ≤ TDSup(ν) (C3(ν))

Proof. Such a gitreeR↓
3
(T) can be obtained by applying the following ruleR3 to

R↓
2
(T) using a top-down strategy

CInf(ν) := Max(CInf(ν),TDInf(ν))
CSup(ν) := Min(CSup(ν),TDSup(ν))

(R3(ν))

�

Lemma 8 (Checking cardinality constraints).For each gitreeT satisfyingC1, C2

andC3, eachs ∈ SN, and eacha, b ∈ N we have

T |=[a≤|s|≤b] ⇐⇒

{

either σ(s) = ∅I ∧ a = 0
or a≤CInf(σ(s))≤CSup(σ(s))≤b

We can therefore decide whetherT |=[a≤|s|≤b] in linear time.

Proof. For eachT 6=⊥I satisfyingC1, C2, C3, for eachν ∈ VN and for eachk ∈
[CInf(ν),CSup(ν)], the gitreeT|ν|←k obtained fromT by applyingCInf(ν) := k and

CSup(ν) := k satisfiesR↓
2

(T|ν|←k) 6= ⊥I . Therefore, by Corollary 1, there exists a
model(∆,α) of Sem0(T) such that|α(ν)| = k.

WhenT satisfiesC1, C2, C3 we can then check that the cardinality boundsCInf

andCSup are optimal. That is, for every nodeν of such a gitree we haveCInf(ν) =
min{|α(ν)|, (∆,α) |= Sem0(T)} andCSup(ν) = max{|α(ν)|, (∆,α) |= Sem0(T)}.
The result follows directly from this observation.�

9

4.2 Checking inclusion and disjointness constraints

Now that we have optimal cardinality bounds, it is natural tolook at the influence of
cardinality constraints on other types of constraints. This approach allows us to enforce
an additional propertyC4 on gitrees using a rewriting systemR4. Finally, we show how
to take advantage ofC4 to decide which inclusion constraints (Lemma 10) or which
pairwise disjointness (Lemma 11) hold in a gitreeT .

Lemma 9. For each satisfiable gitreeT we can compute in linear time an equivalent
gitreeR↓

4
(T) satisfyingC1, C2, C3, and, for eachν ∈ VN,

CSup(ν) > 0
d(v) = 1 ⇒ M(ν) ∈ {{�}, {©}}
M(ν) = {�} ⇒ CInf(ν) < Σ

ν′
 ν

CSup(ν′)

M(ν) = {©} ⇒ CSup(ν) > Σ
ν′
 ν

CInf(ν′)



















(C4(ν))

Proof. Such a gitreeR↓
4
(T) can be obtained by applying with a bottom-up strategy the

following ruleR4 toR↓
3
(T)

if apply
d(ν) = 1 M(ν) := {©}
M(ν) = ∅
M(ν) = {©} M(ν) := {�,©}
CSup(ν)≤ Σ

ν′
 ν

CInf(ν′)

M(ν) = {�} M(ν) := {�,©}
CInf(ν)≥ Σ

ν′
 ν

CSup(ν′)

d(ν) = 1 M(ν) := {�}
� ∈ M(ν)
CSup(ν) = 0 VN := VN − {ν}
d(ν) = 0 ∀s ∈ σ−1(ν)

σ(s) := ∅I

(R4(ν))

�

Lemma 10 (Checking inclusion constraints).For each gitreeT and eachX ⊆ VN

we define a unary predicateIX onVN as the least fixed point of

IX(ν) ⇐ ν ∈ X

IX(ν) ⇐ � ∈ M(ν) ∧ (∃ν′ ∈ Sons(ν) IX(ν))
IX(ν) ⇐ � ∈ M(ν) ∧ (∀ν′ ∈ Sons(ν) IX(ν))
IX(ν) ⇐ ν ν′ ∧ IX(ν′)

Then, if T satisfiesC1, C2, C3, C4, then for all subsetsS, S′ ⊆ SN, for
X ′ = {σ(s) | s ∈ S′ ∧ σ(s) ∈ VN} we have:

T |= [(∪S) ⊆ (∪S′)] ⇐⇒ ∀s ∈ S
(

σ(s) = ∅I ∨ IX′(σ(s))
)

10

ν1, s1

[5..5]
�

ν2

[0..3]
ν3

[2..2]
©

ν4

[2..4]
ν5, s2

[0..∞]

∅I , s3

R3(ν2)
R3(ν4)
R3(ν5)

=⇒

ν1, s1

[5..5]
�

ν2

[3..3]
ν3

[2..2]
©

ν4

[2..2]
ν5, s2

[0..0]

∅I , s3

R4(ν5)
=⇒

ν1, s1

[5..5]
�

ν2

[3..3]
ν3

[2..2]
©

ν4

[2..2]

∅I , s3, s2

R4(ν3)
R4(ν1)

=⇒

ν1, s1

[5..5]
�©

ν2

[3..3]
ν3

[2..2]
�

ν4

[2..2]

∅I , s3, s2

Fig. 3. Example ofR3 andR4 derivations

Proof. The result is a consequence of the following observation: for eachT satisfying
C1, C2, C3, C4, for eachν ∈ VN and eachX ⊆ VN we have:

Sem0(T) |= [ν ⊆ (∪X)] ⇐⇒ IX(ν)

The proof of this claim relies on a refinement of the algorithmof model construction
used in the proof of Lemma 6.�

Lemma 11 (Checking disjointness constraints).For each gitreeT we define the bi-
nary predicatesD andD∗ onVN×VN by

D(ν, ν′) ⇐⇒ ν 6= ν′ ∧ ∃ν′′ ∈ VN, {ν, ν′} ⊆ Sons(ν′′) ∧ © ∈ M(ν′′)
D∗(ν, ν′) ⇐⇒ ∃ν0, ν′0 ∈ VN, ν ∗ ν0 ∧ ν′ ∗ ν′0 ∧ D(ν0, ν

′
0
)

Then, ifC1, C2, C3, C4, for all subsetsS, S′ of SN we have

T |= [(∪S)∩(∪S′) = ∅] ⇐⇒ ∀(s, s′) ∈ (S×S′)

{

either σ(s) = ∅I ∨ σ(s′) = ∅I
or D∗(σ(s), σ(s′))

Proof. The result is a consequence of the following observation, which again relies on
a refinement of the algorithm of model construction: whenT satisfiesC1, C2, C3, C4

then for allν, ν′ ∈ VN we haveSem0(T) |= [ν ∩ ν′ = ∅] ⇐⇒ D∗(ν, ν′) �
We conclude this section by combining Lemmas 8,10, and 11 to prove the following

theorem.

Theorem 1. We can decide whether a gitree entails aQFCSC formula in polynomial
time.

5 Testing entailment of itrees in polynomial-time

The test of entailment between two arbitrary gitrees (T |=T ′) is complicated by the ex-
istential quantifiers in the semantics ofT ′ which prevent us from decomposingSem(T ′)
into a conjunction of independent atomic formulas. However, if we can express a gitree

11

T ′ as aQFCSC formula, the previous section yields a polynomial-time algorithm for
checking whether a gitree entailsT ′. In this section we show that the condition

σ−1(ν) = ∅ ⇒ CInf(ν) = 0 ∧ CSup(ν) = ∞ (QE)

in the definition of itrees ensures that we can indeed computea QFCSC formula asso-
ciated with the itree, which motivates the definition of itrees as a subclass of gitrees.

As a first step, the following lemma gives a sufficient condition for a node of an
itree (that is, a bound variable) to be expressible as a unionof some free variables.

Lemma 12. Given an itreeT we define the unary predicateDet on VN as the least
fixed point of

Det(ν) ⇐ σ−1(ν) 6= ∅
Det(ν) ⇐ � ∈ M(ν) ∧ ∀ν′ ∈ Sons(ν). Det(ν′)
Det(ν) ⇐ M(ν) = {�} ∧ ∃ν′ ∈ Sons(ν). Det(ν′)
Det(ν) ⇐ ∃ν′. ν ν′ ∧ M(ν′) = {�} ∧ Det(ν′)

Then for each nodeν we have: Det(ν) ⇒
(

∃Sν ⊆ SN. T |= [ν = (∪Sν)]
)

Moreover, the predicateDet and a mappingν 7→ Sν are computable in polynomial
time.

WhenDet(ν) holds for all nodesν of a gitreeT , it is clear that we can transform
the formulaφ = Sem(T) into an equivalent formulaφ′ such that no quantified variable
appears inside inclusion constraints or disjointness constraints. However, it is not suf-
ficient to check thatDet(ν) holds for all nodesν to ensure thatT ∈ QFCSC. Indeed,
QFCSC only allows expressing cardinality constraints on free setvariables and not on
arbitrary union of set variables. It is for this reason that we are naturally interested in the
classITREE of gitrees for which non trivial cardinality constraints can only be enforced
to nodesν for which there existss ∈ SN such thatσ(s) = ν.

Lemma 13. For each itreeT ∈ ITREE we can compute in polynomial time an equiva-
lent itreeR′↓(T) satisfyingDet(ν) for all nodesν ∈ VN.

Proof. Given an itreeT we can first compute an itreeT1 equivalent toT and satisfying
the condition(C1) onM. BecauseR1 does not preserve theQE condition, we compute
T1 in three steps: 1) discard the cardinality constraints ofT by applyingCInf(ν) := 0
andCSup(ν) := ∞ to every node; 2) applyR1,R2,R3,R4; and 3) recover the initial
cardinality constraints on the nodes that remain in the tree. Step 2) makes some subtrees
of T empty and changesM,CSup,CInf for existing nodes, but never introduces new
nodes or causesσ−1(ν) = ∅ to hold for additional nodes that remain in the tree. Thus,
QE holds after step 3). We can compute the final itreeR′↓(T), equivalent toT andT1,
by applying the rewriting ruleR′ of Figure 4 toT1 using a bottom-up strategy.�

Lemma 14 (ITREE ⊆ QFCSC). For each itreeT ∈ ITREE we can compute in poly-
nomial time an equivalent formula ofQFCSC.

Given a mappingν 7→ Sν from Lemma 12, thisQFCSC formula can be computed from
Sem(R′↓(T)) by first substituting eachν with ∪Sν in the formulaSem(R′↓(T)) and
then eliminating the quantifiers.

12

if apply

ν ν′
VN := VN − {ν}

d(ν) = 0 M(ν′) := M(ν′) − {�}
σ−1(ν) = ∅
ν = Root(T) VN := VN − {ν}
d(ν) = 0
σ−1(ν) = ∅
M(ν) ∈ {∅, {©}} M(ν) := M(ν) ∪ {�}
ν ν′

M(ν′) := M(ν′) − {�}
M(ν′) 6= {�}
σ−1(ν) = ∅
M(ν′) = {�} M(ν′) := ∅
∀ν ∈ Sons(ν′) ∀ν ∈ Sons(ν′)

M(ν) ∈ {∅, {©}} M(ν) := M(ν) ∪ {�}
σ−1(ν) = ∅

(R′(ν))

Fig. 4. Rewriting ruleR′

ν1, s1

[2..∞]
�

ν2

©

s2 s3

ν3

�

ν4

s4

[1..∞]

R′(ν4)
=⇒

ν1, s1

[2..∞]
�

ν2

©

s2 s3

ν3

s4

[1..∞]

R′(ν1)
=⇒

ν1, s1

[2..∞]

ν2

©�

s2 s3

ν3

�

s4

[1..∞]

=⇒

8

>

>

>

<

>

>

>

:

then apply
ν1 7→ s1

ν2 7→ s2∪s3

ν3 7→ s4

to Sem(T)

Fig. 5. Use ofR′ on an itree and quantifier elimination

Figure 5 gives an example of an application ofR′ to an itree and indicates which
substitution can finally be applied to obtain a quantifier-free formula. Finally, combin-
ing Lemma 14 and Theorem 1, we obtain the main theorem of this paper.

Theorem 2. We can decide entailment of itrees in polynomial time.

6 Related work

We are not aware of any previously known constraints on sets with cardinality con-
straints that have polynomial-time entailment while supporting all the constraints present
in the ITREE class.
Set algebras with cardinalities. Quantified formulas of boolean algebra are complete
for the class of alternating exponential time with a linear number of alternations [14],

13

and even a small number of alternations leads to exponentialcomplexity [12]. Car-
dinality constraints naturally arise in quantifier elimination for boolean algebras [19].
The quantifier-free case of Boolean Algebra with PresburgerArithmetic is described
in [5, Section 11], [25] with an non-deterministic exponential time decision procedure,
which is also achieved as a special case of [17]. Recently, [15, Section 7.9] gave a
non-deterministicpolynomial-timealgorithm for quantifier-free Boolean Algebra with
Presburger Arithmetic. All these constraints are NP-hard.
Description logics. Description logics [3] can reason about sets (concepts) andrela-
tions (roles). However, polynomial-time description logics such as the ones described
in [8, Section 7] and [2], [3, Section 3.9.2] do not support set unions; the presence of
union is generally considered to lead to intractability. Note also that the subsumption
in the context of description logic typically refers to testing A ⊆ B for two defined
conceptsA andB, as opposed to testing whether aconjunctionof constraints on sets
implies another constraint on sets, as in our case. Furthermore, cardinality constraints
in description logics typically apply to a relation and are used to designate a new set, as
opposed to imposing a constraint on an existing set.
Horn clause fragments. Polynomial-time fragments of first-order logic Horn clauses
such as [11,21] can in principle encode some relationships on sets by representing them
as predicates, but they do not support cardinality constraints.
Constraint satisfaction problems. Constraint satisfaction problems (CSP) [7] also
identify the important idea of propagating constraints along tree-like structures. For
example, the Yannakakis algorithm has linear time complexity for the satisfiability of
acyclic sets of constraints [24]. However, such algorithmstypically work on concrete
domains such as booleans or integers; we are not aware of their application to con-
straints that involve set variables along with their cardinalities. Indeed, an attempt to
generalize itrees to acyclic graphs yields NP-hard constraints. Note that representing
the values of set variables explicitly (as done in many constraint satisfaction prob-
lems over finite domains) would result in exponentially large models. Like [8, Section
7], our polynomial algorithm avoids this problem using polynomial representation of
models, but, unlike [8, Section 7], can express conjunctions of constraints of the form
A = B ∪C.
Tree-width. The notion of tree-width [22] can be used as a mesure of the “treeness”
of a conjunctive formula and often leads to polynomial results on classes of formulas
with bounded tree-width. However, although inclusion constraints in an itree form a tree
and syntactically have bounded tree-width, disjointness and union constraints introduce
dependencies between siblings of a tree. Therefore, the overall tree-width of an itree
formula is not bounded. Similarly, the result [6], stating that monadic second-order logic
queries over graph structures of bounded tree-width are polynomial, does not seem to
simplify the problem of checking entailment (or satisfiability) of itrees. Indeed, there
is no natural way of representing, for example, cardinalitybounds on sets in monadic
second-order logic.
Constraints in program analysis. Set constraints [1, 4] are incomparable to our con-
straints. On the one hand, set constraints are interpreted over ground terms and contain
operations that apply a given free function symbol to each element of the set. On the
other hand, unlike our constraints, set constraints do not support cardinality operators.

14

References

1. Alex Aiken, Dexter Kozen, Moshe Vardi, and Ed Wimmers. Thecomplexity of set con-
straints. InProceedings of Computer Science Logic 1993, pages 1–17, September 1993.

2. F. Baader, S. Brandt, and C. Lutz. Pushing theEL envelope. InProc. 19th Int. Joint Conf.
on Artificial Intelligence IJCAI-05, 2005.

3. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors.The Description Logic Handbook: Theory, Implementation and Appli-
cations. CUP, 2003.

4. Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Set constraints are the monadic class.
In Logic in Computer Science, pages 75–83, 1993.

5. Domenico Cantone, Eugenio Omodeo, and Alberto Policriti. Set Theory for Computing.
Springer, 2001.

6. Bruno Courcelle. The monadic second-order logic of graphs III: tree-decompositions, minor
and complexity issues.ITA, 26:257–286, 1992.

7. Rina Dechter.Constraint Processing. Morgan-Kaufmann, 2003.
8. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi,and Werner Nutt. The complexity

of concept languages.Information and Computation, 134(1):1–58, 1997.
9. Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola Gi-

annini. More Dynamic Object Re-classification: FickleII.ACM Trans. Programming Lan-
guages and Systems, 24(2):153–191, 2002.

10. Martin Fowler.UML Distilled (Second Edition). Addison-Wesley, Reading, Mass., 2000.
11. Robert Givan and David Mcallester. Polynomial-time computation via local inference rela-

tions. ACM Trans. Comput. Logic, 3(4):521–541, 2002.
12. Erich Grädel. Domino games with an application to the complexity of boolean algebras with

bounded quantifier alternations. InSTACS, pages 98–107, 1988.
13. Daniel Jackson.Software Abstractions: Logic, Language, & Analysis. MIT Press, 2006.
14. Dexter Kozen. Complexity of boolean algebras.Theoretical Computer Science, 10:221–247,

1980.
15. Viktor Kuncak.Modular Data Structure Verification. PhD thesis, EECS Department, Mas-

sachusetts Institute of Technology, February 2007.
16. Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. InAnnual ACM Symp. on

Principles of Programming Languages (POPL), 2002.
17. Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. Deciding Boolean Algebra with Pres-

burger Arithmetic.J. of Automated Reasoning, 2006. http://dx.doi.org/10.1007/s10817-006-
9042-1.

18. Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate checking for data
structure consistency. In6th Int. Conf. Verification, Model Checking and Abstract Interpre-
tation, 2005.

19. L. Loewenheim.Über Mögligkeiten im Relativkalkül.Math. Annalen, 76:228–251, 1915.
20. Bruno Marnette, Viktor Kuncak, and Martin Rinard. On algorithms and complexity for sets

with cardinality constraints. Technical report, MIT CSAIL, August 2005.
21. Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl.Normalizable Horn clauses,

strongly recognizable relations, and Spi. InSAS, pages 20–35, 2002.
22. Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.J.

Algorithms, 7(3):309–322, 1986.
23. James G. Schmolze and Thomas A. Lipkis. Classification inthe KL-ONE knowledge repre-

sentation system. InIJCAI, pages 330–332, 1983.
24. Mihalis Yannakakis. Algorithms for acyclic database schemes. InVLDB, pages 82–94, 1981.
25. Calogero G. Zarba. Combining sets with cardinals.J. of Automated Reasoning, 34(1), 2005.

15

