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Abstract

We present a technique that enables the use of finite model
finding to check the satisfiability of certain formulas whose
intended models are infinite. Such formulas arise when using
the language of sets and relations to reason about structured
values such as algebraic datatypes. The key idea of our tech-
nique is to identify a natural syntactic class of formulas in
relational logic for which reasoning about infinite structures
can be reduced to reasoning about finite structures. As a
result, when a formula belongs to this class, we can use exist-
ing finite model finding tools to check whether the formula
holds in the desired infinite model.

1 Introduction

A new kind of analysis has become popular in the last decade
in which a system is examined by considering all small cases
within some bound. The rationale is that flaws are revealed
more readily by this method than by conventional testing:
exhausting a huge space of small cases works better than
considering a much smaller suite of cases, even if it includes
larger ones.

Model checking is the preeminent example of this ap-
proach, and bounds the set of reachable states and some-
times also the length of execution traces. The success of
model checking in hardware verification has generated great
interest in applying it to software. Most model checkers,
though, offer only rudimentary support for data structures,
so most applications of model checking to software until now
have focused on control properties, and data has either been
ignored or abstracted away.

To handle data structures effectively within this context,
a reduction to small cases is needed. With such a reduction,
no special abstractions for data would be needed, and the
same bounding mechanism used for trace length, for exam-
ple, could be applied to the size of data structures.

How should data structures be represented in such an
analysis? A relational representation is very attractive, be-
cause it fits both the analyses that are widely used at the low
level, and the object-oriented view of a program at the high
level. Symbolic model checkers such as SMV [19] already
represent the state as a bit vector; the adjacency matrix rep-
resentation of a relation is therefore easily integrated. In the
object-oriented view of program state, the heap is a graph,
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with objects as nodes and fields of objects as edges between
objects—in other words, a collection of relations, one per
field. This view now predominates, because it’s simple and
easily accounts for sharing (a shared object simply being in
the range of two relations).

An important question to ask, therefore, is whether this
relational viewpoint can accommodate a general theory of
data structures. Can arbitrary structural properties be nat-
urally expressed and analyzed by the small case approach?
This question is not only of theoretical interest. It has arisen
repeatedly amongst advanced users of one tool, the Alloy
language and its associated analyzer [1], as they have dis-
covered scenarios in which Alloy’s relational encoding does
not seem to capture their intuitions about data structures.

This paper’s aim is to resolve this issue, not only for
Alloy, but more generally for any tool that relies on small
case analysis of a relational encoding. This includes not
only model checkers (such as SMV [19] and NuSMV [6]), but
also specification analysis tools based on constraints (such
as ProB [24] and the Bremen USE tool [10]), and indeed
potentially to any tool that encodes data relationally.

To frame the problem rigorously, a characterization of
data structures independent of the relational viewpoint is
needed. For this purpose, we use the theory of algebraic
datatypes, which corresponds to the way most programmers
think about structured values in datastructures, and is the
basis for their implementation in many current programming
languages.

We start by explaining the standard encoding of alge-
braic datatypes using relations in first order logic. This en-
coding is faithful, but it suffers from a major drawback: it
requires all models of a formula to be infinite. Consequently,
an analysis based on finite cases cannot be applied. To rem-
edy this, we remove the logical axiom that is responsible
for making models infinite. Surprisingly, most analyses per-
formed in the absence of this axiom are still sound. There
are, however, analyses that will produce spurious counterex-
amples. The principal contribution of this paper is a simple
syntactic criterion that guarantees that a formula being an-
alyzed will not suffer from this problem. The criterion is
easy to understand, and could be applied automatically by
a tool, warning the user when an analysis on the relational
encoding might produce results that do not correspond to
the full theory of algebraic datatypes.

The contributions of the paper are:

• A recognition of the problem of handling data struc-
tures in relational encodings, with positive and nega-
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tive illustrations;

• A rigorous formulation of the problem, in terms of en-
coding algebraic datatype axioms in first order logic,
and invariance of formula semantics under the exclusion
of the ’generator’ axiom that generates infinite models;

• A simple and effective syntactic criterion characterizing
the class of formulas for which an analysis involving
only finite tests is sound and complete.

2 An Example

In this section, we motivate the problem with an example
of a relational encoding of a simple algebraic datatype. We
show how the omission of a ’generator’ axiom can cause
spurious counterexamples, but its inclusion results in incon-
sistency, making the encoding useless. The challenge is to
determine under what conditions the axiom can be omitted
while remaining faithful to the theory of algebraic datatypes.

The example will be given in Alloy [18], a modelling lan-
guage based on a simple first-order logic with relational op-
erators. Although our work was motivated by Alloy, our re-
sults apply more broadly, and the rest of the paper presents
our theory in a standard logic that has no Alloy-specific fea-
tures.

A datatype for lists would be declared in a language such
as ML [32] like this:

datatype List = Nil | Cons of Element * List

where List is the datatype being declared, Element is the
type corresponding to the elements, and Nil and Cons are
constructors, with no arguments and two arguments respec-
tively.

In Alloy, List and Element are represented as top-level
sets (called ’signatures’ in Alloy). Nil is a singleton set –
the set containing the empty list.

sig Element {}
sig List {}
one sig Nil extends List {}

Cons is represented by a set Cons and two selectors, elt and
rest:

sig Cons extends List {
elt: Element,
rest: List

}

The extends syntax makes Cons a subset of List, disjoint
from Nil. The selectors are semantically just relations from
the set Cons to the sets Element and List respectively.

The function cons can be written as an Alloy predicate

pred cons (e: Element, l: List, c: Cons) {
c.elt = e and c.rest = l

}

which associates with an element e and a list l any object
c in Cons such that e and l are the element and rest com-
ponents of c.

Now let’s consider checking some putative theorems.
This assertion says that the element of a list just created
with an application of cons is the element used in the appli-
cation:

assert A {
all e: Element, l: List, c: Cons |
cons (e, l, c) => e = c.elt

}

This holds trivially—the consequent being contained in the
hypothesis—and so, when checked by the Alloy Analyzer, it
yields no counterexamples. In contrast, suppose we check
the assertion

assert B {
all e: Element, l: List, c, c’: Cons |
(cons (e, l, c) and cons (e, l, c’)) => c = c’

}

which claims that cons is deterministic. The Alloy Analyzer
will give a counterexample such as this:

List = {L0, L1, L2}
Cons = {L1, L2}
Nil = {L0}
Element = {E0}
elt = {(L1, E0), (L2, E0)}
rest = {(L1, L0), (L2, L0)}
e = {E0}
l = {L0}
c = {L1}
c’ = {L2}

in which cons produces the two lists L1 and L2 which are
structurally identical but nevertheless distinct list objects.

This might be acceptable for some applications, but if
we wanted to model the kind of list used in languages such
as ML, in which equality is structural (and identity of cells
therefore cannot be observed), we could add an axiom

fact {
all l, l’: List |
l.elt = l’.elt and l.rest = l’.rest => l = l’

}

requiring that structurally identical lists have the same iden-
tity, ensuring that the assertion B is now valid.

Continuing with model exploration, we notice that in
some cases Alloy generates cyclic lists as counterexamples
of our properties. Because cyclic lists are not algebraic
datatypes, we introduce the fact

fact {
no l : List | l in l.^rest

}

ensuring that elt is an acyclic relation.
So far so good. Consider, however, an assertion claiming

that cons is total:

assert C {
all e: Element, l: List | some c: Cons |
cons (e, l, c)

}

Given our intuition about algebraic datatypes, we expect
this assertion to be valid. But in the relational setting, given
the facts stated so far, the assertion C is actually invalid. The
Alloy Analyzer will generate a counterexample such as:
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List = {L0}
Cons = {}
Nil = {L0}
Element = {E0}
elt = {}
rest = {}
e = {E0}
l = {L0}

The problem, roughly speaking, is that the Analyzer is free
to construct a counterexample in which there aren’t enough
lists.

Suppose, following our previous strategy, we attempt to
add an axiom to rule out counterexamples of this form:

fact {
all l: List, e: Element | some c: Cons |

c.elt = e and c.rest = l
}

This ’generator’ axiom ensures that the selector relations
are complete: for any combination of list and element, it re-
quires the existence of list for which they are components.
This will indeed rule out the counterexample above. Unfor-
tunately, however, it rules out all (nonempty) counterexam-
ples, even to a manifestly false assertion (for example that
0 equals 1). The problem is that this axiom has no finite
models, and is therefore inconsistent in a setting in which
only finite models are considered.

The key idea of this paper is that a finite checker can-
not incorporate this axiom, but must nevertheless be able to
handle algebraic datatypes. The question then is what class
of formulas have the same models whether or not this axiom
is included. The contribution of this paper is a characteri-
zation of a class of such formulas that is both expressive and
easily checked syntactically.

Assertion C, it turns, will not be in this class. The culprit
is the innermost quantification. The nesting of quantifiers
is not in itself problematic; rather, the problem is that the
quantification is not bounded. If instead, it were bounded
by an expression in terms of variables bound in an outer
quantifier, no spurious counterexample would be generated,
even in the absence of the generator axiom. For example,
the assertion

assert D {
all c: Cons | some l: c.*rest, e: Element |
cons (e, l, c)

}

saying that each list is the result of an application of cons to
some sublist, is valid, as expected (the expression c.*rest
is the application of the reflexive transitive closure of rest
to c, giving the set of c’s sublists).

3 Logic and Algebraic Datatypes

This section introduces our two formalisms: term algebras,
a theory of algebraic datatypes, and a first-order logic with
transitive closure. We show how a term algebra can be
straightforwardly translated into first-order logic, using four
axioms. One of these is a generator axiom that causes all
models to be infinite. In the following section, we establish
our main result about when this axiom can be omitted.

Throughout the paper, we use binary trees as the canon-
ical example of algebraic datatypes. Being simple and famil-
iar, trees serve well as a pedagogical example. In addition,

S ::= SV | S1 setOpS2 | S.R | {x1, . . . , xn}

R ::= RV | R1 setOpR2 | R1.R2 | ∆ | bR | ∗R

setOp ::= ∪ | ∩ | \

A ::= (x1, x2) ∈ R | x ∈ S |

S1 = S2 | R1 = R2 | x1 = x2

B ::= A | B1 ∧B2 | ¬B1

F ::= B | ∀x :: sort.F | ∃x :: sort.F | F1 ∧ F2 | ¬F1

sort ::= Tree | Object

Figure 1: A Logic with Transitive Closure

because trees can represent all other algebraic datatypes,
there is no loss of generality.

Algebraic datatypes and term algebras. We consider
structures that contain two kinds of values, or ’sorts’: 1)
a Tree sort, corresponding to algebraic datatypes, and 2)
an Object sort, corresponding to all remaining values. In
a programming language such as ML [32], we would define
this algebraic datatype using a declaration such as:

datatype Tree = Nil | Node of Tree * Object * Tree
datatype Object = Obj1 | Obj2 | ... | ObjN

Note that the datatype Tree has an infinite set of values,
because there is no bound on the size of a tree. On the
other hand, we assume that we have already finitized the set
Object corresponding to the remaining values. If our struc-
ture had only values of sort Object, we could use existing
techniques to search for models of formulas (such as [17]);
our goal, however, is to reason about the structures that
also contain values of the sort Tree. One view of the results
of this paper is that we show how to effectively finitize al-
gebraic datatypes, without making the conclusions derived
in the finitization meaningless with respect to the intended
world of arbitrarily large datatypes.

Algebraic datatypes have proven to be useful not only
in programming languages, but also in model theory, where
they correspond to term algebras [27, Chapter 23], [14, Sec-
tion 1.3]. Term algebras are algebras in which values are
interpreted syntactically: given a term t without free vari-
ables (a ground term), the interpretation of t is t itself. The
term algebras corresponding to the Tree datatype are gen-
erated by:

1) a constant Nil of sort Tree, and

2) a binary constructor Node of type

Tree × Object × Tree → Tree

We next present the logic we use to express the properties
of structures containing terms and objects; we use this logic
to write the formulas that we wish to analyze.

A logic with transitive closure. We consider a frag-
ment of first-order logic with transitive closure. The syntax
of our logic is in Figure 1: the nonterminal S denotes set-
valued expressions, R denotes relation-valued expressions,
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M = (T,O, ι), α : Vars → T ∪O

[[S1 setOp S2]]
M,α = [[S1]]

M,α setOp [[S2]]
M,α

[[S.R]]M,α = {y | ∃x ∈ [[S]]M,α. (x, y) ∈ [[R]]M,α}

[[{x1, . . . , xn}]]
M,α = {α(x1), . . . , α(xn)}

[[R1 setOp R2]]
M,α = [[R1]]

M,α setOp [[R2]]
M,α

[[R1.R2]]
M,α = [[R1]]

M,α ◦ [[R2]]
M,α

= {(x, z) | ∃y. (x, y) ∈ [[R1]]
M,α ∧

(y, z) ∈ [[R2]]
M,α}

[[∆]]M,α = {(x, x) | x ∈ T}

[[S1 = S2]]
M,α =([[S1]]

M,α = [[S2]]
M,α)

[[R1 = R2]]
M,α =([[R1]]

M,α = [[R2]]
M,α)

[[x1 = x2]]
M,α =(α(x1) = α(x2))

[[(x1, x2) ∈ R]]M,α =(α(x1), α(x2)) ∈ [[R]]M,α

[[x ∈ R]]M,α =α(x) ∈ [[S]]M,α

[[bR]]M,α = { (x0, xn) | ∃n ≥ 1.∃x1, . . . , xn−1 ∈ T.Vn

i=1(xi−1, xi) ∈ [[R]]M,α}

[[∗R]]M,α = [[∆]]M,α ∪ [[bR]]M,α

[[A1 ∧A2]]
M,α = [[A1]]

M,α ∧ [[A2]]
M,α

[[¬A]]M,α =¬[[A]]M,α

[[∀x :: Tree.F ]]M,α =∀t ∈ T. [[F ]]M,α′

, α′ = α[x := t]

[[∀x :: Object.F ]]M,α =∀o ∈ O. [[F ]]M,α′

, α′ = α[x := o]

[[∃x :: Tree.F ]]M,α =∃t ∈ T. [[F ]]M,α′

, α′ = α[x := t]

[[∃x :: Object.F ]]M,α =∃o ∈ O. [[F ]]M,α′

, α′ = α[x := o]

Figure 2: Semantics for Logic of Figure 1

A denotes atomic formulas, B denotes quantifier-free formu-
las, and F denotes general (potentially quantified) formulas.
The non-terminal SV denotes sets (corresponding to one-
place predicates), whereas the non-terminal SR denotes bi-
nary relations (corresponding to two-place predicates). No-
tation br denotes the irreflexive transitive closure of the
binary relation r, whereas ∗r denotes the reflexive transitive
closure of r. (Among the expressions that we intentionally
omit are the universal set, and relation inverse. These con-
structs make it difficult to ensure certain locality properties
of the expressions that are useful for the formulation of our
result.) We use the shorthand ∃1x.F for the formula

∃x.F (x)∧ (∀x, y. F (x) ∧ F (y)⇒ x = y).

We interpret formulas in our logic over two-sorted struc-
turesM = (T,O, ι) where T is the domain of the sort Tree, O
is the domain of the sort Object, and ι with domain SV ∪RV

interprets the built-in sets and relations of the structure M ,
so that ι(s) ⊆ T or ι(s) ⊆ O if s is a built-in set, and
ι(r) ⊆ T 2, ι(r) ⊆ O2, ι(r) ⊆ T × O, or ι(r) ⊆ O × T if r is
a built-in relation. The standard model-theoretic semantics
of our logic is in Figure 2. The function α : Vars → T ∪ O
is a valuation that maps each variable to its value. If ϕ is a
sentence (a formula with no free variables) then [[ϕ]]M,α does
not depend on α, so when ϕ is a sentence and [[ϕ]]M,α = true,
we say that M is a model of the sentence ϕ. A structure M
is a model of a set of sentences iff M is a model of each of
the sentences in the set.

Note that, although we use set-theoretic notation such
as x ∈ S and (x, y) ∈ R, our logic does not allow quantifica-
tion over sets, and is no stronger than first-order logic with
transitive closure. Recall, however, that first-order logic is
very expressive. Indeed, first-order logic has been used as a
foundation for set theory and all of mathematics [31]. Note
also that the axioms and definitions used to represent many
mathematical problems in first-order logic are often made
under the assumption that the logic is interpreted over in-
finite structures. We view the results of this paper as a
contribution towards reasoning about infinite structures us-
ing techniques that have proven to be effective for finite
structures.

A language for term algebras. The language in Fig-
ure 1 presents a general logic over arbitrary sets and rela-
tions. We next turn to the question of choosing the sets and
relations that are appropriate for describing term algebras.

Term algebras can be described using constructor rela-
tions, such as Node, or using selector relations, which are
the inverse of the constructors [14, Section 2.6]. For our
purpose, it is more convenient to use selectors. Because we
consider a binary tree, we use the selectors left, content, and
right, where left and right denote the children of a node in the
tree, and content denotes the Object value associated with
a tree node. We represent selectors as binary relations that
are partial functions defined on non-Nil terms. We define
the relation node as the following shorthand:

(t, t1, o, t2) ∈ node ⇐⇒ (t, t1) ∈ left ∧ (t, o) ∈ content ∧

(t, t2) ∈ right ∧ t 6= Nil

We also use the subterm relation, defined using transitive
closure:

subterm
def

= b(left ∪ right)
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The term model. We are interested in checking the
satisfiability of formulas over the term algebra structure
MT = (TT , O, ιT ) given as follows:

• TT is the set of ground terms generated by constants
Nil and Node; in other words, T is the least set such
that

1. Nil ∈ TT , and

2. if t1, t2 ∈ TT and o ∈ O, then Node(t1, o, t2) ∈ TT .

• O is a finite set;

• ιT is defined as follows:

ιT (Nil) = Nil

ιT (left) = {(Node(t1, o, t2), t1) | t1, t2 ∈ TT , o ∈ O}

ιT (content) = {(Node(t1, o, t2), o) | t1, t2 ∈ TT , o ∈ O}

ιT (right) = {(Node(t1, o, t2), t2) | t1, t2 ∈ TT , o ∈ O}

Figure 3 sketches one part of the structure MT .

Axioms for term algebras. We adopt the following ax-
ioms to describe the properties of term algebras:

• Selectors: The binary relations left, content, and right
are total functions on the non-Nil elements of the sort
Tree, and are undefined on Nil:

1. ∀t :: Tree. t 6= Nil⇒ (∃1t1 :: Tree. (t, t1) ∈ left) ∧

(∃1o :: Object. (t, o) ∈ content) ∧

(∃1t1 :: Tree. (t, t1) ∈ right)

2. ∀t1 :: Tree.∀o :: Object. (Nil, t1) /∈ left ∧

(Nil, o) /∈ content ∧

(Nil, t1) /∈ right

We assume that a simple type system of our two-sorted
language rules out the application of relations to ele-
ments of inappropriate sort; for example, if t :: Tree
and o :: Object, then (t, o) ∈ left is not a well-formed
formula.

• Uniqueness: The defined relation node has the proper-
ties of a partial function:

∀t, t′, t1, t2 :: Tree.∀o :: Object.
(t, t1, o, t2) ∈ node ∧ (t′, t1, o, t2) ∈ node⇒ t = t′

• Generator : The defined relation node has the proper-
ties of a total function:

∀t1, t2 :: Tree.∀o :: Object. ∃t :: Tree. (t, t1, o, t2) ∈ node

(This axiom holds in MT , but we will consider the con-
sequences of omitting it from the axiomatization.)

• Acyclicity : A term is never a proper subterm of itself;
that is, the subterm relation is acyclic:

∀t :: Tree. (t, t) /∈ subterm

We denote by SUGA the conjunction of the axioms above
(taking the first letter of the name of each axiom).

Note that the SUGA axioms have no finite models.
Namely, although not all models of SUGA are isomorphic,
they all contain an infinite chain of elements t0, t1, t2, . . .
where t0 = Nil and (ti+1, ti, o,Nil) ∈ node. These elements
exist by the Generator axiom; the Acyclicity axiom guaran-
tees that they are all distinct because they are ordered by
the subterm relation.

In first-order logic without transitive closure, term alge-
bras have a complete axiomatization [27, Chapter 23], [26]:
there is a set of first-order sentences whose consequences are
precisely the sentences that are true in the structure MT

(this set of sentences is infinite and requires some axiom
schemas). However, even a complete axiomatization does
not characterize the models up to isomorphism. For exam-
ple, our SUGA axioms allow countable models with count-
ably infinite paths of left and right that never terminate at
Nil. The completeness of the axiomatization of term algebras
is not of direct interest to us in any case, because a complete
axiomatization forces the model to be infinite. Instead, we
look for subclasses of formulas that can be checked on finite
structures, and we show the soundness of our technique us-
ing a model-theoretic approach: we look at the truth value
of the formulas in the desired term model MT (as opposed
to checking whether the formulas are a consequence of an
axiomatization of MT as in a proof-theoretic approach).

4 Finite Satisfiability Result

This section presents the main results of our paper, which
enable the checking of properties of algebraic datatypes us-
ing finite models. The basic idea of our approach is the
following: to prevent all models from being infinite, we drop
the Generator axiom. Denote by SUA the conjunction of
the remaining axioms (Selectors, Uniqueness, Acyclicity). It
turns out that, among the finite structures, SUA character-
izes precisely the substructures of the term model that are
subterm-closed (if t is in the structure, then so is each sub-
term of t). Having proved this characterization, we identify
a class of sentences whose validity in a finite model implies
the validity in the full infinite model MT .

We next define the notion of a sub-term closed finite sub-
structure of MT , illustrated in Figure 3. Intuitively, a finite
substructure M0 = (T0, O, ι) of MT is a structure obtained
from MT by selecting a finite set T0 of terms and preserving
all the relations between the terms in T0. A structure is
subterm-closed if a subtree of each tree in T0 is also in T0.
More precisely, we have the following.

Consider a term modelMT = (TT , O, ιT ). A substructure
of MT is a structure M0 = (T0, O, ι0) where T0 ⊆ TT and
the relations given by ι0 are restrictions of the correspond-
ing relations given by ιT , that is, ι0(left) = ιT (left) ∩ T 2

0 ,
ι0(right) = ιT (right) ∩ T 2

0 , and ι0(content) = ιT (content) ∩
T0 × O. (We have for simplicity assumed that substruc-
tures have the same domain O of values of the sort Object.)
A subterm-closed finite substructure of MT is a finite sub-
structure M0 of MT whose domain of terms T0 satisfies the
property t ∈ T0 ∧ (t, t1) ∈ [[subterm]]MT ,α ⇒ t1 ∈ T0 for all
t, t1 ∈ T .

We then have the following completeness theorem that
explains why the SUA axioms are adequate. This theorem
allows us to ensure that any model of SUA axioms has pre-
cisely the properties of a subterm-closed finite substructure
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Nil Nil

t1 Nil

t2

Figure 3: Sketch of the infinite structure MT and an exam-
ple of one of its finite subterm-closed substructures M0 =
(T0, {o}, ι0) where T0 = {Nil, t1, t2} for t1 = Node(Nil, o,Nil)
and t2 = Node(t1, o,Nil). The edges corresponding to the
content relation are omitted for clarity.

of the term model MT .

Theorem 1 (Axiomatization of Finite Substructures)
A two-sorted structure M is a model of SUA iff M is iso-
morphic to some subterm-closed finite substructure M0 of
MT .

The proof of Theorem 1 is in Section 8.
Having identified that the SUA axioms enforce that a

finite structure “looks like” a term algebra MT , we turn to
the question of when is the case that checking a property
in a finite model is sufficient to ensure that the property
holds in the full model MT . We first look at sentences that
contain only existential quantifiers.

An existential sentence ϕ is a formula of the form

∃t1 :: Tree. . . . ∃tn :: Tree. ψ

where ψ is quantifier-free and the free variables of ψ are
t1, . . . , tn. The following is a fundamental property of struc-
tures (dual to the property that if a universal sentence holds
in a structure then it also holds in its substructure).

Fact 1 Let M1 be a substructure of M and ϕ a purely ex-
istential sentence. If ϕ holds in M1, then ϕ also holds in
M .

Informally, the property holds because the same existential
witnesses from the smaller structure can be used in the larger
structure.

An important consequence of Theorem 1 and Fact 1 is
the following: if ϕ is an existential sentence and the conjunc-
tion SUA ∧ ϕ holds in a finite two-sorted model M1, then

ϕ holds in some subterm-closed finite substructure M0 of
MT , so ϕ holds in the full term model MT . We thus obtain
a method to check whether a formula ϕ holds in MT . In
the rest of this section, we generalize this result by allow-
ing arbitrary quantification in ϕ, as long as it is bounded
by previously introduced values. The intuitive reason why
this generalization is possible is that we are checking for-
mulas on subterm-closed structures, which means that the
bounded quantification has the same semantics in the sub-
structure M0 and in the full infinite structure MT .

Let S be a set-valued term, denoted S in Figure 1, and
suppose that S does not contain variable t. A bounded uni-
versal term quantifier

∀S t :: Tree. F

is a shorthand for the formula

∀t :: Tree. t ∈ S ⇒ F

Dually, a bounded existential term quantifier

∃S t :: Tree. F

is a shorthand for the formula

∃t :: Tree. t ∈ S ∧ F

Hence, bounded quantifiers are expressible in terms of
the ordinary quantifiers, but are more restrictive. An
existential—bounded-universal sentence requires each uni-
versal quantifier to be bounded by some set expression S.
More precisely, we have the following definition:

Definition 1 An existential—bounded-universal sentence
(an EBU sentence) is a formula of the form

Q1v1 :: s1. . . . Qnvn :: sn. ψ

where ψ is a quantifier-free formula (denoted B in Figure 1)
and each Qivi :: si is a quantifier or a bounded quantifier of
one of the following forms:

• An existential term quantifier ∃vk :: Tree;

• A bounded universal term quantifier ∀S vk :: Tree where
the free variables of the set-valued term S are among
the previously quantified variables v1, . . . , vk−1;

• A bounded existential term quantifier ∃S vk :: Tree
where the free variables of the set-valued term S are
among the previously quantified variables v1, . . . , vk−1

(this quantifier is a special case of the existential term
quantifier);

• A universal object quantifier ∀vk :: Object;

• An existential object quantifier ∃vk :: Object.

We write ϕ ∈ EBU to denote that ϕ is an EBU sentence.

Note the ways in which EBU sentences generalize purely
existential sentences: not only is it possible to have arbi-
trary bounded quantifiers, it is also possible to introduce
new unrestricted existential quantifiers, even after bounded
universal quantifiers.

We are now ready to state our main theorem:
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procedure TermSat
input: ϕ: an EBU sentence
output: if ϕ is true in some term model MT :

a finite substructure M0 of MT where ϕ holds
if ϕ is false in all term models MT :
no result (infinite loop)

begin
k := 1;
while (true) do
for each model M1 = (T,O, ι) with |T | + |O| = k do
if (SUA ∧ ϕ) holds in M1 then return M1; fi

end
k := k + 1;

end
end TermSat.

Figure 4: A semidecision procedure for checking satisfiabil-
ity of EBU sentences in the term model MT .

Theorem 2 (Finite Satisfiability Theorem) Let ϕ be
an EBU sentence and MT a term model. Then ϕ holds in
MT iff it holds in some subterm-closed finite substructure
M0 of MT .

The proof of Theorem 2 is in Section 8.
The identification of EBU sentences and the proof that

they can be verified on finite models is the main contribu-
tion of this paper. In the sequel, we explore some of the
consequences of this result.

5 Consequences

Given the results of the previous section, we can now an-
swer the question we posed in Section 2. An analysis of an
Alloy model in which algebraic datatypes are encoded re-
lationally will yield sound counterexamples so long as the
formula being checked is in EBU. A syntactic check for
membership in EBU based on Definition 1 is easy to imple-
ment. The result extends to bounded model checkers (such
as NuSMV [6]) whose analysis consists of finding a model of
a formula. The language of formulas for such model checkers
could be soundly extended to EBU sentences over algebraic
datatypes.

Analysis procedure. The analysis procedure suggested
by our result is shown in Figure 4: to check whether an EBU
sentence ϕ holds in MT , search for increasingly large finite
models of SUA∧ϕ. The procedure captures the spirit of anal-
yses such as that performed by the Alloy Analyzer [17, 18];
in practice, the search for models would employ pruning and
heuristics and would not require an exhaustive enumeration.
The correctness and completeness of the procedure follows
from the results of this section and is the main result of this
paper:

• we can check the condition that a structure is a
subterm-closed submodel of MT by simply conjoining
axioms SUA to ϕ, thanks to Theorem 1;

• we know that the existence of the returned finite model
M1 implies that ϕ holds in MT , thanks to the (⇐=)
(soundness) direction of Theorem 2;

• we know that if ϕ holds in model MT , then the al-
gorithm will find a finite model M1 which proves this

fact, thanks to the (=⇒) (completeness) direction of
Theorem 2.

Closure under boolean operations. Having identified
EBU sentences as a useful class of formulas for which the
algorithm in Figure 4 is applicable, we next examine the fol-
lowing question. If ϕ1, ϕ2 ∈ EBU, is there an effectively con-
structible sentence ϕ ∈ EBU such that the following equiva-
lences hold in MT :

• ϕ ⇐⇒ (ϕ1 ∧ ϕ2)

• ϕ ⇐⇒ (ϕ1 ∨ ϕ2)

• ϕ ⇐⇒ (¬ϕ1)

• ϕ ⇐⇒ (ϕ1 ⇒ϕ2)

It turns out that the answer to first two questions is “yes”,
whereas the answer to the last two questions is “no”. In
other words, EBU sentences are closed only under positive
boolean combinations, but are not closed under negation or
implication. We make this claim precise using the following
two propositions.

Proposition 1 Let ϕ1 ≡ BQ1.F1 and ϕ2 ≡ BQ2.F2 be
EBU sentences where BQ1 and BQ2 denote sequences of
quantifiers and bounded quantifiers and where F1, F2 are
quantifier-free formulas. Let BQ′

2.F
′
2 be the result of renam-

ing the variables in ϕ2 so that they are all distinct from the
variables in ϕ1. Then

ϕ1 ∧ ϕ2 ⇐⇒ BQ1.BQ′
2. F1 ∧ F ′

2

ϕ1 ∨ ϕ2 ⇐⇒ BQ1.BQ′
2. F1 ∨ F ′

2

(1)

Moreover, BQ1.BQ′
2.F1 ∧F

′
2 and BQ1.BQ′

2.F1 ∨F
′
2 are EBU

sentences.

The condition (1) follows from the basic monotonicity prop-
erty of quantifiers and operations ∧,∨. The fact that the
concatenation of disjoint EBU sequences of quantifiers is
again an EBU sequence of quantifiers follows from the defi-
nition of EBU sentences.

We next turn to the absence of the closure under negation
and implication. We first note that the entire class of EBU
sentences is undecidable.

Fact 2 The problem of determining, given an EBU sentence
ϕ, whether ϕ holds in MT , is undecidable.

Fact 2 follows from the fact that the subterm relation is
definable in our logic, and from the undecidability result
in [40, Section 4], which shows a reduction from the Post cor-
respondence problem to the satisfiability of sentences with
existential quantifiers and bounded universal quantifiers.

Fact 2 has two main consequences for this paper. The
first consequence is that, from the viewpoint of computabil-
ity, the semidecision procedure in Figure 4 is as good as
we can hope for. The second consequence is the absence
of closure under negation and implication, as given by the
following proposition.

Proposition 2 There is no effective algorithm that, given
a sentence ϕ ∈ EBU, constructs a sentence in EBU equiv-
alent to ¬ϕ. Consequently, there is no such algorithm that
constructs a sentence equivalent to ϕ⇒ false.
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The following is an indirect argument for Proposition 2: sup-
pose that there is such an algorithm. Consider any EBU sen-
tence ϕ. Let ϕ̄ be the sentence computed by the algorithm,
so that ϕ̄ is equivalent to ϕ. Then either ϕ or ϕ̄ holds in MT ,
so if we run two copies of the procedure in Figure 4 in par-
allel, one with the input ϕ and the other one with the input
ϕ̄, then one of the algorithms will eventually terminate and
we will conclude that ϕ is either true or false. This implies
that the class of EBU formulas is decidable, contradicting
Fact 2.

Arbitrary algebraic datatypes. We have presented
our result for binary trees, but it applies to all algebraic
datatypes, and, more generally, to any structured data. In-
deed, it is easy in relational logic to reason about records
and tuples that have an a priory bounded number of com-
ponents: just introduce a new variable for each component.
What the results of this paper imply is that we can also
reason about structures, such as binary trees, that do not
have an a priory bound on their size. It is not difficult
to generalize the proofs of Theorem 1 and Theorem 2 to
the case of any finite number of mutually recursive alge-
braic datatypes. Alternatively, we can encode any number of
datatypes using binary trees. (Indeed, the experience with
programming languages such as LISP [29] is convincing ev-
idence that data structures can be represented using LISP-
like lists, which are binary trees.) The idea of representing
algebraic datatypes with trees is to replace each constructor
application Ck(t1, . . . , tn, o1, . . . , om) with an expression

Node(fk, o0,
Node(t1, o1,Node(t2, o2, . . .Node(tP , oP ,Nil) . . .)))

where fk is a finite tree (of size O(log k)) that encodes the
name of the constructor Ck, where P = max(n,m), ti = Nil
if i > n, and oi = o0 if i > m. Here o0 ∈ O is some arbi-
trary fixed object from the set of uninterpreted objects. The
corresponding selector relations are similarly definable using
quantifier-free formulas in terms of selectors left and right,
and so is the subterm relation. Note that, when reasoning
about arbitrary algebraic datatypes, we are interested not in
all possible trees, but only in the substructure of MT which
is the image of the embedding. In other words, we would
like to ensure that the binary trees that represent the values
of variables in formulas are consistent with the type system
of the original algebraic datatypes. Luckily, this condition
is expressible using our logic with transitive closure. There-
fore, it suffices to restrict all quantified variables to the terms
that satisfy this condition, and the resulting formula can be
checked using the algorithm in Figure 4.

The scope of our result. After realizing that our tech-
nique applies to algebraic datatypes, a natural question to
ask is: does the technique fundamentally depend on the
properties of the structure of algebraic datatypes, such as
the uniqueness of left and right relations (as given by the
Selectors axiom), the uniqueness of the parent relation node
(as given by the Uniqueness axiom), or even the acyclic-
ity (given by the Acyclicity axiom)? When examining this
question it is worthwhile to consider two separate questions:

• How do we generalize the notion of subterm-bounded
substructures of MT to the case of substructures of
some other infinite structure M∞ of interest? (The
generalization of Theorem 2.)

Suppose that we are interested in checking constraints
over an infinite structure M∞ with relation symbols
r1, . . . , rn. It turns out that the only essential require-
ment on the structure M∞ is that, for some term vari-
able t, the set [[{t}.∗(r1 ∪ . . . ∪ rn)]]M∞,α is finite for
each valuation α. In other words, as long as the set of
elements “below” each element of M∞ is finite, we can
use bounded quantification to reduce the truth value of
EBU sentences in M∞ to the satisfiability in finite sub-
structures closed under the “below” relation. In par-
ticular, the technique applies to structures that contain
shared elements and cycles.

• How do we axiomatize a class of finite structures of
interest? (The generalization of Theorem 1.)

From an algorithmic point of view, this question ad-
mits a wider spectrum of solutions than just the use of
axioms in first-order logic with transitive closure (al-
though the use of axioms may have an advantage in
the context of constraint-solving tools). Indeed, given
a family of finite structures of interest (in particular,
given a family of finite subterm-closed substructures of
M∞) we can use any language of computable functions
to define an executable test predicate that determines
whether a finite structure is isomorphic to one of the
finite structures of interest. In other words, we can use
an algorithm specialized for a given problem to filter
the finite structures of interest. This idea of using “ex-
ecutable predicates” appears in the form of run-time as-
sertions in many programming languages and has found
applications in software testing [5,28].

Because of these generalizations, we expect our result to be
applicable to a range of infinite structures.

6 Related Work

Constraint-checking tools. Because of its full automa-
tion, model checking approaches based on finitization of the
problem space are very attractive. These approaches have
had great success for control-intensive problems [6,19] such
as those arising in hardware verification. The complexity of
software systems often comes from the data structures that
they manipulate, and notations such as UML [36] have been
used to describe such constraints. The Alloy notation [17,18]
can also be used to describe such constraints; the Alloy An-
alyzer tool [1] can then search for the structures that satisfy
these constraints. Our experience in using the Alloy no-
tation and the analyzer to reason about structured values
was the immediate inspiration for this paper. Because it es-
tablishes a general correspondence between satisfiability in
finite and infinite models, our result is potentially applicable
not only to Alloy, but also to tools such as MACE [30], Para-
dox [7], USE [10], ProB [24], RACER [13], and FaCT [15].

Algebraic datatypes. Our paper uses algebraic
datatypes as a well-studied example of unbounded struc-
tured values. Algebraic datatypes are the basis of the
algebraic approach to formal specification and verifica-
tion [2,4,11,12]. The use of the list algebraic datatype was
pioneered by LISP [29]. User-defined algebraic datatypes go
back to ML [32] and are used in variants such as Haskell [3]
and Objective Caml [23].
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Term algebras without transitive closure. The first-
order theory of term algebras is decidable [26, 27, 38]. Be-
cause the interpretation of Object is a finite set, omitting
the transitive closure from our logic makes formulas decid-
able even with arbitrary (not only bounded) quantifiers.
The complexity of the resulting decision problem is non-
elementary [8, 9] with the height of the tower of exponen-
tials linear in the number of quantifier alternations in the
formula [42]. More tractable classes of term algebras in-
clude the class of quantifier-free formulas [34]. Several de-
cidable extensions of term algebras have been proved decid-
able [21, 22, 37, 39, 41], mostly using quantifier elimination
techniques.

Term algebras with a subterm relation. Adding a
subterm relation to the first-order language of term algebras
makes the problem substantially more difficult. Indeed, [40]
shows that even the satisfiability of formulas with bounded
universal quantifiers is undecidable (although the satisfiabil-
ity of the purely existential fragment with a subterm relation
is still decidable). As we noted in Section 5, the undecidabil-
ity result for algebras with subterms applies to our logic as
well, because the subterm relation is expressible using tran-
sitive closure. A search for counterexamples is useful even
for an undecidable logic (and is, in fact, at least as important
as the search for counterexamples in decidable logics), and
the results of this paper show how to perform such search
for a useful class of formulas.

First-order logic with transitive closure. First-order
logic with transitive closure is useful for reasoning about
program data structures and has been used not only in Al-
loy [18], but also in shape analysis tools such as TVLA [25]
and PALE [33]. Among the decidable fragments with transi-
tive closure are monadic second-order logic [20,35] and some
subclasses of the existential monadic second-order logic of
graphs [16].

Complexity and bounded quantification. In their
study of lower and upper bounds on the complexity of logi-
cal theories, Ferrante and Rackoff [9, Page 30] describe the
notion of H-bounded structures for some function H , which
enables a reduction of general quantifiers to bounded quan-
tifiers. The existence of appropriate such function implies
the decidability of the structure, so such H does not ex-
ists for term algebras with subterm relation. Our use of
bounded quantification is different: we have syntactically
imposed boundedness of universal quantifiers and showed
that it implies the ability to use finite structures to reason
about certain classes of formulas in infinite structures.

7 Conclusions

The language of sets and relations has proven to be a very
powerful notation for modelling a range of structures aris-
ing in software design and analysis. Model finding tools
have made this approach accessible and practical. So far,
model finding tools have been restricted to arbitrarily large,
but finite models. However, some useful structures are in-
herently infinite, in particular the algebraic datatypes such
as lists and trees. Such structures are widely used in im-
plementations and models of software, but when we try to
apply existing tools to these structures, we are faced, in gen-
eral, with either ruling out all models (which is sound, but

entirely useless), or allowing the possibility that the tool re-
turns unsound, meaningless models that do not apply to the
desired infinite structures.

In this paper we have presented a useful and natural class
of formulas for which the existence of a finite model reveals
the satisfiability of the formula in the infinite structure. For
this class of properties, we have proved that it is possible to
partially axiomatize the desired structure in such a way that
finite models are simply substructures of the desired infinite
structure. In this way, concrete feedback from model finding
tools can be brought to a range of ubiquitous data structures
that would otherwise remain out of their scope.
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8 Proofs of Theorems

Theorem 1. A two-sorted structure M is a model of SUA
iff M is isomorphic to some subterm-closed finite substruc-
ture M0 of MT .
Proof. We prove both directions of the equivalence.

⇐=): Suppose that a structure M is isomorphic to a
subterm-closed model M0 of MT . Then M satisfies same
formulas as M0. Therefore, it suffices to verify that M0

satisfies the SUA axioms Selectors, Uniqueness, Acyclicity.
Axioms Uniqueness and Acyclicity hold in MT , so they hold
in M0 as well: indeed, a relation that has two values in
a substructure M0 also has two values in the larger struc-
ture MT , and a cycle in M0 is also a cycle in MT . Axiom
Selectors holds because M0 is subterm-closed: the compo-
nents of every non-Nil term t in T0 are also in T0.

=⇒): Suppose that a finite two-sorted structure M =
(T,O, ι) satisfies SUA axioms. We identify a subterm-closed
finite structure M0 = (T0, O, ι0) isomorphic to M by es-
tablishing a relation f ⊆ T × TT and showing that g is an
isomorphism where g = f ∪ ∆0 and ∆O is the identity re-
lation on O. We define f using the following least fixpoint
construction. Let f0 = {(ι(Nil),Nil)} and let

fi+1 = fi ∪ { (t′,Node(t1, o, t2)) ∈ f |

(t′, t′1) ∈ ι(left), (t′, t′2) ∈ ι(right),

(t′, o) ∈ ι(content),

(t′1, t1), (t
′
2, t2) ∈ fi}

Then define f = ∪i≥0fi. In other words, we map ι(Nil) to
Nil and we extend the relation by following parent relation
in both M and M0.

We next define a measure on the elements of structures
M and M0. Consider first an element t ∈ T of structure M
and consider any sequence of elements t0, t1, . . . such that
t0 = t and (ti, ti+1) ∈ ι(left) ∪ ι(right). Because M satisfies
Acyclicity and T is finite, the sequence is finite. Moreover,
because of the axiom Selectors, the sequence terminates at
the element ι(Nil). For each element t, let d(t) be the max-
imum of the lengths of all such sequences. We correspond-
ingly define d(t) for t ∈ TT of the structure M0.

We then prove by induction on i the conjunction of the
following properties:

P1) dom(fi) = {t′ ∈ T | d(t′) ≤ i}

P2) each relation gi = fi ∪ ∆O is a partial isomorphism,
that is, that gi is an isomorphism between structures
induced by the domain of gi (denoted dom(gi)) and the
range of gi (denoted ran(gi));

Base case. g0 is trivially a partial isomorphism because
dom(r) = ι(Nil) and ran(r) = Nil = ι0(Nil), so P1 holds.
Moreover, from Selectors it follows that if d(t) = 0 then
ι(t) = Nil, so P1 and P2 also hold.

Inductive step. Suppose that gi satisfies P1 and P2; we
show that gi+1 satisfies these properties as well.

• P1. Let t′ ∈ dom(fi+1). By definition of fi+1, there
exist t′1, t

′
2 ∈ dom(fi) such that (t′, t′1) ∈ ι(left) and

(t′, t′2) ∈ ι(right). By inductive hypothesis, d(t′1) ≤ i
and d(t′2) ≤ i. By axiom Selectors, there are no ele-
ments x of T other than t′1, t

′
2 such that (t, x) ∈ ι(left)∪

ι(right). Therefore, d(t) ≤ 1+max(d(t′1), d(t
′
1)) ≤ i+1.

Conversely, let t′ ∈ T be such that d(t′) ≤ i + 1.
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If d(t′) ≤ i then t′ ∈ dom(fi) ⊆ dom(fi+1), so let
d(t′) = i+ 1. Then t′ 6= Nil so by Selectors there exist
unique elements t′1, t

′
2 ∈ T and o ∈ O such that (t′, t′1) ∈

ι(left), (t′, t′2) ∈ ι(right) and (t′, o) ∈ ι(content). Be-
cause 1 + max(d(t′1), d(t

′
1)) = d(t) ≤ i + 1, we have

d(t′1) ≤ i and d(t′2) ≤ i. By induction hypothesis,
t′1, t

′
2 ∈ dom(fi). Again by induction hypothesis, fi is a

partial isomorphism, so there exist terms t1, t2 ∈ TT

such that (t′1, t1) ∈ fi and (t′2, t2) ∈ fi. By defi-
nition of fi+1 we have (t′,Node(t1, o, t2)) ∈ fi+1, so
t′ ∈ dom(fi+1).

• P2, functionality. For t′ ∈ dom(fi) the property fol-
lows by inductive hypothesis, because fi+1 does not add
new values to elements that are already in fi. So let
(t′, t), (t′, t̄) ∈ fi+1 \ fi. Then for both (t′, t) and (t′, t)
there are elements t′1, t

′
2 ∈ T such that (t′, t′1) ∈ ι(left)

and (t′, t′2) ∈ ι(right), and by Selectors these elements
are unique. Moreover, by induction hypothesis, fi is
functional, so t′1, t

′
2 are related via fi to unique elements

t1, t2 ∈ TT . Therefore, Node(t1, o, t2) is the unique ele-
ment t such that (t′, t) ∈ fi+1.

• P2, injectivity. By definition of fi+1, there is exactly
one element t with the property (t,Nil) ∈ fi+1, namely
ι(Nil). Hence, injectivity can be violated only on non-
Nil terms. Consider t = Node(t1, o, t2) ∈ ran(fi+1). A
tuple (t′, t) is in fi+1 only if there are some t′1, t

′
2 ∈ T

such that (t′1, t1), (t
′
2, t2) ∈ fi, (t′, t′1) ∈ ι(left), and

(t′, t′2) ∈ ι(right). By induction hypothesis, such t′1, t
′
2

are unique because fi is a partial isomorphism. Fi-
nally, by Uniqueness, there is at most one t′ such that
(t′, t′1) ∈ ι(left) and (t′, t′2) ∈ ι(right), so t′ is unique.

• P2, Nil preservation. Clearly (ι(Nil),Nil) ∈ f0 ⊆ fi+1,
so interpretation of Nil is mapped to the interpretation
of Nil.

• P2, left preservation. Let (t′, t), (t′1, t1) ∈ fi+1. We
show that (t′, t′1) ∈ ι(left) iff (t, t1) ∈ ι0(left). If t′, t′1 ∈
dom(fi), the property holds by induction hypothesis,
so suppose that t′ /∈ dom(fi) or t′1 /∈ dom(fi).

Suppose first (t′, t′1) ∈ ι(left). Then t′ ∈ dom(fi+1 \ fi)
so by definition of fi+1 there exists o ∈ O, t̄′1 ∈ T and
t̄1, t̄2 ∈ TT such that (t′, t̄′1) ∈ ι(left), (t̄′1, t̄1) ∈ fi, and
(t′,Node(t̄1, o, t̄2) ∈ fi+1. By axiom Selectors, t̄′1 = t′1,
so (t′1, t̄1) ∈ fi. We have shown above that fi+1 is
functional, so t̄1 = t1. Furthermore, t = Node(t1, o, t̄2).
By definition of ιT , (t, t1) ∈ ιT (left), as desired.

Conversely, suppose that (t, t1) ∈ ιT (left). By defini-
tion of ιT , this means there are o ∈ O and t2 ∈ TT such
that t = Node(t1, o, t2). By definition of fi+1, there are
t̄′, t̄′1 ∈ T such that (t̄′, t) ∈ fi+1, (t̄′1, t1) ∈ fi+1 and
(t̄′, t̄′1) ∈ ι(left). We have shown that fi+1 is injective,
so t̄′ = t′ and t̄′1 = t′1. Hence, we have (t′, t′1) ∈ ι(left),
as desired.

• P2, right preservation. Analogous to the previous case.

This completes the inductive step. Given that properties
hold for all i, let n = max{d(t′) | t′ ∈ T}. Then dom(fn) =
T and gn+1 = gn, so g = gn. Let M0 = (T0, O, ι0) where
T0 = ran(fn) and ι0(content) = {(t, o) | ∃t′ ∈ T. (t′, o) ∈
ι(content)}. Then g is a bijection T∪O → T0∪O, it preserves
left and right because fn does, and it preserves content by

construction. Therefore, M0 is the desired model and g is
the desired isomorphism.

Theorem 2. Let ϕ be an EBU sentence and MT a term
model. Then ϕ holds in MT iff it holds in some subterm-
closed finite substructure M0 of MT .
Proof. We prove both directions of the equivalence.

⇐=) : Suppose that ϕ holds in a subterm-closed finite
substructure M0 = (T0, O, ι0) of MT = (TT , O, ιT ). When
evaluating ϕ in MT , for any witness for an existential quan-
tifier we can pick the same witness in MT as in M0, because
T0 ⊆ TT . Moreover, regardless whether they are interpreted
in M0 or MT , the universal quantifiers range only over el-
ements of T0, so they still hold in M0. We next make this
argument more precise.

Observe the following properties of set-valued and
relation-valued terms in our language, for every structure
M and every valuation α:

• if R is a relation-valued expression, then

[[R]]M,α ⊆ [[∗(left ∪ right)]]M,α (2)

• if S is a set-valued term with free variables x1, . . . , xn

on which α is defined, then

[[S]]M,α ⊆ [[{x1, . . . , xn}.∗(left ∪ right)]]M,α (3)

These properties follow by induction on the size of the ex-
pressions R and S.

Note also that M0 is a substructure of MT , so by induc-
tion on size of R and S we have

[[R]]M0 = [[R]]MT ∩ T 2
0

[[S]]M0 = [[S]]MT ∩ T 2
0

(4)

In this inductive proof, the interesting case is showing (after
applying the induction hypothesis)

([[R1]]
MT ∩ T 2

0 ) ◦ ([[R2]]
MT ∩ T 2

0 ) = ([[R1]]
MT ◦ [[R2]]

MT ) ∩ T 2
0

The ⊆ inclusion holds by definition of the relation compo-
sition ◦, whereas the ⊇ inclusion follows from (2) and the
fact that M0 is subterm closed.

We next show that the truth-value of a quantifier-free
formula F is the same in M0 and MT when the free variables
of F are interpreted in T0. We show by induction on the
structure of formula F the following claim:

For all α : Vars → T0 ∪ O,

[[F ]]M0 ,α = [[F ]]MT ,α. (5)

Indeed, (5) holds for atomic formulas by condition (4) and
the assumption that α(x) ∈ T0∪O. Moreover, this property
is preserved by propositional combinations, so it holds for
all boolean combinations.

Finally, given an EBU sentence ϕ, we prove the following
relationship for all quantified subformulas F of ϕ: for all
α : Vars → T0 ∪O, [[F ]]M0,α implies [[F ]]MT ,α = true.

The base case corresponds to the previously proved case
of quantifier-free formulas. We show that the condition is
preserved under existential quantifiers, bounded universal
quantifiers, and quantifiers over the finite set O. So suppose
that [[F ]]M0 ,α implies [[F ]]MT ,α for all α : Vars → T0 ∪O and
suppose that α : Vars → T0 ∪O and [[F1]]

M0 ,α.
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• Let F1 ≡ ∃vt :: Tree. F . Then there exists t ∈ T0 such
that [[F ]]M0 ,α′

where α = α′[vt := t]. By induction

hypothesis [[F ]]MT ,α′

= true, so [[F1]]
MT ,α = true.

• Let F1 ≡ ∀S vt :: Tree. F for some set expression S.
Then [[F ]]M0 ,α[vt:=t] = true for each t ∈ [[S]]M0 ,α. From
(3), (4), α : Vars → T0 ∪ O, and the fact that M0 is
subterm-closed, we conclude [[S]]MT ,α = [[S]]M0 ,α ⊆ T0.
Consider arbitrary t ∈ [[S]]MT ,α. Then t ∈ [[S]]M0 ,α,

so [[F ]]M0 ,α[vt:=t] = true. Because t ∈ T0, by induc-

tion hypothesis [[F ]]MT ,α[vt:=t] = true. This proves
[[F1]]

MT ,α = true.

• The cases F1 ≡ ∃vo :: Object. F and F1 ≡ ∀vo ::
Object. F are straightforward because the quantifiers
are monotonic and the structures MT and M0 have the
same domain of uninterpreted objects O.

This completes the proof of one direction of our statement.
Note that we have not relied on the fact that MT is full
term model. In fact, this direction still holds for M0 and M1

where M0 is a substructure of M1 and M1 is a substructure
of MT : if the EBU sentence holds in M0, then it also holds in
the larger substructure M1. We will use this generalization
in the proof of the converse direction.

=⇒) : Let ϕ be EBU sentence. We prove by induction
that for all subformulas F of ϕ the following holds: for each
α : Vars → TT , if [[F ]]MT ,α = true, then there exists a fi-
nite subterm-closed model M0 and a valuation α0 such that
α0(xi) = α(xi) for each variable xi free in F , such that
[[F ]]M0 ,α0 = true. The proof of this claim is by induction on
the number of quantifiers in F .

For the base case, assume that F is quantifier-free,
and let x1, . . . , xn be the variables of F . Then let T0 =
[[{x1, . . . , xn}.∗(left ∪ right)]]MT ,α and let M0 be the sub-
structure of MT induced by T0. Let α0(xi) = α(xi) for
1 ≤ i ≤ n and let α0(v) = α(x1) for v /∈ {x1, . . . , xn}. Then
α0 : Vars → T0 ∪ O, so by (5) we have [[F ]]M0 ,α0 ; we have
thus identified the desired M0 and α0.

For the inductive step, assume that claim holds for for-
mula F , we prove that it holds for F1 which is the result of
quantifying F . Suppose that [[F1]]

MT ,α holds. We consider
several cases.

• F1 ≡ ∃vt :: Tree. F . Then there exists t ∈ TT such
that [[F ]]MT ,α′

where α′ = α[vt := t]. By induction
hypothesis, there exists α0 that agrees with α′ on free
variables of F and a finite subterm-closed model M0

such that [[F ]]M0,α0 . This means that [[F1]]
M0,α0 , and

α0 certainly agrees with α on the variables free in F1.

• F1 ≡ ∀S vt :: Tree. F . Let S̄ = [[S]]MT ,α. Assume first
S̄ 6= ∅. Then for each t ∈ S̄, if α(t) = α[vt := t], then

[[F ]]MT ,α(t), so by induction hypothesis there exists a
model M0(t) = (T0(t), O, ι0(t)) and a valuation α0(t)

such that [[F ]]M0(t),α0(t), and α0(t) agrees with α(t) on
the free variables of F . Then let

T ′
0 = S̄ ∪

[

t∈S̄

T0(t)

Let T0 be the subterm closure of T ′
0, given by T0 = T0∪

{t | ∃t′ ∈ T ′
0. (t′, t) ∈ [[subterm]]MT ,α}. The union T ′

0 is
finite because S̄ is finite, and each T0(t) is finite. There-
fore, the subterm closure T0 is finite, so there exists a

finite subterm-closed structure M0 = (T0, O, ι0). By
the generalized version of the (=⇒) direction, because

M0(t) is a substructure of M0, we have that [[F ]]M0,α0(t)

for each t ∈ S̄. Because we have [[S]]M0 ,α = S̄ we con-

clude [[F1]]
M0,α0(t1) where t1 ∈ S̄ is arbitrary.

Next, consider the special case S̄ = ∅. Let

T0 = [[{x1, . . . , xn}.∗(left ∪ right)]]MT ,α,

where x1, . . . , xn are the free variables of S, and con-
sider the corresponding model M0 = (T0, O, ι0). Then
[[S]]M0 ,α = ∅, so [[F1]]

M0,α.

• F1 ≡ ∃vo :: Object. F . This case is analogous to the
case F1 ≡ ∃vt :: Tree.F .

• F1 ≡ ∀vo :: Object. F . This case is similar to
the case F1 ≡ ∀Svt :: Tree.F , but slightly sim-
pler. For each o ∈ O, if α(o) = α[vo := o], then

[[F ]]MT ,α(o), so by induction hypothesis there exists a
model M0(o) = (T0(o), O, ι0(o)) and a valuation α0(o)

such that [[F ]]M0(o),α0(o), and α0(o) agrees with α(o) on
free variables of F . Then let

T0 =
[

o∈O

T0(o)

The union T0 is finite because S̄ is finite, and each
T0(t) is finite. T0 is also subterm closed because each
T0(o) is subterm-closed. Therefore, there exists a finite
subterm-closed structure M0 = (T0, O, ι0). By the gen-
eralized version of the (=⇒) direction, because M0(o)

is a substructure of M0, we have that [[F ]]M0 ,α0(o) for

each o ∈ O. We conclude [[F1]]
M0,α0(o1) where o1 ∈ O

is arbitrary.
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