
Generalized Typestate Checking Using Set Interfaces and Pluggable Analyses

Patrick Lam, Viktor Kuncak, and Martin Rinard

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

{plam, vkuncak, rinard}@lcs.mit.edu

Abstract

We present a generalization of standard typestate systems
in which the typestate of each object is determined by its
membership in a collection of abstract typestate sets. This
generalization supports typestates that model participation
in abstract data types, composite typestates that correspond
to membership in multiple sets, and hierarchical typestates.
Because membership in typestate sets corresponds directly
to participation in data structures, our typestate system
characterizes global sharing patterns.

In our approach, each module encapsulates a data struc-
ture and uses membership in abstract sets to characterize
how objects participate in its data structure. Each analysis
verifies that the implementation of the module 1) preserves
important internal data structure representation invariants
and 2) conforms to a specification that uses formulas in a
set algebra to characterize the effects of operations on the
data structure. The analyses use the common set abstrac-
tion to 1) characterize how objects participate in multiple
data structures and to 2) enable the inter-analysis communi-
cation required to verify properties that depend on multiple
modules analyzed by different analyses.

1 Introduction

Typestate systems allow the type of an object to change dur-
ing its lifetime in the computation, enabling the typestate
system to enforce safety properties that depend on changing
object states of the objects and increasing the precision of
the abstractions in the type system (in standard type sys-
tems, an object’s type never changes). The standard types-
tate approach assigns, at each program point, a single state
to each object. The states change in response to program
actions [21].

This paper presents a new formulation of typestate sys-
tems. Instead of associating a single state with each object,
our system instead models each typestate as an abstract set
of objects. If an object is in a given typestate, it is a member
of the set that corresponds to that typestate. This formu-
lation immediately leads to the following generalizations of
the standard typestate approach:

• Abstract Data Types: For typestate purposes, ab-
stract data types can be viewed as maintaining several
abstract sets of objects. For example, a list abstract
data type maintains the set of objects in the list, while
a tree maintains the set of objects in the tree. With
this perspective, the typestate of an object is a func-
tion of its participation in the abstract data type as

reflected in its membership in the data type’s abstract
sets of objects.

• Orthogonal Composition: In standard typestate
systems, each object has a single atomic typestate. In
our formulation, however, an object can be a member
of multiple sets simultaneously. This promotes compos-
ite typestate structures in which the developer endows
each component with a collection of abstract sets, with
each set corresponding to an aspect of the typestate rel-
evant to the component. With this kind of structure,
each object’s typestate is an orthogonal composition
of the typestate aspects from each of the components
in which it participates. Examples include composite
typestates for objects that participate in multiple data
structures and objects that play multiple roles within
a single component.

The advantages of this approach include better modu-
larity (because each component deals only with those
aspects of the typestate that are relevant for its op-
eration) and support for polymorphism (because each
component can operate successfully on multiple objects
that participate in different ways in other components).

• Hierarchical Typestates: Hierarchical classification
via inheritance is a key element of the type systems in
most object-oriented languages, but is completely ab-
sent in existing flat typestate systems. Our formulation
cleanly supports typestate hierarchies — a collection of
sets can partition a more general set, with the subset
inclusion ordering capturing the hierarchy.

• Sharing and Typestates: Sharing via aliased object
references has caused problems for standard typestate
systems — it has been difficult to ensure that if the pro-
gram uses one reference to access the object and change
its typestate, the declared type of other references is
appropriately adjusted. Restrictions adopted to en-
sure soundness have included the elimination of alias-
ing [21, 6], requiring typestate restoration after tem-
porary changes [9], and allowing only monotonic type-
state changes [10]. To the best of our knowledge, the
role system [15] is the only typestate system to support
both sharing and nonmonotonic typestate changes.

Our typestate formulation supports a new, more ab-
stract form of sharing. If an object participates in mul-
tiple data structures, its typestate characterizes this
sharing by indicating its membership in multiple type-
state sets, one for each data structure. This formula-
tion supports nonmonotonic changes — the set of ob-

1

jects that contain an element may change arbitrarily
throughout the computation.

The basic utility of typestate systems is to enforce safety
properties, specifically to ensure that the program never ap-
plies an operation to an object if the object is not in the
correct typestate. We believe our generalization of the stan-
dard typestate approach substantially improves the sophis-
tication of the properties that the type system can verify, its
ability to enforce important safety properties, and the abil-
ity of typestate systems to support modular development
practices. It also allows our system to much more effec-
tively support many software engineering activities such as
understanding the global sharing patterns in large programs
(by verifying which objects participate in which data struc-
tures), verifying the absence of undesirable interactions (by
enforcing the absence of sharing for selected objects), and
understanding the sequences of actions that the program
may generate (by enforcing finite state protocols through
constraints on the movement of objects between abstract
sets).

1.1 Verification via Pluggable Analyses

In our approach, there is an intimate connection between
typestate checking and verifying data structure consistency
properties. Because each object’s typestate reflects how it
participates in different data structures, the soundness of the
checker depends on its ability to verify that data structures
remain consistent throughout the execution of the program.

Over the years, researchers have developed many algo-
rithms for verifying that programs preserve important con-
sistency properties [2, 11, 17, 19]. But two problems compli-
cate the successful application of these kinds of analyses to
practical programs: scalability and diversity. Because data
structure consistency often involves quite detailed object ref-
erencing properties, many analyses fail to scale. Because of
the vast diversity of data structures, each with its own spe-
cific consistency properties, it is difficult to imagine that any
one algorithm will be able to successfully analyze all of the
data structure manipulation code that may be present in a
sizable program.

This paper presents a new perspective on the data struc-
ture consistency problem: instead of attempting to develop
a new algorithm that can analyze some set of consistency
properties, we instead propose a technique that leverages
the generalized typestate information to enable the appli-
cation of multiple pluggable analyses to the same program,
with each analysis applied to the data structures for which
it is appropriate. The key features of this technique include:

• Modular Analysis, Shared Objects, and Encap-
sulated Fields: In our approach, the program con-
tains a set of modules, each of which encapsulates the
implementation of one of the data structures. Instead
of attempting to analyze the entire program, each anal-
ysis operates on a single module. By focusing each
analysis on only those parts of the program that are
relevant for the properties it is designed to verify, we
enable the application of sophisticated analyses to siz-
able programs composed of multiple modules.

One factor that complicates this approach is the need
for objects to participate in multiple data structures
and therefore the need to share objects between mod-
ules analyzed by different algorithms. To eliminate the
possibility that one module may corrupt another’s data
structure (and to ensure that each algorithm analyzes

all of the relevant code), modules encapsulate fields
(and not objects): the underlying language prevents
one module from accessing the fields of another mod-
ule. Each module therefore encapsulates all of the fields
required to implement its data structure; objects that
participate in multiple data structures from multiple
modules contain fields from each of these modules.

• Specification via Set Abstraction: Each module
has an implementation and a specification. It is the re-
sponsibility of the analysis to verify that the implemen-
tation correctly implements the specification. Instead
of exposing the implementation details of the encapsu-
lated data structure, the specification uses a collection
of abstract sets to summarize the effect of each proce-
dure. This collection of sets characterizes how objects
participate in various data structures. For example,
the specification for a linked list might have an ab-
stract set that contains all of the objects in the linked
list. The specification for the insert procedure would
indicate that the procedure adds the inserted object
into the set; the specification for the remove procedure
would indicate a corresponding removal.

• Abstraction Functions and Internal Data Struc-
ture Consistency: Each analysis uses an abstrac-
tion function to establish the connection between the
concrete data structure implementation and abstract
set membership. This abstraction function enables the
analysis to translate the set membership properties of
objects that cross module boundaries back into con-
crete data structure properties. These concrete prop-
erties are often crucial for preserving the internal con-
sistency of the data structure.

For example, a list insert procedure may require that
an object to be inserted must not already be a member
of the abstract set containing all of the objects in the
list. This set membership property, in turn, enables the
analysis to verify that the object is not already in the
list, which may be the precondition required to preserve
the internal consistency of the list data structure.

• Invariants Involving Multiple Modules: Systems
often have consistency properties that involve multi-
ple data structures and therefore cross encapsulation
boundaries. For example, some systems may require
the objects that participate in two data structures to
be disjoint; others may require that every object in one
data structure to also be present in another. Note that
because these properties involve objects shared across
multiple modules, different analyses must somehow in-
teroperate if they are to successfully verify the property.

In our approach, these kinds of invariants are expressed
using a boolean algebra of abstract set inclusion prop-
erties and locally verified at the appropriate program
points by each analysis. This approach eliminates the
need to apply complex (and therefore potentially un-
scalable) analyses across large regions of the program.
It instead promotes the appropriately focused applica-
tion of arbitrarily sophisticated analyses to individual
modules within large systems, with the results of these
analyses combined to enable the verification of broad
properties that involve multiple modules.

• Analysis Scopes: Data structure updates may legit-
imately violate invariants as long as they restore the
invariants before they complete. For invariants that

2

involve multiple modules, this restoration usually re-
quires the coordinated invocation of procedures from
multiple modules.

Our approach uses analysis scopes to identify the re-
gions of the program in which each invariant may be
legitimately violated. Each analysis scope contains an
invariant and a collection of modules that are analyzed
together to verify the invariant. Some of these mod-
ules are exported and can be invoked from outside the
scope; the other modules may be invoked only from
within the scope. When our analysis verifies an ex-
ported module it ensures that, if the invariants hold
upon entry to the exported modules, they are restored
upon exit. For properties that involve multiple mod-
ules, this approach verifies that procedure invocations
are properly coordinated to preserve the invariants.

Together, these features enable the focused application
of a full range of precise, sophisticated analyses to programs
that contain multiple data structures encapsulated in mul-
tiple modules. They promote the development of a range of
pluggable analyses that developers can deploy as necessary
to verify important data structure consistency properties.
Abstract sets enable different analyses to communicate and
interoperate to verify properties that cross module bound-
aries to involve multiple data structures. Our approach sup-
ports the appropriately verified participation of objects in
multiple data structures, including patterns in which ob-
jects migrate sequentially through different data structures
and patterns in which objects participate in multiple data
structures simultaneously.

1.2 Characterizing Global Sharing

When combined with a programming language that encap-
sulates all object references inside modules [16], our ap-
proach enables the typestate system to capture global shar-
ing properties. Together, all of the sets in an object’s type-
state completely characterize its participation in all of the
data structures in the program. An absence of sharing shows
up as a typestate assertion that an object is not a member
of two distinct sets in a given collection of sets.

Compare this abstract concept of sharing with the stan-
dard concrete concept of sharing based on the aliasing of
object references in the heap. In the standard concept, the
program accesses objects by following object references; two
objects share another object if they both have a reference
to the shared object. In our typestate concept, the program
accesses objects by invoking operations in modules that re-
turn references to objects; two modules share an object if
the object is in a typestate set from each of the modules.

We believe this approach makes it possible, for the first
time, to obtain an analysis that is both precise enough to
verify sharing properties in programs with quite sophisti-
cated data structures, yet scalable enough to characterize
such properties in large programs composed out of multiple
modules.

1.3 Contributions

This paper makes the following contributions:

• Generalized Typestate Framework: It presents a
new generalized typestate framework based on the con-
cept of object membership in abstract typestate sets.
This framework supports the clean generalization of the

standard flat typestate approach to support hierarchi-
cal typestates and typestates composed of the orthog-
onal composition of multiple typestate elements.

• Pluggable Analyses: It presents an approach that
enables the focused application of multiple precise anal-
yses to multiple data structures encapsulated within
multiple modules, with the analysis results appropri-
ately combined to verify properties that involve multi-
ple modules. The approach supports sharing patterns
in which objects move between different data struc-
tures and patterns in which objects participate in mul-
tiple data structures simultaneously. It also supports
the use of analysis scopes to identify the regions of the
program that the analysis must process to verify invari-
ants involving multiple modules.

• Global Sharing: It presents an abstract model of
sharing in programs composed out of multiple modules
and shows how our typestate system makes it possi-
ble to completely characterize global, large-scale object
sharing patterns in such programs. We claim that our
approach is therefore the first solution to the global
sharing problem in programs with multiple modules
and sophisticated data structures.

2 Example

We next present a process scheduler example that illustrates
how modules can use typestate sets to capture important
data structure invariants and typestate changes. The sched-
uler maintains a list of running processes and a priority
queue of suspended processes. There are three modules:
the RunningList module (which maintains the list of run-
ning processes), the SuspendedQueue module (which main-
tains the queue of suspended processes), and the Scheduler
module (which implements the interface to the scheduler).
Each of these modules has three submodules: an implemen-
tation module (which contains the code for the implementa-
tion of the procedures in the module), a specification module
(which uses the module’s sets to specify the procedure in-
terfaces), and an abstraction module (which specifies the
relationship between the concrete data structures in the im-
plementation module and the typestate sets in the specifica-
tion module). Finally, there is also the scope declaration for
the scheduler, which identifies the modules that participate
in the scope, specifies which modules are exported, and con-
tains an invariant (expressed using the typestate sets) that
captures the relationships between the typestate sets from
different modules.

2.1 Running List Module

Figure 1 presents the running list implementation module.
The module maintains a reference root to the first Process
object in the list. The format statement specifies that all
Process objects have a next and prev field that together
implement a circular doubly-linked list. These fields are
accessible only within the RunningList module. 1 Note
that other implementation modules may also use additional
format statements to add their own fields to Process ob-
jects. When the program runs, each Process object will

1This implementation places the next and prev fields directly in
the Process objects [5]. Our approach also supports the more com-
mon implementation that uses auxiliary encapsulated list objects to
refer to the Process objects; in this implementation the auxiliary list
objects (and not the Process objects) contain the next and prev fields.

3

contain all of the fields declared in all of these format state-
ments. The module exports two procedures: the add pro-
cedure, which inserts its parameter p into the running list,
and the remove procedure, which removes its parameter p
from the running list.

Figure 2 presents the specification module for the run-
ning list. The specification has a single abstract set, InList,
which contains all of the Process objects in the running list.
The requires clause of the specification of the add proce-
dure requires the parameter p to not already be in InList.
The ensures clause states that the effect of the add pro-
cedure is to add the parameter p to InList (the notation
InList’ denotes the new version of InList after the add
procedure executes; the unprimed InList denotes the old
version before it executes). The modifies clause indicates
that the procedure modifies the InList set only.

We would like to be able to use an appropriate analysis
to verify that the running list implementation satisfies its
specification. An analysis based on monadic second-order
logic over trees (as implemented, for example, in the PALE
analysis tool [17]) is able to verify this correspondence, but it
needs some additional information to do so. The abstraction
module in Figure 3 contains this information.

The abstraction module starts by identifying the plu-
gin to use to perform the verification, in this case the
GraphTypes plugin. It then specifies the abstraction func-
tion that establishes the correspondence between the con-
crete data structure implementation and the abstract sets
in the specification. In this case, the InList set is defined
to be all objects reachable by following next fields starting
from the root.

To verify the correspondence, the analysis plugin estab-
lishes a simulation relation between the specification and
the implementation. The plugin shows the simulation rela-
tion for each public procedure of the module by first using
the abstraction function to map the requires, ensures, and
modifies clauses to the precondition and postcondition of
the concrete data structure, and then verifying the imple-
mentation of the procedure with respect to this precondition
and postcondition.

For example, to show the simulation relation for the add
procedure, the plugin assumes that p is not in the list of
nodes reachable from root and shows that the set of reach-
able objects at the end of the procedure is equal to the
original set extended with p.

The simulation relation need not hold unless the data
structure satisfies several internal consistency properties; we
call such properties representation invariants. The abstrac-
tion module identifies these properties using an invariant
statement to specify that root points to a circular doubly-
linked list, as identified by the List graph type declaration.
As appropriate for the GraphTypes plugin, this declaration
uses (a syntactic sugar for) monadic second-order logic to
specify that the prev field is the inverse of the next field.
During the analysis of the implementation module, the plu-
gin assumes that this invariant holds at the start of each
procedure and proves that it holds at the end of each proce-
dure. In effect, the representation invariants are conjoined
with the precondition and postcondition of each public pro-
cedure. The circular doubly-linked list invariant is crucial
for proving the simulation relation: unless prev is an inverse
of next, the procedure remove(p) could not guarantee the
removal of p from the set of reachable nodes of the list.

All implementation and specification modules are writ-
ten in a common language. But each abstraction module
is written in a language appropriate for its corresponding

impl module RunningList {
reference root : Process;
format Process { next, prev : Process }

proc add(p : Process) {
if (root=null) then {

root := p; p.next := p; p.prev := p;
} else { p.next := root.next; root.next := p;

p.prev := root; p.next.prev := p;
}

}

proc remove(p : Process) {
if (p=root)

if (p.next=root) {
root := null;
p.next := null; p.prev := null;
return;

} else root := p.next;
Process pp, pn; pp := p.prev; pn := p.next;
pp.next := pn; pn.prev := pp;
p.next := null; p.prev := null;

}
}

Figure 1: Running List Implementation Module

spec module RunningList {
format Process;
sets InList : Process;

proc add(p : Process)
requires not (p in InList)
modifies InList
ensures InList’ = InList + p;

proc remove(p : Process)
requires p in InList
modifies InList
ensures InList’ = InList - p;

}

Figure 2: Running List Specification Module

abst module RunningList {
use plugin GraphTypes;
InList = {p : Process | p elem root.next*};
GraphType List = { next : List | List[$];

prev : List[this.~next] }
invariant root : List | null;

}

Figure 3: Running List Abstraction Function Module

4

impl module SuspendedQueue {
reference root:Process;
format Process {
priority : int;
left, right : Process

}
proc isEmpty() returns b : boolean { ... }
proc add(p : Process) { ... }
proc removeFirst() returns p : Process { ... }

}

Figure 4: Skeleton of the Priority Queue Implementation
Module

spec module SuspendedQueue {
format Process;
sets InQueue : Process;

proc isEmpty() returns b : boolean
ensures b <=> InQueue = {};

proc add(p : Process)
requires not (p in InQueue)
modifies InQueue
ensures InQueue’ = InQueue + p;

proc removeFirst() returns p : Process
requires InQueue != {}
modifies InQueue
ensures InQueue’ = InQueue - p;

}

Figure 5: Priority Queue Specification Module

abst module SuspendedQueue {
use plugin GraphTypes;
InQueue = {p : Process | p elem root.<left+right>*};
GraphType Tree = {left, right : Tree | null}
invariant root : Tree | null;

}

Figure 6: Priority Queue Abstraction Module

plugin. We expect all abstraction modules to specify, at a
minimum, the abstraction function that establishes the con-
nection between the implementation and the specification.
We also expect that abstraction modules will often identify
the representation invariants they need to establish the cor-
respondence. The syntax of these invariants will depend on
the requirements of the specific analysis plugin. In general,
abstraction modules may contain any additional information
useful for the analysis (such as properties of objects that are
useful to track during fixpoint computation).

2.2 Priority Queue Module

The priority queue module implements a priority queue of
suspended processes using a binary search tree. Figure 4
presents the skeleton of the SuspendedQueue implementation
module. The module introduces three new fields into the
Process format: the priority field is the sorting criterion
for Process objects in the tree, whereas left and right
fields implement the tree structure.

The priority queue contains three procedures. The
isEmpty procedure checks whether the root is null. The
add procedure inserts the node into the binary search tree.
The removeFirst removes the root of the binary search tree.
We omit the implementation details of this implementation.

Figure 5 presents the specification of the
SuspendedQueue module. The specification summa-
rizes priority queue procedures in terms of the set InQueue,
which is the set of all Process objects stored in the queue:
isEmpty tests set emptiness, add(p) inserts object p into
the set, whereas removeFirst removes an object from the
set and returns it as the result.

Figure 6 presents the abstraction module that establishes
the connection between the implementation and the specifi-
cation of the priority queue by defining the set InQueue as
the set of all objects reachable along left and right fields.
As in the case of the RunningList module, the correspon-
dence between implementation and specification is verified
using the GraphTypes plugin. The representation invariant
specifies that the data structure referenced by root satisfies
the property Tree, which is a simple graph type with only
backbone edges.

2.3 Scheduler Module

Figure 7 present the Scheduler implementation module.
The module uses a format declaration to add a status field
to Process objects; this field is 0 if the process is suspended
and 1 if the processes is running. This field encodes the con-
ceptual state of each process (either running or suspended)
and enables the module to quickly determine the status of a
process. The Scheduler module uses the RunningList and
SuspendedQueue modules to actually store the running and
suspended processes.

The specification module in Figure 8 has two abstract
sets: the set Running of running processes and the set
Suspended of suspended processes. These sets correspond to
the conceptual states that Process objects can be in. The
specifications of the procedures (suspend, hasSuspended,
and wakeUpFirst) therefore reflect the movement of objects
between the various states. The calls clause in this mod-
ule specifies that procedures in the Scheduler module may
invoke procedures in the RunningList and SuspendedQueue
modules. Calls clauses are used to identify potentially reen-
trant call sites; the analysis treats such sites differently from
non-reentrant sites. Specifically, all invariants that involve
the data structures or typestate sets of the analyzed mod-
ule must hold at reentrant sites. These invariants can be
violated at non-reentrant sites.

The abstraction module in Figure 9 uses the status flag
to define the Running and Suspended sets. The flags plugin
described in Section 3.1 can use this abstraction function
to verify that the scheduler implementation correctly imple-
ments its specification.

When showing the conformance of the suspend proce-
dure, the flag plugin must take into account the effects of the
RunningList.remove and SuspendedQueue.add procedures,
which are located outside the Scheduler module and ana-
lyzed using an entirely different plugin. Nevertheless, the
flag plugin can take into account the effect of these proce-
dures using their specifications, because these specifications
are expressed in the common specification language based
on sets.

5

impl module Scheduler {
format Process { status : int }

proc suspend(p : Process) {
p.status := 0;
RunningList.remove(p);
SuspendedQueue.add(p);

}

proc hasSuspended() returns b : boolean {
b := not SuspendedQueue.isEmpty();

}

proc wakeUpFirst() {
p := SuspendedQueue.removeFirst();
p.status := 1;
RunningList.add(p);

}
}

Figure 7: Scheduler Implementation Module

spec module Scheduler {
format Process;
sets Running, Suspended;
calls RunningList, SuspendedQueue;

proc suspend(p : Process)
requires p in Running
modifies Running, Suspended
ensures Suspended’ = Suspended + p and

Running’ = Running - p;

proc hasSuspended() returns b : boolean
guarantees b <=> Suspended!={};

proc wakeUpFirst()
requires Suspended != {}
modifies Running, Suspended
ensures exists p in Suspended.

Suspended’ = Suspended - p and
Running’ = Running + p;

}

Figure 8: Scheduler Specification Module

abst module Scheduler {
use plugin flags;
Running = {p : Process | p.status=1}
Suspended = {p : Process | p.status=0}

}

Figure 9: Scheduler Abstraction Module

scope ProcessScheduler {
modules Scheduler, RunningList, SuspendedQueue;
exports Scheduler;
invariants
disjoint(Scheduler.Running, Scheduler.Suspended) and
(Scheduler.Running = RunningList.InList) and
(Scheduler.Suspended = SuspendedQueue.InQueue);

}

Figure 10: Scope Declarations

2.4 Scope Invariants

The process scheduler should satisfy several properties that
involve data structures from different modules. Specifically,
the Running set from the scheduler module should contain
the same objects as the running list, the Suspended set
should contain the same objects as the priority queue, and
the Running and Suspended sets should be disjoint.

Note that these properties are legitimately (but tem-
porarily) violated when the scheduler is running as it assigns
the status flag and calls procedures in the running list and
priority queue modules. Note also that there must be some
mechanism to prevent external modules from calling run-
ning list and priority queue procedures directly without go-
ing through the scheduler — such uncoordinated calls could
cause the scheduler data structures to become out of synch
with each other and violate the properties listed above.

We address these issues with analysis scopes; Figure 10
presents the analysis scope for our example. In general,
scopes are a collection of modules and invariants; each scope
may have private modules and exported modules. Scopes
specify invariants that involve multiple modules, specify a
policy on when the invariants should hold, and control access
to modules from outside the scope.

This scope contains an invariant with three clauses that
together express the set equality and disjointness proper-
ties discussed above. It also identifies a list of modules in
the scope; the invariant may be temporarily violated within
these modules (in our example these are the Scheduler,
RunningList, and SuspendedQueue modules). It exports the
Scheduler module, indicating that the RunningList and
SuspendedQueue modules cannot be invoked from outside
the scope. The exported Scheduler procedures, on the other
hand, can be invoked from outside the scope.

The analysis of the Scheduler module assumes the in-
variant holds at the start of each procedure and must show
that it holds at the exit of the procedure. In our example,
the flag analysis uses the specifications of the running list
and priority queue modules (which are expressed in terms
of abstract sets) in the verification of the invariant. By en-
capsulating the complexity of the internal data structure
properties inside the relevant modules, our technique en-
ables the use of expensive analyses in those modules that
require them, while allowing the use of simpler and faster
analyses in the remainder of the program.

One consequence of using scopes is that a module M
need not report the effects of a transitive callee M ′ if it
does not export M ′ and scopes(M)∩ scopes(M ′) = ∅, where
scopes(M) is the set of all scopes C that declare M in its
modules clause. Module M need not (indeed, it may not)
declare sets of M ′ in its modifies and ensures clauses; on
the other hand, a module M0 sharing a scope with M ′ may
refer to sets in M ′ in its modifies and ensures clauses, as re-
quired. The net effect is a simplification of the specification
of M and a corresponding simplification in the propagation

6

of specifications up the module hierarchy.
Moreover, the invariants of scope C are implicitly intro-

duced at the boundaries of C as necessary to guarantee that
modules outside C may assume that these invariants hold.
In this way, scope invariants further simplify the specifica-
tions of individual procedures. Note that our specification
language contains all boolean operations including implica-
tion. The developer may therefore choose to write a scope
invariant I ′ of the form F ⇒ I , where F is an expression
determining whether the property I should hold. By setting
F to false or true, the developer can explicitly control the
policy of whether the invariant should hold on procedure
exit. The developer can similarly use scope invariants of the
form

∧n

j=1
Fj ⇒ Ij to model a collection of modules that

can be in one of n possible states. Note further that by writ-
ing invariants of the form

∧n

j=1
Aj ⊆ Bj , the developer can

use sets Aj to control (at the granularity of objects) which
of the properties B1, . . . , Bn hold.

2.5 Combining Sets and Invariants

This example illustrates how our set-based system can cap-
ture relationships between object states based on properties
such as data structure participation and the contents of ob-
ject fields. It is, of course, possible to build more sophisti-
cated relationships. Consider, for example, a data structure
that should contain only objects whose (primitive) fields sat-
isfy a certain property P . The developer could enforce this
constraint by defining the abstract set SP = {o | P (x)}
of objects that satisfy property P , the abstract set SD of
objects stored in the data structure, and a scope invariant
SD ⊆ SP . This invariant enables analyses to recognize that
all objects fetched from the data structure satisfy property
P .

Consider a program that first modifies the fields of an
object in a way that may violate property P , then removes
the object from the data structure. In the period between
the modification and the removal, the analysis tracks the vi-
olation of the scope invariant SD ⊆ SP and hence is able to
recognize that objects fetched from the data structure dur-
ing this period may not satisfy property P . The restoration
of the invariant after the removal also restores the ability of
the analysis to recognize that objects fetched from the data
structure satisfy property P .

We have taken a layered approach to our typestate sys-
tem: the implementation modules use a stateless type sys-
tem used to specify the format of the fields in objects. The
specification modules layer a generalized typestate system
on top of this stateless system, with set membership deter-
mining the components that together make up the typestate
of each object.

3 Analysis Plugins

To analyze a program, our technique uses an analysis plugin
to check each module in turn; the program successfully ver-
ifies iff each of the modules successfully verifies in isolation.
To simplify the application of the plugin to the module,
our technique processes the scope declarations, any repre-
sentation invariant declarations in the abstraction modules,
and the specification modules to produce a precondition and
postcondition for each exported procedure in the analyzed
module. It is then the responsibility of the analysis plugin
to verify that the postcondition holds for each procedure if
the precondition holds when the procedure is invoked.

M ::= abst module m {U D∗ I }
U ::= use plugin p;
D ::= S={x : f |Fp(x)};
I ::= invariant A;
A ::= Fp | ¬A | A1 ∧ A2 | A1 ∨ A2 | let S={x : f |Fp(x)} in B

Figure 11: Syntax of Abstraction Modules

When a procedure in one scope invokes a procedure in
another scope, it may be the case that the invariant of the
first scope may be temporarily violated. The analysis would
like to assume that 1) the precondition of the invoked pro-
cedure does not depend on this invariant, and 2) the in-
voked procedure has no effect on the current analysis facts
from the invoking scope. This is true unless the call site is
reentrant, i.e., unless the execution of the invoked procedure
turns around and invokes a procedure that is in the invoking
scope. To ensure the soundness of the analysis in this case,
our technique requires the invariant of each scope to hold
both before and after each potentially reentrant call site.
Our technique identifies these program points and the prop-
erties that must hold; it is the responsibility of the analysis
plugin to verify that the properties do in fact hold.

To analyze a module M , the system uses the following
information:

• the implementation, specification, and abstraction
module for M ;

• the specifications of all modules whose procedures are
called from the implementation module for M ;

• whether any call sites in the implementation of M are
potentially module-reentrant or scope-reentrant;

• the declarations of the scopes in scopes(M); and

• the sets scopes(M ′) for every module M ′ called from
M .

Plugins and Abstraction Modules The analysis of M
is performed by the analysis plugin specified in the abstrac-
tion module for M . Figure 11 presents the generic syntax
of abstraction modules; each analysis plugin augments this
syntax with its plugin annotation language (denoted A). In
addition, abstraction modules may supply additional infor-
mation in a form expected by the analysis plugin. The plu-
gin annotation language is used both to write the abstrac-
tion function defining the representation of each set and to
state the representation invariant. All plugin annotation
languages extend the set specification language with spe-
cialized constructs of the plugin property language (denoted
Fp) for describing properties of concrete data structures of
the implementation of M . The key responsibility of the
plugin is to verify that the implementation of a procedure
conforms to a given requires/ensures clause expressed in
the plugin annotation language.

Analysis Summary The overall process of analyzing mod-
ule M consists of the following sequence of steps:

1. Check Inter-Scope Calls: For each procedure in-
vocation M1.p in the implementation of M , ensure
that M1 is exported in every scope in scopes(M1) \
scopes(M).

7

2. Modifies Clause Expansion: For each procedure p
of module M with modifies clause m and ensures clause
e, augment e to yield

e′ := e ∧
∧

S∈U\m∗

S′=S,

where m∗ is the union of m and the modifies clauses
m′ of transitive callees of p, and U contains all sets in
scopes(M) and all sets belonging to exported modules
called in the implementation of p.

3. Reentrant Call Detection Using an inter-module
call graph constructed from the program’s calls
clauses in the specifications of each module, mark
module-reentrant and scope-reentrant call sites. By
definition, a module-reentrant site directly calls pro-
cedure p belonging to some module M ′ 6= M , which
in turn transitively calls p′ ∈ M . Similarly, a scope-
reentrant site directly calls p belonging to scope C′ 6∈
scopes(M), which transitively calls p′ belonging to
C ∈ scopes(M).

4. Scope Invariant Distribution: For every scope C
that exports M , add the scope invariant of C to the
following program points:

(a) requires and ensures clause of each procedure
declared in M ;

(b) each scope-reentrant call to a procedure declared
outside C.

5. Module Projection: If a procedure p in M calls
a procedure p′ in module M ′ and the specification
of p′ uses a set S not declared in any of the scopes
scopes(M), then project the specification of p′ by quan-
tifying over S.

6. Requires/Ensures Clause Mapping: Use the ab-
straction function for sets specified in the abstraction
function module for M to transform the requires and
ensures clause of all procedure specifications so that
each clause refers to the concrete data structure from
the implementation module of M instead of the ab-
stract set specified in the specification module of M .

7. Representation Invariant Distribution: Add the
representation invariant of M to the following program
points:

(a) requires and ensures clause of each procedure
declared in M ;

(b) each module-reentrant call to a procedure de-
clared outside M .

8. Ensuring the Simulation Relation: Using the anal-
ysis plugin specified in the abstraction module for M ,
verify that the implementation of the body of each
procedure P declared in M conforms to the effective
requires/ensures clause pair for P , as computed in
the previous steps.

Ensuring Simulation Relation Using Plugins The re-
sponsibility of each analysis plugin is to establish that the
specified abstraction function is a simulation relation be-
tween the implementation and specification modules. More
specifically, when analyzing module M , an analysis plugin
ensures the existence of a simulation relation r between the

abstract state, containing only abstract sets, and the con-
crete state, where the sets declared in M are replaced by
the concrete data structures from the implementation of M ,
and the remaining sets remain abstract. The relation r is
the result of extending the abstraction function from the ab-
straction module of M onto the entire state; r acts as the
identity function on all remaining sets. Suppose that we
have verified such a simulation relation for every module.
Because different modules implement data structures using
disjoint fields, the composition of these relations is a sim-
ulation relation between the abstract state containing only
sets and the concrete state where all sets are implemented
using corresponding data structures.

Below, we state a condition which is sufficient to guaran-
tee the existence of the simulation relation between the ab-
stract state and the concrete data structure. Our condition
is formulated purely in terms of the operational semantics
for the implementation language and abstraction functions,
obviating the need to specify an operational semantics whose
states mix abstract sets and concrete data structures.

A procedure execution fragment is a sequence of steps
in the operational semantics corresponding to the execution
of a procedure; such a trace starts with the invocation and
ends with the corresponding return from the procedure.

Definition 1 Let S1, . . . , Sn denote all sets in the program,
and let α1, . . . , αn be the corresponding abstraction func-
tions. Let F be a procedure execution fragment for procedure
p. Let s be the first state of F, and let s′ be the final state of
F. Let r be the requires clause, and let e be the ensures
clause, for p. Then, F conforms to its specification iff

[[r]][S1 7→ α1(s), . . . , Sn 7→ αn(s)] ⇒
[[e]][S1 7→ α1(s), . . . , Sn 7→ αn(s), S′

1
7→ α1(s′), . . . , S′

n 7→ αn(s′)]

where [[ϕ]][x1 7→ v1, . . . , xn 7→ vn] denotes the interpretation
of formula ϕ where variable xi is assigned the value vi for
1 ≤ i ≤ n. (Recall that the primed set variables S′

i in the
ensures clause denote the values of sets in the final state,
whereas unprimed variables Si denote the values of sets in
the initial state.)

If F is a procedure execution fragment for procedure p, then
an immediate subfragment of F is a maximal procedure ex-
ecution fragment that is a strict subfragment of F .

Definition 2 Let M be a module containing m sets S1, . . . ,
Sm with abstraction functions α1, . . . , αm. Let p be a proce-
dure in module M . We say that procedure p conforms to its
specification, if for all programs (contexts) containing pro-
cedure p and containing some additional sets Sm+1, . . . , Sn

with some abstraction functions αm+1, . . . , αn, for every
procedure execution fragment of p, if all immediate subfrag-
ments of p conform to their specifications, then p conforms
to its specification.

If all procedures in a program conform to their specification,
then by induction on the stack depth of execution fragments,
we can show that procedure fragments of all procedure exe-
cution fragments of the program conform to their specifica-
tions. (The basis of the induction is the set of leaf procedure
execution fragments containing no subfragments.)

We say that a plugin is sound iff whenever plugin suc-
ceeds in verifying a procedure p, then p conforms to its spec-
ification. If all modules successfully verify using the corre-
sponding plugins, and all plugins satisfy the plugin sound-
ness condition, then every procedure fragment conforms to
its specification. In other words, the abstraction functions
induce a simulation relation between the abstract states con-
taining only sets and concrete states containing only con-
crete data structures.

8

3.1 Flag Typestate Plugin

The flag typestate plugin is designed to verify modules that
use integer flags to indicate the typestate of objects con-
taining the flag. Implementations of such modules use a
different integer value for each typestate. There is an ab-
stract set in the specification module for each typestate, and
the abstraction module defines the abstraction function by
specifying the correspondence between flag values and ab-
stract sets. The developer may also specify representation
invariants constraining the possible values of flags. See our
technical report [16] for a discussion of the specification and
analysis of modules that use the flag typestate plugin. This
plugin subsumes the functionality of traditional typestate
systems and goes further in allowing full boolean algebra of
sets as the specification language [16].

3.2 Graph Types Plugin

The purpose of the graph types plugin is to verify properties
of objects participating in recursive tree-like data structures
called graph types [14]. A graph type is a dynamically allo-
cated data structure with a distinguished set of data fields
whose values form a backbone of the graph type. The back-
bone is a spanning tree of the data structure. In addition to
data fields, a graph type may contain routing fields that do
not belong to the spanning tree and are functionally deter-
mined by the backbone. See our technical report [16] for a
discussion of the specification and analysis of modules that
use the graph types plugin.

4 Related Work

We are aware of no previous research that allows multiple
different analyses to analyze different parts of the program
and share their results to detect or verify important prop-
erties that span parts of the program analyzed by different
analyses. We survey related work in typestate systems and
sharing analyses.

4.1 Typestate Systems

Typestate systems generalize standard type systems in that
the typestate of an object may change during the compu-
tation. Aliasing (or more generally, any kind of sharing)
is the key problem for typestate systems — if the program
uses one reference to change the typestate of an object, the
typestate system must ensure that either the declared type-
state of the other references is updated to reflect the new
typestate or that the new typestate is compatible with the
old declared typestate at the other references.

Most typestate systems avoid this problem altogether by
eliminating the possibility of aliasing [21, 6]. Generaliza-
tions support monotonic typestate changes (which ensure
that the new typestate remains compatible with all existing
aliases) [10] and enable the program to temporarily prevent
the program from using a set of potential aliases, change
the typestate of an object with aliases only in that set, then
restore the typestate and reenable the use of the aliases [9].
It is also possible to support object-oriented constructs such
as inheritance [7]. Finally, in the role system, the declared
typestate of each object characterizes all of the references to
the object, which enables the typestate system to check that
the new typestate is compatible with all remaining aliases
after a nonmonotonic typestate change [15].

Our approach generalizes existing typestate systems in
several ways. It supports hierarchical typestate classifica-
tion and composite typestates built out of typestate aspects
from multiple modules. As our examples illustrate, com-
posite typestates support modular software (because there
is no need for one module to be aware of typestate aspects
associated with other modules unless the modules deal with
interdependent pieces of state); hierarchical typestates in-
crease the expressive power of the typestate system. Our
system also supports nonmonotonic typestate changes and
captures the sharing patterns in the program.

4.2 Sharing Analyses

Analyzing and verifying sharing properties is a central prob-
lem in program analysis and verification. The program anal-
ysis community has focused on pointer analysis [22, 8, 1, 20]
and shape analysis [4, 12, 19] as a technique for analysing
the potential sharing patterns in linked data structures. The
program verification community has explored a variety of
logics and reasoning mechanisms for this same class of struc-
tures [18]. The focus of these research directions is on ana-
lyzing detailed local properties of individual data structures.

Our focus, on the other hand, is on characterizing global
sharing properties that may involve multiple data struc-
tures in a large application. Clearly these global properties
depend on the detailed local properties of individual data
structures. For scalability reasons, however, we believe that
any successful technique for analyzing global sharing prop-
erties must hide the complexity of these local data struc-
ture properties behind a suitable abstraction boundary. We
have chosen an abstraction boundary based on membership
in typestate sets. We find this approach suitable because
it is a natural abstraction that captures those aspects of
data structure membership that are relevant for understand-
ing the global sharing patterns while successfully hiding the
data structure complexity that makes analyzing local shar-
ing properties such a challenging problem.

We do not see our approach as competing with existing
approaches for analyzing linked data structures. Instead, we
see our approach as building on the foundation that these
existing approaches provide, with these approaches applied
locally to produce set program translations of modules that
encapsulate linked data structures. Our typestate checker
can then analyze these set program translations to charac-
terize global sharing patterns. One important aspect of our
framework is its support for arbitrary analyses — given the
potential complexity of the data structures that program-
mers may use, we believe that any one fixed technique will
fail to successfully analyze some of the data structures that
will appear in practice.

4.3 Program Checking Tools

ESC/Java [11] is a program checking tool whose purpose is
to identify common errors in programs using program spec-
ifications in a subset of the Java Modelling Language [3].
ESC/Java sacrifices soundness in that it does not model all
details of the program heap, but can detect some common
programming errors. The LOOP project [13] offers stronger
guarantees with less automation. Our framework of modular
pluggable analyses [16] enables the use of a mix of powerful
data flow analysis techniques that model the program heap
in a sound way while offering a high degree of automation
through the ability to synthesize loop invariants.

9

5 Conclusion

Typestate systems are designed to enforce safety conditions
that involve objects whose state may change during the
course of the computation. In particular, typestate systems
ensure that operations are only invoked on objects that are
in appropriate states.

Existing typestate systems support a flat set of object
states and limit typestate changes in the presence of shar-
ing caused by aliasing. We have presented a reformula-
tion of typestate systems in which the typestate of each
object is determined by its membership in abstract type-
state sets. This reformulation supports important gener-
alizations of the typestate concept such as typestates that
capture membership in abstract data types, composite type-
states in which objects are members of multiple typestate
sets, and hierarchical typestates. These generalizations im-
prove the expressive power of the typestate system and in-
crease the range of properties that it is possible to capture
in this system.

Our generalization also enables the typestate system to
capture sharing properties — if an object participates in
multiple data structures, its typestate will indicate that it
is a member of at least one typestate set for each data
structure in which it participates. Our typestate system
therefore effectively supports program understanding and
software engineering tasks such as understanding the global
sharing patterns in large programs, verifying the absence of
undesirable interactions, and understanding the sequences
of actions that the program may generate.

References

[1] L. O. Andersen. Program Analysis and Specialization
for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Mine, D. Monniaux, and X. Rival.
Design and implementation of a special-purpose static
program analyzer for safety-critical real-time embedded
software. In Essays Dedicated to Neil D. Jones, volume
2566 of LNCS, 2002.

[3] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An
overview of jml tools and applications. Technical Re-
port NII-R0309, Computing Science Institute, Univ. of
Nijmegen, March 2003.

[4] D. Chase, M. Wegman, and F. Zadek. Analysis of point-
ers and structures. In Proceedings of the SIGPLAN
’90 Conference on Program Language Design and Im-
plementation, pages 296–310, White Plains, NY, June
1990. ACM, New York.

[5] D. R. Cheriton and M. E. Wolf. Extensions for
multi-module records in conventional programming lan-
guages. In Proceedings of the 14th ACM SIGACT-
SIGPLAN symposium on Principles of programming
languages, pages 296–306. ACM Press, 1987.

[6] R. DeLine and M. Fahndrich. Enforcing high-level pro-
tocols in low-level software. In Proceedings of the SIG-
PLAN ’01 Conference on Program Language Design
and Implementation, Snowbird, UT, June 2001.

[7] R. DeLine and M. Fähndrich. Typestates for objects.
In 18th ECOOP, 2004.

[8] M. Emami, R. Ghiya, and L. Hendren. Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In Proceedings of the SIG-
PLAN ’94 Conference on Program Language Design
and Implementation, pages 242–256, Orlando, FL, June
1994. ACM, New York.

[9] M. Fahndrich and R. DeLine. Adoption and focus:
Practical linear types for imperative programming. In
Proceedings of the SIGPLAN ’02 Conference on Pro-
gram Language Design and Implementation, Berlin,
Germany, June 2002.

[10] M. Fahndrich and R. Leino. Heap monotonic types-
tates. In Proceedings of the first international work-
shop on alias confinement and ownership (IWACO 03),
Darmstadt, Germany, July 2003.

[11] C. Flanagan, K. R. M. Leino, M. Lilibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended Static Checking for
Java. In Proc. ACM PLDI, 2002.

[12] R. Ghiya and L. Hendren. Is it a tree, a DAG or a cyclic
graph? a shape analysis for heap-directed pointers in C.
In Proceedings of the 23rd Annual ACM Symposium on
the Principles of Programming Languages, pages 1–15,
Jan. 1996.

[13] B. P. F. Jacobs and E. Poll. Java program verification
at nijmegen: Developments and perspective. Technical
Report NIII-R0318, Nijmegen Institute of Computing
and Information Sciences, September 2003.

[14] N. Klarlund and M. I. Schwartzbach. Graph types. In
Proc. 20th ACM POPL, Charleston, SC, 1993.

[15] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Proceedings of the 29th Annual ACM Symposium on the
Principles of Programming Languages, Portland, OR,
Jan. 2002.

[16] P. Lam, V. Kuncak, and M. Rinard. On modular plug-
gable analyses using set interfaces. Technical Report
933, MIT CSAIL, 2003.

[17] A. Møller and M. I. Schwartzbach. The Pointer Asser-
tion Logic Engine. In Proc. ACM PLDI, 2001.

[18] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning
about programs that alter data structures. In Proceed-
ings of CSL’01, Paris, France, 2001.

[19] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM TOPLAS, 24(3):217–
298, 2002.

[20] B. Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the 23rd Annual ACM Sym-
posium on the Principles of Programming Languages,
St. Petersburg Beach, FL, Jan. 1996.

[21] R. Strom and S. Yemini. Typestate: A program-
ming language concept for enh ancing software reliabil-
ity. IEEE Transactions on Software Engineering, 12(1),
Jan. 1986.

[22] R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proceedings of the
SIGPLAN ’95 Conference on Program Language De-
sign and Implementation, La Jolla, CA, June 1995.
ACM, New York.

10

