
Generalized Typestate Checking for Data Structure
Consistency

Patrick Lam, Viktor Kuncak, and Martin Rinard

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract. We present an analysis to verify abstract set specificationsfor pro-
grams that use object field values to determine the membership of objects in ab-
stract sets. In our approach, each module may encapsulate several data structures
and use membership in abstract sets to characterize how objects participate in its
data structures. Each module’s specification uses set algebra formulas to charac-
terize the effects of its operations on the abstract sets. The program may define
abstract set membership in a variety of ways; arbitrary analyses (potentially with
multiple analyses applied to different modules in the same program) may verify
the corresponding set specifications. The analysis we present in this paper veri-
fies set specifications by constructing and verifying set algebra formulas whose
validity implies the validity of the set specifications.
We have implemented our analysis and annotated several programs (75-2500
lines of code) with set specifications. We found that our original analysis algo-
rithm did not scale; this paper describes several optimizations that improve the
scalability of our analysis. It also presents experimentaldata comparing the orig-
inal and optimized versions of our analysis.

1 Introduction

Typestate systems [7, 10, 12, 13, 21, 30] allow the type of an object to change during
its lifetime in the computation. Unlike standard type systems, typestate systems can
enforce safety properties that depend on changing object states.

This paper develops a new, generalized formulation of typestate systems. Instead
of associating a single typestate with each object, our system models each typestate
as an abstract set of objects. If an object is in a given typestate, it is a member of the
set that corresponds to that typestate. This formulation immediately leads to several
generalizations of the standard typestate approach. In ourformulation, an object can
be a member of multiple sets simultaneously, which promotesmodularity and types-
tate polymorphism. It is also possible to specify subset anddisjointness properties over
the typestate sets, which enables our approach to support hierarchical typestate classi-
fications. Finally, a typestate in our formulation can be formally related to a potentially
complex property of an object, with the relationship between the typestate and the prop-
erty verified using powerful independently developed analyses such as shape analyses
or theorem provers.

We have implemented the idea of generalized typestate in theHob program specifi-
cation and verification framework [23,24]. This framework supports the division of the
program into instantiable, separately analyzable modules. Modules encapsulate private

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147929814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

state and export abstract sets of objects that support abstract reasoning about the encap-
sulated state. Abstraction functions (in the form of arbitrary unary predicates over the
encapsulated state) define the objects that participate in each abstract set. Modules also
export procedures that may access the encapsulated state (and therefore change the con-
tents of the exported abstract sets). Each module uses set algebra expressions (involving
operators such as set union or difference) to specify the preconditions and postcondi-
tions of exported procedures. As a result, the analysis of client modules that coordinate
the actions of other modules can reason solely in terms of theexported abstract sets and
avoid the complexity of reasoning about any encapsulated state.

When the encapsulated state implements a data structure (such as list, hash table, or
tree), the resulting abstract sets characterize how objects participate in that data struc-
ture. The developer can then use the abstract sets to specifyconsistency properties that
involve multiple data structures from different modules. Such a property might state, for
example, that two data structures involve disjoint objectsor that the objects in one data
structure are a subset of the objects in another. In this way,our approach can capture
global sharing patterns and characterize both local and global data structure consistency.

The verification of a program consists of the application of (potentially different)
analysis plugins to verify 1) the set interfaces of all of themodules in the program and
2) the validity of the global data structure consistency properties. The set specifica-
tions separate the analysis of a complex program into independent verification tasks,
with each task verified by an appropriate analysis plugin [23]. Our approach therefore
makes it possible, for the first time, to apply multiple specialized, extremely precise,
and unscalable analyses such as shape analysis [27,28] or even manually aided theorem
proving [31] to effectively verify sophisticated typestate and data structure consistency
properties in sizable programs [23,31].

Specification Language Our specification language is the full first-order theory of
the boolean algebra of sets. In addition to basic typestate properties expressible using
quantifier-free boolean algebra expressions, our languagecan state constant bounds on
the cardinalities of sets of objects, such as “a local variable is not null” or “the con-
tent of the queue is nonempty”, or even “the data structure contains at least one and
at most ten objects”. Because a cardinality constraint counts all objects that satisfy a
given property, our specification language goes beyond standard typestate approaches
that use per-object finite state machines. Our specificationlanguage also supports quan-
tification over sets. Universal set quantifiers are useful for stating parametric properties;
existential set quantifiers are useful for information hiding. Note that quantification over
sets is not directly expressible even in such sophisticatedlanguages as first-order logic
with transitive closure.1 Despite this expressive power, our set specification language
is decidable and extends naturally to Boolean Algebra with Presburger Arithmetic [22].

The Flag Analysis Plugin The present paper describes the flag analysis plugin, which
uses the values of integer and boolean object fields (flags) todefine the meaning of ab-
stract sets. It verifies set specifications by first constructing set algebra formulas whose

1 The first-order logic with transitive closure is the basis ofthe analysis [28]; our modular plug-
gable analysis framework [23] can incorporate an analyzer like TVLA [28] as one of the anal-
ysis plugins.

2

validity implies the validity of the set specifications, then verifying these formulas us-
ing an off-the-shelf decision procedure. The flag analysis plugin is important for two
reasons. First, flag field values often reflect the high-levelconceptual state of the en-
tity that an object represents, and flag changes correspond to changes in the conceptual
state of the entity. By using flags in preconditions of objectoperations, the developer
can specify key object state properties required for the correct processing of objects
and the correct operation of the program. Unlike standard typestate approaches, our
flag analysis plugin can enforce not only temporal operationsequencing constraints,
but also the generalizations that our expressive set specification language enables.

Second, the flag analysis plugin can propagate constraints between abstract sets
defined with arbitrarily sophisticated abstraction functions in external modules. The
plugin can therefore analyze modules that, as they coordinate the operation of other
modules, indirectly manipulate external data structures defined in those other modules.
The flag analysis can therefore perform the intermodule reasoning required to verify
global data structure invariants such as the inclusion of one data structure in another
and data structure disjointness. Because the flag plugin uses the boolean algebra of sets
to internally represent its dataflow facts, it can propagateand verify these constraints in
a precise way.

To evaluate our flag analysis, we have annotated several benchmark programs with
set specifications. We have verified our benchmarks (in part)using the flag analysis
algorithm described in Section 3, with MONA [19] as the decision procedure for the
boolean algebra of sets. We found that our original analysisalgorithm did not scale. This
paper describes several optimizations that our analysis uses to improve the running time
of the algorithm and presents experimental data comparing the original and optimized
versions of our analysis.

2 Specification Language

Our system analyzes programs in a type-safe imperative language similar to Java or
ML. A program in our language consists of one of more modules;each module has an
implementation section, a specification section, and an (analysis-specific) abstraction
section. We next give an overview of the specification section.

Figure 1 presents the syntax for the specification section ofmodules in our language.
This section contains a list of set definitions and procedurespecifications and lists the
names of types used in these set definitions and procedure specifications. Set decla-
rations identify the module’s abstract sets, while booleanvariable declarations iden-
tify the module’s abstract boolean variables. Each procedure specification contains a
requires, modifies, andensures clause. Therequires clause identifies the
precondition that the procedure requires to execute correctly; the ensures clauses
identifies the postcondition that the procedure ensures when called in program states
that satisfy therequires condition. Themodifies clause identifies sets whose ele-
ments may change as a result of executing the procedure. For the purposes of this paper,
modifies clauses can be viewed as a special syntax for a frame-condition conjunct
in theensures clause. The variables in theensures clause can refer to both the
initial and final states of the procedure. Bothrequires andensures clauses use ar-
bitrary first-order boolean algebra formulasB extended with cardinality constraints. A

3

free variable of any formula appearing in a module specification denotes an abstract set
or boolean variable declared in that specification; it is an error if no such set or boolean
variable has been declared. The expressive power of such formulas is the first-order
theory of boolean algebras, which is decidable [20, 26]. Thedecidability of the spec-
ification language ensures that analysis plugins can precisely propagate the specified
relations between the abstract sets.

M ::= spec module m {(type t)∗(set S)∗(predvar b)∗P ∗}
P ::= proc pn(p1 : t1, . . . , pn : tn)[returns r : t]

[requiresB] [modifies S∗] ensuresB

B ::= SE1 = SE2 | SE1 ⊆ SE2 | card(SE)=k

| B ∧ B | B ∨ B | ¬B | ∃S.B | ∀S.B

SE ::= ∅ | p | [m.] S | [m.] S′

| SE1 ∪ SE2 | SE1 ∩ SE2 | SE1 \ SE2

Fig. 1.Syntax of the Module Specification Language

3 The Flag Analysis

Our flag analysis verifies that modules implement set specifications in which integer or
boolean flags indicate abstract set membership. The developer specifies (using the flag
abstraction language) the correspondence between concrete flag values and abstract
sets from the specification, as well as the correspondence between the concrete and the
abstract boolean variables. Figure 2 presents the syntax for our flag abstraction modules.
This abstraction language defines abstract sets in two ways:(1) directly, by stating a
base set; or (2) indirectly, as a set-algebraic combinationof sets.Base setshave the
form B = {x : T | x.f=c} and include precisely the objects of typeT whose fieldf
has valuec, wherec is an integer or boolean constant; the analysis converts mutations
of the fieldf into set-algebraic modifications of the setB. Derived setsare defined as set
algebra combinations of other sets; the flag analysis handles derived sets by conjoining
the definitions of derived sets (in terms of base sets) to eachverification condition and
tracking the contents of the base sets. Derived sets may use named base sets in their
definitions, but they may also useanonymoussets given by set comprehensions; the flag
analysis assigns internal names to anonymous sets and tracks their values to compute
the values of derived sets.

In our experience, applying several formula transformations drastically reduced the
size of the formulas emitted by the flag analysis, as well as the time that the MONA
decision procedure spent verifying these formulas. Section 4 describes these formula
optimizations. These transformations greatly improved the performance of our analysis
and allowed our analysis to verify larger programs.

3.1 Operation of the Analysis Algorithm

The flag analysis verifies a moduleM by verifying each procedure ofM . To verify
a procedure, the analysis performs abstract interpretation [5] with analysis domain el-

4

M ::= abst module m {D∗ P ∗}
D ::= id=Dr;

Dr ::= Dr ∪ Dr | Dr ∩ Dr | id | {x : T | x.f=c}
P ::= predvar p;

Fig. 2. Syntax of the Flag Abstraction Language

ements represented by formulas. Our analysis associates quantified boolean formulas
B to each program point. A formulaF has two collections of set variables: unprimed
set variablesS denoting initial values of sets at the entry point of the procedure, and
primed set variablesS′ denoting the values of these sets at the current program point. F
may also contain unprimed and primed boolean variablesb andb′ representing the pre-
and post-values of local and global boolean variables. The definitions in the abstrac-
tion sections of the module provide the interpretations of these variables. The use of
primed and unprimed variables allows our analysis to represent, for each program point
p, a binary relation on states that overapproximates the reachability relation between
procedure entry andp [6,17,29].

In addition to the abstract sets from the specification, the analysis also generates
a set for each (object-typed) local variable. This set contains the object to which the
local variable refers and has a cardinality constraint thatrestricts the set to have car-
dinality at most one (the empty set represents a null reference). The formulas that the
analysis manipulates therefore support the disambiguation of local variable and object
field accesses at the granularity of the sets in the analysis;other analyses often rely on
a separate pointer analysis to provide this information.

The initial dataflow fact at the start of a procedure is the precondition for that pro-
cedure, transformed into a relation by conjoiningS′ = S for all relevant sets. At merge
points, the analysis uses disjunction to combine boolean formulas. Our current analysis
iterateswhile loops at most some constant number of times, then coarsens the for-
mula totrue to ensure termination, thus applying a simple form of widening [5]. The
analysis also allows the developer to provide loop invariants directly.2 After running
the dataflow analysis, our analysis checks that the procedure conforms to its specifica-
tion by checking that the derived postcondition (which includes theensures clause
and any required representation or global invariants) holds at all exit points of the pro-
cedure. In particular, the flag analysis checks that for eachexit pointe, the computed
formulaBe implies the procedure’s postcondition.

Incorporation. The transfer functions in the dataflow analysis update boolean formulas
to reflect the effect of each statement. Recall that the dataflow facts for the flag analysis
are boolean formulasB denoting a relation between the state at procedure entry and
the state at the current program point. LetBs be the boolean formula describing the
effect of statements. The incorporation operationB ◦ Bs is the result of symbolically

2 Our typestate analysis could also be adapted to use predicate abstraction [1,2,16] to synthesize
loop invariants, by performing data flow analysis over the space of propositional combinations
of relationships between the sets of interest, and making use of the fact that the boolean alge-
bra of sets is decidable. Another alternative is the use of a normal form for boolean algebra
formulas.

5

composing the relations defined by the formulasB andBs. Conceptually, incorporation
updatesB with the effect ofBs. We computeB◦Bs by applying equivalence-preserving
simplifications to the formula

∃Ŝ1, . . . , Ŝn. B[S′
i 7→ Ŝi] ∧ Bs[Si 7→ Ŝi]

3.2 Transfer Functions

Our flag analysis handles each statement in the implementation language by providing
appropriate transfer functions for these statements. The generic transfer function is a
relation of the following form:

JstK(B) = B ◦ F(st),

whereF(st) is the formula symbolically representing the transition relation for the
statementst expressed in terms of abstract sets. The transition relations for the state-
ments in our implementation language are as follows.
Assignment statements.We first define a generic frame condition generator, used in
our transfer functions,

framex =
^

S 6=x, S not derived

S
′ = S ∧

^

p 6=x

(p′ ⇔ p),

whereS ranges over sets andp over boolean predicates. Note that derived sets are
not preserved by frame conditions; instead, the analysis preserves the anonymous sets
contained in the derived set definitions and conjoins these definitions to formulas before
applying the decision procedure.
Our flag analysis also tracks values of boolean variables:

F(b = true) = b′ ∧ frameb

F(b = false) = (¬b′) ∧ frameb

F(b = y) = (b′ ⇔ y) ∧ frameb

F(b = 〈if cond〉) = (b′ ⇔ f+(〈if cond〉)) ∧ frameb

F(b =!e) = F(b = e) ◦ ((b′ ⇔ ¬b) ∧ frameb)

wheref+(e) is the result of evaluatinge, defined below in our analysis of conditionals.
We also track local variable object references:

F(x = y) = (x′ = y) ∧ framex F(x = null) = (x′ = ∅) ∧ framex

F(x = new t) = ¬(x′ = ∅) ∧
V

S(x′ ∩ S = ∅) ∧ framex

We next present the transfer function for changing set membership. If R = {x :
T | x.f = c} is a set definition in the abstraction section, we have:

F(x.f = c) = R′ = R ∪ x ∧
∧

S∈alts(R) S′ = S \ x ∧ frame{R}∪ alts(R)

wherealts(R) = {S | abstraction module containsS = {x : T | x.f = c1}, c1 6= c.}
The rules for reads and writes of boolean fields are similar but, because our analysis

tracks the flow of boolean values, more detailed:

F(x.f = b) =

„

b ∧ B+′
= B+ ∪ x

∧
V

S∈alts(B+) S′ = S \ x

«

∧

„

¬b ∧ B−′
= B− ∪ x

∧
V

S∈alts(B−) S′ = S \ x

«

∧frame{B}∪alts(B)

F(b = y.f) = (b′ ⇔ y ∈ B+) ∧ frameb.

6

whereB+ = {x : T | x.f = true} andB− = {x : T | x.f = false}.
Finally, we have some default rules to conservatively account for expressions not oth-
erwise handled,

F(x.f = ∗) = framex F(x = ∗) = framex.

Procedure calls. For a procedure callx=proc(y), our transfer function checks that
the callee’s requires condition holds, then incorporatesproc’s ensures condition as
follows:

F(x = proc(y)) = ensures1(proc) ∧
^

S

S
′ = S

where bothensures1 and requires1 substitute caller actuals for formals ofproc (in-
cluding the return value), and whereS ranges over all local variables.
Conditionals. The analysis produces a different formula for each branch ofanif
statementif (e). We define functionsf+(e), f−(e) to summarize the additional in-
formation available on each branch of the conditional; the transfer functions for the true
and false branches of the conditional are thus, respectively,

Jif (e)K+(B) = f+(e) ∧ B Jif (e)K−(B) = f−(e) ∧ B.

For constants and logical operations, we define the obviousf+, f−:

f+(true) = true f−(true) = false
f+(false) = false f−(false) = true

f+(!e) = f−(e) f−(!e) = f+(e)
f+(x!=e) = f−(x==e) f−(x!=e) = f+(x==e)

f+(e1 && e2) = f+(e1) ∧ f+(e2) f−(e1 && e2) = f−(e1) ∨ f−(e2)

We definef+, f− for boolean fields as follows:

f+(x.f) = x ⊆ B f−(x.f) = x 6⊆ B

f+(x.f==false) = x 6⊆ B f−(x.f==false) = x ⊆ B

whereB = {x : T | x.f = true}; analogously, letR = {x : T | x.f = c}. Then,

f+(x.f==c) = x ⊆ R f−(x.f==c) = x 6⊆ R.

We also predicate the analysis on whether a reference isnull or not:

f+(x==null) = x = ∅ f−(x==null) = x 6= ∅.

Finally, we have a catch-all condition,

f+(∗) = true f−(∗) = true

which conservatively captures the effect of unknown conditions.

Loops. Our analysis analyzeswhile statements by synthesizing loop invariants or by
verifying developer-provided loop invariants. To synthesize a loop invariant, it iterates
the analysis of the loop body until it reaches a fixed point, oruntil N iterations have
occurred (in which case it synthesizestrue). The conditional at the top of the loop is
analyzed the same wayif statements are analyzed. We can also verify explicit loop

7

invariants; these simplify the analysis ofwhile loops and allow the analysis to avoid
the fixed point computation involved in deriving a loop invariant. Developer-supplied
explicit loop invariants are automatically conjoined withthe frame conditions generated
by the containing procedure’s modifies clause to ease the burden on the developer.

Assertions and Assume Statements.We analyze statements of the formassert A
by showing that the formula for the program points impliesA. Assertions allow devel-
opers to check that a given set-based property holds at an intermediate point of a proce-
dure. Usingassume statements, we allow the developer to specify properties that are
known to be true, but which have not been shown to hold by this analysis. Our analysis
prints out a warning message when it processesassume statements, and conjoins the
assumption to the current dataflow fact. Assume statements have proven to be valuable
in understanding analysis outcomes during the debugging ofprocedure specifications
and implementations. Assume statements may also be used to communicate properties
of the implementation that go beyond the abstract representation used by the analysis.

Return Statements.Our analysis processes the statementreturn x as an assignment
rv = x, whererv is the name given to the return value in the procedure declaration.
For all return statements (whether or not a value is returned), our analysis checks that
the current formula implies the procedure’s postconditionand stops propagating that
formula through the procedure.

3.3 Verifying Implication of Dataflow Facts

A compositional program analysis needs to verify implication of constraints as part
of its operation. Our flag analysis verifies implication whenit encounters an assertion,
procedure call, or procedure postcondition. In these situations, the analysis generates a
formula of the formB ⇒ A whereB is the current dataflow fact andA is the claim to
be verified3. The implication to be verified,B ⇒ A, is a formula in the boolean algebra
of sets. We use the MONA decision procedure to check its validity [18].

4 Boolean Algebra Formula Transformations

In our experience, applying several formula transformations drastically reduced the size
of the formulas emitted by the flag analysis, as well as the time needed to determine
their validity using an external decision procedure; in fact, some benchmarks could
only be verified with the formula transformations enabled. This subsection describes
the transformations we found to be useful.

Smart Constructors. The constructors for creating boolean algebra formulas ap-
ply peephole transformations as they create the formulas. Constant folding is the sim-
plest peephole transformation: for instance, attempting to createB ∧ true gives the for-
mulaB. Our constructors fold constants in implications, conjunctions, disjunctions, and
negations. Similarly, attempting to quantify over unused variables causes the quantifier

3 Note thatB may be unsatisfiable; this often indicates a problem with theprogram’s specifica-
tion. The flag analysis can, optionally, check whetherB is unsatisfiable and emit a warning if
it is. This check enabled us to improve the quality of our specifications by identifying specifi-
cations that were simply incorrect.

8

to be dropped:∃x.F is created as justF whenx is not free inF . Most interestingly,
we factor common conjuncts out of disjunctions:(A ∧ B) ∨ (A ∧ C) is represented
asA ∧ (B ∨ C). Conjunct factoring greatly reduces the size of formulas tracked after
control-flow merges, since most conjuncts are shared on bothcontrol-flow branches.
The effects of this transformations appear similar to the effects of SSA form conversion
in weakest precondition computation [14,25].

Basic Quantifier Elimination. We symbolically compute the composition of state-
ment relations during the incorporation step by existentially quantifying over all state
variables. However, most relations corresponding to statements modify only a small
part of the state and contain the frame condition that indicates that the rest of the state
is preserved. The result of incorporation can therefore often be written in the form
∃x.x = x1 ∧ F (x), which is equivalent toF (x1). In this way we reduce both the
number of conjuncts and the number of quantifiers. Moreover,this transformation can
reduce some conjuncts to the formt = t for some Boolean algebra termt, which is a
true conjunct that is eliminated by further simplifications.

It is instructive to compare our technique to weakest precondition computation [14]
and forward symbolic execution [4]. These techniques are optimized for the common
case of assignment statements and perform relation composition and quantifier elimina-
tion in one step. Our technique achieves the same result, butis methodologically simpler
and applies more generally. In particular, our technique can take advantage of equali-
ties in transfer functions that are not a result of analyzingassignment statements, but are
given by explicit formulas inensures clauses of procedure specifications. Such trans-
fer functions may specify more general equalities such asA = A′ ∪ x ∧ B′ = B ∪ x

which do not reduce to simple backward or forward substitution.

Quantifier Nesting. We have experimentally observed that the MONA decision pro-
cedure works substantially faster when each quantifier is applied to the smallest scope
possible. We have therefore implemented a quantifier nesting step that reduces the scope
of each quantifier to the smallest possible subformula that contains all free variables
in the scope of the quantifier. For example, our transformation replaces the formula
∀x. ∀y. (f(x) ⇒ g(y)) with (∃x. f(x)) ⇒ (∀y. g(y)).

To take maximal advantage of our transformations, we simplify formulas after ap-
plying incorporation and before invoking the decision procedure. Our global simplifica-
tion step rebuilds formulas bottom-up and applies simplifications to each subformula.

5 Other Plugins

In addition to the flag plugin, we also implemented a shape analysis plugin that uses the
PALE analysis tool to verify detailed properties of linked data structures such as lists
and trees. This plugin represents an extreme case in the precision of properties that fully
automated analyses can verify. Nevertheless, we were interested in verifying even more
detailed and precise data structure consistency properties. Namely, we sought to verify
properties of array-based data structures such as hash tables, which are outside the scope
of the PALE tool. We therefore implemented a theorem provingplugin which generates
verification conditions suitable for partially manual verification using the Isabelle proof
checker [31]. One of the goals of this effort is build up a library of instantiable verified
data structure implementation modules. Ideally, such a library would eliminate internal

9

data structure consistency as a concern during development, leaving developers free to
operate exclusively at the level of abstract sets to concentrate on broader application-
specific consistency properties that cut across multiple data structures.

6 Experience

We have implemented our modular pluggable analysis system,populated it with several
analyses (including the flag, shape analysis, and theorem prover plugins), and used the
system to develop several benchmark programs and applications. Table 1 presents a sub-
set of the benchmarks we ran through our system; full descriptions of our benchmarks
(as well as the full source code for our modular pluggable analysis system) are avail-
able at our project homepage athttp://cag.csail.mit.edu/∼plam/hob.
Minesweeper and water are complete applications; the others are either computational
patterns (compiler, scheduler, ctas) or data structures (prodcons). Compiler models a
constant-folding compiler pass, scheduler models an operating system scheduler, and
ctas models the core of an air-traffic control system. The board, controller, and view
modules are the core minesweeper modules; atom, ensemble, and h2o are the core wa-
ter modules. Thebold entries indicate system totals for minesweeper and water; note
that minesweeper includes several other modules, some of which are analyzed by the
shape analysis and theorem proving plugins, not the flag plugin.

Number of Lines Lines
modules of spec of impl

prodcons 41 50
compiler 75 143
scheduler 34 22
ctas 49 53
board 78 168
controller 43 133
view 43 372
minesweeper 7 236 750
atom 31 64
ensemble 164 883
h2o 158 420
water 10 582 1976

Table 1.Benchmark characteristics

We next present the impact of the formula transformation optimizations, then dis-
cuss the properties that we were able to specify and verify inthe minesweeper and water
benchmarks.

6.1 Formula Transformation Optimizations

We analyzed our benchmarks on a 2.80GHz Pentium 4, running Linux, with 2 gigabytes
of RAM. Table 2 summarizes the results of our formula transformation optimizations.

10

Each line summarizes a specific benchmark with a specific optimization configuration.
A Xin the “Smart Constructors” column indicates that the smartconstructors optimiza-
tion is turned on; a× indicates that it is turned off. Similarly, aXin the “Optimizations”
column indicates that all other optimizations are turned on; a× indicates that they are
turned off. The “Number of nodes” column reports the sizes (in terms of AST node
counts) of the resulting boolean algebra formulas. Our results indicate that the formula
transformations reduce the formula size by 2 to 60 times (often with greater reductions
for larger formulas); the Optimization Ratio column presents the reduction obtained in
formula size. The “MONA time” column presents the time spentin the MONA deci-
sion procedure (up to 73 seconds after optimization); the “Flag time” column presents
the time spent in the flag analysis, excluding the decision procedure (up to 477 seconds
after optimization). Without optimization, MONA could notsuccessfully check the for-
mulas for the compiler, board, view, ensemble and h2o modules because of an out of
memory error.

Optimizations Smart Number Optimization MONA Flag
Constructors of nodes ratio time time

prodcons X X, × 12306 2.46 0.17 0.03
× X,× 30338 1.00 0.27 0.04

compiler X X 15854 32.06 0.45 5.10
X × 28003 18.15 0.60 6.19
× X,× 508375 1.00 N/A 60.27

scheduler X X,× 442 2.44 0.05 0.04
× X,× 1082 1.00 0.12 0.14

ctas X X,× 2874 3.18 0.21 0.12
× X,× 9141 1.00 12.79 0.33

board X X 28658 41.43 1.92 18.89
X × 106550 11.14 11.45 29.27
× X 926321 1.28 N/A 134.94
× × 1187379 1.00 N/A 151.46

controller X X 6759 4.23 0.41 0.18
X × 7101 4.02 0.41 0.18
× X,× 28594 1.00 3.08 0.54

view X X 15878 59.08 1.07 12.38
X × 53925 17.39 1.45 18.88
× X,× 93800 1.00 N/A 263.15

atom X X 9677 3.14 0.53 0.13
X × 10244 2.97 0.54 0.13
× X,× 30447 1.00 40.95 0.43

ensemble X X 120279 20.60 50.90 34.15
X × 148748 16.66 105.59 47.06
× X,× 2478004 1.00 N/A 464.52

h2o X X 205933 4.32 73.80 477.01
X × 206167 4.31 81.85 475.86
× X,× 889637 1.00 N/A 1917.99

Table 2.Formula sizes before and after transformation

11

6.2 Minesweeper

We next illustrate how our approach enables the verificationof properties that span
multiple modules. Our minesweeper implementation has several modules: a game board
module (which represents the game state), a controller module (which responds to user
input), a view module (which produces the game’s output), anexposed cell module
(which stores the exposed cells in an array), and an unexposed cell module (which
stores the unexposed cells in an instantiated linked list).There are 750 non-blank lines
of implementation code in the 6 implementation modules and 236 non-blank lines in
the specification and abstraction modules.

Minesweeper uses the standard model-view-controller (MVC) design pattern [15].
The board module (which stores an array ofCell objects) implements the model
part of the MVC pattern. EachCell object may be mined, exposed or marked. The
board module represents this state information using theisMined, isExposed
andisMarked fields ofCell objects. At an abstract level, the setsMarkedCells,
MinedCells, ExposedCells, UnexposedCells, andU (for Universe) repre-
sent sets of cells with various properties; theU set contains all cells known to the board.
The board also uses a global boolean variablegameOver, which it sets totrue when
the game ends.

Our system verifies that our implementation has the following properties (among
others):

– The sets of exposed and unexposed cells are disjoint; unlessthe game is over, the
sets of mined and exposed cells are also disjoint.

– The set of unexposed cells maintained in theboard module is identical to the set
of unexposed cells maintained in theUnexposedList list.

– The set of exposed cells maintained in theboard module is identical to the set of
exposed cells maintained in theExposedSet array.

– At the end of the game, all cells are revealed;i.e. the set of unexposed cells is empty.

Although our system focuses on using sets to model program state, not every mod-
ule needs to define its own abstract sets. Indeed, certain modules may not define any
abstract sets of their own, but instead coordinate the activity of other modules to ac-
complish tasks. The view and controller modules are examples of such modules. The
view module has no state at all; it queries the board for the current game state and calls
the system graphics libraries to display the state.

Because these modules coordinate the actions of other modules — and do not en-
capsulate any data structures of their own — the analysis of these modules must oper-
ate solely at the level of abstract sets. Our analysis is capable of ensuring the validity
of these modules, since it can track abstract set membership, solve formulas in the
boolean algebra of sets, and incorporate the effects of invoked procedures as it ana-
lyzes each module. Note that for these modules, our analysisneed not reason about any
correspondence between concrete data structure representations and abstract sets.

The set abstraction supports typestate-style reasoning atthe level of individ-
ual objects (for example, all objects in theExposedCells set can be viewed as
having a conceptual typestateExposed). Our system also supports the notion of
global typestate. Theboard module, for example, has a globalgameOver vari-
able which indicates whether or not the game is over. The system uses this vari-

12

able and the definitions of relevant sets to maintain the global invariantgameOver |

disjoint(MinedCells,ExposedCells).
This global invariant connects a global typestate property— is the game over? —

with a object-based typestate state property evaluated on objects in the program —
there are no mined cells that are also exposed. Our analysis plugins verify these global
invariants by conjoining them to the preconditions and postconditions of methods. Note
that global invariants must be true in the initial state of the program. If some initializer
must execute to establish an invariant, then the invariant can be guarded by a global
typestate variable.

Another invariant concerns the correspondence between theExposedCells,
UnexposedCells, ExposedSet.Content, andUnexposedList.Content
sets:

(ExposedCells = ExposedSet.Content) & (UnexposedCells = UnexposedList.Content)

Our analysis verifies this property by conjoining it to theensures andrequires
clauses of appropriate procedures. Theboard module is responsible for maintain-
ing this invariant. Yet the analysis of the board module doesnot, in isolation, have
the ability to completely verify the invariant: it cannot reason about the concrete state
of ExposedSet.Content or UnexposedList.Content (which are defined in
other modules). However, theensures clauses of its callees, in combination with its
own reasoning that tracks membership in theExposedCells set, enables our analy-
sis to verify the invariant (assuming thatExposedSet andUnexposedList work
correctly).

Our system found a number of errors during the development and maintenance of
our minesweeper implementation. We next present one of these errors. At the end of the
game, minesweeper exposes the entire game board; we useremoveFirst to remove
all elements from the unexposed list, one at a time. After we have exposed the entire
board, we can guarantee that the list of unexposed cells is empty:

proc drawFieldEnd()
requires ExposedList.setInit & Board.gameOver &

(UnexposedList.Content <= Board.U)
modifies UnexposedList.Content, Board.ExposedCells,

Board.UnexposedCells, ExposedList.Content,
UnexposedList.Content

ensures card(UnexposedList.Content’) = 0;

because the implementation of thedrawFieldEnd procedure loops untilisEmpty
returnstrue, which also guarantees that theUnexposedList.Content set is
empty. The natural way to write the iteration in this procedure would be:

while (UnexposedList.isEmpty()) {
Cell c = UnexposedList.removeFirst();
drawCellEnd(c);

}

and indeed, this was the initial implementation of that code. However, when we at-
tempted to analyze this code, we got the following error message:

Analyzing proc drawFieldEnd...
Error found analyzing procedure drawFieldEnd:

requires clause in a call to procedure View.drawCellEnd.

13

Upon further examination, we found that we were breaking theinvariant ensuring that
Board.ExposedCells equalsUnexposedList.Content. The correct way to
preserve the invariant is by callingBoard.setExposed, which simultaneously sets
theisExposed flag and removes the cell from theUnexposedList:

Cell c = UnexposedList.getFirst();
Board.setExposed(c, true);
drawCellEnd(c);

6.3 Water

Water is a port of the Perfect Club benchmark MDG [3]. It uses apredictor/corrector
method to evaluate forces and potentials in a system of watermolecules in the liquid
state. The central loop of the computation performs a time step simulation. Each step
predicts the state of the simulation, uses the predicted state to compute the forces acting
on each molecule, uses the computed forces to correct the prediction and obtain a new
simulation state, then uses the new simulation state to compute the potential and kinetic
energy of the system.

Water consists of several modules, including thesimparm, atom, H2O,
ensemble, andmain modules. These modules contain 2000 lines of implementa-
tion and 500 lines of specification. Each module defines sets and boolean variables; we
use these sets and variables to express safety properties about the computation.

The simparm module, for instance, is responsible for recording simulation pa-
rameters, which are stored in a text file and loaded at the start of the computation. This
module defines two boolean variables,Init andParmsLoaded. If Init is true, then
the module has been initialized,i.e. the appropriate arrays have been allocated on the
heap. IfParmsLoaded is true, then the simulation parameters have been loaded from
disk and written into these arrays. Our analysis verifies that the program does not load
simulation parameters until the arrays have been allocatedand does not read simulation
parameters until they have been loaded from the disk and written into the arrays.

The fundamental unit of the simulation is the atom, which is encapsulated within
theatom module. Atoms cycle between thepredictedandcorrectedstates, with the
predic andcorrec procedures performing the computations necessary to effect
these state changes. A correct computation will only predict a corrected atom or correct
a predicted atom. To enforce this property, we define two setsPredic andCorrec
and populate them with the predicted and corrected atoms, respectively. Thecorrec
procedure operates on a single atom; its precondition requires this atom to be a mem-
ber of thePredic set. Its postcondition ensures that, after successful completion, the
atom is no longer in thePredic set, but is instead in theCorrec set. Thepredic
procedure has a corresponding symmetric specification.

Atoms belong to molecules, which are handled by theH2O module. A molecule
tracks the position and velocity of its three atoms. Like atoms, each module can be in
a variety of conceptual states. These states indicate not only whether the program has
predicted or corrected the position of the molecule’s atomsbut also whether the program
has applied the intra-molecule force corrections, whetherit has scaled the forces acting
on the molecule, etc. We verify the invariant that when the molecule is in the predicted
or corrected state, the atoms in the molecule are also in the same state. The interface of
theH2O module ensures that the program performs the operations on each molecule in

14

the correct order — for example, thebndry procedure may operate only on molecules
in the Kineti set (which have had their kinetic energy calculated by thekineti
procedure).

Theensemble module manages the collection of molecule objects. This module
stages the entire simulation by iterating over all molecules and computing their posi-
tions and velocities over time. The ensemble module uses boolean predicates to track
the state of the computation. When the boolean predicateINTERF is true, for exam-
ple, then the program has completed the interforce computation for all molecules in
the simulation. Our analysis verifies that the boolean predicates, representing program
state, satisfy the following ordering relationship:

Init ; INITIA ; PREDIC ; INTRAF ; VIR ; INTERF ; · · ·

Our specification relies on an implication from boolean predicates to properties rang-
ing over the collection of molecule objects, which can be ensured by a separate array
analysis plugin [23].

These properties help ensure that the computation’s phasesexecute in the correct
order; they are especially valuable in the maintenance phase of a program’s life, when
the original designer, if available, may have long since forgotten the program’s phase
ordering constraints. Our analysis’ set cardinality constraints also prevent empty sets
(and null pointers) from being passed to procedures that expect non-empty sets or non-
null pointers.

7 Related Work

Typestate systems track the conceptual states that each object goes through during its
lifetime in the computation [7,9–12,30]. They generalize standard type systems in that
the typestate of an object may change during the computation. Aliasing (or more gen-
erally, any kind of sharing) is the key problem for typestatesystems — if the program
uses one reference to change the typestate of an object, the typestate system must en-
sure that either the declared typestate of the other references is updated to reflect the
new typestate or that the new typestate is compatible with the old declared typestate at
the other references.

Most typestate systems avoid this problem altogether by eliminating the possibility
of aliasing [30]. Generalizations support monotonic typestate changes (which ensure
that the new typestate remains compatible with all existingaliases) [12] and enable
the program to temporarily prevent the program from using a set of potential aliases,
change the typestate of an object with aliases only in that set, then restore the typestate
and reenable the use of the aliases [10]. It is also possible to support object-oriented
constructs such as inheritance [8]. Finally, in the role system, the declared typestate of
each object characterizes all of the references to the object, which enables the typestate
system to check that the new typestate is compatible with allremaining aliases after a
nonmonotonic typestate change [21].

In our approach, the typestate of each object is determined by its membership in
abstract sets as determined by the values of its encapsulated fields and its participation
in encapsulated data structures. Our system supports generalizations of the standard
typestate approach such as orthogonal typestate composition and hierarchical typestate

15

classification. The connection with data structure participation enables the verification
of both local and global data structure consistency properties.

8 Conclusion

Typestate systems have traditionally been designed to enforce safety conditions that
involve objects whose state may change during the course of the computation. In par-
ticular, the standard goal of typestate systems is to ensurethat operations are invoked
only on objects that are in appropriate states. Most existing typestate systems support a
flat set of object states and limit typestate changes in the presence of sharing caused by
aliasing. We have presented a reformulation of typestate systems in which the typestate
of each object is determined by its membership in abstract typestate sets. This refor-
mulation supports important generalizations of the typestate concept such as typestates
that capture membership in data structures, composite typestates in which objects are
members of multiple typestate sets, hierarchical typestates, and cardinality constraints
on the number of objects that are in a given typestate. In the context of our Hob modular
pluggable analysis framework, our system also enables the specification and effective
verification of detailed local and global data structure consistency properties, including
arbitrary internal consistency properties of linked and array-based data structures. Our
system therefore effectively supports tasks such as understanding the global sharing
patterns in large programs, verifying the absence of undesirable interactions, and en-
suring the preservation of critical properties necessary for the correct operation of the
program.

Acknowledgements.This research was supported by the DARPA Cooperative Agree-
ment FA 8750-04-2-0254, DARPA Contract 33615-00-C-1692, the Singapore-MIT Al-
liance, and the NSF Grants CCR-0341620, CCR-0325283, and CCR-0086154.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of
C programs. InProc. ACM PLDI, 2001.

2. T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstraction refinement
for software model checking. InTACAS’02, volume 2280 ofLNCS, page 158, 2002.

3. W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers on the Perfect
Benchmarks programs.IEEE Transactions on Parallel and Distributed Systems, 3(6):643–
656, Nov. 1992.

4. L. Clarke and D. Richardson. Symbolic evaluation methodsfor program analysis. InPro-
gram Flow Analysis: Theory and Applications, chapter 9. Prentice-Hall, Inc., 1981.

5. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InProc. 6th
POPL, pages 269–282, San Antonio, Texas, 1979. ACM Press, New York, NY.

6. P. Cousot and N. Halbwachs. Automatic discovery of linearrestraints among variables of a
program. InConference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press,
New York, NY.

7. R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software. InProc.
ACM PLDI, 2001.

16

8. R. DeLine and M. Fähndrich. Typestates for objects. InProc. 18th ECOOP, June 2004.
9. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, andP. Giannini. Fickle: Dynamic

object re-classification. InProc. 15th ECOOP, LNCS 2072, pages 130–149. Springer, 2001.
10. M. Fahndrich and R. DeLine. Adoption and focus: Practical linear types for imperative

programming. InProc. ACM PLDI, 2002.
11. M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an object-

oriented language. InProceedings of the 18th ACM SIGPLAN conference on Object-oriented
programing, systems, languages, and applications, pages 302–312. ACM Press, 2003.

12. M. Fähndrich and K. R. M. Leino. Heap monotonic typestates. InInternational Workshop
on Aliasing, Confinement and Ownership in object-oriented programming (IWACO), 2003.

13. J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate verification: Abstraction tech-
niques and complexity results. InStatic Analysis, 10th International Symposium, SAS 2003,
San Diego, CA, USA, June 11-13, 2003, Proceedings, volume 2694 ofLecture Notes in Com-
puter Science. Springer, 2003.

14. C. Flanagan and J. B. Saxe. Avoiding exponential explosion: Generating compact verification
conditions. InProc. 28th ACM POPL, 2001.

15. E. Gamma, R. Helm, R. Johnson, and J. Vlisside.Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Mass., 1994.

16. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In
31st POPL, 2004.

17. B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interprocedural
shape analysis. In11th SAS, 2004.

18. N. Klarlund and A. Møller.MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1,
Department of Computer Science, University of Aarhus, January 2001.

19. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation secrets. InProc.
5th International Conference on Implementation and Application of Automata. LNCS, 2000.

20. D. Kozen. Complexity of boolean algebras.Theoretical Computer Science, 10:221–247,
1980.

21. V. Kuncak, P. Lam, and M. Rinard. Role analysis. InProc. 29th POPL, 2002.
22. V. Kuncak and M. Rinard. The first-order theory of sets with cardinality constraints is decid-

able. Technical Report 958, MIT CSAIL, July 2004.
23. P. Lam, V. Kuncak, and M. Rinard. On our experience with modular pluggable analyses.

Technical Report 965, MIT CSAIL, September 2004.
24. P. Lam, V. Kuncak, K. Zee, and M. Rinard. The Hob project web page.

http://hob.csail.mit.edu, 2004.
25. K. R. M. Leino. Efficient weakest preconditions. KRML114a, 2003.
26. L. Loewenheim.Über mögligkeiten im relativkalkül.Math. Annalen, 76:228–251, 1915.
27. A. Møller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. InProgramming

Language Design and Implementation, 2001.
28. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.ACM

TOPLAS, 24(3):217–298, 2002.
29. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis problems. In

Program Flow Analysis: Theory and Applications. Prentice-Hall, Inc., 1981.
30. R. E. Strom and S. Yemini. Typestate: A programming language concept for enhancing

software reliability.IEEE TSE, January 1986.
31. K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theorem proving with static anal-

ysis for data structure consistency. InInternational Workshop on Software Verification and
Validation (SVV 2004), Seattle, November 2004.

17

