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Abstract. We describe an algorithm for deciding the first-order multisorted theory BAPA,
which combines 1) Boolean algebras of sets of uninterpretedelements (BA) and 2) Pres-
burger arithmetic operations (PA). BAPA can express the relationship between integer vari-
ables and cardinalities of a priory unbounded finite sets, and supports arbitrary quantifica-
tion over sets and integers.
Our motivation for BAPA is deciding verification conditionsthat arise in the static anal-
ysis of data structure consistency properties. Data structures often use an integer variable
to keep track of the number of elements they store; an invariant of such a data structure is
that the value of the integer variable is equal to the number of elements stored in the data
structure. When the data structure content is represented by a set, the resulting constraints
can be captured in BAPA. BAPA formulas with quantifier alternations arise when verify-
ing programs with annotations containing quantifiers, or when proving simulation relation
conditions for refinement and equivalence of program fragments. Furthermore, BAPA con-
straints can be used for proving the termination of programsthat manipulate data structures,
and have applications in constraint databases.
We give a formal description of a decision procedure for BAPA, which implies the decid-
ability of BAPA. We analyze our algorithm and obtain an elementary upper bound on the
running time, thereby giving the first complexity bound for BAPA. Because it works by a
reduction to PA, our algorithm yields the decidability of a combination of sets of uninter-
preted elements with any decidable extension of PA. Our algorithm can also be used to yield
an optimal decision procedure for BA through a reduction to PA with bounded quantifiers.
We have implemented our algorithm and used it to discharge verification conditions in the
Jahob system for data structure consistency checking of Java programs; our experience with
the algorithm is promising.

1 Introduction

Program analysis and verification tools can greatly contribute to software reliability,
especially when used throughout the software development process. Such tools are even
more valuable if their behavior is predictable, if they can be applied to partial programs,
and if they allow the developer to communicate the design information in the form of
specifications. Combining the basic idea of [18] with decidable logics leads to analysis
tools that have these desirable properties. Such analyses are precise (because formulas
represent loop-free code precisely) and predictable (because the checking of verification
conditions terminates either with a realizable counterexample or with a sound claim that
there are no counterexamples).

A key challenge in this approach to program analysis and verification is to iden-
tify a logic that captures an interesting class of program properties, but is neverthe-
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less decidable. In [29] we identify the first-order theory ofBoolean algebras (BA) as a
useful language for reasoning about dynamically allocatedobjects:BA allows express-
ing generalized typestate properties and reasoning about data structures as dynamically
changing sets of objects. (We are interested inBA of all subsets of some set; this theory
was shown decidable already in [31,46], see [22] for the discussion of other models of
Boolean algebra axioms.)

The motivation for this paper is the fact that we often need toreason not only about
the data structure content, but also about the size of the data structure. For example, we
may want to express the fact that the number of elements stored in a data structure is
equal to the value of an integer variable that is used to cachethe data structure size, or
we may want to introduce a decreasing integer measure on the data structure to show
program termination. These considerations lead to a natural generalization of the first-
order theory ofBA of sets, a generalization that allows integer variables in addition
to set variables, and allows stating relations of the form|A| = k meaning that the
cardinality of the setA is equal to the value of the integer variablek. Once we have
integer variables, a natural question arises: which relations and operations on integers
should we allow? It turns out that, using only theBA operations and the cardinality
operator, we can already define all operations ofPA. This leads to the structureBAPA,
which properly generalizes bothBA andPA.

As we explain in Section 2, a version ofBAPA was shown decidable already in [14]
(which also proves the well-known Feferman-Vaught theorem[19, Section 9.6] about
the products of first-order theories). Recently, a decisionprocedure for a fragment of
BAPA without quantification over sets was presented in [55], castas a multi-sorted
theory. Starting from [29] as our motivation, we have observed in [26] the decidability
of the fullBAPA (which was initially left open in [55]). An algorithm for a single-sorted
version ofBAPA was presented independently in [42] as a way of evaluating queries in
constraint databases; [42] leaves open the complexity of the satisfiability problem.

Our paper gives the first formal description of a decision procedure for the full
first-order theory ofBAPA. Furthermore, we analyze our decision procedure and show
that it yields an elementary upper bound on the complexity ofBAPA. Our result is
the first upper complexity bound onBAPA; along with a lower bound fromPA, we
obtain a good estimate ofBAPA worst-case complexity. We have also implemented our
decision procedure; we report on our initial experience in using the decision procedure
in the context of a system for checking data structure consistency.

Contributions. We summarize the contributions of our paper as follows.
1. As amotivation for BAPA, we show in Section 3 how BAPA constraints can be

used for program analysis and verification by expressing 1) data structure invari-
ants, 2) the correctness of procedures with respect to theirspecifications, 3) simu-
lation relations between program fragments, and 4) termination conditions for pro-
grams that manipulate data structures.

2. We present analgorithm α (Section 4) that translatesBAPA sentences intoPA

sentences by translating set quantifiers into integer quantifiers.
3. We analyze our algorithmα and show that it yields anelementary upper bound on

the worst-case complexity of the validity problem forBAPA sentences that is close
to the bound onPA sentences themselves (Section 5). This is the first complexity
bound forBAPA, and is the main contribution of this paper.
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4. We discuss our initial experience in using ourimplementation of BAPA to dis-
charge verification conditions generated in the Jahob verification system [23].

5. In addition, we note the following related results:
(a) PA sentences generated by translatingBA sentences without cardinalities can

be decided inoptimal alternating time (Section 5.2);
(b) Our algorithm extends tocountable sets with a predicate distinguishing finite

and infinite sets (Section 7);
(c) In contrast to the undecidability of MSOL with equicardinality operator, we

identify adecidable combination of MSOL over trees withBA (Section 7).
A preliminary version of our results, including the algorithm and complexity analysis
appear in [26], which also contains proofs and further details of our results.

2 The First-Order Theory BAPA

Figure 3 presents the syntax of Boolean Algebra with Presburger Arithmetic (BAPA),
which is the focus of this paper. We next present some justification for the operations in
Figure 3. Our initial motivation forBAPA was the use ofBA to reason about data struc-
tures in terms of sets [28]. Our language forBA (Figure 1) allows cardinality constraints
of the form |A| = K whereK is a constantinteger. Such constant cardinality con-
straints are useful and enable quantifier elimination for the resulting language [31, 46].
However, they do not allow stating constraints such as|A| = |B| for two setsA andB,
and cannot represent constraints on changing program variables. Consider therefore the
equicardinality relationA ∼ B that holds iff|A| = |B|, and considerBA extended with
relationA ∼ B. Define the ternary relationplus(A, B, C) ⇐⇒ (|A| + |B| = |C|)
by the formula∃x1. ∃x2. x1 ∩ x2 = ∅ ∧ A ∼ x1 ∧ B ∼ x2 ∧ x1 ∪ x2 = C. The
relationplus(A, B, C) allows us to express addition using arbitrary sets as representa-
tives for natural numbers;∅ can represent the natural number zero, and any singleton set
can represent the natural number one. (The property ofA being a singleton is definable
using e.g. the first-order formulaA 6= ∅ ∧ ∀B.A ∩ B = B ⇒ (B = ∅ ∨ B = A).)
Moreover, we can represent integers as equivalence classesof pairs of natural numbers
under the equivalence relation(x, y) ≈ (u, v) ⇐⇒ x + v = u + y; this construction
also allows us to express the unary predicate of being non-negative. The quantification
over pairs of sets represents quantification over integers,and quantification over inte-
gers with the addition operation and the predicate “being non-negative” can express all
PA operations, presented in Figure 2. Therefore, a natural closure under definable oper-
ations leads to our formulation of the languageBAPA in Figure 3, which contains both
sets and integers.

The argument above also explains why we attribute the decidability of BAPA to [14,
Section 8], which showed the decidability ofBA over sets extended with the equicar-
dinality relation∼, using the decidability of the first-order theory of the addition of
cardinal numbers.

The languageBAPA has two kinds of quantifiers: quantifiers over integers and quan-
tifiers over sets; we distinguish between these two kinds by denoting integer variables
with symbols such ask, l and set variables with symbols such asx, y. We use the
shorthand∃+k.F (k) to denote∃k.k ≥ 0 ∧ F (k) and, similarly∀+k.F (k) to denote
∀k.k ≥ 0 ⇒ F (k). In summary, the language ofBAPA in Figure 3 subsumes the
language ofPA in Figure 2, subsumes the language ofBA in Figure 3, and contains
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F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F |
∃x.F | ∀x.F

A ::= B1 = B2 | B1 ⊆ B2 |
|B| = K | |B| ≥ K

B ::= x | 0 | 1 | B1 ∪ B2 | B1 ∩ B2 | Bc

K ::= 0 | 1 | 2 | . . .

Fig. 1. Formulas of Boolean Algebra (BA)

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F |
∃k.F | ∀k.F

A ::= T1 = T2 | T1 < T2 | K dvdT

T ::= K | T1 + T2 | K · T

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 2. Formulas of Presburger Arithmetic (PA)

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F |

∃x.F | ∀x.F | ∃k.F | ∀k.F

A ::= B1 = B2 | B1 ⊆ B2 |

T1 = T2 | T1 < T2 | K dvdT

B ::= x | 0 | 1 | B1 ∪ B2 | B1 ∩ B2 | Bc

T ::= k | K | MAXC | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 3. Formulas of Boolean Algebra with Presburger Arithmetic (BAPA)

non-trivial combination of these two languages in the form of using the cardinality of a
set expression as an integer value.

The semantics of operations in Figure 3 is the expected one. We interpret integer
terms as integers, and interpret set terms as elements of thepowerset of a finite set. The
MAXC constant denotes the size of the finite universeU , so we requireMAXC = |U|
in all models. Our results generalize to the Boolean algebraof powersets of a countable
set, see Section 7.

3 Applications of BAPA

This section illustrates the importance ofBAPA constraints. Section 3.1 shows the uses
of BAPA constraints to express and verify data structure invariants as well as proce-
dure preconditions and postconditions. Section 3.2 shows how a class of simulation
relation conditions can be proved automatically using a decision procedure forBAPA.
Section 3.3 shows howBAPA can be used to express and prove termination conditions
for a class of programs.

3.1 Verifying Data Structure Consistency

Figure 4 presents a procedureinsert in a language that directly manipulates sets. Such
languages can either be directly executed [13] or can arise as abstractions of programs
in standard languages [29]. The program in Figure 4 manipulates a global set of objects
content and an integer fieldsize. The program maintains an invariantI that the size of
the setcontent is equal to the value of the variablesize. The insert procedure inserts
an elemente into the set and correspondingly updates the integer variable. The requires
clause (precondition) of theinsert procedure is that the parametere is a non-null refer-
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ence to an object that is not stored in the setcontent. The ensures clause (postcondition)
of the procedure is that thesize variable after the insertion is positive. Note that we rep-
resent references to objects (such as the procedure parameter e) as sets with at most
one element. An empty set represents a null reference; a singleton set{o} represents a
reference to objecto. The value of a variable after procedure execution is indicated by
marking the variable name with a prime.

var content : set;
var size : integer;
invariant I ⇐⇒ (size = |content|);

procedure insert(e : element)
maintains I

requires |e| = 1 ∧ |e ∩ content| = 0
ensures size′ > 0
{

content := content ∪ e;
size := size + 1;

}

Fig. 4. An Example Procedure

{

|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content|
}

content := content ∪ e; size := size + 1;
{

size′ > 0 ∧ size′ = |content′|
}

Fig. 5. Hoare Triple forinsert Procedure

∀e. ∀content. ∀content′. ∀size. ∀size′.

(|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content| ∧
content′ = content ∪ e ∧ size′ = size + 1) ⇒

size′ > 0 ∧ size′ = |content′|

Fig. 6. Verification Condition for Figure 5

The insert procedure maintains an invariant,I, which captures the relationship be-
tween the size of the setcontent and the integer variablesize. The invariantI is implic-
itly conjoined with the requires and the ensures clauses of the procedure. The Hoare
triple in Figure 5 summarizes the resulting correctness condition for the insert proce-
dure. Figure 6 presents a verification condition corresponding to the Hoare triple in
Figure 5. Note that the verification condition contains bothset and integer variables,
contains quantification over these variables, and relates the sizes of sets to the values of
integer variables. Our small example leads to a formula without quantifier alternations;
in general, formulas that arise in verification may contain alternations of existential and
universal variables over both integers and sets. This papershows the decidability of
such formulas and presents the complexity of the decision procedure.

3.2 Proving Simulation Relation Conditions

BAPA constraints are also useful when proving that a given binaryrelation on states is a
simulation relation between two program fragments. Figure7 shows one such example.
The concrete procedurestart1 manipulates two sets: a set of running processes and
a set of suspended processes in a process scheduler. The procedurestart1 inserts a
new processx into the set of running processesR, unless there are already too many
running processes. The procedurestart2 is a version of the procedure that operates
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in a more abstract state space: it maintains only the unionP of all processes and the
numberk of running processes. Figure 7 shows a forward simulation relationr between
the transition relations forstart1 andstart2. The standard simulation relation diagram
condition is∀s1.∀s′1.∀s2.(t1(s1, s

′

1)∧ r(s1, s2)) ⇒ ∃s′2. (t2(s2, s
′

2)∧ r(s′1, s
′

2)). In the
presence of preconditions,t1(s1, s

′

1) = (pre1(s1) ⇒ post1(s1, s
′

1)) andt2(s2, s
′

2) =
(pre2(s2) ⇒ post2(s2, s

′

2)), and sufficient conditions for simulation relation are:

1. ∀s1.∀s2.r(s1, s2) ∧ pre2(s2) ⇒ pre1(s1)
2. ∀s1.∀s′1.∀s2.∃s′2. r(s1, s2) ∧ post1(s1, s

′

1) ∧ pre2(s2) ⇒ post2(s2, s
′

2) ∧ r(s′1, s
′

2)

Figure 7 showsBAPA formulas that correspond to the simulation relation conditions in
this example. Note that the secondBAPA formula has a quantifier alternation, which
illustrates the relevance of quantifiers inBAPA.

var R : set;
var S : set;

procedure start1(x)
requires x 6⊆ R ∧ |x| = 1 ∧ |R| < MAXR

ensures R′ = R ∪ x ∧ S′ = S

{
R := R ∪ x;

}

var P : set;
var k : integer;

procedure start2(x)
requires x 6⊆ P ∧ |x| = 1 ∧ k < MAXR

ensures P′ = P ∪ x ∧ k′ = k + 1
{

P := P ∪ x;
k := k + 1;

}

Simulation relationr:
r((R, S), (P, k)) = (P = R ∪ S ∧ k = |R|)

Simulation relation conditions inBAPA:
1. ∀x,R, S, P, k.(P = R ∪ S ∧ k = |R|) ∧ (x 6⊆ P ∧ |x| = 1 ∧ k < MAXR) ⇒

(x 6⊆ R ∧ |x| = 1 ∧ |R| < MAXR)
2. ∀x,R, S, R′, S′, P, k.∃P′, k′.((P = R ∪ S ∧ k = |R|) ∧ (R′ = R ∪ x ∧ S′ = S) ∧

(x 6⊆ P ∧ |x| = 1 ∧ k < MAXR)) ⇒
(P′ = P ∪ x ∧ k′ = k + 1) ∧ (P′ = R′ ∪ S′ ∧ k′ = |R′|)

Fig. 7. Proving simulation relation inBAPA

3.3 Proving Termination of Programs

We next show thatBAPA is useful for proving program termination. A standard tech-
nique for proving termination of a loop is to introduce a ranking functionf that maps
program state into a non-negative integer, then prove that the value of the function de-
creases at each loop iteration. In other words, ift(s, s′) denotes the relationship between
the state at the beginning and the state at the end of each loopiteration, then the con-
dition ∀s.∀s′.t(s, s′) ⇒ f(s) > f(s′) holds. Figure 8 shows an example program that
processes each element of the initial value of setiter; this program can be viewed as ma-
nipulating an iterator over a data structure that implements a set. Using the the ability to
take cardinality of a set allows us to define a natural rankingfunction for this program.
Figure 9 shows the termination proof based on such ranking function. The resulting
termination condition can be expressed as a formula that belongs toBAPA, and can
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var iter : set;

procedure iterate()
{

while iter 6= ∅ do

var e : set;
e := choose iter;
iter := iter \ e;
process(e);

done

}

Fig. 8. Terminating program

Ranking function:
f (s) = |s|

Transition relation:
t(iter, iter′) = (∃e. |e| = 1 ∧ e ⊆ iter ∧ iter′ = iter \ e)

Termination condition inBAPA:
∀iter.∀iter′. (∃e.|e| = 1 ∧ e ⊆ iter ∧ iter′ = iter \ e)

⇒ |iter′| < |iter|

Fig. 9. Termination proof for Figure 8

be discharged using our decision procedure. In general, we can reduce the termination
problem of programs that manipulate both sets and integers to showing a simulation re-
lation with a fragment of a terminating program that manipulates only integers, which
can be proved terminating using techniques [38]. The simulation relation condition can
be proved correct using ourBAPA decision procedure whenever the simulation relation
is expressible with aBAPA formula.

4 Decision Procedure for BAPA

This section presents our algorithm, denotedα, which decides the validity ofBAPA

sentences. The algorithm reduces aBAPA sentence to an equivalentPA sentence with
the same number of quantifier alternations and an exponential increase in the total size
of the formula. This algorithm has several desirable properties:

1. Given the space and time bounds forPA sentences [41], the algorithmα yields
reasonable space and time bounds for decidingBAPA sentences (Section 5).

2. The algorithmα does not eliminate integer variables, but instead producesan equiv-
alent quantifiedPA sentence. The resultingPA sentence can therefore be decided
usinganydecision procedure forPA, including the decision procedures based on
automata [21,30].

3. The algorithmα can eliminate set quantifiers from any extension ofPA. We thus
obtain a technique for adding a particular form of set reasoning to every extension
of PA, and the technique preserves the decidability of the extension. One example
of decidable theory that extendsPA is MSOL over strings, see See Section 7.

4. For simplicity we present the algorithmα as a decision procedure for formulas
with no free variables, but the algorithm can be used to transform and simplify
formulas with free variables as well, because it transformsone quantifier at a time
starting from the innermost one. Because of this feature, wecan use the algorithm
α to project out local state components from formulas that describe invariants and
transition relations, and simplify the resulting formulas.

We next describe the algorithmα for transforming aBAPA sentenceF0 into a PA

sentence. As the first step of the algorithm, transformF0 into prenex form

Qpvp. . . . Q1v1. F (v1, . . . , vp)
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whereF is quantifier-free, and each quantifierQivi is of one the forms∃k, ∀k, ∃y, ∀y

wherek denotes an integer variable andy denotes a set variable.
The next step of the algorithm is to separateF into BA part andPA part. To achieve

this, replace each formulax = y wherex andy are sets, with the conjunctionx ⊆
y ∧ y ⊆ x, and replace each formulax ⊆ y with the equivalent formula|x ∩ yc| = 0.
In the resulting formula, each setx occurs in some term|t(x)|. Next, use the same
reasoning as when generating disjunctive normal form for propositional logic to write
each set expressiont(x) as a union of cubes (regions in Venn diagram). The cubes have
the form

∧n

i=1 xαi

i wherexαi

i is eitherxi or xc
i ; there arem = 2n cubess1, . . . , sm.

Suppose thatt(x) = sj1∪. . .∪sja
; then replace the term|t(x)| with the term

∑a

i=1 |sji
|.

In the resulting formula, each setx appears in an expression of the form|si| wheresi is
a cube. For eachsi introduce a new variableli. Then the resulting formula is equivalent
to

Qpvp. . . . Q1v1.

∃+l1, . . . , lm.
∧m

i=1
|si| = li ∧ G1

(1)

whereG1 is a PA formula. Formula (1) is the starting point of the main phase of
algorithm α. The main phase of the algorithm successively eliminates quantifiers
Q1v1, . . . , Qpvp while maintaining a formula of the form

Qpvp . . . Qrvr.

∃+l1 . . . lq.
∧q

i=1
|si| = li ∧ Gr

(2)

whereGr is aPA formula,r grows from1 to p + 1, andq = 2e wheree for 0 ≤ e ≤ n

is the number of set variables amongvp, . . . , vr. The lists1, . . . , sq is the list of all2e

partitions formed from the set variables amongvp, . . . , vr.
We next show how to eliminate the innermost quantifierQrvr from the formula (2).

During this process, the algorithm replaces the formulaGr with a formulaGr+1 which
has more integer quantifiers. Ifvr is an integer variable then the number of setsq re-
mains the same, and ifvr is a set variable, thenq reduces from2e to 2e−1. We next
consider each of the four possibilities∃k, ∀k, ∃y, ∀y for the quantifierQrvr.

Consider first the case∃k. Becausek does not occur in
∧q

i=1 |si| = li, simply move
the existential quantifier toGr and letGr+1 = ∃k.Gr, which completes the step.

For universal quantifiers, it suffices to letGr+1 = ∀k.Gr, again becausek does not
occur in

∧q

i=1 |si| = li.
We next show how to eliminate an existential set quantifier∃y from

∃y. ∃+
l1 . . . lq.

q
∧

i=1

|si| = li ∧ Gr (3)

which is equivalent to∃+l1 . . . lq. (∃y.
∧q

i=1 |si| = li) ∧ Gr. This is the key step of
the algorithm and relies on the following lemma (see [26] forproof).

Lemma 1. Let b1, . . . , bn be finite disjoint sets, andl1, . . . , ln, k1, . . . , kn be natural
numbers. Then the following two statements are equivalent:

1. There exists a finite sety such that
∧n

i=1 |bi ∩ y| = ki ∧ |bi ∩ yc| = li
2.

∧n

i=1 |bi| = ki + li.
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In the quantifier elimination step, assume without loss of generality that the set variables
s1, . . . , sq are numbered such thats2i−1 ≡ s′i ∩ yc ands2i ≡ s′i ∩ y for some cubes′i.
Then apply Lemma 1 and replace each pair of conjuncts

|s′i ∩ yc| = l2i−1 ∧ |s′i ∩ y| = l2i

with the conjunct|s′i| = l2i−1 + l2i, yielding formula

∃+
l1 . . . lq.

q′
∧

i=1

|s′i| = l2i−1 + l2i ∧ Gr (4)

for q′ = 2e−1. Finally, to obtain a formula of the form (2) forr + 1, introduce fresh
variablesl′i constrained byl′i = l2i−1 + l2i, rewrite (4) as

∃+
l
′

1 . . . l
′

q′ .

q′
∧

i=1

|s′i| = l
′

i ∧ (∃l1 . . . lq.

q′
∧

i=1

l
′

i = l2i−1 + l2i ∧ Gr)

and let

Gr+1 ≡ ∃+
l1 . . . lq.

q′
∧

i=1

l
′

i = l2i−1 + l2i ∧ Gr

This completes the description of elimination of an existential set quantifier∃y.
To eliminate a set quantifier∀y, observe that

¬(∃+
l1 . . . lq.

q
∧

i=1

|si| = li ∧ Gr)

is equivalent to∃+l1 . . . lq.
∧q

i=1 |si| = li ∧ ¬Gr, because the existential quantifier
is used as a let-binding, so we may first substitute all valuesli into Gr, then perform
the negation, and then extract back the definitions of all valuesli. By expressing∀y

as¬∃y¬, we can show that the elimination of∀y is analogous to elimination of∃y:
introduce fresh variablesl′i = l2i−1 + l2i and let

Gr+1 ≡ ∀+
l1 . . . lq. (

q′
∧

i=1

l
′

i = l2i−1 + l2i) ⇒ Gr

After eliminating all quantifiers as described above, we obtain a formula of the form
∃+l. |U| = l∧Gp+1(l). We define the result of the algorithm, denotedα(F0), to be the
PA sentenceGp+1(MAXC).

This completes the description of the algorithmα. Given that the validity ofPA sen-
tences is decidable [39], the algorithmα is a decision procedure forBAPA sentences.

Theorem 2. The algorithmα described above maps eachBAPA-sentenceF0 into an
equivalentPA-sentenceα(F0).

Formalization of the algorithm α. To formalize the algorithmα, we wrote a concise
implementation in O’Caml, see [26]. As an illustration, when we run the implemen-
tation on theBAPA formula in Figure 6 which represents a verification condition, we
immediately obtain thePA formula in Figure 10. Note that the structure of the resulting
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formula mimics the structure of the original formula: everyset quantifier is replaced by
the corresponding block of quantifiers over non-negative integers constrained to parti-
tion the previously introduced integer variables. Figure 11 presents the correspondence
between the set variables of theBAPA formula and the integer variables of the translated
PA formula. Note that the relationshipcontent′ = content ∪ e translates into the con-
junction of the constraints|content′∩(content∪e)c| = 0∧ |(content∪e)∩content′

c| =
0, which reduces to the conjunctionl100 = 0 ∧ l011 + l001 + l010 = 0 using the trans-
lation of set expressions into the disjoint union of partitions, and the correspondence in
Figure 11.

∀+l1.∀
+l0. MAXC = l1 + l0 ⇒

∀+l11.∀
+l01.∀

+l10.∀
+l00.

l1 = l11 + l01 ∧ l0 = l10 + l00 ⇒
∀+l111. ∀

+l011. ∀
+l101. ∀

+l001.

∀+l110. ∀
+l010. ∀

+l100. ∀
+l000.

l11 = l111 + l011 ∧ l01 = l101 + l001 ∧
l10 = l110 + l010 ∧ l00 = l100 + l000 ⇒

∀size.∀size ′.

(l111 + l011 + l101 + l001 = 1 ∧
l111 + l011 = 0 ∧
l111 + l011 + l110 + l010 = size ∧
l100 = 0 ∧
l011 + l001 + l010 = 0 ∧
size ′ = size + 1) ⇒
(0 < size ′ ∧
l111 + l101 + l110 + l100 = size ′)

Fig. 10. The translation of theBAPA sentence
from Figure 6 into aPA sentence

general relationship:
li1,...,ik

= |seti1
q ∩ set

i2
q+1 ∩ . . . ∩ set

ik

S |
q = S − (k − 1)

(S is number of set variables)

in this example:
set1 = content′

set2 = content

set3 = e

l000 = |content′
c
∩ contentc ∩ ec|

l001 = |content′
c
∩ contentc ∩ e|

l010 = |content′
c
∩ content ∩ ec|

l011 = |content′
c
∩ content ∩ e|

l100 = |content′ ∩ contentc ∩ ec|
l101 = |content′ ∩ contentc ∩ e|
l110 = |content′ ∩ content ∩ ec|
l111 = |content′ ∩ content ∩ e|

Fig. 11. The Correspondence between In-
teger Variables in Figure 10 and Set Vari-
ables in Figure 6

5 Complexity

In this section we analyze the algorithmα from Section 4 and obtain space bounds on
BAPA from the corresponding space bounds forPA. We then show that the new decision
procedure is optimal forBA if applied toBA formulas. Moreover, by construction, our
procedure reduces to the procedure forPA formulas if there are no set quantifiers. In
summary, our decision procedure is optimal forBA, does not impose any overhead for
purePA formulas, and the complexity of the generalBAPA validity has the same height
of the tower of exponentials as the complexity ofPA itself.

5.1 An Elementary Upper Bound

We next show that the algorithm in Section 4 transforms aBAPA sentenceF0 into aPA

sentence whose size is at most exponential and which has the same number of quantifier
alternations.
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If F is a formula in prenex form, letsize(F ) denote the size ofF , and letalts(F )
denote the number of quantifier alternations inF . Define the iterated exponentiation
functionexpk(x) by exp0(x) = x andexpk+1(x) = 2expk(x).

Lemma 3. For the algorithmα from Section 4 there is a constantc > 0 such that
size(α(F0)) ≤ 2c·size(F0) andalts(α(F0)) = alts(F0). Moreover, the algorithmα runs
in 2O(size(F0)) time and space.

We next consider the worst-case space bound onBAPA. Recall first the following
bound on space complexity forPA.

Fact 1 [15, Chapter 3] The validity of aPA sentence of lengthn can be decided in
spaceexp2(O(n)).

From Lemma 3 and Fact 1 we conclude that the validity ofBAPA formulas can be
decided in spaceexp3(O(n)). It turns out, however, that we obtain better bounds on
BAPA validity by analyzing the number of quantifier alternationsin BA andBAPA

formulas.

Fact 2 [41] The validity of aPA sentence of lengthn and the number of quantifier
alternationsm can be decided in space2nO(m)

.

From Lemma 3 and Fact 2 we obtain our space upper bound, which implies the upper
bound on deterministic time.

Theorem 4. The validity of aBAPA sentence of lengthn and the number of quantifier
alternationsm can be decided in spaceexp2(O(mn)), and, consequently, in determin-
istic timeexp3(O(mn)).

If we approximate quantifier alternations by formula size, we conclude thatBAPA va-
lidity can be decided in spaceexp2(O(n2)) compared toexp2(O(n)) bound forPA

from Fact 1. Therefore, despite the exponential explosion in the size of the formula in
the algorithmα, thanks to the same number of quantifier alternations, our bound has
the same number of exponentials as the bound forPA.

5.2 BA as a Special Case

We next analyze the result of applying the algorithmα to a pureBA sentenceF0. By
a pureBA sentence we mean aBA sentence without cardinality constraints, containing
only the standard operations∩,∪, c and the relations⊆, =. At first, it might seem that
the algorithmα is not a reasonable approach to decidingBA formulas given that the
best upper bounds forPA [15, Chapter 3] are worse than the corresponding bounds
for BA [22]. However, we identify a special form ofPA sentencesPABA = {α(F0) |
F0 is in BA} and show that such sentences can be decided in alternating time optimal
for BA [22].

Let F0 be a pureBA formula and letS be the number of set variables inF0 (the set
variables are the only variables inF0). Let l1, . . . , lq be the free variables of the formula
Gr(l1, . . . , lq) in the algorithmα. Thenq = 2e for e = S + 1 − r. Let w1, . . . , wq be
integers specifying the values ofl1, . . . , lq. We then have the following lemma.

Lemma 5. For eachr where1 ≤ r ≤ S, formulaGr(w1, . . . , wq) is equivalent to
formulaGr(w̄1, . . . , w̄q) wherew̄i = min(wi, 2

r−1).

11



Consider a formulaF0 of sizen with S variables. Thenα(F0) = GS+1. By Lemma 3,
size(α(F0)) is O(nS2S). By Lemma 5, it suffices for the outermost quantified vari-
able ofα(F0) to range over the integer interval[0, 2S], and the range of subsequent
variables is even smaller. Therefore, the value of each of the 2S+1 − 1 variables can
be represented inO(S) space. Becauseα(F0) hasS quantifier alternations,α(F0) the
values of all bound variables can be guessed in alternating time O(S). The truth value
of a PA formula for given values of variables can be evaluated in time polynomial in
the size of the formula, so decidingα(F0) can be done in alternating time bounded by
na2bS for some constantsa, b. BecauseS ≤ n, we conclude that the algorithmα can
be used to decide a pureBA formula by alternating Turing machine running in time
2cn for somec > 0 and performingn alternations. The class of all such problems is
called Berman complexity classSTA(∗, 2cn, n). Theorem 5.6 in [22] shows thatBA

(even if interpreted only over all finite Boolean algebras) is in fact complete for the
classSTA(∗, 2cn, n). Therefore, our algorithmα allows optimal decision procedure for
BA, if thePA decision procedure exploits the special structure of the generated formula
α(F0); this special structure is given by Lemma 5. Note that the classSTA(∗, 2cn, n) is
contained in the deterministic exponential space, which isequal to alternating exponen-
tial time, the only difference being that the number of alternations inSTA(∗, 2cn, n) is
restricted to be linear.

6 Experience Using Our Decision Procedure for BAPA

We have experimented withBAPA in the context of Jahob system [23] for verifying data
structure consistency of Java programs. Jahob parses Java source code annotated with
formulas in Isabelle syntax written in comments, generatesverification conditions, and
uses decision procedures and theorem provers to discharge these verification conditions.
Jahob currently contains interfaces to the Isabelle interactive theorem prover [36], the
Simplify theorem prover [12] as well as the Omega Calculator[40] and the LASH [30]
decision procedures forPA.

Using Jahob, we have generated verification conditions for several Java program
fragments that require reasoning about sets and their cardinalities, for example, to prove
the equality between the set representing the number of elements in a list and the in-
teger fieldsize after they have been updated. The formulas arising from examples in
Section 3 have also been discharged using our current implementation. By comparing
different decision procedures, we have found that Simplifyis able to deal with some
of the formulas involving only sets or only integers, but notwith formulas that relate
cardinalities of operations on sets to cardinalities of theindividual sets. These formulas
can be proved in Isabelle, but require user interaction in terms of auxiliary lemmas. On
the other hand, our implementation of the decision procedure automatically discharges
these formulas.

Our initial experience indicates that the direct implementation of the basic algorithm
works fast as long as the number of set variables is small; typical timings are fractions
of a second for 4 or less set variables, less than 10 seconds for 5 variables. More than
5 set variables cause thePA decision procedure to run out of memory. (We have used
the Omega Calculator to decidePA formulas because we found that it outperforms
LASH in the formulas generated from our examples.) On the other hand, the decision
procedure is much less sensitive to the number of integer variables inBAPA formulas,
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because they translate into the same number of integer variables in the generatedPA

formula.
Our current implementation makes use of certain formula transformations to reduce

the size of the generatedPA formula. We found that eliminating set variables by sub-
stitution of equals for equals is an effective optimization. We also observed that lifting
quantifiers to the top level noticeably improves the performance of the Omega Calcu-
lator. These transformations extend the range of formulas that the current system can
handle. A possible alternative to the current approach is tointerleave the elimination of
integer variables with the elimination of the set variablesand perform formula simpli-
fications during this process [26, Section 5.2]; this alternative approach does not yield
good worse-case complexity bounds but could be useful for subclasses ofBAPA for-
mulas.

7 Further Observations

We next sketch some further observations aboutBAPA, see [26] for details.

Countable sets. A generalization ofBAPA where set variables range over subets of an
arbitrary (not necessarily finite) set is decidable, which follows from the decidability of
the first-order theory of the addition of cardinals [14]. We here consider the case of all
subsets of a countable set, and argue that the complexity results we have developed so
far still apply. We first generalize the language ofBAPA and the interpretation ofBAPA

operations, as follows. Introduce functioninf(b) which returns 0 ifb is a finite set and
1 if b is a countable set. Define|b| to be some arbitrary integer (for concreteness, zero)
if b is infinite, and the cardinality ofb if b is finite. A countable or finite cardinal can
therefore be represented inPA using a pair(k, i) of an integerk and an infinity flagi.
The relation representing the addition of cardinals(k1, i1) + (k2, i2) = (k3, i3) is then
definable by formula

(i1 = 0 ∧ i2 = 0 ∧ i3 = 0 ∧ k1 + k2 = k3) ∨ ((i1 6= 0 ∨ i2 6= 0) ∧ i3 = 1 ∧ k3 = 0)

Moreover, we have the following generalization of Lemma 1.

Lemma 6. Let b1, . . . , bn be disjoint sets,l1, . . . , ln, k1, . . . , kn be natural numbers,
andp1, . . . , pn, q1, . . . , qn ∈ {0, 1}. Then the following two statements are equivalent:

1. There exists a sety such that
n
∧

i=1

|bi ∩ y| = ki ∧ inf(bi ∩ y) = pi ∧ |bi ∩ y
c| = li ∧ inf(bi ∩ y

c) = qi

2. n
∧

i=1

(pi = 0 ∧ qi = 0 ⇒ |bi| = ki + li) ∧ (inf(bi) = 0⇔(pi = 0 ∧ qi = 0))

The algorithm for the case of countable set then generalizesusing Lemma 6 in the
natural way; the resultingPA formulas are at most polynomially larger than for the
finite case, so we obtain the same complexity bounds.

Relationship to MSOL. The monadic second-order logic (MSOL) over strings is a
decidable logic that can encode Presburger arithmetic by encoding addition using one
successor symbol and quantification over sets. There are twoimportant differences be-
tween MSOL over strings andBAPA: (1) BAPA can express relationships of the form
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|A| = k whereA is a set variable andk is an integer variable; such relation is not
definable in MSOL over strings; (2) when MSOL over strings is used to representPA

operations, the sets contain binary integer digits whereasin BAPA the sets contain un-
interpreted elements. Note also that MSOL extended with a construct that takes a set
of elements and returns an encoding of the size of that set is undecidabe, because it
could express MSOL with equicardinality, which is undecidable by a reduction from
Post correspondence problem. Despite this difference, thealgorithmα gives a way to
combine MSOL over strings withBA yielding a decidable theory. Namely,α does not
impose any upper bound on the complexity of the theory for reasoning about integers,
so it implies the decidability of theBAPA extension where the constraints on cardinal-
ities of sets are expressed using relations on integers definable in MSOL over strings;
these relations go beyondPA [48, Page 400], [7].

8 Related Work

Our paper is the first result that shows a complexity bound forthe first-order theory
of BAPA. The decidability forBAPA, presented asBA with equicardinality constraints
was shown in [14] (see Section 2). A decision procedure for a special case ofBAPA

was presented in [55], which allows only quantification overelementsbut not oversets
of elements. [42] shows the decidability of a single-sortedversion ofBAPA that only
contains the set sort. Note that bound integer variables canbe simulated using bound
set variables, but there are notational and efficiency reasons to allow integer variables.

Presburger arithmetic. The original result on decidability ofPA is [39]. The best
known bound on formula size is [15]. An analysis based on the number of quantifier
alternations is presented in [41]. Our implementation usesquantifer-elimination based
Omega test [40]. Among the decision procedures for fullPA, [9] is the only proof-
generating version, and is based on [11]. Decidable fragments of arithmetic that go
beyondPA include [6,21].

Boolean Algebras. The first results on decidability ofBA are from [31], [1, Chap-
ter 4] and use quantifier elimination, from which one can derive small model prop-
erty; [22] gives the complexity of the satisfiability problem. [33] studies unification in
Boolean rings. The quantifier-free fragment ofBA is shown NP-complete in [32]; see
[27] for a generalization of this result using parameterized complexity of the Bernays-
Schönfinkel-Ramsey class of first-order logic [5, Page 258]. [8] gives an overview of
several fragments of set theory including theories with quantifiers but no cardinality
constraints and theories with cardinality constraints butno quantification over sets.
Among the systems for interactively reasoning about richertheories of sets are Is-
abelle [36], HOL [17], PVS [37], TPS [2]; first-order frameworks such as Athena [3]
can use axiomatizations of sets along with calls to resolution-based theorem provers
such as Vampire [51] to reason about sets.

Combinations of Decidable Theories. The techniques for combiningquantifier-free
theories [35,43] and their generalizations such as [49,50,53,54] are of great importance
for program verification. Our paper shows a particular combination result forquantified
formulas, which add additional expressive power in writing specifications. Among the
general results for quantified formulas are the Feferman-Vaught theorem for products
[14] and term powers [24, 25]. While we have found quantifiersto be useful in several
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contexts, many problems can be encoded in quantifier-free formulas, so it is interesting
to consider a combination ofBAPA with solvers for quantifier-free formulas [16, 47],
which would likely improve the efficiency on common verification conditions compared
to the current direct use of Omega decision procedure. Description logics [4] support
sets with cardinalities as well as relations, but do not support quantification over sets.

Analyses of Dynamic Data Structures. In addition to the new technical results, one
of the contributions of our paper is to identify the uses of our decision procedure for
verifying data structure consistency. We have shown howBAPA enables the verifica-
tion tools to reason about sets and their sizes. This capability is particularly important
for analyses that handle dynamically allocated data structures where the number of ob-
jects is statically unbounded [34, 45, 52]. Recently, theseapproaches were extended to
handle the combinations of the constraints representing data structure contents and con-
straints representing numerical properties of data structures [10,44]. Our result provides
a systematic mechanism for building precise and predictable versions of such analyses.
Among other constraints used for data structure analysis,BAPA is unique in being a
complete algorithm for an expressive theory that supports arbitrary quantifiers. In addi-
tion to applications in Section 3, possible applications ofour decision procedure include
query evaluation in constraint databases [42] and loop invariant inference [20].

9 Conclusion

Motivated by static analysis and verification of relations between data structure content
and size, we have presented an algorithm for deciding the first-order theory of Boolean
algebras with Presburger arithmetic (BAPA), showed an elementary upper bound on
the worst-case complexity, implemented the algorithm and applied it to discharge ver-
ification conditions. Our experience indicates that the algorithm will be useful as a
component of a decision procedure of our data structure verification system.
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