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ABSTRACT
We present a technique that enables the use of finite model
finding to check the satisfiability of certain formulas whose
intended models are infinite. Such formulas arise when using
the language of sets and relations to reason about structured
values such as algebraic datatypes. The key idea of our tech-
nique is to identify a natural syntactic class of formulas in
relational logic for which reasoning about infinite structures
can be reduced to reasoning about finite structures. As a
result, when a formula belongs to this class, we can use exist-
ing finite model finding tools to check whether the formula
holds in the desired infinite model.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program
Verification—model checking, formal methods; F.3.1
[Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—logics of
programs, mechanical verification, specification techniques

General Terms
Design, Reliability, Theory, Verification

Keywords
model checking, model finding, algebraic datatypes, con-
straint solving, transitive closure logic

1. INTRODUCTION
A new kind of analysis has become popular in the last

decade in which a system is examined by considering all
small cases within some bound. The rationale is that flaws
are revealed more readily by this method than by conven-
tional testing: exhausting a huge space of small cases works
better than considering a much smaller suite of cases, even
if it includes larger ones.

Model checking is the preeminent example of this ap-
proach, and bounds the set of reachable states and some-
times also the length of execution traces. The success of
model checking in hardware verification has generated great
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interest in applying it to software. Most model checkers,
though, offer only rudimentary support for data structures,
so applications of model checking to software until now have
focused on control properties, and data has either been ig-
nored or abstracted away.

To handle data structures effectively within this context,
a reduction to small cases is needed. With such a reduction,
no special abstractions for data would be needed, and the
same bounding mechanism used for trace length, for exam-
ple, could be applied to the size of data structures.

How should data structures be represented in such an
analysis? A relational representation is very attractive, be-
cause it fits both the analyses that are widely used at the
low level, and the object-oriented view of a program at the
high level. Symbolic model checkers [20] already represent
the state as a bit vector; the adjacency matrix represen-
tation of a relation is therefore easily integrated. In the
object-oriented view of program state, the heap is a graph,
with objects as nodes and fields of objects as edges between
objects—in other words, a collection of relations, one per
field [18]. This view is common in object-oriented develop-
ment [39], because it helps postpone the allocation of state
(in the form of relations) to classes (in the form of fields),
and is attractive in program analysis because it’s simple and
easily accounts for sharing (a shared object simply being in
the range of two relations).

An important question to ask, therefore, is whether this
relational viewpoint can accommodate a general theory of
data structures. Can arbitrary structural properties be nat-
urally expressed and analyzed by the small case approach?
This question is not only of theoretical interest. It has arisen
repeatedly amongst advanced users of one tool, the Alloy
language and its associated analyzer [1], as they have dis-
covered occasional scenarios in which Alloy’s relational en-
coding does not seem to capture their intuitions about data
structures.

This question has implications not only for Alloy, but
more generally for any tool that relies on small case anal-
ysis of a relational encoding. This includes not only model
checkers (such as SMV [20] and NuSMV [6]), but also specifi-
cation analysis tools based on constraints (such as ProB [26]
and the Bremen USE tool [10]), and indeed potentially to
any tool that encodes data relationally.

To frame the problem rigorously, a characterization of
data structures independent of the relational viewpoint is
needed. For this purpose, we use the theory of algebraic
datatypes, which corresponds to the way programmers think
about structured values, and is the basis for their definition
in several programming languages.

We start by explaining the standard encoding of algebraic
datatypes using relations in first order logic. This encoding
is faithful, but it suffers from a major drawback: it includes
an axiom that requires all models of a formula to be infi-
nite. Consequently, an analysis based on finite cases cannot
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be applied. To remedy this, we remove the offending axiom.
Surprisingly, most analyses performed in its absence are still
sound, although some analyses will produce spurious coun-
terexamples.

The principal contribution of this paper is a simple syntac-
tic criterion that guarantees that a formula being analyzed
will not suffer from spurious counterexamples. The criterion
is easy to understand, and could be applied automatically by
a tool, warning the user when an analysis on the relational
encoding might produce results that do not correspond to
the full theory of algebraic datatypes.

2. AN EXAMPLE
In this section, we motivate the problem with an exam-

ple of a relational encoding of a simple algebraic datatype.
We show how the omission of a generator axiom can cause
spurious counterexamples, but its inclusion results in incon-
sistency, making the encoding useless. The challenge is to
determine under what conditions the axiom can be omitted
while remaining faithful to the theory of algebraic datatypes.

The example will be given in Alloy [19], a modelling lan-
guage based on a simple first-order logic with relational op-
erators. Although our work was motivated by Alloy, our re-
sults apply more broadly, and the rest of the paper presents
our theory in a transitive closure logic that has no Alloy-
specific features.

A datatype for lists would be declared in a language such
as ML [34] like this:

datatype List = Nil | Cons of Element * List

where List is the datatype being declared, Element is the
type corresponding to the elements, and Nil and Cons are
constructors, with no arguments and two arguments respec-
tively.

In Alloy, List and Element might be represented as top-
level sets (called signatures in Alloy):

sig Element {}
sig List {}

Nil is a singleton set – the set containing the empty list:

one sig Nil extends List {}

Cons is represented by a set Cons and two selectors, elt and
rest:

sig Cons extends List {
elt: Element,
rest: List

}

The extends syntax makes Cons a subset of List, disjoint
from Nil. The selectors are semantically just relations from
the set Cons to the sets Element and List respectively, im-
plicitly constrained to be total functions by Alloy’s declara-
tion syntax.

The function cons that appends an element to the front
of a list can be written as an Alloy predicate:

pred cons(e: Element, l: List, c: Cons) {
c.elt = e and c.rest = l

}

which associates with an element e and a list l any object
c in Cons such that e and l are the element and rest com-
ponents of c.

Let’s consider checking some putative theorems, called as-
sertions in Alloy. This assertion says that the first element
of a list resulting from an application of cons is the same
element that was presented as an argument:

assert ElementIsArg {
all e: Element, l: List, c: Cons |
cons(e, l, c) => e = c.elt

}

This holds trivially—the consequent being contained in the
hypothesis. When checked by the Alloy Analyzer, it yields
no counterexamples. In contrast, suppose we check the as-
sertion that cons is deterministic:

assert ConsDeterministic {
all e: Element, l: List, c, c’: Cons |
(cons (e, l, c) and cons(e, l, c’)) => c = c’

}

This is invalid, and the Alloy Analyzer will give a counterex-
ample such as:

List = {L0, L1, L2}; Cons = {L1, L2}; Nil = {L0};
Element = {E0};
elt = {(L1, E0), (L2, E0)};
rest = {(L1, L0), (L2, L0)};
e = {E0}; l = {L0};
c = {L1}; c’ = {L2}

in which the two applications of cons produce distinct lists
L1 and L2 that are structurally identical.

This might be acceptable for some applications, but if
we wanted to model the kind of list used in languages
such as ML, in which equality is structural (and identity of
cells therefore cannot be observed), we could add an axiom
(called a fact in Alloy):

fact Canonical {
all l, l’: List |
l.elt = l’.elt and l.rest = l’.rest => l = l’

}

requiring that structurally identical lists have the same iden-
tity, ensuring that the assertion ConsDeterministic is now
valid.

Continuing with our exploration, we might notice that in
some cases Alloy generates cyclic lists as counterexamples
of properties. To rule these out we might introduce another
fact

fact Acyclic {
no l : List | l in l.^rest

}

ensuring that rest is an acyclic relation.
So far, so good. Consider, however, an assertion claiming

that cons is total:

assert ConsTotal {
all l: List, e: Element | some c: Cons |
cons(e, l, c)

}

Given our intuition about algebraic datatypes, we expect
this assertion to be valid. But in the relational setting, given
the facts stated so far, the assertion ConsTotal is actually
invalid. The Alloy Analyzer will generate a counterexample
such as:

List = {L0}; Cons = {}; Nil = {L0};
Element = {E0};
elt = {};
rest = {};
e = {E0}; l = {L0}

The problem, roughly speaking, is that the Analyzer is free
to construct a counterexample in which there aren’t enough
lists; in this case, only the empty list is available.

Suppose, following our previous strategy, we attempt to
add a fact to rule out counterexamples of this form:



fact Generator {
all l: List, e: Element | some c: Cons |

c.elt = e and c.rest = l
}

The Generator axiom ensures that the selector relations are
complete: for any combination of list and element, it re-
quires the existence of list for which they are components.
This will indeed rule out the counterexample above; in this
trivial example, the assertion ConsTotal is barely different
from Generator itself. Unfortunately, however, adding this
axiom rules out all (nonempty) counterexamples, even to a
manifestly false assertion. For example, the assertion

assert NoDistinctElements {
all e, e’: Element | e = e’

}

will be valid, and will have no counterexamples. The prob-
lem is that the generator axiom has no finite models, and is
therefore inconsistent in a setting in which only finite mod-
els are considered.

The key idea of this paper is that a finite checker cannot
incorporate this axiom, but must nevertheless be able to
handle algebraic datatypes. The question then is what class
of formulas have the same models whether or not this axiom
is included. The contribution of this paper is a characteri-
zation of a class of such formulas that is both expressive and
easily checked syntactically.

Assertion ConsTotal—and, not surprisingly, Generator,
the generator axiom itself—will not be in this class. The
culprit is the innermost quantification. The nesting of quan-
tifiers is not in itself problematic; rather, the problem is
that the quantification is not bounded. If, instead, it were
bounded by an expression in terms of variables bound in
an outer quantifier, no spurious counterexample would be
generated, even in the absence of the generator axiom. For
example, the assertion

assert Deconstruct {
all c: Cons | some l: c.*rest, e: Element |
cons(e, l, c)

}

saying that each list is the result of an application of cons
to some sublist (and in which c.*rest is the application of
the reflexive transitive closure of rest to c, giving the set of
c’s sublists), is valid, as expected.

3. LOGIC AND ALGEBRAIC DATATYPES
This section introduces our two formalisms: term alge-

bras, a theory of algebraic datatypes, and a first-order logic
with transitive closure. We show how a term algebra can be
straightforwardly translated into first-order logic, using four
axioms. One of these is a generator axiom that causes all
models to be infinite. In the following section, we establish
our main result about when this axiom can be omitted.

Throughout the paper, we use binary trees as the canoni-
cal example of algebraic datatypes. Being simple and famil-
iar, trees serve well as a pedagogical example. In addition,
because trees can represent all other algebraic datatypes,
there is no loss of generality.

Algebraic datatypes and term algebras. We con-
sider structures that contain two kinds of values, or sorts:
1) a Tree sort, corresponding to the values of the algebraic
datatype, and 2) an Object sort, corresponding to all remain-
ing values. In a programming language such as ML [34], we
would define this algebraic datatype using a declaration such
as:

datatype Tree = Nil | Node of Tree * Object * Tree
datatype Object = Obj1 | Obj2 | ... | ObjN

Note that the datatype Tree has an infinite set of values,
because there is no bound on the size of a tree. On the
other hand, we assume that we have already finitized the
set Object.

Algebraic datatypes have proven to be useful not only in
programming languages, but also in model theory, where
they correspond to term algebras [29, Chapter 23], [14, Sec-
tion 1.3]. Term algebras are algebras in which values are
interpreted syntactically: given a term t without free vari-
ables (a ground term), the interpretation of t is t itself. The
term algebras corresponding to the Tree datatype are gen-
erated by:

1) a constant Nil of sort Tree, and

2) a ternary constructor Node of type

Tree × Object × Tree → Tree

A logic with transitive closure. We consider a frag-
ment of first-order logic with transitive closure. The syntax
of our logic is in Figure 1: the nonterminal S denotes set-
valued expressions, R denotes relation-valued expressions,
A denotes atomic formulas, B denotes quantifier-free formu-
las, and F denotes general (potentially quantified) formulas.
The non-terminal SV denotes sets (corresponding to one-
place predicates), whereas the non-terminal RV denotes bi-
nary relations (corresponding to two-place predicates). The
term br denotes the transitive closure of the binary relation
r, whereas ∗r denotes the reflexive transitive closure of r.
(Among the expressions that we intentionally omit are the
universal set, relational transpose, and complement. These
constructs make it difficult to ensure certain locality prop-
erties of the expressions that are useful for the formulation
of our result.) We use the shorthand ∃1x.F for the formula
∃x.F (x) ∧ (∀x, y. F (x) ∧ F (y)⇒x = y).

We interpret formulas in our logic over two-sorted struc-
turesM = (T,O, ι) where T is the domain of the sort Tree, O
is the domain of the sort Object, and ι with domain SV ∪RV

interprets the built-in sets and relations of the structure M ,
so that ι(s) ⊆ T or ι(s) ⊆ O if s is a built-in set, and
ι(r) ⊆ T 2, ι(r) ⊆ O2, ι(r) ⊆ T × O, or ι(r) ⊆ O × T if r is
a built-in relation.

The standard model-theoretic semantics of our logic is in
Figure 2. The function α : Vars → T ∪ O is a valuation
that maps each free scalar variable to its value. If ϕ is a
sentence (a formula with no free variables) then [[ϕ]]M,α does
not depend on α, so when ϕ is a sentence and [[ϕ]]M,α = true,
we say that M is a model of the sentence ϕ. A structure M
is a model of a set of sentences iff M is a model of each of
the sentences in the set.

Note that, although we use set-theoretic notation such as
x ∈ S and (x, y) ∈ R, our logic does not allow quantifica-
tion over sets, and is no stronger than first-order logic with
transitive closure. Recall, however, that first-order logic is
very expressive. Indeed, first-order logic has been used as a
foundation for set theory and all of mathematics [33].

Axiomatizing term algebras in first order logic. Term
algebras can be described using constructor relations, such
as Node, or using selector relations, which are the inverse
of the constructors [14, Section 2.6]. For our purpose, it
is more convenient to use selectors. Because we consider
a binary tree, we use the selectors left, content, and right,
where left and right denote the children of a node in the tree,
and content denotes the Object value associated with a tree
node. We represent selectors as binary relations that are
partial functions defined on non-Nil terms. We define the
relation node as the following shorthand:

(t, t1, o, t2) ∈ node
def

⇐⇒ (t, t1) ∈ left ∧ (t, o) ∈ content ∧

(t, t2) ∈ right ∧ t 6= Nil



F ::= B | ∀x :: sort.F | ∃x :: sort.F | F1 ∧ F2 | ¬F1

B ::= A | B1 ∧B2 | ¬B1

A ::= (x1, x2) ∈ R | x ∈ S | S1 ⊆ S2 | R1 ⊆ R2 |

S1 = S2 | R1 = R2 | x1 = x2

S ::= SV | S1 setOpS2 | S.R | {x1, . . . , xn}

R ::= RV | R1 setOpR2 | R1.R2 | ∆ | bR | ∗R

setOp ::= ∪ | ∩ | \

sort ::= Tree | Object

Figure 1: Syntax for a Logic with Transitive Closure

M = (T,O, ι), α : Vars → T ∪O

[[∀x :: Tree.F ]]M,α =∀t ∈ T. [[F ]]M,α′

, α′ = α[x := t]

[[∀x :: Object.F ]]M,α =∀o ∈ O. [[F ]]M,α′

, α′ = α[x := o]

[[∃x :: Tree.F ]]M,α =∃t ∈ T. [[F ]]M,α′

, α′ = α[x := t]

[[∃x :: Object.F ]]M,α =∃o ∈ O. [[F ]]M,α′

, α′ = α[x := o]

[[B1 ∧B2]]
M,α = [[B1]]

M,α ∧ [[B2]]
M,α

[[¬B]]M,α =¬[[B]]M,α

[[(x1, x2) ∈ R]]M,α =(α(x1), α(x2)) ∈ [[R]]M,α

[[x ∈ S]]M,α =α(x) ∈ [[S]]M,α

[[S1 ⊆ S2]]
M,α =([[S1]]

M,α ⊆ [[S2]]
M,α)

[[R1 ⊆ R2]]
M,α =([[R1]]

M,α ⊆ [[R2]]
M,α)

[[S1 = S2]]
M,α =([[S1]]

M,α = [[S2]]
M,α)

[[R1 = R2]]
M,α =([[R1]]

M,α = [[R2]]
M,α)

[[x1 = x2]]
M,α =(α(x1) = α(x2))

[[S1 setOp S2]]
M,α = [[S1]]

M,α setOp [[S2]]
M,α

[[S.R]]M,α = {y | ∃x ∈ [[S]]M,α. (x, y) ∈ [[R]]M,α}

[[{x1, . . . , xn}]]
M,α = {α(x1), . . . , α(xn)}

[[R1 setOp R2]]
M,α = [[R1]]

M,α setOp [[R2]]
M,α

[[R1.R2]]
M,α = [[R1]]

M,α ◦ [[R2]]
M,α

= {(x, z) | ∃y. (x, y) ∈ [[R1]]
M,α ∧

(y, z) ∈ [[R2]]
M,α}

[[∆]]M,α = {(x, x) | x ∈ T}

[[bR]]M,α = {(x0, xn) | ∃n ≥ 1.∃x1, . . . , xn−1 ∈ T.Vn

i=1(xi−1, xi) ∈ [[R]]M,α}

[[∗R]]M,α = [[∆]]M,α ∪ [[bR]]M,α

[[SV ]]M,α = ι(SV )

[[RV ]]M,α = ι(RV )

Figure 2: Semantics for Logic of Figure 1

We also use the subterm relation, defined using transitive
closure:

subterm
def

= b(left ∪ right)

The term model. We are interested in checking the satis-
fiability of formulas over the term model MT = (TT , O, ιT )
given as follows:

• TT is the set of ground terms generated by the constant
Nil and the constructor Node; in other words, T is the
least set such that

1. Nil ∈ TT , and

2. if t1, t2 ∈ TT and o ∈ O, then Node(t1, o, t2) ∈ TT .

• O is a finite set;

• ιT is defined as follows:

ιT (Nil) = Nil

ιT (left) = {(Node(t1, o, t2), t1) | t1, t2 ∈ TT , o ∈ O}

ιT (content) = {(Node(t1, o, t2), o) | t1, t2 ∈ TT , o ∈ O}

ιT (right) = {(Node(t1, o, t2), t2) | t1, t2 ∈ TT , o ∈ O}

Figure 3 sketches one part of the structure MT .

Axioms for term algebras. We adopt the following
axioms to describe the properties of term algebras.

Selectors: The binary relations left, content, and right are
total functions on the non-Nil elements of the sort Tree, and
are undefined on Nil:

1. ∀t :: Tree. t 6= Nil⇒ (∃1t1 :: Tree. (t, t1) ∈ left) ∧

(∃1o :: Object. (t, o) ∈ content) ∧

(∃1t2 :: Tree. (t, t2) ∈ right)

2. ∀t :: Tree.∀o :: Object. (Nil, t) /∈ left ∧

(Nil, o) /∈ content ∧

(Nil, t) /∈ right

We assume that a simple type system of our two-sorted lan-
guage rules out the application of relations to elements of
inappropriate sort; for example, if t :: Tree and o :: Object,
then (t, o) ∈ left is not a well-formed formula.

Uniqueness: The defined relation node has the properties
of a partial function:

∀t, t′, t1, t2 :: Tree.∀o :: Object.
(t, t1, o, t2) ∈ node ∧ (t′, t1, o, t2) ∈ node⇒ t = t′

Generator : The defined relation node has the properties
of a total function:

∀t1, t2 :: Tree.∀o :: Object. ∃t :: Tree. (t, t1, o, t2) ∈ node

This axiom holds in MT , but we will consider the conse-
quences of omitting it from the axiomatization.

Acyclicity : A term is never a proper subterm of itself;
that is, the subterm relation is acyclic:

∀t :: Tree. (t, t) /∈ subterm

We denote by SUGA the conjunction of the axioms above
(taking the first letter of the name of each axiom).

Note that the SUGA axioms have no finite models.
Namely, although not all models of SUGA are isomorphic,
they all contain an infinite chain of elements t0, t1, t2, . . .
where t0 = Nil and (ti+1, ti, o,Nil) ∈ node. These elements
exist by the Generator axiom; the Acyclicity axiom guaran-
tees that they are all distinct because they are ordered by
the subterm relation.



Nil Nil

t1 Nil

t2

Figure 3: Sketch of the infinite structure MT and
an example of one of its finite subterm-closed sub-
structures M0 = (T0, {o}, ι0) where T0 = {Nil, t1, t2} for
t1 = Node(Nil, o,Nil) and t2 = Node(t1, o,Nil). The edges
corresponding to the content relation are omitted for
clarity.

4. FINITE SATISFIABILITY RESULT
This section presents the main results of our paper, which

enable the checking of properties of algebraic datatypes us-
ing finite models. The basic idea of our approach is the
following: to prevent all models from being infinite, we drop
the Generator axiom. Denote by SUA the conjunction of
the remaining axioms (Selectors, Uniqueness, Acyclicity). It
turns out that, among the finite structures, SUA charac-
terizes precisely the substructures of the term model that
are subterm-closed (if t is in the structure, then so is each
subterm of t). Having established this, we identify a class
of sentences whose validity in a finite model implies their
validity in the full infinite model MT .

We next define the notion of a subterm-closed finite sub-
structure of MT , illustrated in Figure 3. Intuitively, a finite
substructure M0 = (T0, O, ι) of MT is a structure obtained
from MT by selecting a finite set T0 of terms and preserving
all the relations between the terms in T0. A structure is
subterm-closed if every subterm of a term in T0 is also in
T0.

More precisely, let MT = (TT , O, ιT ) be the term model.
A substructure of MT is a structure M0 = (T0, O, ι0) where
T0 ⊆ TT and the relations given by ι0 are restrictions of
the corresponding relations given by ιT , that is, ι0(left) =
ιT (left) ∩ T 2

0 , ι0(right) = ιT (right) ∩ T 2
0 , and ι0(content) =

ιT (content)∩ T0 ×O. (We have for simplicity assumed that
substructures have the same domain O of values of the sort
Object.) A subterm-closed finite substructure of MT is a
finite substructure M0 of MT whose domain of terms T0

satisfies the property

t ∈ T0 ∧ (t, t1) ∈ [[subterm]]MT ,α ⇒ t1 ∈ T0

for all t, t1 ∈ T .
We then have the following completeness theorem that

explains why the SUA axioms are adequate. This theorem
allows us to ensure that any model of SUA axioms has pre-
cisely the properties of a subterm-closed finite substructure
of the term model MT . The proof of Theorem 1 is in the

Appendix.

Theorem 1 (Axiomatization of Finite Substructures)
Let M = (T,O, ι) be a finite two-sorted structure with lan-
guage 〈Nil, left, content, right〉. Then M is a model of SUA iff
M is isomorphic to some subterm-closed finite substructure
M0 of MT .

Having identified that the SUA axioms enforce that a fi-
nite structure “looks like” a term algebra MT , we turn to
the question of when checking a property in finite models is
sufficient to ensure that the property holds in the full, infi-
nite model MT . We first look at sentences that contain only
existential quantifiers.

An existential sentence ϕ is a formula of the form

∃t1 :: Tree. . . . ∃tn :: Tree. ψ

where ψ is quantifier-free and the free variables of ψ are
t1, . . . , tn. The following is a fundamental property of struc-
tures (dual to the property that if a universal sentence holds
in a structure then it also holds in its substructure).

Fact 1 Let M0 be a substructure of M and ϕ an existential
sentence. If ϕ holds in M0, then ϕ also holds in M .

Informally, the property holds because the same existential
witnesses from the smaller structure can be used in the larger
structure.

An important consequence of Theorem 1 and Fact 1 is the
following: if ϕ is an existential sentence and the conjunction
SUA∧ϕ holds in a finite two-sorted model M1, then ϕ holds
in the full term model MT . Indeed, if SUA∧ϕ holds in M1,
because SUA holds in ϕ, by Theorem 1, M1 is isomorphic
to some subterm-closed finite substructure M0, so ϕ holds
in M0 as well. By Fact 1, ϕ holds in MT as well. We
thus obtain a method to check whether a formula ϕ holds in
MT : check ϕ in each finite subterm-closed model of MT . In
the rest of this section, we generalize this result by allowing
arbitrary quantification in ϕ, as long as it is bounded by
previously introduced values. The intuitive reason why this
generalization is possible is that we are checking formulas on
subterm-closed structures, which means that the bounded
quantification has the same semantics in the substructure
M0 and in the full infinite structure MT .

Let S be a set-valued term, denoted S in Figure 1, that
does not contain variable t. A bounded universal term quan-
tifier

∀S t :: Tree. F

is a shorthand for the formula ∀t :: Tree. t ∈ S ⇒ F . Dually,
a bounded existential term quantifier

∃S t :: Tree. F

is a shorthand for the formula ∃t :: Tree. t ∈ S ∧ F .
Hence, bounded quantifiers are expressible in terms of

the ordinary quantifiers, but are more restrictive. An
existential—bounded-universal sentence requires each uni-
versal quantifier to be bounded by some set expression S.
More precisely, we have the following definition:

Definition 1 An existential—bounded-universal sentence
(an EBU sentence) is a formula of the form

Q1v1 :: s1. . . . Qnvn :: sn. ψ

where ψ is a quantifier-free formula (denoted B in Figure 1)
and each Qivi :: si is a quantifier or a bounded quantifier of
one of the following forms:

• An existential term quantifier ∃vk :: Tree;



procedure TermSat
input: ϕ: an EBU sentence
output: if ϕ is true in the term model MT :

a finite substructure M0 of MT where ϕ holds
if ϕ is false in the term model MT :
no result (infinite loop)

begin
k := 1;
while (true) do
for each model M1 = (T,O, ι) with |T | + |O| = k do
if (SUA ∧ ϕ) holds in M1 then return M1; fi

end
k := k + 1;

end
end TermSat.

Figure 4: A semidecision procedure for checking sat-
isfiability of EBU sentences in the term model MT .

• A bounded universal term quantifier ∀S vk :: Tree where
the free variables of the set-valued term S are among
the previously quantified variables v1, . . . , vk−1;

• A universal object quantifier ∀vk :: Object;

• An existential object quantifier ∃vk :: Object.

We write ϕ ∈ EBU to denote that ϕ is an EBU sentence.

Note the ways in which EBU sentences generalize purely
existential sentences: not only is it possible to have arbi-
trary bounded quantifiers, it is also possible to introduce
new unrestricted existential quantifiers, even after bounded
universal quantifiers.

We are now ready to state our main theorem. The proof
of Theorem 2 is in the Appendix.

Theorem 2 (Finite Satisfiability Theorem) Let ϕ be
an EBU sentence and MT a term model. Then ϕ holds in
MT iff it holds in some subterm-closed finite substructure
M0 of MT .

5. CONSEQUENCES
Given the results of the previous section, we can now an-

swer the question we posed in Section 2. An analysis of an
Alloy model in which algebraic datatypes are encoded re-
lationally will yield sound counterexamples so long as the
formula being checked is in EBU. A syntactic check for
membership in EBU based on Definition 1 is easy to imple-
ment. The result extends to bounded model checkers (such
as NuSMV [6]) whose analysis consists of finding a model of
a formula. The language of formulas for such model checkers
could be soundly extended to EBU sentences over algebraic
datatypes.

Analysis procedure. The analysis procedure suggested
by our result is shown in Figure 4: to check whether an EBU
sentence ϕ holds in MT , search for increasingly large finite
models of SUA∧ϕ. The procedure captures the spirit of anal-
yses such as that performed by the Alloy Analyzer [1,17]; in
practice, the search for models would employ pruning and
heuristics and would not require an exhaustive enumeration.
The correctness and completeness of the procedure follows
from the results of this section and is the main result of this
paper:

• we can check the condition that a structure is a
subterm-closed submodel of MT by simply conjoining
axioms SUA to ϕ, thanks to Theorem 1;

• we know that the existence of the returned finite model
M1 implies that ϕ holds in MT , thanks to the sound-
ness (⇐=) direction of Theorem 2;

• we know that if ϕ holds in model MT , then the algo-
rithm will find a finite modelM1 which proves this fact,
thanks to the completeness (=⇒) direction of Theo-
rem 2.

Closure under boolean operations. Having identified
EBU sentences as a useful class of formulas for which the
algorithm in Figure 4 is applicable, we examine the follow-
ing question. If ϕ1, ϕ2 ∈ EBU, is there an effectively con-
structible sentence ϕ ∈ EBU such that the following equiva-
lences hold in MT ?

• ϕ ⇐⇒ (ϕ1 ∧ ϕ2)

• ϕ ⇐⇒ (ϕ1 ∨ ϕ2)

• ϕ ⇐⇒ (¬ϕ1)

• ϕ ⇐⇒ (ϕ1 ⇒ϕ2)

It turns out that the answer to first two questions is “yes”,
whereas the answer to the last two questions is “no”. In
other words, EBU sentences are closed only under positive
boolean combinations, but are not closed under negation or
implication. We make this claim precise in three proposi-
tions that follow.

Proposition 1 Let ϕ1 ≡ BQ1.F1 and ϕ2 ≡ BQ2.F2 be
EBU sentences where BQ1 and BQ2 denote sequences of
quantifiers and bounded quantifiers and where F1, F2 are
quantifier-free formulas. Let BQ′

2.F
′
2 be the result of renam-

ing the variables in ϕ2 so that they are all distinct from the
variables in ϕ1. Then

ϕ1 ∧ ϕ2 ⇐⇒ BQ1.BQ′
2. F1 ∧ F ′

2

ϕ1 ∨ ϕ2 ⇐⇒ BQ1.BQ′
2. F1 ∨ F ′

2

(1)

Moreover, BQ1.BQ′
2.F1 ∧F

′
2 and BQ1.BQ′

2.F1 ∨F
′
2 are EBU

sentences.

The condition (1) follows from the basic monotonicity prop-
erty of quantifiers and operations ∧,∨. The fact that the
concatenation of disjoint EBU sequences of quantifiers is
again an EBU sequence of quantifiers follows from the defi-
nition of EBU sentences.

We next turn to the absence of the closure under negation
and implication. We first note that the entire class of EBU
sentences is undecidable.

Fact 2 The problem of determining, given an EBU sentence
ϕ, whether ϕ holds in MT , is undecidable.

Fact 2 follows from the undecidability result in [42, Section
4], which shows a reduction from the Post correspondence
problem to the satisfiability of term algebra sentences with
subterm relation, existential quantifiers, and bounded uni-
versal quantifiers.

Fact 2 has two main consequences for this paper. The first
consequence is that, from the viewpoint of computability,
the semidecision procedure in Figure 4 is as good as we can
hope for. The second consequence is the absence of closure
under negation and implication, as given by the following
propositions.

Proposition 2 There is no algorithm that, given a sentence
ϕ ∈ EBU, constructs an EBU sentence equivalent to ¬ϕ.



Proof. The proof is by contradiction. Suppose that there
is such an algorithm. Consider any EBU sentence ϕ. Let ϕ̄
be the EBU sentence computed by the algorithm, so that ϕ̄
is equivalent to ¬ϕ. Then either ϕ or ϕ̄ holds in MT , so if
we run two copies of the procedure in Figure 4 in parallel,
one with the input ϕ and the other one with the input ϕ̄,
then one of the algorithms will eventually terminate and we
will conclude that ϕ is either true or false. This implies that
the class of EBU formulas is decidable, contradicting Fact 2.

Because ¬φ is equivalent to (φ⇒ false), we obtain the ab-
sence of closure under negation as well.

Proposition 3 There is no algorithm that, given sentences
ϕ and ψ constructs an EBU sentence equivalent to ϕ⇒ψ.

Arbitrary algebraic datatypes. We have presented
our result for binary trees, but it applies to all algebraic
datatypes, and, more generally, to any structured data. In-
deed, it is clearly possible in relational logic to reason about
records and tuples that have an a priori bounded number
of components: just introduce a new variable for each com-
ponent. What the results of this paper imply is that it
is also possible to reason about structures, such as binary
trees, that do not have an a priori bound on their size. It
is not difficult to generalize the proofs of Theorem 1 and
Theorem 2 to the case of any finite number of mutually re-
cursive algebraic datatypes. Alternatively, we can encode
any number of datatypes using binary trees. (Indeed, the
experience with programming languages such as LISP [31]
is convincing evidence that data structures can be repre-
sented using LISP-like lists, which are binary trees.) The
idea of representing algebraic datatypes with trees is to re-
place each constructor application Ck(t1, . . . , tn, o1, . . . , om)
with an expression

Node(fk, o0,
Node(t1, o1,Node(t2, o2, . . .Node(tP , oP ,Nil) . . .)))

where fk is a finite tree (of size O(log k)) that encodes the
name of the constructor Ck, where P = max(n,m), ti = Nil
if i > n, and oi = o0 if i > m. Here o0 ∈ O is some arbi-
trary fixed object from the set of uninterpreted objects. The
corresponding selector relations are similarly definable using
quantifier-free formulas in terms of selectors left and right,
and so is the subterm relation. Note that, when reasoning
about arbitrary algebraic datatypes, we are interested not
in all possible trees, but only in the substructure of MT

which is the image of the embedding. In other words, we
would like to ensure that the binary trees that represent
the values of variables in formulas are consistent with the
type system of the original algebraic datatypes. We can
express this condition by quantifying only over the terms
whose every subterm respects the local structure given by
the original type system; this condition is expressible using
our logic with transitive closure. Therefore, it suffices to
restrict all quantified variables to the terms that satisfy this
condition, and the resulting formula can be checked using
the algorithm in Figure 4.

The scope of our result. After realizing that our tech-
nique applies to algebraic datatypes, a natural question to
ask is: does the technique fundamentally depend on the
properties of the structure of algebraic datatypes, such as
the uniqueness of left and right relations (as given by the
Selectors axiom), the uniqueness of the parent relation node
(as given by the Uniqueness axiom), or even the acyclic-
ity (given by the Acyclicity axiom)? When examining this
question it is worthwhile to consider two separate questions:

• How do we generalize the notion of subterm-bounded
substructures of MT to the case of substructures of
some other infinite structure M∞ of interest? (The
generalization of Theorem 2.)

Suppose that we are interested in checking constraints
over an infinite structure M∞ with relation symbols
r1, . . . , rn. It turns out that the only essential require-
ment on the structure M∞ is that, for some term vari-
able t, the set [[{t}.∗(r1 ∪ . . . ∪ rn)]]M∞,α is finite for
each valuation α. In other words, as long as the set
of elements “below” each element of M∞ is finite, we
can use bounded quantification to reduce the truth
value of EBU sentences in M∞ to the satisfiability in
finite substructures closed under the “below” relation.
In particular, the technique applies to structures that
contain shared elements and cycles.

• How do we axiomatize a class of finite structures of
interest? (The generalization of Theorem 1.)

From an algorithmic point of view, this question ad-
mits a wider spectrum of solutions than just the use of
axioms in first-order logic with transitive closure (al-
though the use of axioms may have an advantage in
the context of constraint-solving tools). Indeed, given
a family of finite structures of interest (in particular,
given a family of finite subterm-closed substructures of
M∞) we can use any language of computable functions
to define an executable test predicate that determines
whether a finite structure is isomorphic to one of the
finite structures of interest. In other words, we can
use an algorithm specialized for a given problem to fil-
ter the finite structures of interest. This idea of using
“executable predicates” appears in the form of run-
time assertions in many programming languages and
has found applications in software testing [5,30].

Because of these generalizations, we expect our result to be
applicable to a range of infinite structures.

Despite our characterization of EBU, two practical prob-
lems remain for a modelling language such as Alloy. The
first, and simpler, problem is how the language might ex-
ploit our result. The second is that some important mod-
elling constraints seem inexpressible in EBU.

By design, Alloy has no unbounded quantification, but
the use of a signature as the bounding expression gives the
desired semantic effect. Not all signatures in a model—in
fact, very few in practice—represent algebraic datatypes, so
the generator axiom should not be implicit for all signatures.
Perhaps a signature declaration could be labelled with a
special keyword thus:

datatype sig List {...}

The analyzer would then identify non-EBU formulas in
which a variable is universally quantified over such a sig-
nature, and give an appropriate warning.

In our experience, non-EBU formulas are rarely needed.
They arise mainly for novices, who have not yet assimi-
lated the relational idiom, and try to use an algebraic struc-
ture when a simpler and cleaner relational structure would
suffice. More expert users have, however, encountered the
problem when using sequences. A model of network routing,
for example, had a node add a path to its routing table only
when shorter than the concatenation of other paths that
could be computed; this concatenation implicitly involved a
non-EBU formula.

It is actually more common for the problem of an unde-
sirable generator axiom to arise for the degenerate case of a
non-recursive datatype. The states of a system, for example,
are usually described as a Cartesian product of components.
When using an explicit element to represent each state, the



generator axiom would require the existence of a state for
every combination of component values. Here, the problem
is not that the axiom would require an infinite model, but
that it would require one too large to analyze in practice.
In the absence of this generator axiom on the states of the
system, assertions about preconditions of operations, for ex-
ample, produce spurious counterexamples. The tractability
of the constraint solving analysis depends on considering
only those models with enough states to refute an assertion;
for an assertion about invariant preservation, for example,
this means just two states: the pre- and post-states. But
with the generator axiom, any model must include all pos-
sible states. Whether these problems can be solved remains
to be seen.

6. RELATED WORK
Constraint-checking tools. Because of its full automa-
tion, model checking approaches based on finitization of the
problem space are very attractive. These approaches have
had great success for control-intensive problems [6,20] such
as those arising in hardware verification. The complexity of
software systems often comes from the data structures that
they manipulate, and notations such as UML [38] have been
used to describe such constraints. The Alloy notation [17,19]
can also be used to describe such constraints; the Alloy An-
alyzer tool [1] can then search for the structures that satisfy
these constraints. Our experience in using the Alloy no-
tation and the analyzer to reason about structured values
was the immediate inspiration for this paper. Because it es-
tablishes a general correspondence between satisfiability in
finite and infinite models, our result is potentially applicable
not only to Alloy, but also to tools such as MACE [32], Para-
dox [7], USE [10], ProB [26], RACER [13], and FaCT [15].

Algebraic datatypes. Our paper uses algebraic datatypes
as a well-studied example of unbounded structured values.
Algebraic datatypes are the basis of the algebraic approach
to formal specification and verification [2,4,11,12]. The use
of the list algebraic datatype was pioneered by LISP [31].
User-defined algebraic datatypes go back to ML [34] and
are used in Objective Caml [25] and Haskell [3].

Term algebras without transitive closure. The first-
order theory of term algebras is decidable [28, 29, 40]. Be-
cause the interpretation of Object is a finite set, omitting
the transitive closure from our logic makes formulas decid-
able even with arbitrary (not only bounded) quantifiers.
The complexity of the resulting decision problem is non-
elementary [8, 9] with the height of the tower of exponen-
tials linear in the number of quantifier alternations in the
formula [44]. More tractable classes of term algebras include
the class of quantifier-free formulas [36]. Several extensions
of term algebras have been proved decidable [23, 24, 41, 43],
mostly using quantifier elimination techniques.

Term algebras with a subterm relation. Adding a
subterm relation to the first-order language of term algebras
makes the problem substantially more difficult. Indeed, [42]
shows that even the satisfiability of formulas with bounded
universal quantifiers is undecidable (although the satisfiabil-
ity of the purely existential fragment with a subterm relation
is still decidable). As we noted in Section 5, the undecid-
ability result for term algebras with subterms applies to our
logic as well, because the subterm relation is expressible us-
ing transitive closure. A search for counterexamples is use-
ful even for an undecidable logic (and is, in fact, at least
as important as the search for counterexamples in decidable
logics), and the results of this paper show how to perform
such search for a useful class of formulas.

First-order logic with transitive closure. First-order
logic with transitive closure is useful for reasoning about

program data structures and has been used not only in Al-
loy [19], but also in shape analysis tools such as TVLA [27]
and PALE [35]. Among the decidable fragments with transi-
tive closure are monadic second-order logic [21,37] and some
subclasses of the existential monadic second-order logic of
graphs [16].

7. CONCLUSIONS
The language of sets and relations has proven to be a

powerful notation for modelling a range of structures aris-
ing in software design and analysis. Model finding tools have
made this approach accessible and practical. So far, model
finding tools have been restricted to arbitrarily large, but
finite models. However, some useful structures are inher-
ently infinite, in particular the algebraic datatypes such as
lists and trees. When we try to apply existing tools to these
structures, we are faced, in general, with either ruling out
all models (which is sound, but entirely useless), or allowing
the possibility that the tool returns unsound, meaningless
models that do not apply to the desired infinite structures.

We have presented a useful and natural class of formulas
for which the existence of a finite model reveals the satis-
fiability of the formula in the infinite structure. For this
class of properties, we have proved that it is possible to par-
tially axiomatize the desired structure in such a way that
finite models are simply substructures of the desired infinite
structure. In this way, concrete feedback from model finding
tools can be brought to a range of ubiquitous data structures
that would otherwise remain out of their scope.
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[13] V. Haarslev and R. Möller. RACER system description. In
International Joint Conference on Automated Reasoning,
2001.

[14] W. Hodges. Model Theory, volume 42 of Encyclopedia of
Mathematics and its Applications. Cambridge University
Press, 1993.

[15] I. Horrocks. Using an expressive description logic: FaCT or
fiction? In International Conference on Principles of
Knowledge Representation and Reasoning, pages 636–647,
1998.



[16] N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and
G. Yorsh. The boundary between decidability and
undecidability for transitive-closure logics. In Computer
Science Logic (CSL), pages 160–174, 2004.

[17] D. Jackson. Automating first-order relational logic. In Proc.
ACM SIGSOFT Conf. Foundations of Software Engineering,
2000.

[18] D. Jackson. Object models as heap invariants. In A. McIver and
C. Morgan, editors, Collected Papers of IFIP Working Group
2.3 on Programming Methodology. Springer-Verlag, 2001.

[19] D. Jackson, I. Shlyakhter, and M. Sridharan. A
micromodularity mechanism. In Proc. ACM SIGSOFT Conf.
Foundations of Software Engineering / European Software
Engineering Conference (FSE/ESEC ’01), 2001.

[20] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.

Hwang. Symbolic Model Checking: 1020 States and Beyond. In
Proceedings of the Fifth Annual IEEE Symposium on Logic
in Computer Science, pages 1–33, Washington, D.C., 1990.
IEEE Computer Society Press.

[21] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA
implementation secrets. In Proc. 5th International Conference
on Implementation and Application of Automata. LNCS,
2000.

[22] V. Kuncak and D. Jackson. On relational analysis of algebraic
datatypes. Technical Report 985, MIT, April 2005.

[23] V. Kuncak and M. Rinard. On the theory of structural
subtyping. Technical Report 879, Laboratory for Computer
Science, Massachusetts Institute of Technology, 2003.

[24] V. Kuncak and M. Rinard. Structural subtyping of
non-recursive types is decidable. In Eighteenth Annual IEEE
Symposium on Logic in Computer Science, 2003.

[25] X. Leroy. The Objective Caml system, release 3.08, July 2004.
[26] M. Leuschel and M. J. Butler. ProB: A model checker for B. In

Formal Methods Europe, pages 855–874, 2003.
[27] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing

static analyses. In Proc. 7th International Static Analysis
Symposium, 2000.

[28] M. J. Maher. Complete axiomatizations of the algebras of the
finite, rational, and infinite trees. IEEE Symposium on Logic
in Computer Science, 1988.

[29] A. I. Mal’cev. The Metamathematics of Algebraic Systems,
volume 66 of Studies in Logic and The Foundations of
Mathematics. North Holland, 1971.

[30] D. Marinov. Automatic Testing of Software with Structurally
Complex Inputs. PhD thesis, MIT, 2005.

[31] J. McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part 1. Comm. A.C.M.,
3:184–195, 1960.

[32] W. McCune. MACE 2.0 Reference Manual and Guide. ArXiv
Computer Science e-prints, June 2001.

[33] E. Mendelson. Introduction to Mathematical Logic. Chapman
& Hall, London, 4th edition, 1997.

[34] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The
Definition of Standard ML (Revised). The MIT Press,
Cambridge, Mass., 1997.

[35] A. Møller and M. I. Schwartzbach. The Pointer Assertion Logic
Engine. In Programming Language Design and
Implementation, 2001.

[36] D. C. Oppen. Reasoning about recursively defined data
structures. Journal of the ACM, 27(3), 1980.

[37] M. Rabin. Decidability of second-order theories and automata
on infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

[38] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modelling Language Reference Manual. Addison-Wesley,
Reading, Mass., 1999.

[39] J. R. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and
W. Premerlani. Object-Oriented Modeling and Design.
Prentice Hall, Englewood Cliffs, New Jersey 07632, USA, 1991.

[40] T. Sturm and V. Weispfenning. Quantifier elimination in term
algebras: The case of finite languages. In V. G. Ganzha, E. W.
Mayr, and E. V. Vorozhtsov, editors, Computer Algebra in
Scientific Computing (CASC), TUM Muenchen, 2002.

[41] R. Treinen. Feature trees over arbitrary structures. In
P. Blackburn and M. de Rijke, editors, Specifying Syntactic
Structures, chapter 7, pages 185–211. CSLI Publications and
FoLLI, 1997.

[42] K. N. Venkataraman. Decidability of the purely existential
fragment of the theory of term algebras. Journal of the ACM
(JACM), 34(2):492–510, 1987.

[43] T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for
recursive data structures with integer constraints. In
International Joint Conference on Automated Reasoning,
volume 3097 of LNCS, pages 157–167, 2004.

[44] T. Zhang, H. B. Sipma, and Z. Manna. Term algebras with
length function and bounded quantifier alternation. In
Theorem Proving in Higher-Order Logics, volume 3223 of
LNCS, pages 321–336, 2004.

APPENDIX

Proofs of Theorems

Theorem 1 (Axiomatization of Finite Substructures)
Let M = (T,O, ι) be a finite two-sorted structure with lan-
guage 〈Nil, left, content, right〉. Then M is a model of SUA iff
M is isomorphic to some subterm-closed finite substructure
M0 of MT .

Proof. We prove both directions of the equivalence.
⇐=): Suppose that a structure M is isomorphic to a

subterm-closed model M0 of MT . Then M satisfies the same
formulas as M0. Therefore, it suffices to verify that M0 sat-
isfies the SUA axioms Selectors, Uniqueness, Acyclicity. Ax-
ioms Uniqueness and Acyclicity hold in MT , so they hold
in M0 as well. Indeed, taking the contrapositive, a relation
that has two values in a substructure M0 also has two val-
ues in the larger structure MT ; and a cycle in M0 is also a
cycle in MT . Axiom Selectors holds because M0 is subterm-
closed: the components of every non-Nil term t in T0 are
also in T0.

=⇒): Suppose that a finite two-sorted structure M =
(T,O, ι) satisfies the SUA axioms. We identify a subterm-
closed finite structure M0 = (T0, O, ι0) isomorphic to M , by
establishing a relation f ⊆ T × TT between the T elements
that we hope to behave as terms (because they satisfy the
SUA axioms), and the elements TT of the term model MT .
We then let g = f ∪ ∆O where ∆O is the identity relation
on O, and show that g is a partial isomorphism. We also
show that the domain of g is the entire domain T ∪O of M .
Therefore, M is isomorphic to the finite substructure M0 of
MT induced by the range of g.

To define f , we start by mapping ι(Nil) to the element Nil
from TT , and extend f by following the parent relation in
both M and M0. Formally, we define f using a least fixpoint
construction. Let f0 = {(ι(Nil),Nil)} and let

fi+1 = fi ∪ {(t′,Node(t1, o, t2)) ∈ f | ∃t′1, t
′
2.

(t′, t′1) ∈ ι(left), (t′, t′2) ∈ ι(right),

(t′, o) ∈ ι(content),

(t′1, t1), (t
′
2, t2) ∈ fi}

Define f = ∪i≥0fi. We show by induction that f is a partial
isomorphism whose domain is T . To make sure that we have
taken into account all elements of T , we define a measure
d on the elements of structures M and MT . Consider first
an element t ∈ T of structure M and consider a sequence of
elements t0, t1, . . . such that t0 = t and (ti, ti+1) ∈ ι(left) ∪
ι(right). Because M satisfies Acyclicity and T is finite, each
such sequence is finite, and there is a finite number of such
sequences. For each element t, let d(t) be the maximum of
the lengths of all such sequences. We analogously define d(t)
for t ∈ TT .

Given this setup, we can easily prove by induction on i
the conjunction of the following properties:

P1) dom(fi) = {t′ ∈ T | d(t′) ≤ i}

P2) each relation gi = fi ∪ ∆O is a partial isomorphism,
that is, that gi is an isomorphism between structures
induced by the domain of gi (denoted dom(gi)) and the
range of gi (denoted ran(gi));

The details of the inductive proof are given in the accompa-
nying technical report [22].

Given that these properties hold for all i, let n =
max{d(t′) | t′ ∈ T}. Then dom(fn) = T and gf+1 = fn,
so g = gn. Let M0 = (T0, O, ι0) where T0 = ran(fn) and
ι0(content) = {(t, o) | ∃t′ ∈ T. (t′, o) ∈ ι(content)}. Then
g is a bijection T ∪ O → T0 ∪ O, it preserves left and right
because fn does, and it preserves content by construction.



Therefore, M0 is the desired finite substructure of MT , and
g is the desired isomorphism between M and M0, which
proves our claim.

Theorem 2 (Finite Satisfiability Theorem) Let ϕ be an
EBU sentence and MT a term model. Then ϕ holds in MT

iff it holds in some subterm-closed finite substructure M0 of
MT .

Proof. We prove both directions of the equivalence.
Soundness (⇐=): Suppose that ϕ holds in a subterm-

closed finite substructure M0 = (T0, O, ι0) of MT =
(TT , O, ιT ). When evaluating ϕ in MT , for any witness for
an existential quantifier we can pick the same witness in MT

as in M0, because T0 ⊆ TT . Moreover, regardless of whether
they are interpreted in M0 or MT , the universal quantifiers
range only over elements of T0, so they still hold in M0. We
next make this argument more precise.

Observe the following properties of set-valued and
relation-valued terms in our language, for every structure
M and every valuation α:

• if R is a relation-valued expression, then

[[R]]M,α ⊆ [[∗(left ∪ right)]]M,α (2)

• if S is a set-valued term with free variables x1, . . . , xn

on which α is defined, then

[[S]]M,α ⊆ [[{x1, . . . , xn}.∗(left ∪ right)]]M,α (3)

These properties follow by induction on the size of the ex-
pressions R and S.

Note also thatM0 is a substructure ofMT , so by induction
on the size of R and S we have

[[R]]M0 ,α = [[R]]MT ,α ∩ T 2
0

[[S]]M0 ,α = [[S]]MT ,α ∩ T 2
0

(4)

for α : Vars → T0 ∪O.
We next show that the truth-value of a quantifier-free for-

mula F is the same in M0 and MT when the free variables
of F are interpreted in T0. We show by induction on the
structure of formula F that:

For all α : Vars → T0 ∪ O,

[[F ]]M0 ,α = [[F ]]MT ,α. (5)

Indeed, (5) holds for atomic formulas by condition (4) and
the assumption that α(x) ∈ T0∪O. Moreover, this property
is preserved by propositional combinations, so it holds for all
boolean combinations. Given an EBU sentence ϕ, we have:

Claim 1 For each quantified subformula F of ϕ, for all val-
uations α : Vars → T0 ∪O, if [[F ]]M0 ,α then [[F ]]MT ,α.

The base case corresponds to the previously proved case
of quantifier-free formulas. We show that the condition is
preserved under existential quantifiers, bounded universal
quantifiers, and quantifiers over the finite set O. So suppose
that [[F ]]M0 ,α implies [[F ]]MT ,α for all α : Vars → T0 ∪O and
suppose that α : Vars → T0 ∪ O and [[F1]]

M0,α.

• Let F1 ≡ ∃vt :: Tree. F . Then there exists t ∈ T0 such
that [[F ]]M0,α′

where α = α′[vt := t]. By induction

hypothesis [[F ]]MT ,α′

, so [[F1]]
MT ,α.

• Let F1 ≡ ∀S vt :: Tree. F for some set expression S.
Then [[F ]]M0 ,α[vt:=t] for each t ∈ [[S]]M0 ,α. From (3), (4),
α : Vars → T0 ∪ O, and the fact that M0 is subterm-
closed, we conclude [[S]]MT ,α = [[S]]M0 ,α ⊆ T0. Con-
sider arbitrary t ∈ [[S]]MT ,α. Then t ∈ [[S]]M0 ,α, so

[[F ]]M0,α[vt:=t]. Because t ∈ T0, by induction hypothe-

sis [[F ]]MT ,α[vt:=t]. This proves [[F1]]
MT ,α.

• The cases F1 ≡ ∃vo :: Object. F and F1 ≡ ∀vo ::
Object. F are straightforward because the quantifiers
are monotonic and the structures MT and M0 have the
same domain of uninterpreted objects O.

This completes the proof of the claim, and the proof of (⇐=)
direction of our statement. Note that we have not relied on
the fact that MT is full term model. In fact, this direction
still holds for M0 and M1 where M0 is a substructure of
M1 and M1 is a substructure of MT : if the EBU sentence
holds in M0, then it also holds in the larger substructureM1.
We will use this generalization in the proof of the converse
direction.

Completeness (=⇒): Let ϕ be EBU sentence. We prove
by induction that for all subformulas F of ϕ the following:

Claim 2 For each α : Vars → TT , if [[F ]]MT ,α, then there
exists a finite subterm-closed model M0 and a valuation α0

of M0 such that α0(xi) = α(xi) for each variable xi free in
F , and such that [[F ]]M0 ,α0 .

The proof of this claim is by induction on the number of
quantifiers in F .

For the base case, assume that F is quantifier-free, and
let x1, . . . , xn be the variables of F . Then let T0 =
[[{x1, . . . , xn}.∗(left ∪ right)]]MT ,α and let M0 be the sub-
structure of MT induced by T0. Let α0(xi) = α(xi) for
1 ≤ i ≤ n and let α0(v) = α(x1) for v /∈ {x1, . . . , xn}. Then
α0 : Vars → T0 ∪ O, so by (5) we have [[F ]]M0,α0 ; we have
thus identified the desired M0 and α0.

For the inductive step, assume that claim holds for for-
mula F , we prove that it holds for F1 which is the result of
quantifying F . Suppose that [[F1]]

MT ,α holds. We consider
several cases.

• F1 ≡ ∃vt :: Tree. F . Then there exists t ∈ TT such
that [[F ]]MT ,α′

where α′ = α[vt := t]. By the induction
hypothesis, there exists α0 that agrees with α′ on the
free variables of F and a finite subterm-closed model
M0 such that [[F ]]M0,α0 . This means that [[F1]]

M0,α0 ,
and α0 certainly agrees with α on the variables free in
F1.

• F1 ≡ ∀S vt :: Tree. F . Let S̄ = [[S]]MT ,α. Assume first
S̄ 6= ∅. Then for each t ∈ S̄, if α(t) = α[vt := t], then

[[F ]]MT ,α(t), so by induction hypothesis there exists a
model M0(t) = (T0(t), O, ι0(t)) and a valuation α0(t)

such that [[F ]]M0(t),α0(t), and α0(t) agrees with α(t) on
the free variables of F . Then let T ′

0 = S̄ ∪
S

t∈S̄ T0(t).

Let T0 be the subterm-closure of T ′
0, given by T0 = T0∪

{t | ∃t′ ∈ T ′
0. (t′, t) ∈ [[subterm]]MT ,α}. The union T ′

0 is
finite because S̄ is finite, and each T0(t) is finite. There-
fore, the subterm-closure T0 is finite, so there exists a
finite subterm-closed structure M0 = (T0, O, ι0). By
the generalized version of the (=⇒) direction, because

M0(t) is a substructure of M0, we have that [[F ]]M0,α0(t)

for each t ∈ S̄. Because we have [[S]]M0 ,α = S̄ we con-

clude [[F1]]
M0,α0(t1) where t1 ∈ S̄ is arbitrary.

Next, consider the special case S̄ = ∅. Let

T0 = [[{x1, . . . , xn}.∗(left ∪ right)]]MT ,α,

where x1, . . . , xn are the free variables of S, and con-
sider the corresponding model M0 = (T0, O, ι0). Then
[[S]]M0 ,α = ∅, so [[F1]]

M0,α.

• F1 ≡ ∃vo :: Object. F . This case is analogous to the
case F1 ≡ ∃vt :: Tree.F .

• F1 ≡ ∀vo :: Object. F . This case is similar to the case
F1 ≡ ∀Svt :: Tree.F , but slightly simpler.


