View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Polynomial Constraints for
Sets with Cardinality Bounds

Bruno Marnetté, Viktor Kuncalé, and Martin Rinard

! ENS de Cachan, France
bruno@marnette. fr
2 MIT CSAIL, Cambridge, USA
{vkuncak, ri nard}@sail . nit. edu

Abstract. Logics that can reason about sets and their cardinalitydsare use-
ful in program analysis, program verification, databasesd, klnowledge bases.
This paper presents a class of constraints on sets and éndinalities for which
the satisfiability and the entailment problems are competatpolynomial time.
Our class of constraints, based on tree-shaped formulasigee in being simul-
taneously tractable and able to express 1) that a set is a ofiother sets, 2)
that sets are disjoint, and 3) that a set has cardinalityinvéttgiven range. As the
main result we present a polynomial-time algorithm for dteg entailment of
our constraints.

1 Introduction

Hierarchical representations of sets of entities are utmga in computer science, aris-
ing in programming languages, program analysis, softwagéeering and knowledge
bases. When considering a class of constraints, we aredtéerin two main questions:

- satisfiability: is a set of constraints consistent (satisfiable)?

- entailment: does one set of constraints imply (entail) another set otcaimts?
Note that a solution to the second problem is also a solutidine first problem: check-
ing whether a set of constraints entails a fixed contradiatonstraint solves the satis-
fiability problem.

In object-oriented programming and software modellinghgsrarchies model clas-
sification of entities into classes and are an important eaorapt of object models rep-
resented using notations such as UML [10] and Alloy [13]. €h&ailment problem for
set hierarchies arises when checking, for example, thatidfle diagram is a refine-
ment of another diagram. Satisfiability checking can detecitradictory constraints
that indicate an error in the model or system requirements.

Set hierarchies are also essential in knowledge repragemiia3]. Entailment check-
ing allows one to check that the classification in a partickfeowledge-base is a con-
sequence of the classification in a more general ontology.

Recently, researchers have considered the (typestatejajieation of static class
hierarchies in object-oriented languages to dynamicadignging hierarchies of sets
of objects [9, 16]. Using the ideas of [18], we can staticalhproximate dynamically
changing set hierarchy at each program point by propagatingtraints between sets
of objects using a data-flow analysis. A modular approachuth @inalysis needs to
check that 1) each procedure precondition is satisfied 4t pascedure call site, and

https://core.ac.uk/display/147929826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2) the postcondition holds at the end of each procedure. Wieepropagated informa-
tion encodes a set hierarchy, these two checks requireidgdhie entailment of such
hierarchies.

Sets with cardinality constraints. One often wishes to express constraints not only
on sets but also on certain distinguished elements of thetse A simple and unified
way to reason about elements is to represent them as setdlofaddy one. Similarly,

it is often desirable to state that a set is non-empty or, rgererally, that the number
of its elements is within given bounds. This motivates the afscardinality constraints
on sets that participate in hierarchies.

We have previously considered expressive logics that careeg such constraints
by combining the Boolean Algebra of sets with a cardinalipgi@ator and Presburger
Arithmetic [17], [15, Chapter 7]. However, the NP-hardne$shese constraints po-
tentially limits their practical use, which motivated us find constraints that have
polynomial-time algorithms. The result is the class présen this paper, for which
we construct a polynomial-time algorithm for entailmenmdaherefore satisfiability).
This class can express a combination of constraints thétetbest of our knowledge,
cannot be represented using existing polynomial-time &igms (see Section 6).

Our result. We call our notion of set hierarchiree, standing forinclusion tree be-
cause the edges in the hierarchy represent set inclusionA and because the inclu-
sion edges in an itree form an inverted tree. Moreover, ae itan specify that a set is
covered by some of its subset$ & B U C U D), or/and that these subsets are pairwise
disjoint (BNC = CND = BN D = (). An itree can also specify multiple orthogonal
divisions of one set into subsets, suchlas BUCAA = DUEADNE = (). Finally,

an itree can specify constant cardinality constraints ¢& seich ag < |A| < 10000.
Our algorithm checks entailment of conjunctions of suchsti@ints.

The key idea of our polynomial-time algorithm is to define dio of normal
form where each tree node satisfies certain local constraii show that this nor-
mal form can be enforced in polynomial time using a set of itewules. We then give
polynomial-time conditions for checking whether a normedi itree implies a given
constraint on variables. This yields an algorithm for cliegkvhether an itree implies
a conjunction of such constraints, and we show that an itieeatways be represented
as a conjunction of quantifier-free constraints. We theseédtain a polynomial entail-
ment test for itree constraints.

Contributions. The contributions of our paper include the following:

— We introduce itree constraints for expressing hierarcbfesets, and permitting a
simple form of existential quantification over sets (Sata?).

— We show that generalizing the definition of itrees to permitcdiic graphs yields
constraints whose satisfiability is NP-hard (Section 2.3).

— We give a polynomial-time algorithm for checking the sadisfiity of itrees by
proving sufficient conditions for the existence of their ratsd(Section 3).

— We give a polynomial-time algorithm for checking whetheritage entails a given
cardinality, inclusion or disjointness constraint (Sewt#).

— We show that the quantifiers in an itree can be eliminatedghyhvith the previous
result, gives polynomial-time entailment for itrees ($atbh).

A preliminary version of the current polynomial-time reisulincluding proofs) appears
in the technical report [20], using the same ideas but dlighfferent definitions. Due

to space limitations we here present only proof outlinescdking the main ideas and
revealing the underlying algorithms.

2 Constraints on sets and their graphical representation

The constraints that we consider in this paper are expileassing existentially quan-
tified conjunctions of boolean algebra formulas whose Wemrange over sets of un-
interpreted objects. We call these formulas Conjunctivestraints on Sets with Cardi-
nalities and denote the@SC.

Definition 1. CSC formulas are given by the following syntax:

¢ =3v,...,un. PLAN...AN Py,
P:=5,CS8 |8 NSy=0]|]|v|<k||v >k
S = 8|I/|51USQ

Variables inCSC formulas denote sets and can be free set variables (desoted;)
or bound set variables (denoted/’,v;). Sets inCSC formulas are denoted by variables
or unions of variables. Cardinality constraints apply dolypound variables.

Lemma 1. Satisfiability ofCSC formulas is NP-hard.

Lemma 1 holds becaugeSC can express boolean algebra constraints on subsets of
a fixed set variablé/. Namely, union together with disjointness frarh can define

set complement; union and complement then allow encodibigrary propositional
operations.

2.1 Graph representationlGRAPH for CSC

As a first step towards identifying polynomial constraintg, introduce a representa-
tion of CSC by igraphs(standing forinclusion graph¥ In the following definition of
igraphs, the nodegN are bound set variablesand the edges- represent the subset
inclusion of sets. Nodes are tagged with cardinality camsts and withmode symbols
establishing additional constraints between a node axit@st sons. I is tagged with
the mode symbaoD, the sons o¥ are pairwise disjoint. 1¥ is tagged with the mode
symbolm, the songv1, ..., v, } of v cover entirely, thatisv C U,v;. If v is tagged
with the mode symbao#, thenv is equalto each of its sons. When a separticipates in
several atomic formulas, we can use #hmode to introduce synonyms for Finally, a
mappingo establishes equalities between free set variabte$SN and bound variables
v € VN. It also enables the encoding of set emptiness using a $ggniaol(;.

Definition 2 (IGRAPH). AnigraphG € IGRAPH is either thefalse igraphl ; or a
tuple (SN, VN, ~, CInf, CSup, M, o) such that

SN andVN are two disjoint sets of set variables
(VN, ~) is a directed graph

Clnf : VN — N (N=1{0,1,2,...})
CSup : VN — NU {0} (VE € N. k < o0)
M:VN — P({¢.m,0O})

o:SN —VNU{0;}

The setSN corresponds to the free variable®f G. The elements o¥/N correspond
to the bound variables and are also calledodesby graph analogyP ({¢,m,0})
denotes the set of subsets{df, ®m, O}. We writev ~~ v/ when(v, V") e~+. We define
the set ofsonsof v € VN by Sons(v) = {V/'|v/ ~ v} and theincoming degreef v by
d(v) = |Sons(v)|.

Definition 3 (IGRAPH semantics).The semanticSem(_L) of thefalse igraphl; is
by definition the formul&alse With each igraphG £ 1 ; we associate a quantifier-free
CSC formulaSemq(G) as follows:

NV Cv | v,V 'EVN A V~sv}

NV'=v|v,VEVN A Vs A 4EM(v)}

Semo(G) déf/\ N{vCJSons(v) | vEVN A BEM(v)}

AN{V'w’=0| veVN A v/, v"€Sons(v) Av'#V" A OEM(v)}
N{CInf(v)<|v|<CSup(v) | vEVN}

The semanticSem(G) of G is then:

Sem(G) def v, ..., V. Semg(G) A /\ {z:?’ I; o(s) :gl

seSN

Figure 1 gives an example of an igragh(represented graphically) with its semantics
Sem(G). Given two igraphs? andG’ we writeG |= G’ iff Sem(G) entailsSem(G’)
and we writeG = G’ when bothG = G’ andG’ = G. We say thatG is satisfiable
iff Sem(G) is satisfiable. We also use the symbpisand= to compare igraphs and
CSC formulas, identifying igraphé& with their semanticSem(G). To avoid confusion
between the syntax and the semantics of formulas we useestenkets around for-
mulas. Thus, in the following sections; = 1] denotes an equality between two sets
while v =1/ only states that andv’ are the same variable symbol (or the same node).
By construction, the semantics of an igraph is expressiple 6SC formula. The
following lemma shows that the converse holds as well.

Lemma 2. For each¢ € CSC we can compute in linear time an equivalent igraph.

As a consequence, the satisfiability of igraphs is also Nfd-ha

2.2 Definition of itrees

We can now define our subclass of tree-shaped igraphs. WeéhmbBubclasstrees
Polynomial-time algorithms for satisfiability and entadnt of itrees are the subject of
this paper.

Definition 4 (ITREE). Ageneralized itreégitree)T is either the false igraph ; or an
igraph G € IGRAPH such that VN, ~~) is a tree, oriented from the leaves to the root.
Anitreeis a generalized itree such that, for eaete VN

o 'v)=0 = CInf(v) =0ACSup(r) = o0 (QE)

Sem(G) =
v, v2, v, V4, Vs, Vs,
SMEDIA, Vo Vcontent s Vfile; Vitype s Vsize-
[0..90] Veontent & V0 A Vsite € VoA

11 C Veontent A V2 € Veontent/A
Viype C Vsile N V3 C Viype A
file

Vcontent vy C Vtype /\ Usize C Vfile\

’ VSngize/\VC»ngize
10 = Vcontent = Vfile /\
Vfile = Vtype = Vsize A

SVIDEQ, SMOVIE; V1 SMUSIC, V2 Viype Usize Veontent = U1 U V2 A
[5..00] [25..00] @) | Ne} Veize = Vs U Vg A
v3 Ny =0 A
SMP3, V3 SAvI, V4SS Vs SBIG, U v (106 =0 A
MP3, V3 SAVI, V4 SSMALL, V5 SBIG L6 |L,01< 00 A |1y |>5 A
0.50] [0.15] ||V2||225A [
01, scensorep lvs|< 50 A |vg|<15 A

SMEDIA =10 A SMOVIE =V1A
SVIDEO = V1 A SMmusic = V2/\
SMpP3 =13 N\ Savi = Va/\
SSMALL = V5 A SBIG = V6/\
Scensorep =0

Fig. 1. An example of itree (a particular case of igraph) and its sgios

Thanks to the tree-shape condition, itrees (and even geregtatrees) satisfy some
important properties that are not true for general (or acydraphs. For example, it
follows from Lemma 10 of Section 4.2 that the semantiax an itree always satisfies,
for all set variables, so, s3, the following property:

$FE[s1Cs2ns1Cs3] = (9F[s1=00V ¢ [s2C s3] V o [s3Cs2l)

This property allows us to prove, for example, that@%€ formula[A C BA A C C]
is not expressible as a (generalised) itree. ThereforeldssI TREE is a strict subclass
of IGRAPH and is a good candidate for a more efficient fragmenG&APH.

The QE condition (standing foguantifier eliminatiof in the definition of TREE
ensures that the semantics of itrees can in fact be exprassega quantifier-fre€SC
formula, as proved in Section 5. Note that a sufficient coouliior QE is thato —! (v) #

(0 for eachv € VN.

Because we can check whether a graph is a tree by depthdirstsal of the graph,

we have the following result.

Lemma 3. Deciding whether a given igrapy € IGRAPH is an itree (€ ITREE)
can be done in linear time.

2.3 Hardness of acyclic igraphs

We have observed that satisfiability of igraphs is NP-haradntrast, we prove in the
rest of this paper that itrees have polynomial-time sabgitg and entailment prob-

lems. A natural question to ask is whether we could obtaignowhial-time algorithms
for igraphs where inclusions are acyclic but not tree-likee following lemma (see
also [20, Section 4, Lemma 4]) suggests a negative answiistquestion.

Lemma 4. Let IDAG denote the class of igraphs for whi¢WN, ~~) is a directed
acyclic graph (DAG). For each igraph ilGRAPH we can compute in polynomial time
an equivalentigraph inDAG. Therefore, satisfiability ihDAG is NP-hard.

The essence of the proof of Lemma 4 is that we can collapses(ympmial time)
cycles in an igraph to obtain an equivalent acyclic igraptaddition to NP-hardness of
the class of acyclic igraphs, we can prove NP-hardness Veraksubclasses 6DAG,
using the construction in [20, Section 5, Theorem 2]. Wedfwee believe that consider-
ing tree-like restrictions on igraphs is a reasonable apgrao identifying polynomial
constraints.

3 Deciding satisfiability of generalized itrees in polynomal time

This section gives a linear-time algorithm for satisfidpilbf generalized itrees. This
result is a first step to an algorithm for checking entailmeich we describe in Sec-
tion 5, building on the results in this section. Moreoveeg, fatisfiability algorithm is of
interest in itself.

We proceed by first showing (Lemma 5) that the bottom-up pyapan of con-
straints (rewriting rulesk; andR,) allows transforming in linear time any gitréeé
into an equivalent gitre®}(7') such that eithea) R (T") =_L;, in which casel is
clearly unsatisfiable, db) R%(T) satisfies two propertie§; andCy. We then show
(Lemma 6) that any gitree for whict; and Cs hold is satisfiable. As a result, we
can decide in linear time wheth@r is satisfiable by first computin@%(T) and then
returningsatisfiablef and only if R5 (7)) is different from_L ;.

Lemma 5. For each gitre€l’ we can compute in linear time an equivalent gitréé(T)
such that eitheR} (T') =L ; or R} (T) satisfies (for each node both:

M(V) € {@,{’},{O},{.},{O,.}} (Ol(V))
and BUInf(r) < Clnf(v) < CSup(v) < BUSup(v) (Ca(v))
where, forSons(v) ={v1,...,vn},
€, Z.Clnf Vi), if O M (v
BUInf(v) = {mz.f;t:xi Clng(yz), Iothefwisgz)

min; CSup(v;), if # € M(v)

BUSup(v) @ ¢ . CSup(v;), ifmeM(v)
0, otherwise

Proof. Such a forniR}(T") can be obtained frof in two steps. The first steps consists
in simplifying the mode combinations by applying the foliog rewriting rule R, to

every node (in any order).

lif lapply |

d(v) =0 M(v) := (M(v) — {4})

dlv) <1 M(v) := (M(v) — {O})

dv) > 1 M(v) = (M(v) — {m}) (R1(v))
¢ M)

d(v) >2 M(v) := (M(v) — {O})

{#,0} C M(v)|Vv/€Sons(v), CSup(v'):=0

The second step consists in applying the falebelow to every node, proceedifrgm
the leaves towards the rqoh order to 1) refine the cardinality bounds and 2) recognize
the contradictory bounds such tH@nf(v) > CSup(v).

Clnf(v) := Max(Clnf(v),BUInf(v))
CSup(v) := Min(CSup(v), BUSup(v)) (Ra(v))
If CInf(v) > CSup(v) thenT :=1;

0
[fﬁ]) ’fé.".i]l - ’fé.”.i]l [3’2]
l/zf’ \1/3 Rizg) ljgf \ Ril;3) ljgf \ Rizl) sz \ Rizl)
m#]%ﬂ m#]&m mf]ﬁm mf]ﬁm 1y
[
[0..2] [3..00] [0..2] [3..00] [0..2] [3..00] [0..2] [3..00]

Fig. 2. Example ofR; andR derivation

We say that; holds forT’ (i.e. “T satisfiesC;”) iff C;(v) holds for each node of T'.

Lemma 6. Every gitre€l” #_1 ; for which bothC; andCs hold is satisfiable.

Proof. We first note that a gitre® such thatl” £ 1 ; is satisfiable if and only if there
exists a model fobem((7). Indeed, a moddlA, o : VN — P(A)) for Semo(T") can
be turned into a modé€l\, o’ : SN — P(A)) for Sem(T) by takinga/(s) = 0 when
o(s) =0y anda/(s) = a(o(s)) wheno(s) € VN.

WhenT satisfies bottC; andC; we can build a model fofemq(T") in two steps.
We first choose (in linear time) relevant cardinalitigg’) € N for the nodes, pro-
ceedingfrom the root to the leavedore precisely, we take/(v) = Clnf(v) for the
root v of T" and define recursively the valuégy;) for the sons/; of a nodev, for a

chosen ordering Bons(v) = {v1, ..., v, }, and by induction o = 1..n:

Clnf(v;) if M(v)=10
CInf(v;) ?f M(v) = {O}
vl { 9) i M) = {#)
min(CSup(u), (1)) it M() = (m)
min(CSup(v;), ¥ (v)— <lw(yi/)—il2>‘i(:|nf(1/7y)) if M(v)={o,m}

The conditions”; andC> guarantee that this cardinality choice satisfies the fatigw
propertyH" for every nodes such thaGons(v) = {v1,...,v,}:

Clnf(v) < ¢(v) < CSup(v)

N ¥(i) <(v)

¢ M) = N\ v() = (HY(v))
OeM(v)= > v(i) <¢(v)
BeM)= >) >9(v)

When a cardinality choice satisfying ¥ (v) for all nodesv of T is chosen, the
second step consists in building for every naedeéaken from the leaves to the root, a
model for the formuléem(T'|,) whereT'|,, denotes the sub-itréE|, of T" of root v.
The role played by ¥ (v) in this construction is the following: the propenty(v;) <
1 (v) ensures that the san of v is small enough to fit in/; whenM(v) = {4}, the
propertyy(v;) = v (v) ensures that the soms of v have the right cardinality to be
made equal to/; whenO € M(v) the property) ", ¥ (v;) < 9 (v) ensures that the
disjoint union of the sons af can fit inv; when® € M(v), the property) . o (v;) >
1 (v) ensures that the sonsmwtontain enough elements to cover entinelyhe property
Cinf(v) < ¢(v) < CSup(v) ensures that the cardinality constraints are not violdfed.

Corollary 1. A gitreeT is satisfiable iffR}(T) #1;.
Corollary 2. We can decide the satisfiability of a gitree in linear time.

4 Entailment of quantifier-free formulas

The goal of this section is to show that for every git#éand, in particular, for every
itreeT € ITREE), and every formula from a quantifier-free fragmeQFCSC of CSC
defined below, we can decide whetfiéentails¢ in polynomial time.

Definition 5 (QFCSC). ¢ =P A... AP,
P: S1§SQ|S1QSQZ@||S|§/€||S|2/€
S : S|SlUSQ

Because&QFCSC formulas are conjunctions of atomic formulas, we can degidether
T entails aformul@ = P, A...A P, by checking whethef |= P, foralli = 1..n. For
decidingT = P we start by applying additional rewriting rules that enfostronger
properties on gitrees than in the previous section. For kexchof atomic proposition
P (cardinality constraint, inclusion, or disjointness) e define conditions on nor-
malized gitrees that 1) characterize the propéfty= P, and 2) are computable in
polynomial time.

4.1 Checking cardinality constraints

Analogously to the definition oBUInf andBUSup (in Lemma 5) we next define for
every nodev of a gitreeT a lower boundT DInf(v) and an upper boun@DSup(v)
for the cardinality of, this time corresponding to top-down reasoning. Given anod

such thaty = Root(7") orv ~~ v/ andSons(v') = {v, 14, ..., 1, } we define
0, if v = Root(T)
0, if M(v') € {0, {m
TDInf(v) < Clnf(1/), i MEV’% :{{o}{ i
Cinf(v')—=>", CSup(v;), if M(v") € {{O},{O,m}}
4 00, if v = Root(T)
TDSup(v)) CSup(v'), if M(v') € {0,{4},{O}}
CSup(v')—=>", Clnf(r;), if M(v') € {{m},{O,m}}

Lemma 7. For each satisfiable gitre& we can compute in linear time an equivalent
gitreeRﬁ(T) satisfyingCy, Co, and, for eachs € VN,

TDInf(v) < CInf(r) A CSup(v) < TDSup(v) (Cs(v))

Proof. Such a gitreé’%ﬁ(T) can be obtained by applying the following ruk; to
R% (T') using a top-down strategy

CInf(v) := Max(ClInf(v), TDInf(v))
CSup(v) := Min(CSup(v), TDSup(v)) (Rs(v))

O

Lemma 8 (Checking cardinality constraints). For each gitreeT" satisfyingC, Cs
and(Cjs, eachs € SN, and eachu, b € N we have

either o(s) =0; A a=0
TrEla<ls|<b] <= { or a<Clnf(o(s)) <CSup(o(s))<b
We can therefore decide whethB{= [a < |s| <b] in linear time.

Proof. For eachl’ #.1; satisfyingC1, Cy, Cs, for eachy € VN and for eachk €
[CInf(v), CSup(v)], the gitreeT),|.;, obtained fromil" by applyingCinf(v) := k and
CSup(v) := k satisfiesR} (Ty|—r) # L1. Therefore, by Corollary 1, there exists a
model(A, «) of Semy(T") such thata(v)| = k.

WhenT satisfiesCy, Csy, C3 we can then check that the cardinality bouridsf
and CSup are optimal. That is, for every nodeof such a gitree we hav@lnf(v) =
min{|a(v)|, (A, a) = Semy(T)} andCSup(v) = max{|a(v)], (4, a) = Semo(T)}.
The result follows directly from this observatidn.

4.2 Checking inclusion and disjointness constraints

Now that we have optimal cardinality bounds, it is naturalaok at the influence of
cardinality constraints on other types of constraintssEgproach allows us to enforce
an additional propertg’y on gitrees using a rewriting systeRy,. Finally, we show how

to take advantage df’; to decide which inclusion constraints (Lemma 10) or which
pairwise disjointness (Lemma 11) hold in a gitfée

Lemma 9. For each satisfiable gitre&’ we can compute in linear time an equivalent
gitreeRi(T) satisfyingCy, Cs, Cs, and, for eachy € VN,

CSup(v) >0
d(v) =1=M(v) € {{#},{O}}
M(v) = {m} = Cinf(v) <V/§u CSup(v') (Cy(v))

M(v) = {O} = CSup(v) > z Clnf(v")

Proof. Such a gitreé%f1 (T') can be obtained by applying with a bottom-up strategy the
following rule R4 to R (T)

[if [apply |

d(v) =1 M) = {O}

M(v) =0

M(v) = {O} M(v) :== {m, O}

CSup(v) < gw CInf(v")

M(v) = {m M(v) := {m,O

Clnf(y)z{ }2 CSup(/) (.0} (Ra(v))

d(v) =1 M) = {4}

mc M(v)

CSup(v) = VN:=VN-—{v}

d(v) = Vs € 071 (v)
o(s):=0;

O

Lemma 10 (Checking inclusion constraints)For each gitre€l” and eachX C VN
we define a unary predicaey on VN as the least fixed point of

<veX

(v)

(v) < & € M(v) A (T € Sons(v) Ix(v))
Ix(v)<=me M)A (W €Sons(v)Zx(v))

()

Then, if T satisfiesC, C>, C3, Cy4, then for all subsets, S’ C SN, for
X"={o(s)|s€ S ANo(s) € VN} we have:

TE[US)C(US)] <= VYseS (o(s)=0rVIx(o(s))

10

V1, S1 V1, S1 V1,81 V1,81

[5..5] [5..5] [5..5] [5..5]
n Rs(v2) u [O
VQ/ \l/:a gsgwg VQ/ \1/3 Ruls) 1/2/ \l/:a %4?3% 1/27 \Vs
[0..3] [/26?\] S5 13.3] [/26?\] 4:>5 3..3] [2?2] 4:; 3..3] [2.T2]
[271] [’65..’502] [27%] ?8.’.3]2 [2]?2] [21./.42]
01, s3 0r, s3 Or, 83,52 01, s3, s2

Fig. 3. Example ofR3 andR 4 derivations

Proof. The result is a consequence of the following observatione&eh1 satisfying
C1,Cs,C3,Cy, foreachry € VN and eachX C VN we have:

Semo(T) = [v C (UX)] <= Ix(v)

The proof of this claim relies on a refinement of the algoritbitimodel construction
used in the proof of Lemma 6]

Lemma 11 (Checking disjointness constraints)fFor each gitreel” we define the bi-
nary predicate> andD* on VN x VN by

Dv,V') < v#V AW € VN {v,v'} CSons(v') A O € M(v")
D*(v,v') <= Fug,) € VN,v ~* vy AV ~* 1) A D(v, V)

Then, ifCy, Oy, C3, Oy, for all subsetsS, S’ of SN we have

either o(s) =0y Vo(s') =0
TR (US)NWUS) =] <= V(s,5) € (5x5) {Or o e =
Proof. The result is a consequence of the following observationghvagain relies on
a refinement of the algorithm of model construction: whegsatisfiesC, Cs, Cs3, Cy
then for allv, v’ € VN we haveSemo(T) = [v NV =0] < D*(v,//) 0
We conclude this section by combining Lemmas 8,10, and 1dowethe following
theorem.

Theorem 1. We can decide whether a gitree entailQ&CSC formula in polynomial
time.

5 Testing entailment of itrees in polynomial-time
The test of entailment between two arbitrary gitréE$«(7") is complicated by the ex-

istential quantifiers in the semanticsBfwhich prevent us from decomposifigm(7”)
into a conjunction of independent atomic formulas. Howgifeve can express a gitree

11

T’ as aQFCSC formula, the previous section yields a polynomial-timeosidnm for
checking whether a gitree entail¥. In this section we show that the condition

o 'v)=0 = CInf(v) =0ACSup(r) = oo (QE)

in the definition of itrees ensures that we can indeed comgp@ECSC formula asso-

ciated with the itree, which motivates the definition of &seas a subclass of gitrees.
As a first step, the following lemma gives a sufficient comdfitfor a node of an

itree (that is, a bound variable) to be expressible as a wfisame free variables.

Lemma 12. Given an itreel” we define the unary predicafget on VN as the least
fixed point of

Det(v) <= o~ t(v) #0

Det(rv) < B € M(v) AV € Sons(v). Det(v')
Det(rv) < M(v) = {4} A3V € Sons(v). Det()
Det(v) < /. v~V AM(V) = {4} ADet(¢)

Then for each node we have: Det(v) = (35, CSN. T = [v = (US,)])
Moreover, the predicat®et and a mapping — S, are computable in polynomial
time.

WhenDet(v) holds for all nodes of a gitreeT’, it is clear that we can transform
the formulap = Sem(T') into an equivalent formula’ such that no quantified variable
appears inside inclusion constraints or disjointnesstcaings. However, it is not suf-
ficient to check thaDet(v) holds for all nodes to ensure thaf” € QFCSC. Indeed,
QFCSC only allows expressing cardinality constraints on freeveetables and not on
arbitrary union of set variables. It is for this reason thataxe naturally interested in the
classITREE of gitrees for which non trivial cardinality constraintsxanly be enforced
to nodes for which there exists € SN such that (s) = v.

Lemma 13. For each itreel” € ITREE we can compute in polynomial time an equiva-
lent itreeR’* (T') satisfyingDet(v) for all nodesv € VN.

Proof. Given an itre€l” we can first compute an itrél§ equivalent tdl” and satisfying
the condition(C;) on M. BecauséR, does not preserve tHgE condition, we compute
Ty in three steps: 1) discard the cardinality constraint® diy applyingCinf(v) := 0
andCSup(v) := oo to every node; 2) applR1, R2, R3, R4; and 3) recover the initial
cardinality constraints on the nodes that remain in the 8t 2) makes some subtrees
of T'empty and changed, CSup, CInf for existing nodes, but never introduces new
nodes or causes ! (v) = () to hold for additional nodes that remain in the tree. Thus,

QE holds after step 3). We can compute the final itRéé(T), equivalent tdl”’ and Ty,
by applying the rewriting rulé&’ of Figure 4 toT; using a bottom-up strategyl

Lemma 14 (TREE C QFCSC). For each itreeT’ € ITREE we can compute in poly-
nomial time an equivalent formula @FCSC.

Given a mapping — S, from Lemma 12, thiQFCSC formula can be computed from

Sem(R'*(T)) by first substituting each with US,, in the formulaSem(R’*(T)) and
then eliminating the quantifiers.

12

[i

lapply

v~ U

o ()

VN = VN _ {1}
d(r)=0 M) = M) — {m}
o ') =10
v = Root(T) VN := VN — {v}

d(v) =0

o tw) =10

M) € 0, {OT] [M(v] = M() U W}
Vs v (V') =M@ — {m}
M) # {4}

o (r)=0

M(@') = {4} M) =0

Vv € Sons(v) Vv € Sons(V)

O v
M(v) € {%{O}} M(v) := M(v) U {B}

o oom
A

v [1..301

S2 83

Fig. 4. Rewriting ruleR’

s om m
I
[1.00] (1. 0]

then apply
V1 S1

Vo +— SoUss
V3 — S4

to Sem(T")

Fig. 5. Use of R’ on an itree and quantifier elimination

Figure 5 gives an example of an application®fto an itree and indicates which

6 Related work

13

substitution can finally be applied to obtain a quantifieefformula. Finally, combin-
ing Lemma 14 and Theorem 1, we obtain the main theorem of #psip

Theorem 2. We can decide entailment of itrees in polynomial time.

We are not aware of any previously known constraints on séts eardinality con-
straints that have polynomial-time entailment while sutipg all the constraints present
in the I TREE class.

Set algebras with cardinalities. Quantified formulas of boolean algebra are complete
for the class of alternating exponential time with a lineanmer of alternations [14],

and even a small number of alternations leads to exponarttiaplexity [12]. Car-
dinality constraints naturally arise in quantifier elintiloa for boolean algebras [19].
The quantifier-free case of Boolean Algebra with Presbufgéhmetic is described
in [5, Section 11], [25] with an non-deterministic exporiehime decision procedure,
which is also achieved as a special case of [17]. Recently, $ction 7.9] gave a
non-deterministigpolynomial-timealgorithm for quantifier-free Boolean Algebra with
Presburger Arithmetic. All these constraints are NP-hard.

Description logics. Description logics [3] can reason about sets (conceptsyelad
tions (roles). However, polynomial-time description logsuch as the ones described
in [8, Section 7] and [2], [3, Section 3.9.2] do not suppottwgons; the presence of
union is generally considered to lead to intractabilityté&also that the subsumption
in the context of description logic typically refers to fegt A C B for two defined
conceptsd and B, as opposed to testing whethec@njunctionof constraints on sets
implies another constraint on sets, as in our case. Furtirerroardinality constraints
in description logics typically apply to a relation and ased to designate a new set, as
opposed to imposing a constraint on an existing set.

Horn clause fragments. Polynomial-time fragments of first-order logic Horn clasise
such as[11,21] canin principle encode some relationshgets by representing them
as predicates, but they do not support cardinality comggai

Constraint satisfaction problems. Constraint satisfaction problems (CSP) [7] also
identify the important idea of propagating constraintsngldree-like structures. For
example, the Yannakakis algorithm has linear time compldrr the satisfiability of
acyclic sets of constraints [24]. However, such algorithypscally work on concrete
domains such as booleans or integers; we are not aware ofagmglication to con-
straints that involve set variables along with their caatlties. Indeed, an attempt to
generalize itrees to acyclic graphs yields NP-hard comss:aNote that representing
the values of set variables explicitly (as done in many cairst satisfaction prob-
lems over finite domains) would result in exponentially Ergodels. Like [8, Section
7], our polynomial algorithm avoids this problem using pudynial representation of
models, but, unlike [8, Section 7], can express conjunstmirconstraints of the form
A=BuUC.

Tree-width. The notion of tree-width [22] can be used as a mesure of tleetiess”
of a conjunctive formula and often leads to polynomial ressah classes of formulas
with bounded tree-width. However, although inclusion ¢aaiats in an itree form a tree
and syntactically have bounded tree-width, disjointn@skumion constraints introduce
dependencies between siblings of a tree. Therefore, thalbtee-width of an itree
formulais not bounded. Similarly, the result [6], statingtmonadic second-orderlogic
queries over graph structures of bounded tree-width arngnpatial, does not seem to
simplify the problem of checking entailment (or satisfid)l of itrees. Indeed, there
is no natural way of representing, for example, cardinddiynds on sets in monadic
second-order logic.

Constraints in program analysis. Set constraints [1, 4] are incomparable to our con-
straints. On the one hand, set constraints are interpregrcdjoound terms and contain
operations that apply a given free function symbol to eaemeht of the set. On the
other hand, unlike our constraints, set constraints douqmart cardinality operators.

14

References

10.
11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

. Alex Aiken, Dexter Kozen, Moshe Vardi, and Ed Wimmers. Toenplexity of set con-

straints. InProceedings of Computer Science Logic 198&es 1-17, September 1993.

. F. Baader, S. Brandt, and C. Lutz. Pushing&lenvelope. InProc. 19th Int. Joint Conf.

on Artificial Intelligence 1JCAI-052005.

. Franz Baader, Diego Calvanese, Deborah McGuinnesseRaNiardi, and Peter Patel-

Schneider, editorsThe Description Logic Handbook: Theory, Implementatiod &ppli-
cations CUP, 2003.

. Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Sestcaints are the monadic class.

In Logic in Computer Scieng@ages 75—-83, 1993.

. Domenico Cantone, Eugenio Omodeo, and Alberto Polic&ét Theory for Computing

Springer, 2001.

. Bruno Courcelle. The monadic second-order logic of gsdfhtree-decompositions, minor

and complexity issuedTA, 26:257-286, 1992.

. Rina DechterConstraint ProcessingMorgan-Kaufmann, 2003.
. Francesco M. Donini, Maurizio Lenzerini, Daniele Naatid Werner Nutt. The complexity

of concept languages$nformation and Computatiqri34(1):1-58, 1997.

. Sophia Drossopoulou, Ferruccio Damiani, Mariangiolad»Ciancaglini, and Paola Gi-

annini. More Dynamic Object Re-classification: FickleACM Trans. Programming Lan-
guages and Systen4(2):153-191, 2002.

Martin Fowler.UML Distilled (Second Edition)Addison-Wesley, Reading, Mass., 2000.
Robert Givan and David Mcallester. Polynomial-time paotation via local inference rela-
tions. ACM Trans. Comput. Logi8(4):521-541, 2002.

Erich Gradel. Domino games with an application to thaiexity of boolean algebras with
bounded quantifier alternations. BTACSpages 98-107, 1988.

Daniel JacksonSoftware Abstractions: Logic, Language, & Analy&T Press, 2006.
Dexter Kozen. Complexity of boolean algebrékseoretical Computer Scienck):221-247,
1980.

Viktor Kuncak. Modular Data Structure VerificatianPhD thesis, EECS Department, Mas-
sachusetts Institute of Technology, February 2007.

Viktor Kuncak, Patrick Lam, and Martin Rinard. Role arsid. InAnnual ACM Symp. on
Principles of Programming Languages (PORRDO2.

Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. DeaigiBoolean Algebra with Pres-
burger Arithmetic.J. of Automated Reasoning006. http://dx.doi.org/10.1007/s10817-006-
9042-1.

Patrick Lam, Viktor Kuncak, and Martin Rinard. Genezali typestate checking for data
structure consistency. iBth Int. Conf. Verification, Model Checking and Abstracehpte-
tation, 2005.

L. LoewenheimUber Mogligkeiten im RelativkalkillMath. Annalen76:228-251, 1915.
Bruno Marnette, Viktor Kuncak, and Martin Rinard. Onalthms and complexity for sets
with cardinality constraints. Technical report, MIT CSAKugust 2005.

Flemming Nielson, Hanne Riis Nielson, and Helmut Seiblormalizable Horn clauses,
strongly recognizable relations, and Spi.9AS pages 20-35, 2002.

Neil Robertson and Paul D. Seymour. Graph minors. ioritlgmic aspects of tree-width.
Algorithms 7(3):309-322, 1986.

James G. Schmolze and Thomas A. Lipkis. ClassificatitimaiKL-ONE knowledge repre-
sentation system. IRICAI, pages 330-332, 1983.

Mihalis Yannakakis. Algorithms for acyclic databaskesues. In/LDB, pages 82—94, 1981.
Calogero G. Zarba. Combining sets with cardindlef Automated Reasoning4(1), 2005.

15

