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Abstract

Data structures often use an integer variable to keep
track of the number of elements they store. An invari-
ant of such data structure is that the value of the integer
variable is equal to the number of elements stored in the
data structure. Using a program analysis framework
that supports abstraction of data structures as sets,
such constraints can be expressed using the language of
sets with cardinality constraints. The same language
can be used to express preconditions that guarantee
the correct use of the data structure interfaces, and to
express invariants useful for the analysis of the termi-
nation behavior of programs that manipulate objects
stored in data structures. In this paper we show the
decidability of valid formulas in one such language.

Specifically, we examine the first-order theory that
combines 1) Boolean algebras of sets of uninterpreted
elements and 2) Presburger arithmetic operations. Our
language allows relating the cardinalities of sets to the
values of integer variables. We use quantifier elimi-
nation to show the decidability of the resulting first-
order theory. We thereby disprove a recent conjecture
that this theory is undecidable. We describe a basic
quantifier-elimination algorithm and its more sophisti-
cated versions. From the analysis of our algorithms we
obtain an elementary upper bound on the complexity
of the resulting combination. Furthermore, our algo-
rithm yields the decidability of a combination of sets
of uninterpreted elements with any decidable extension
of Presburger arithmetic. For example, we obtain de-
cidability of monadic second-order logic of n-successors
extended with sets of uninterpreted elements and their
cardinalities, a result which is in contrast to the unde-
cidability of extensions of monadic-second order logic
over strings with equicardinality operator on sets of
strings.

Version compiled November 3, 2004, 12:13am.

1 Introduction

Program analysis and verification tools can greatly con-
tribute to software reliability, especially when used
throughout the software development process. Such
tools are even more valuable if their behavior is pre-
dictable, if they can be applied to partial programs,
and if they allow the developer to communicate the de-
sign information in the form of specifications. Com-
bining the basic idea of [22] with decidable logics leads
to analysis tools that have these desirable properties,
examples include [34, 26, 4, 41, 54, 30, 31]. These anal-
yses are precise (because they represent loop-free code
precisely) and predictable (because the checking of ver-
ification conditions terminates either with a realizable
counterexample or with a sound claim that there are no
counterexamples).

The key challenge in this approach to program anal-
ysis and verification is to identify a logic that captures
an interesting class of program properties, but is nev-
ertheless decidable. In [31, 30] we identify the first-
order theory of Boolean algebras as a useful language
for languages with dynamically allocated objects: this
language allows expressing generalized typestate prop-
erties and reasoning about data structures as dynami-
cally changing sets of objects.

The results of this paper are motivated by the fact
that we often need to reason not only about the data
structure content, but also about the size of the data
structure. For example, we may want to express the fact
that the number of elements stored in a data structure
is equal to the value of an integer variable that is used
to cache the data structure size, or we may want to in-
troduce a decreasing integer measure on the data struc-
ture to show program termination. These considera-
tions lead to a natural generalization of the first-order
theory of Boolean algebra of sets, a generalization that
allows integer variables in addition to set variables, and
allows stating relations of the form |A| = k meaning
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that the cardinality of the set A is equal to the value of
the integer variable k. Once we have integer variables, a
natural question arises: which relations and operations
on integers should we allow? It turns out that, using
only the Boolean algebra operations and the cardinality
operator, we can already define all operations of Pres-
burger arithmetic. This leads to the structure BAPA,
which properly generalizes both Boolean algebras (BA)
and Presburger arithmetic (PA). Our paper shows that
the first-order theory of structure BAPA is decidable.

A special case of BAPA was recently shown decidable
in [57], which allows only quantification over elements
but not over sets of elements. (Note that quantification
over sets of elements subsumes quantification over ele-
ments because singleton sets can represent elements.)
In fact, [57] identifies the problem of decidability of
BAPA and conjectures that it is undecidable. Our re-
sult proves this conjecture false by showing that BAPA

is decidable. Moreover, we give a translation of BAPA

sentences into PA sentences and derive an elementary
upper bound on the worst-case complexity of the valid-
ity problem for BAPA.

Contributions and Overview. We can summarize
our paper as follows.

1. We motivate the use of sets with cardinality con-
straints through an example (Section 2) and show
how to reduce the validity of annotated recursive
program schemas (which are a form of imperative
programs) to the validity of logic formulas (Sec-
tion 3).

2. We show the decidability of Boolean algebras
with Presburger arithmetic (BAPA) using quanti-
fier elimination in Section 5.2. This result immedi-
ately implies decidability of the verification prob-
lem for schemas whose specifications are expressed
in BAPA.

As a preparation for this result, we review the
quantifier elimination technique in Section 4.1 and
show its application to the decidability of Boolean
algebras (Section 4.2) and Presburger arithmetic
(Section 11.1). We also explain why adding the
equicardinality operator to Boolean algebras al-
lows defining Presburger arithmetic operations on
equivalence classes of sets (Section 5.1).

3. We present an algorithm α (Section 5.4) that
translates BAPA sentences into PA sentences by
translating set quantifiers into integer quantifiers.
This is the central result of this paper and shows a
natural connection between Boolean algebras and
Presburger arithmetic.

4. We analyze our algorithm α and show that it yields
an elementary upper bound on the worst-case

complexity of the validity problem for BAPA sen-
tences that is close to the bound on PA sentences
themselves (Section 6).

5. We show that PA sentences generated by translat-
ing pure BA sentences can be checked for validity
in the space optimal for Boolean algebras (Sec-
tion 6.2).

6. We extend our algorithm to infinite sets and
predicates for distinguishing finite and infinite sets
(Section 7).

7. We examine the relationship of our results to
the monadic second-order logic (MSOL) of strings
(Section 8). In contrast to the undecidabil-
ity of MSOL with equicardinality operator (Sec-
tion 11.2), we identify a combination of MSOL over
trees with BA that is decidable. This result fol-
lows from the fact that our algorithm α enables
adding BA operations to any extension of Pres-
burger arithmetic, including decidable extensions
such as MSOL over strings (Section 8.1).

2 Example

Figure 1 presents a procedure insert in a language that
directly manipulates sets. Such languages can either be
directly executed [15, 45] or can be derived from exe-
cutable programs using an abstraction process [30, 31].
The program in Figure 1 manipulates a global set of
objects content and an integer field size. The program
maintains an invariant I that the size of the set content

is equal to the value of the variable size. The insert

procedure inserts an element e into the set and corre-
spondingly updates the integer variable. The requires
clause (precondition) of the insert procedure is that the
parameter e is a non-null reference to an object that is
not stored in the set content. The ensures clause (post-
condition) of the procedure is that the size variable after
the insertion is positive. Note that we represent refer-
ences to objects (such as the procedure parameter e)
as sets with at most one element. An empty set repre-
sents a null reference; a singleton set {o} represents a
reference to object o. The value of a variable after pro-
cedure execution is indicated by marking the variable
name with a prime.

In addition to the explicit requires and ensures
clauses, the insert procedure maintains an invariant, I,
which captures the relationship between the size of the
set content and the integer variable size. The invariant
I is implicitly conjoined with the requires and the en-
sures clause of the procedure. The Hoare triple [19, 22]
in Figure 2 summarizes the resulting correctness condi-
tion for the insert procedure.
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var content : set;
var size : integer;
invariant I ⇐⇒ (size = |content|);

procedure insert(e : element) maintains I

requires |e| = 1 ∧ |e ∩ content| = 0
ensures size′ > 0
{

content := content ∪ e;
size := size + 1;

}

Figure 1: An Example Procedure
n

|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content|
o

content := content ∪ e; size := size + 1;
n

size′ > 0 ∧ size′ = |content′|
o

Figure 2: Hoare Triple for insert Procedure

∀e. ∀content. ∀content′. ∀size. ∀size′.

(|e| = 1 ∧ |e ∩ content| = 0 ∧ size = |content| ∧
content′ = content ∪ e ∧ size′ = size + 1) ⇒

size′ > 0 ∧ size′ = |content′|

Figure 3: Verification Condition for Figure 2

Figure 3 presents a verification condition corre-
sponding to the Hoare triple in Figure 2. Note that
the verification condition contains both set and integer
variables, contains quantification over these variables,
and relates the sizes of sets to the values of integer vari-
ables. Our small example leads to a particularly simple
formula; in general, formulas that arise in compositional
analysis of set programs with integer variables may con-
tain alternations of existential and universal variables
over both integers and sets. This paper shows the de-
cidability of such formulas.

3 First-Order-Logic Program Schemas

To formalize the verification of programs with speci-
fications written in first-order logic, we introduce the
notion of first-order-logic program schemas (or schemas
for short). The schemas motivate the main result of
this paper because the decidability of a class of logic
formulas implies the decidability of the schema verifica-
tion problem. The abstraction of programs in general-
purpose languages into verifiable schemas can be used
to verify partial correctness of programs, and is a partic-
ular instance of abstract interpretation [13]. Program
schemas have been studied in the past, with the focus
primarily on purely functional schemas [2, 9].

Figure 4 presents the syntax of schemas. A schema is

F − first-order formula

s ::= F | p | s ; s | s 2 s | var x : T. s

specp ::= procedure p

requires prep

ensures postp

{sbody(p)}

schema ::= (var x : T )∗ (spec)∗

Figure 4: Syntax of First-Order Logic Program
Schemas

the meaning of specifications::
specp = (prep ⇒ postp)

rules for reducing statements to formulas::
p → specp

F1 ; F2 → ∃x̄0.(F1[x̄′ := x̄0] ∧ F2[x̄ := x̄0])

x̄ - variables in pre-state
x̄′ - variables in post-state

F1 2 F2 → F1 ∨ F2

var x : T. F → ∃x : T. F

correctness condition for p::

∀∗(Fbody(p) ⇒ specp)

where sbody(p)
∗
→Fbody(p) using rules above

Figure 5: Rules that Reduce Procedure Body to a For-
mula

a collection of annotated recursive procedures that ma-
nipulate global state given by finitely many variables. A
recursive program schema is parameterized by a specifi-
cation language which determines 1) a signature of the
specification language, which is some variant of first-
order logic and 2) the interpretation of the language,
which is some family of multisorted first-order struc-
tures. The interpretations of types of global and local
variables correspond to the interpretations of sorts in
the multisorted language. We use the term “S-schema”
for a schema parameterized by a specification language
S. The language S is used to encode all basic statements
of the schema and to write requires and ensures clauses.
The only control structures in a schema are sequential
composition “;”, nondeterministic choice “2”, and pro-
cedure call (denoted using procedure name). For sim-
plicity, procedures in a schema have no parameters; pa-
rameter passing can be simulated using assignments to
global and local variables.

Provided that variables in S range over sufficiently
complex data types (such as integers or terms), schemas
are a Turing-complete language. Indeed, the first-order
logic can encode assignment statement (x := t is rep-
resented by formula x′ = t ∧

∧
y 6≡x y

′ = y), as well
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as assume statements (assume F is just F ⇒ skip

where skip is
∧

y y
′ = y); nondeterministic choice and

assume-statements can encode the if statements; recur-
sion with assume statements can encode while loops.
As a consequence of Turing-completeness, the verifi-
cation of schemas without specifications would be un-
decidable. Because we are assuming that procedures
are annotated, the correctness of our recursive program
schema reduces to the validity of a set of formulas in
the logic, using standard technique of assume-guarantee
reasoning. The idea of this reduction is to replace each
call to procedure p with the specification given by re-
quires and ensures clause of p, as in Figure 5. After this
replacement, the body of each procedure contains only
sequential composition, basic statements, and nondeter-
ministic choice. The remaining rules in Figure 5 then
reduce the body of a procedure to a single formula.1 We
check the correctness of the procedure by checking that
the formula corresponding to the body of the procedure
implies the specification of the procedure.

We conclude that if the validity of first-order formu-
las in the language S is decidable, then the verification
problem of an S-schema parameterized by those for-
mulas is decidable. By considering different languages
S whose first-order theory is decidable, we obtain dif-
ferent verifiable S-schemas. Example languages whose
first-order theories are decidable are term algebras and
their generalizations [27], Boolean algebras of sets [32]
and Presburger arithmetic [37]. In this paper we estab-
lish the decidability of the first-order theory BAPA that
combines the quantified formulas of Boolean algebras
of sets and Presburger arithmetic. Our result there-
fore implies the verifiability of a new class of schemas,
namely BAPA-schemas.

Schemas and Boolean programs. For a fixed set
of predicates, Boolean programs used in predicate ab-
straction [4, 3, 21] can be seen as a particular form of
schemas where the first-order variables range over fi-
nite domains. The assumption about finiteness of the
domain has important consequences: in the finite do-
main case the first-order formulas reduce to quantified
Boolean formulas, the schemas are not Turing-complete
but reduce to pushdown automata, and procedure spec-
ifications are not necessary because finite-state proper-
ties can be checked using context-free reachability. In
this paper we consider schemas where variables may
range over infinite domains, yet the verification problem
in the presence of specifications is decidable. The ad-
vantage of expressive program schemas is that they are
closer to the implementation languages, which makes
the abstraction of programs into schemas potentially

1Note that our formulas encode transition relation as opposed
to weakest precondition, so we use ∨ to encode non-deterministic
choice and ∀ for uninitialized variables.

simpler and more precise.

Verification using quantifier-free formulas. Note
that the rules in Figure 5 do not introduce quantifier
alternations. This means that we obtain verifiable S-
schemas even if we restrict S to be a quantifier-free
language whose formulas have decidable satisfiability
problem. The advantage of using languages whose full
first-order theory is decidable is that this approach al-
lows specifications of procedures to use quantifiers to ex-
press parameterization (via universal quantifier) and in-
formation hiding (via existential quantifier). Moreover,
the quantifier elimination technique which we use in this
paper shows how to eliminate quantifiers from a formula
while preserving its validity. This means that, instead of
first applying rules in Figure 5 and then applying quan-
tifier elimination, we may first eliminate all quantifiers
from specifications, and then apply rules in Figure 5
yielding a quantifier-free formula. This approach may
be more efficient because the decidability of quantifier-
free formulas is easier to establish [56, 35, 42, 55, 49].

4 Overview of Quantifier Elimination

For completeness, this section introduces quantifier
elimination; quantifier elimination is the central tech-
nique used in this paper. After reviewing the basic idea
of quantifier elimination in Section 4.1, we explain how
to use quantifier elimination to show the decidability of
Boolean algebras in Section 4.2. We show the decid-
ability of Presburger arithmetic in Section 11.1.

4.1 Quantifier Elimination

According to [23, Page 70, Lemma 2.7.4], to eliminate
quantifiers from arbitrary formulas, it suffices to elimi-
nate ∃y from formulas of the form

∃y.
^

0≤i<n

ψi(x̄, y) (1)

where x̄ is a tuple of variables and ψi(x̄, y) is a literal
whose all variables are among x̄, y. The reason why
eliminating formulas of the form (1) suffices is the fol-
lowing. Suppose that the formula is in prenex form and
consider the innermost quantifier of a formula. Let φ
be the subformula containing the quantifier along with
the subformula that is the scope of that quantifier. If φ
is of the form ∀x. φ0 we may replace φ with ¬∃x.¬φ0.
Hence, we may assume that φ is of the form ∃x. φ0. We
then transform φ0 into disjunctive normal form and use
the fact

∃x. (φ2 ∨ φ3) ⇐⇒ (∃x. φ2) ∨ (∃x. φ3) (2)
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F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x.F | ∀x.F

A ::= B1 = B2 | B1 ⊆ B2 |
|B| = C | |B| ≥ C

B ::= x | 0 | 1 | B1 ∪B2 | B1 ∩B2 | Bc

C ::= 0 | 1 | 2 | . . .

Figure 6: Formulas of Boolean Algebra (BA)

We conclude that elimination of quantifiers from for-
mulas of form (1) suffices to eliminate the innermost
quantifier. By repeatedly eliminating innermost quan-
tifiers we can eliminate all quantifiers from a formula.

We may also assume that y occurs in every literal
ψi, otherwise we would place the literal outside the ex-
istential quantifier using the fact

∃y. (A ∧ B) ⇐⇒ (∃y.A) ∧ B

for y not occurring in B.
To eliminate variables we often use the following

identity of theory with equality:

∃x.x = t ∧ φ(x) ⇐⇒ φ(t) (3)

The quantifier elimination procedures we present im-
ply the decidability of the underlying theories, because
the interpretations of function and relation symbols on
some domain A turn out to be effectively computable
functions and relations onA. Therefore, the truth-value
of every formula without variables is computable. The
quantifier elimination procedures we present are all ef-
fective. To determine the truth value of a closed formula
φ on a given model, it therefore suffices to apply the
quantifier elimination procedure to φ, yielding a quan-
tifier free formula ψ, and then evaluate the truth value
of ψ.

4.2 Quantifier Elimination for BA

This section presents a quantifier elimination procedure
for Boolean algebras of finite sets. We use the symbols
for the set operations as the language of Boolean al-
gebras. b1 ∩ b2, b1 ∪ b2, b

c
1, ∅, U , correspond to set

intersection, set union, set complement, empty set, and
full set, respectively. We write b1 ⊆ b2 for b1 ∩ b2 = b1,
and b1 ⊂ b2 for the conjunction b1 ⊆ b2 ∧ b1 6= b2.

For every nonnegative integer constant k we intro-
duce formulas of the form |b| ≥ k expressing that the
set denoted by b has at least k elements, and formulas
of the form |b| = k expressing that the set denoted by
b has exactly k elements. In this section, cardinality
constraints always relate cardinality of a set to a con-
stant integer. These properties are first-order definable
within Boolean algebra itself:

|b| ≥ 0 ≡ true

|b| ≥ k+1 ≡ ∃x. x ⊂ b ∧ |x| ≥ k

|b| = k ≡ |b| ≥ k ∧ ¬|b| ≥ k+1

We call a language which contains terms |b| ≥ k and
|b| = k the language of Boolean algebras with finite con-
stant cardinality constraints. Figure 6 summarizes the
syntax of this language, which we denote BA. Because
finite constant cardinality constraints are first-order de-
finable, the language with finite constant cardinality
constraints has the same expressive power as the lan-
guage of Boolean algebras. Removing the restriction
that integers are constants is, in fact, what leads to the
generalization from Boolean algebras to Boolean alge-
bras with Presburger arithmetic in Section 5, and is the
main topic of this paper.

Preliminary observations. Every subset relation
b1 ⊆ b2 is equivalent to |b1 ∩ bc2| = 0, and every equal-
ity b1 = b2 is equivalent to a conjunction of two subset
relations. It is therefore sufficient to consider the first-
order formulas whose only atomic formulas are of the
form |b| = k and |b| ≥ k. Furthermore, because k de-
notes constants, we can eliminate negative literals as
follows:

¬|b| = k ⇐⇒ |b| = 0 ∨ · · · ∨ |b| = k−1 ∨ |b| ≥ k+1

¬|b| ≥ k ⇐⇒ |b| = 0 ∨ · · · ∨ |b| = k−1
(4)

Every formula in the language of Boolean algebras can
therefore be written in prenex normal form where the
matrix (quantifier-free part) of the formula is a dis-
junction of conjunctions of atomic formulas of the form
|b| = k and |b| ≥ k, with no negative literals. If a term b
contains at least one operation of arity one or more, we
may assume that the constants ∅ and U do not appear
in b, because ∅ and U can be simplified away. Further-
more, the expression |∅| denotes the integer zero, so all
terms of form |∅| = k or |∅| ≥ k evaluate to true or false.
We can therefore simplify every term b so that either 1)
b contains no occurrences of constants ∅ and U , or 2)
b ≡ U .

The following lemma is the main idea behind the
quantifier elimination for both BA in this section and
BAPA in Section 5.

Lemma 1 Let b1, . . . , bn be finite disjoint sets, and
l1, . . . , ln, k1, . . . , kn be natural numbers. Then the fol-
lowing two statements are equivalent:

1. There exists a finite set y such that

n̂

i=1

|bi ∩ y| = ki ∧ |bi ∩ y
c| = li (5)
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2.

n̂

i=1

|bi| = ki + li (6)

Moreover, the statement continues to hold if for any
subset of indices i the conjunct |bi ∩ y| = ki is replaced
by |bi∩y| ≥ ki or |bi∩yc| = li is replaced by |bi∩yc| ≥ li,
provided that |bi| = ki + li is replaced by |bi| ≥ ki + li,
as indicated in Figure 7.

Proof. (⇒) Suppose that there exists a set y sat-
isfying (5). Because bi ∩ y and bi ∩ yc are disjoint,
|bi| = |bi ∩ y| + |bi ∩ yc|, so |bi| = ki + li when the con-
juncts are |bi ∩ y| = ki ∧ |bi ∩ yc| = li, and |bi| ≥ ki + li
if any of the original conjuncts have inequality.

(⇐) Suppose that (6) holds. First consider the case
of equalities. Suppose that |bi| = ki + li for each of the
pairwise disjoint sets b1, . . . , bn. For each bi choose a
subset yi ⊆ bi such that |yi| = ki. Because |bi| = ki + li,
we have |bi ∩ y

c
i | = li. Having chosen y1, . . . , yn, let y =⋃n

i=1 yi. For i 6= j we have bi∩yj = ∅ and bi∩yc
j = bi, so

bi ∩ y = yi and bi ∩ yc = bi ∩ yc
i . By the choice of yi, we

conclude that y is the desired set for which (5) holds.
The case of inequalities is analogous: for example, in
the case |bi ∩ y| ≥ ki ∧ |bi ∩ yc| = li, choose yi ⊆ bi such
that |yi| = |bi| − li.

Quantifier elimination for BA. We next describe a
quantifier elimination procedure for BA. This procedure
motivates our algorithm in Section 5.

We first transform the formula into prenex normal
form and then repeatedly eliminate the innermost quan-
tifier. As argued in Section 4.1, it suffices to show that
we can eliminate an existential quantifier from any ex-
istentially quantified conjunction of literals. Consider
therefore an arbitrary existentially quantified conjunc-
tion of literals

∃y.
^

1≤i≤n

ψi(x̄, y)

where ψi is of the form |b| = k or of the form |b| ≥ k.
We assume that y occurs in every formula ψi. It follows
that no ψi contains |∅| or |U|. Let x1, . . . , xm, y be the
set of variables occurring in formulas ψi for 1 ≤ i ≤ n.

First consider the more general case m ≥ 1. Let
for i1, . . . , im ∈ {0, 1}, si1...im

= xi1
1 ∩ · · · ∩ xim

m where
x0 = xc and x1 = x. The terms in the set

P = {si1...im | i1, . . . , im ∈ {0, 1}}

form a partition. Moreover, every Boolean algebra term
whose variables are among xi can be written as a dis-
joint union of some elements of the partition P . Any
Boolean algebra term containing y can be written, for
some p, q ≥ 0 as

original formula eliminated form

∃y. . . . |b ∩ y| ≥ k ∧ |b ∩ yc| ≥ l . . . |b| ≥ k + l

∃y. . . . |b ∩ y| = k ∧ |b ∩ yc| ≥ l . . . |b| ≥ k + l

∃y. . . . |b ∩ y| ≥ k ∧ |b ∩ yc| = l . . . |b| ≥ k + l

∃y. . . . |b ∩ y| = k ∧ |b ∩ yc| = l . . . |b| = k + l

Figure 7: Rules for Eliminating Quantifiers from
Boolean Algebra Expressions

(u1 ∩ y) ∪ · · · ∪ (up ∩ y)∪

(t1 ∩ y
c) ∪ · · · ∪ (tq ∩ yc)

where u1, . . . , up ∈ P are pairwise distinct elements
from the partition and t1, . . . , tq ∈ P are pairwise dis-
tinct elements from the partition. Because

|(u1 ∩ y) ∪ · · · ∪ (up ∩ y) ∪ (t1 ∩ y
c) ∪ · · · ∪ (tq ∩ yc)| =

|u1 ∩ y|+ · · · + |up ∩ y| + |t1 ∩ yc| + · · · + |tq ∩ yc|

a formula of the form |b| = k can be written as
_

k1,...,kp,l1,...,lq

(|u1 ∩ y| = k1 ∧ · · · ∧ |up ∩ y| = kp ∧

|t1 ∩ yc| = l1 ∧ · · · ∧ |tq ∩ yc| = lp)

where the disjunction ranges over nonnegative integers
k1, . . . , kp, l1, . . . , lq ≥ 0 that satisfy

k1 + · · · + kp + l1 + · · · + lq = k (7)

From (4) it follows that we can perform a similar trans-
formation for formulas of form |b| ≥ k (by represent-
ing |b| ≥ k as boolean combination of |b| = k formu-
las, applying (7), and traslating the result back into
|b| ≥ k formulas). After performing this transforma-
tion, we bring the formula into disjunctive normal form
and continue eliminating the existential quantifier sep-
arately for each disjunct, as argued in Section 4.1. We
may therefore assume that all conjuncts ψi are of one
of the forms: |s ∩ y| = k, |s ∩ yc| = k, |s ∩ y| ≥ k, and
|s ∩ yc| ≥ k where s ∈ P .

If there are two conjuncts both of which contain |s∩
y| for the same s, then either they are contradictory or
one implies the other. We therefore assume that for any
s ∈ P , there is at most one conjunct ψi containing |s∩y|.
For analogous reasons we assume that for every s ∈ P
there is at most one conjunct ψi containing |s ∩ yc|.
The result of eliminating the variable y is then given
in Figure 7. These rules are applied for all distinct
partitions s for which |s∩y| or |s∩yc| occurs. The case
when one of the literals containing |s∩y| does not occur
is covered by the case |s∩y| ≥ k for k = 0, similarly for
a literal containing |s ∩ yc|.
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It remains to consider the case m = 0. Then y is
the only variable occurring in conjuncts ψi. Every car-
dinality expression t containing only y reduces to one of
|y| or |yc|. If there are multiple literals containing |y|,
they are either contradictory or one implies the others.
We may therefore assume there is at most one literal
containing |y| and at most one literal containing |yc|.
We eliminate quantifier by applying rules in Figure 7
putting formally b = U , yielding quantifier-free cardi-
nality constraint of the form |U| = k or of the form
|U| ≥ k, which does not contain the variable y.

This completes the description of quantifier elimina-
tion from an existentially quantified conjunction. By
repeating this process for all quantifiers we arrive at a
quantifier-free formula ψ. Hence, we have the following
fact.

Fact 1 For every first-order formula φ in the language
of Boolean algebras with finite cardinality constraints
there exists a quantifier-free formula ψ such that ψ is
a disjunction of conjunctions of literals of form |b| ≥
k and |b| = k (for k denoting constant non-negative
integers) where b are terms of Boolean algebra, the free
variables of ψ are a subset of the free variables of φ, and
ψ is equivalent to φ on all Boolean algebras of finite sets.

5 First-Order Theory of BAPA is Decidable

This section presents the main result of this paper: the
first-order theory of Boolean algebras with Presburger
arithmetic (BAPA) is decidable. We first motivate the
operations of the structure BAPA in Section 5.1. We
prove the decidability of BAPA in Section 5.2 using a
quantifier elimination algorithm that interleaves quanti-
fier elimination for the Boolean algebra part with quan-
tifier elimination for the Presburger arithmetic part. In
Section 5.4 we present another algorithm (α) for decid-
ing BAPA, based on the replacement of set quantifiers
with integer quantifiers. The analysis of the algorithm
α is the subject of Section 6, which derives a worst-case
complexity bound on the validity problem for BAPA.

In this section, we interpret Boolean algebras over
the family of all powersets of finite sets. Our quanti-
fier elimination is uniform with respect to the size of
the universal set. Section 7 extends the result to allow
infinite universal sets and reasoning about finiteness of
sets.

5.1 From Equicardinality to PA

To motivate the extension of Boolean algebra with all
operations of Presburger arithmetic, we derive these op-
erations from a single construct: the equicardinality of
sets.

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F |

∃x.F | ∀x.F | ∃k.F | ∀k.F

A ::= B1 = B2 | B1 ⊆ B2 |

T1 = T2 | T1 < T2 | C dvdT

B ::= x | 0 | 1 | B1 ∪ B2 | B1 ∩B2 | Bc

T ::= k | C | MAXC | T1 + T2 | T1 − T2 | C · T | |B|

C ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Figure 8: Formulas of Boolean Algebras with Pres-
burger Arithmetic (BAPA)

Define the equicardinality relation eqcard(b, b′) to
hold iff |b| = |b′|, and consider BA extended with
relation eqcard(b, b′). Define the ternary relation
plus(b, b1, b2) ⇐⇒ (|b| = |b1| + |b2|) by the formula

∃x1. ∃x2. x1 ∩ x2 = ∅ ∧ b = x1 ∪ x2 ∧
eqcard(x1, b1) ∧ eqcard(x2, b2)

The relation plus(b, b1, b2) allows us to express addition
using arbitrary sets as representatives for natural num-
bers. Moreover, we can represent integers as equiv-
alence classes of pairs of natural numbers under the
equivalence relation (x, y) ∼ (u, v) ⇐⇒ x+ v = u+ y.
This construction allows us to express the unary pred-
icate of being non-negative. The quantification over
pairs of sets represents quantification over integers, and
quantification over integers with the addition operation
and the predicate “being non-negative” can express all
operations in Figure 11.

This leads to our formulation of the language BAPA

in Figure 8, which contains both the sets and the in-
tegers themselves. Note the language has two kinds
of quantifiers: quantifiers over integers and quantifiers
over sets; we distinguish between these two kinds by
denoting integer variables with symbols such as k, l and
set variables with symbols such as x, y. We use the
shorthand ∃+k.F (k) to denote ∃k.k ≥ 0 ∧ F (k) and,
similarly ∀+k.F (k) to denote ∀k.k ≥ 0 ⇒ F (k). Note
that the language in Figure 8 subsumes the language in
Figure 11. Furthermore, the language in Figure 8 con-
tains the formulas of the form |b| = k whose Boolean
combinations can encode all atomic formulas in Fig-
ure 6, as in Section 4.2. This implies that the language
in Figure 8 properly generalizes both the language in
Figure 11 and the language in Figure 6. Finally, we
note that the MAXC constant denotes the size of the fi-
nite universe, so we require MAXC = |U| (see Section 7
for infinite universe case).
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5.2 Basic Algorithm

We first present a simple quantifier-elimination algo-
rithm for BAPA. As explained in Section 4.1, it suffices
to eliminate an existential quantifier from a conjunc-
tion F of literals of Figure 8. We need to show how to
eliminate an integer existential quantifier, and how to
eliminate a set existential quantifier. By Section 4.2, as-
sume that all occurrences of set expressions b are within
expressions of the form |b|. Introduce an integer vari-
able ki for each such expression |bi|, and write F in the
form

F ≡ ∃+
k1, . . . , kp.

p
^

i=1

|bi| = ki ∧ F1(k1, . . . , kp) (8)

where F1 is a PA formula.
To eliminate an existential integer quantifier ∃k from

the formula ∃k.F , observe that ∃k.F (k) is equivalent to

∃+
k1, . . . , kp.

p
^

i=1

|bi| = ki ∧ ∃k.F1(k, k1, . . . , kp)

because k does not occur in the first part of the for-
mula. Using quantifier elimination for Presburger arith-
metic, eliminate ∃k from ∃k.F1 yielding a quantifier-free
formula F2(k1, . . . , km). The formula ∃k.F (k) is then
equivalent to F2(|b1|, . . . , |bm|) and the quantifier has
been eliminated.

To eliminate an existential set quantifier ∃y from
the formula ∃y.F , proceed as follows. Start again
from (8), and split each |bi| into sums of partitions
as in Section 4.2. Specifically, let x1, . . . , xn where
y ∈ {x1, . . . , xn} be all free set variables in b1, . . . , bp,
and let s1, . . . , sm for m = 2n be all set expressions of
the form

⋂n
j=1 x

αj

j for α1, . . . , αn ∈ {0, 1}. Every ex-
pression of the form |b| is equal to an expression of the
form

∑q
j=1 |sij

| for some i1, . . . , iq. Introduce an inte-
ger variable li for each |si| where 1 ≤ i ≤ m, and write
F in the form

∃+l1, . . . , lm. ∃
+k1, . . . , kp.

Vm
i=1 |si| = li ∧

Vp
i=1 ti = ki ∧ F1(k1, . . . , kp)

(9)

where each ti is of the form
∑q

j=1 lij
for some q and

some i1, . . . , iq specific to ti. Note that only the part∧m
i=1 |si| = li contains set variables, so ∃y.F is equiva-

lent to

∃+l1, . . . , lm. ∃
+k1, . . . , kp.

(∃y.
Vm

i=1 |si| = li) ∧
Vp

i=1 ti = ki ∧ F1(k1, . . . , kp)
(10)

Next, group each si of the form |s ∩ y| with the corre-
sponding |s ∩ yc| and apply Lemma 1 to replace each
pair |s ∩ y| = la ∧ |s ∩ yc| = lb with |s| = la + lb. As a
result, ∃y.

∧m
i=1 |si| = li is replaced by a quantifier-free

formula of the form
∧m/2

i=1 |s′i| = lai
+ lbi

. The entire
resulting formula is

∃+l1, . . . , lm. ∃
+k1, . . . , kp.

Vm/2
i=1 |s′i| = lai

+ lbi
∧

Vp
i=1 ti = ki ∧ F1(k1, . . . , kp)

and contains no set quantifiers, but contains existential
integer quantifiers. We have already seen how to elim-
inate existential integer quantifiers; by repeating the
elimination for each of l1, . . . , lm, k1, . . . , kp, we obtain
a quantifier-free formula. (We can trivially eliminate
each ki by replacing it with ti, but it remains to elimi-
nate the exponentially many variables l1, . . . , lm.)

This completes the description of the basic quanti-
fier elimination algorithm. This quantifier-elimination
algorithm is a decision procedure for formulas in Fig-
ure 8. We have therefore established the decidability of
the language BAPA that combines Boolean algebras and
Presburger arithmetic, solving the question left open in
[57] for the finite universe case.

Theorem 2 The validity of BAPA sentences over the
family of all models with finite universe of uninterpreted
elements is decidable.

Comparison with Quantifier Elimination for BA.

Note the difference in the use of Lemma 1 in the quan-
tifier elimination for BA in Section 4.2 compared to
the use of Lemma 1 in this section: Section 4.2 uses
the statement of the lemma when the cardinalities of
sets are known constants, whereas this section uses the
statement of the lemma in a more general way, creating
the appropriate symbolic sum expression for the car-
dinality of the resulting sets. On the other hand, the
algorithm in this section does not need to consider the
case of inequalities for cardinality constraints, because
the handling of negations of cardinality constraints is
hidden in the subsequent quantifier elimination of in-
teger variables. This simplification indicates that the
first-order theories BA and PA naturally fit together;
the algorithm in Section 5.4 further supports this im-
pression.

5.3 Reducing the Number of Introduced Inte-

ger Variables

This section presents two observations that may reduce
the number of integer variables introduced in the elim-
ination of set quantifier in Section 5.2. The algorithm
in Section 5.2 introduces 2n integer variables where n
is the number of set variables in the formula F of (8).

First, we observe that it suffices to eliminate the
quantifier ∃y from the conjunction of the conjuncts
|bi| = ki where y occurs in bi. Let a1(y), . . . , aq(y)
be those terms among b1, . . . , bp that contain y, and
let x1, . . . , xn1 be the free variables in a1(y), . . . , aq(y).
Then it suffices to introduce 2n1 integer variables
corresponding to the the partitions with respect to
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x1, . . . , xn1 , which may be an improvement because
n1 ≤ n.

The second observation is useful if the number q of
terms a1(y), . . . , aq(y) satisfies the property 2q+1 < n1,
i.e. there is a large number of variables, but a small
number of terms containing them. In this case, consider
all Boolean combinations t1, . . . , tu of the 2q expressions
a1(∅), a1(U), a2(∅), a2(U), . . . , aq(∅), aq(U). For each ai,
we have

ai(y) = (y ∩ ai(∅)) ∪ (yc ∩ ai(U))

Each ai(∅) and each ai(U) is a disjoint union of the
Boolean combinations of t1, . . . , tu, so each ai(y) is a
disjoint union of Boolean combinations of y and the
expressions t1, . . . , tu that do not contain y. It therefore
suffices to introduce 22q+1 integer variables denoting all
terms of the form y ∩ ti and yc ∩ ti, as opposed to 2n1

integer variables.

5.4 Reduction to Quantified PA Sentences

This section presents an algorithm, denoted α, which
reduces a BAPA sentence to an equivalent PA sentence
with the same number of quantifier alternations and an
exponential increase in the total size of the formula.
Although we have already established the decidability
of BAPA in Section 5.2, the algorithm α of this section
is important for several reasons.

1. Given the space and time bounds for Presburger
arithmetic sentences [40], the algorithm α yields
reasonable space and time bounds for BAPA sen-
tences.

2. Unlike the algorithm in Section 5.2, the algorithm
α does not perform any elimination of integer vari-
ables, but instead produces an equivalent quanti-
fied PA formula. The resulting PA formula can be
decided using any decision procedure for PA, in-
cluding the decision procedures based on automata
and model-checking [24, 20].

3. The algorithm α can eliminate set quantifiers from
any extension of Presburger arithmetic. We thus
obtain a technique for adding a particular form
of set reasoning to every extension of Presburger
arithmetic, and the technique preserves the decid-
ability of the extension. An example extension
where our construction applies is second-order lin-
ear arithmetic i.e. monadic second-order logic of
one successors, as well monadic second order logic
of n-successors, as we note in Section 8.

We next describe the algorithm α for transforming a
BAPA sentence F0 into a PA sentence. The algorithm α
is similar to the algorithm in Section 5.2, but, instead of

eliminating the integer quantifiers, it accumulates them
in a PA formula.

As the first step of the algorithm, transform F0 into
prenex form

Qpvp. . . . Q1v1. F (v1, . . . , vp) (11)

where F is quantifier-free, and each quantifier Qivi is of
one the forms ∃k, ∀k, ∃y, ∀y where k denotes an integer
variable and y denotes a set variable. As in Section 5.2,
separate F into the set part and the purely Presburger
arithmetic part by expressing all set relations in terms
of |b| terms and by naming each |b|, obtaining a formula
of the form (8). Next, split all sets into disjoint union
of cubes s1, . . . , sm for m = 2n where n is the num-
ber of all set variables, obtaining a formula of the form
Qpvp. . . .Q1v1.F where F is of the form (9). Letting
G1 = F1(t1, . . . , tp), we obtain a formula of the form

Qpvp. . . . Q1v1.

∃+l1, . . . , lm.
Vm

i=1 |si| = li ∧ G1
(12)

where G1 is a PA formula and m = 2n. Formula (12)
is the starting point of the main phase of algorithm α.
The main phase of the algorithm successively eliminates
quantifiers Q1v1, . . . , Qpvp while maintaining a formula
of the form

Qpvp . . . Qrvr.

∃+l1 . . . lq.
Vq

i=1 |si| = li ∧ Gr
(13)

where Gr is a PA formula, r grows from 1 to p+ 1, and
q = 2e where e for 0 ≤ e ≤ n is the number of set
variables among vp, . . . , vr. The list s1, . . . , sq is the list
of all 2e partitions formed from the set variables among
vp, . . . , vr.

We next show how to eliminate the innermost quan-
tifier Qrvr from the formula (13). During this process,
the algorithm replaces the formula Gr with a formula
Gr+1 which has more integer quantifiers. If vr is an
integer variable then the number of sets q remains the
same, and if vr is a set variable, then q reduces from 2e

to 2e−1. We next consider each of the four possibilities
∃k, ∀k, ∃y, ∀y for the quantifier Qrvr.

Consider first the case ∃k. Because k does not occur
in

∧q
i=1 |si| = li, simply move the existential quantifier

to Gr and let Gr+1 = ∃k.Gr, which completes the step.
For universal quantifiers, observe that

¬(∃+
l1 . . . lq.

q
^

i=1

|si| = li ∧ Gr)

is equivalent to

∃+
l1 . . . lq .

q
^

i=1

|si| = li ∧ ¬Gr
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because the existential quantifier is used as a let-
binding, so we may first substitute all values li into
Gr, then perform the negation, and then extract back
the definitions of all values li. Given that the universal
quantifier ∀k can be represented as a sequence of unary
operators ¬∃k¬, from the elimination of ∃k we imme-
diately obtain the elimination of ∀k; it turns out that
it suffices to let Gr+1 = ∀k.Gr.

We next show how to eliminate an existential set
quantifier ∃y from

∃y. ∃+
l1 . . . lq .

q
^

i=1

|si| = li ∧ Gr (14)

which is equivalent to

∃+
l1 . . . lq. (∃y.

q
^

i=1

|si| = li) ∧ Gr (15)

Without loss of generality assume that the set variables
s1, . . . , sq are numbered such that s2i−1 ≡ s′i ∩ y

c and
s2i ≡ s′i∩y for some cube s′i. Then apply again Lemma 1
and replace each pair of conjuncts

|s′i ∩ y
c| = l2i−1 ∧ |s′i ∩ y| = l2i (16)

with the conjunct |s′i| = l2i−1 + l2i, yielding formula

∃+
l1 . . . lq.

q′
^

i=1

|s′i| = l2i−1 + l2i ∧ Gr (17)

for q′ = 2e−1. Finally, to obtain a formula of the
form (13) for r + 1, introduce fresh variables l′i con-
strained by l′i = l2i−1 + l2i, rewrite (17) as

∃+
l
′
1 . . . l

′
q′ .

q′
^

i=1

|s′i| = l
′
i ∧ (∃l1 . . . lq.

q′
^

i=1

l
′
i = l2i−1+l2i ∧ Gr)

and let

Gr+1 ≡ ∃+
l1 . . . lq.

q′
^

i=1

l
′
i = l2i−1 + l2i ∧ Gr (18)

This completes the description of elimination of an ex-
istential set quantifier ∃y.

To eliminate a set quantifier ∀y, proceed analo-
gously: introduce fresh variables l′i = l2i−1 + l2i and

let Gr+1 ≡ ∀+l1 . . . lq. (
∧q′

i=1 l
′
i = l2i−1 + l2i) ⇒ Gr,

which can be verified by expressing ∀y as ¬∃y¬.
After eliminating all quantifiers as described above,

we obtain a formula of the form ∃+l. |U| = l ∧Gp+1(l).
We define the result of the algorithm, denoted α(F0),
to be the PA sentence Gp+1(MAXC).

This completes the description of the algorithm α.
Given that the validity of PA sentences is decidable, the
algorithm α is a decision procedure for BAPA sentences.

∀+l1.∀+l0. MAXC = l1 + l0 ⇒
∀+l11.∀+l01.∀+l10.∀+l00.

l1 = l11 + l01 ∧ l0 = l10 + l00 ⇒
∀+l111. ∀+l011. ∀+l101. ∀+l001.

∀+l110. ∀+l010. ∀+l100. ∀+l000.

l11 = l111 + l011 ∧ l01 = l101 + l001 ∧
l10 = l110 + l010 ∧ l00 = l100 + l000 ⇒

∀size .∀size′.

(l111 + l011 + l101 + l001 = 1 ∧
l111 + l011 = 0 ∧
l111 + l011 + l110 + l010 = size ∧
l100 = 0 ∧
l011 + l001 + l010 = 0 ∧
size′ = size + 1) ⇒

(0 < size′ ∧ l111 + l101 + l110 + l100 = size′)

Figure 9: The translation of the BAPA sentence from
Figure 3 into a PA sentence

Theorem 3 The algorithm α described above maps
each BAPA-sentence F0 into an equivalent PA-sentence
α(F0).

Formalization of the algorithm α. To formalize
the algorithm α, we have implemented it in the func-
tional programming language O’Caml (Section 11.3).2

As an illustration, when we run the implementation on
the BAPA formula in Figure 3 which represents a verifi-
cation condition, we immediately obtain the PA formula
in Figure 9. Note that the structure of the resulting for-
mula mimics the structure of the original formula: ev-
ery set quantifier is replaced by the corresponding block
of quantifiers over non-negative integers constrained to
partition the previously introduced integer variables.
Figure 10 presents the correspondence between the set
variables of the BAPA formula and the integer variables
of the translated PA formula. Note that the relation-
ship content′ = content ∪ e translates into the conjunc-
tion of the constraints |content′ ∩ (content ∪ e)c| = 0
∧ |(content ∪ e) ∩ content′

c| = 0, which reduces to the
conjunction l100 = 0 ∧ l011 + l001 + l010 = 0 using the
translation of set expressions into the disjoint union of
partitions, and the correspondence in Figure 10.

The subsequent sections explore further conse-
quences of the existence of the algorithm α, including
an upper bound on the computational complexity of
BAPA sentences and the combination of BA with proper
extensions of PA.

6 Complexity

In this section we analyze the algorithm α from Sec-
tion 5.4 and obtain space and time bounds on BAPA

from the corresponding space and time bounds for PA.

2The implementation is available from
http://www.cag.lcs.mit.edu/~vkuncak/artifacts/bapa/.
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general relationship:

li1,...,ik
= |seti1q ∩ set

i2
q+1 ∩ . . . ∩ set

ik
S |

q = S − (k − 1), S − number of set variables

in this example:

set1 = content′

set2 = content

set3 = e

l000 = |content′c ∩ contentc ∩ ec|
l001 = |content′

c ∩ contentc ∩ e|
l010 = |content′

c ∩ content ∩ ec|
l011 = |content′

c ∩ content ∩ e|
l100 = |content′ ∩ contentc ∩ ec|
l101 = |content′ ∩ contentc ∩ e|
l110 = |content′ ∩ content ∩ ec|
l111 = |content′ ∩ content ∩ e|

Figure 10: The Correspondence between Integer Vari-
ables in Figure 9 and Set Variables in Figure 3

We then show that the new decision procedure meets
the optimal worst-case bounds for Boolean algebras if
applied to purely Boolean algebra formulas. Moreover,
by construction, our procedure reduces to the proce-
dure for Presburger arithmetic formulas if there are no
set quantifiers. In summary, our decision procedure is
optimal for BA, does not impose any overhead for pure
PA formulas, and the complexity of the general BAPA

validity is not much worse than the complexity of PA

itself.

6.1 An Elementary Upper Bound

We next show that the algorithm in Section 5.4 trans-
forms a BAPA sentence F0 into a PA sentence whose
size is at most one exponential larger and which has
the same number of quantifier alternations.

If F is a formula in prenex form, let size(F ) de-
note the size of F , and let alts(F ) denote the num-
ber of quantifier alternations in F . Define the iterated
exponentiation function expk(x) by exp0(x) = x and
expk+1(x) = 2expk(x). We have the following lemma.

Lemma 4 For the algorithm α from Section 5.4 there
is a constant c > 0 such that

size(α(F0)) ≤ 2c·size(F0)

alts(α(F0)) = alts(F0)

Moreover, the algorithm α runs in 2O(size(F0)) space.

Proof. To gain some intuition on the size of α(F0)
compared to the size of F0, compare first the formula
in Figure 9 with the original formula in Figure 3. Let
n denote the size of the initial formula F0 and let S be
the number of set variables. Note that the following op-
erations are polynomially bounded in time and space:
1) transforming a formula into prenex form, 2) trans-
forming relations b1 = b2 and b1 ⊆ b2 into the form

|b| = 0. Introducing set variables for each partition
and replacing each |b| with a sum of integer variables
yields formula G1 whose size is bounded by O(n2SS)
(the last S factor is because representing a variable from
the set of K variables requires space logK). The sub-
sequent transformations introduce the existing integer
quantifiers, whose size is bounded by n, and introduce
additionally 2S−1 + . . . + 2 + 1 = 2S − 1 new integer
variables along with the equations that define them.
Note that the defining equations always have the form
l′i = l2i−1+l2i and have size bounded by S. We therefore
conclude that the size of α(F0) is O(nS(2S + 2S)) and
therefore O(nS2S), which is certainly O(2cn) for any
c > 1. Moreover, note that we have obtained a more
precise bound O(nS2S) indicating that the exponential
explosion is caused only by set variables. Finally, the
fact that the number of quantifier alternations is the
same in F0 and α(F0) is immediate because the algo-
rithm replaces one set quantifier with a block of corre-
sponding integer quantifiers.

We next consider the worst-case space bound on
BAPA. Recall first the following bound on space com-
plexity for PA.

Fact 2 [17, Chapter 3] The validity of a PA sentence
of length n can be decided in space exp2(O(n)).

From Lemma 4 and Fact 2 we conclude that the validity
of BAPA formulas can be decided in space exp3(O(n)).
It turns out, however, that we obtain better bounds on
BAPA validity by analyzing the number of quantifier
alternations in BA and BAPA formulas.

Fact 3 [40] The validity of a PA sentence of length n
and the number of quantifier alternations m can be de-

cided in space 2nO(m)

.

From Lemma 4 and Fact 3 we obtain our space upper
bound, which implies the upper bound on deterministic
time.

Theorem 5 The validity of a BAPA sentence of length
n and the number of quantifier alternations m can be
decided in space exp2(O(mn)), and, consequently, in de-
terministic time exp3(O(mn)).

If we approximate quantifier alternations by formula
size, we conclude that BAPA validity can be decided in
space exp2(O(n2)) compared to exp2(O(n)) bound for
Presburger arithmetic from Fact 2. Therefore, despite
the exponential explosion in the size of the formula in
the algorithm α, thanks to the same number of quan-
tifier alternations, our bound is not very far from the
bound for Presburger arithmetic.
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6.2 Boolean Algebras as a Special Case

We next analyze the result of applying the algorithm
α to a pure BA sentence F0. By a pure BA sentence
we mean a BA sentence without cardinality constraints,
containing only the standard operations ∩,∪, c and the
relations ⊆,=. At first, it might seem that the al-
gorithm α is not a reasonable approach to deciding
pure BA formulas given that the best upper bounds for
PA are worse than the corresponding bounds for BA.
However, we identify a special form of PA sentences
PABA = {α(F0) | F0 is in pure BA} and show that such
sentences can be decided in 2O(n) space, which is op-
timal for Boolean algebras [25]. Our analysis shows
that using binary representations of integers that cor-
respond to the sizes of sets achieves a similar effect to
representing these sets as bitvectors, although the two
representations are not identical.

Let S be the number of set variables in the initial for-
mula F0 (recall that set variables are the only variables
in F0). Let l1, . . . , lq be the set of free variables of the
formula Gr(l1, . . . , lq); then q = 2e for e = S+1−r. Let
w1, . . . , wq be integers specifying the values of l1, . . . , lq.
We then have the following lemma.

Lemma 6 For each r where 1 ≤ r ≤ S the truth
value of Gr(w1, . . . , wq) is equal to the the truth value
of Gr(w̄1, . . . , w̄q) where w̄i = min(wi, 2

r−1).

Proof. We prove the claim by induction. For r = 1,
observe that the translation of a quantifier-free part of
the pure BA formula yields a PA formula F1 whose all
atomic formulas are of the form li1 + . . . + lik

= 0,

which are equivalent to
∨k

j=1 lij
= 0. Therefore, the

truth-value of F1 depends only on whether the integer
variables are zero or non-zero, which means that we may
restrict the variables to interval [0, 1].

For the inductive step, consider the elimination of a
set variable, and assume that the property holds for Gr

and for all q tuples of non-negative integers w1, . . . , wq.
Let q′ = q/2 and w′

1, . . . , w
′
q′ be a tuple of non-negative

integers. We show that Gr+1(w
′
1, . . . , w

′
q′) is equivalent

to Gr+1(w̄
′
1, . . . , w̄

′
q′ ).

Suppose first that Gr+1(w̄
′
1, . . . , w̄

′
q′ ) holds. Then

for each w′
i there are w2i−1 and w2i such that w̄′

i =
u2i−1 + u2i and Gr(u1, . . . , uq). We define witnesses
w1, . . . , wq as follows. If w′

i ≤ 2r, then let w2i−1 = u2i−1

and w2i = u2i. If w′
i > 2r then either u2i−1 >

2r−1 or u2i > 2r−1 (or both). If u2i−1 > 2r−1,
then let w2i−1 = w′

i − u2i and w2i = u2i. Note
that Gr(. . . , w2i−1, . . .) ⇐⇒ Gr(. . . , u2i−1, . . .) ⇐⇒
Gr(. . . , 2

r−1, . . .) by induction hypothesis because both
u2i−1 > 2r−1 and w2i−1 > 2r−1. For w1, . . . , wq cho-
sen as above we therefore have w′

i = w2i−1 + w2i and
Gr(w1, . . . , wq), which by definition of Gr+1 means that
Gr+1(w

′
1, . . . , w

′
q′) holds.

Conversely, suppose that Gr+1(w
′
1, . . . , w

′
q′ ) holds.

Then there are w1, . . . , wq such that Gr(w1, . . . , wq) and
w′

i = w2i−1 + w2i. If w2i−1 ≤ 2r−1 and w2i ≤ w2i

then w′
i ≤ 2r so let u2i−1 = w2i−1 and u2i = w2i. If

w2i−1 > 2r−1 and w2i > w2i then let u2i−1 = 2r−1 and
u2i = 2r−1. If w2i−1 > 2r−1 and w2i ≤ 2r−1 then
let u2i−1 = 2r − w2i and u2i = w2i. By induction
hypothesis we have Gr(u1, . . . , uq) = Gr(w1, . . . , wq).
Furthermore, u2i−1 +u2i = w̄′

i, so Gr+1(w̄
′
1, . . . , w̄

′
q′) by

definition of Gr+1.

Now consider a formula F0 of size n with S free vari-
ables. Then α(F0) = GS+1. By Lemma 4, size(α(F0))
is O(nS2S). By Lemma 6, it suffices for the outer-
most variable k to range over the integer interval [0, 2S ],
and the range of subsequent variables is even smaller.
Therefore, the value of each of the 2S+1−1 variables can
be represented in O(S) space, which is the same order
of space used to represent the names of variables them-
selves. This means that evaluating the formula α(F0)
can be done in the same space O(nS2S) as the size of
the formula. Representing the valuation assigning val-
ues to variables can be done in O(S2S) space, so the
truth value of the formula can be evaluated in O(nS2S)
space, which is certainly 2O(n). We obtain the following
theorem.

Theorem 7 If F0 is a pure BA formula with S vari-
ables and of size n, then the truth value of α(B0) can
be computed in O(nS2S) and therefore 2O(n) space.

7 Allowing Infinite Sets

We next sketch the extension of our algorithm α (Sec-
tion 5.4) to the case when the universe of the structure
may be infinite, and the underlying language has the
ability to distinguish between finite and infinite sets.
Infinite sets are useful in program analysis for modelling
pools of objects such as those arising in dynamic object
allocation.

We generalize the language of BAPA and the inter-
pretation of BAPA operations as follows.

1. Introduce unary predicate fin(b) which is true iff
b is a finite set. The predicate fin(b) allows us to
generalize our algorithm to the case of infinite uni-
verse, and additionally gives the expressive power
to distinguish between finite and infinite sets. For
example, using fin(b) we can express bounded quan-
tification over finite or over infinite sets.

2. Define |b| to be the integer zero if b is infinite, and
the cardinality of b if b is finite.

3. Introduce propositional variables denoted by let-
ters such as p, q, and quantification over proposi-
tional variables. Extend also the underlying PA
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formulas with propositional variables, which is ac-
ceptable because a variable p can be treated as a
shorthand for an integer from {0, 1} if each use of
p as an atomic formula is interpreted as the atomic
formula (p = 1). Our extended algorithm uses the
equivalences fin(b)⇔ p to represent the finiteness of
sets just as it uses the equations |b| = l to represent
the cardinalities of finite sets.

4. Introduce a propositional constant FINU such that
fin(U)⇔FINU. This propositional constant en-
ables equivalence preserving quantifier elimination
over the set of models that includes both models
with finite universe U and the models with infinite
universe U .

Denote the resulting extended language BAPA∞.
The following lemma generalizes Lemma 1 for the

case of equalities.

Lemma 8 Let b1, . . . , bn be disjoint sets,
l1, . . . , ln, k1, . . . , kn be natural numbers, and
p1, . . . , pn, q1, . . . , qn be propositional values. Then
the following two statements are equivalent:

1. There exists a set y such that

n̂

i=1

|bi ∩ y| = ki ∧ (fin(bi ∩ y)⇔ pi) ∧
|bi ∩ y

c| = li ∧ (fin(bi ∩ y
c)⇔ qi)

(19)

2.

n̂

i=1

(pi ∧ qi ⇒ |bi| = ki + li) ∧
(fin(bi)⇔(pi ∧ qi))

(20)

Proof. (⇒) Suppose that there exists a set y sat-
isfying (19). From bi = (bi ∩ y) ∪ (bi ∩ yc), we have
fin(bi)⇔(pi ∧ qi). Furthermore, if pi and qi hold,
then both bi ∩ y and bi ∩ yc are finite so the relation
|bi| = |bi ∩ y| + |bi ∩ yc| holds.

(⇐) Suppose that (20) holds. For each i we choose a
subset yi ⊆ bi, depending on the truth values of pi and
qi, as follows.

1. If both pi and qi are true, then fin(bi) holds, so
bi is finite. Choose yi as any subset of bi with
ki elements, which is possible since bi has ki + li
elements.

2. If pi does not hold, but qi holds, then fin(bi) does
not hold, so bi is infinite. Choose y′i as any finite
set with li elements and let yi = bi \ y′i be the
corresponding cofinite set.

3. Analogously, if pi holds, but qi does not hold, then
bi is infinite; choose yi as any finite subset of bi
with ki elements.

4. If pi and qi are both false, then bi is also infinite;
every infinite set can be written as a disjoint union
of two infinite sets, so let yi be one such set.

Let y =
⋃n

i=1 yi. As in the proof of Lemma 1, we have
bi∩y = yi and bi∩y

c = yc
i . By construction of y1, . . . , yn

we conclude that (19) holds.

The algorithm α for BAPA∞ is analogous to the al-
gorithm for BAPA. In each step, the new algorithm
maintains a formula of the form

Qpvp . . . Qrvr.

∃+l1 . . . lq. ∃p1 . . . pq.

(
Vq

i=1 |si| = li ∧ (fin(si)⇔ pi)) ∧ Gr

As in Section 5.4, the algorithm eliminates an integer
quantifier ∃k by lettingGr+1 = ∃k.Gr and eliminates an
integer quantifier ∀k by letting Gr+1 = ∀k.Gr. Further-
more, just as the algorithm in Section 5.4 uses Lemma 1
to reduce a set quantifier to integer quantifiers, the new
algorithm uses Lemma 8 for this purpose. The algo-
rithm replaces

∃y. ∃+l1 . . . lq . ∃p1 . . . pq.

(
Vq

i=1 |si| = li ∧ (fin(si)⇔ pi)) ∧ Gr

with

∃+l′1 . . . l
′
q′ . ∃p

′
1 . . . p

′
q′ .

(
Vq′

i=1 |s
′
i| = l′i ∧ (fin(s′i)⇔ p′i)) ∧ Gr+1

for q′ = q/2, and

Gr+1 ≡ ∃+l1 . . . lq. ∃p1, . . . , pq.
“

Vq′

i=1 (p2i−1 ∧ p2i ⇒ l′i = l2i−1 + l2i) ∧

(p′i ⇔(p2i−1 ∧ p2i))
”

∧ Gr

For the quantifier ∀y the algorithm analogously gener-
ates

Gr+1 ≡ ∀+l1 . . . lq. ∀p1, . . . , pq.
“

Vq′

i=1 (p2i−1 ∧ p2i ⇒ l′i = l2i−1 + l2i) ∧

(p′i ⇔(p2i−1 ∧ p2i))
”

⇒ Gr

After eliminating all quantifiers, the algorithm ob-
tains a formula of the form ∃+l.∃p. |U| = l ∧
(fin(U)⇔ p) ∧ Gp+1(l, p). We define the result of the
algorithm to be the PA sentence Gp+1(MAXC,FINU).

This completes our description of the generalized al-
gorithm α for BAPA∞. The complexity analysis from
Section 6 also applies to the generalized version. We
also note that our algorithm yields an equivalent for-
mula over any family of models. A sentence is valid in
a set of models iff it is valid on each model. There-
fore, the validity of a BAPA∞ sentence F0 is given by
applying to the formula α(F0)(MAXC,FINU) a form of
universal quantifier over all pairs (MAXC,FINU) that
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determine the characteristics of the models in question.
For example, for the validity over the models with in-
finite universe we use α(F0)(0, false), for validity over
all finite models we use ∀k.α(F0)(k, true), and for the
validity over all models we use the PA formula

α(F0)(0, false) ∧ ∀k.α(F0)(k, true).

We therefore have the following result, which answers a
generalized version of the question left open in [57].

Theorem 9 The algorithm above effectively reduces
the validity of BAPA∞ sentences to the validity of Pres-
burger arithmetic formulas with the same number of
quantifier alternations, and the increase in formula size
exponential in the number of set variables; the reduction
works for each of the following: 1) the set of all models,
2) the set of models with infinite universe only, and 3)
the set of all models with finite universe.

8 Relationship with MSOL over Strings

The monadic second-order logic (MSOL) over strings
is a decidable logic that can encode Presburger arith-
metic by encoding addition using one successor symbol
and quantification over sets. This logic therefore simul-
taneously supports sets and integers, so it is natural to
examine its relationship with BAPA. It turns out that
there are two important differences between MSOL over
strings and BAPA:

1. BAPA can express relationships of the form |A| =
k where A is a set variable and k is an integer
variable; such relation is not definable in MSOL
over strings.

2. In MSOL over strings, the sets contain integers as
elements, whereas in BAPA the sets contain unin-
terpreted elements.

Given these differences, a natural question is to con-
sider the decidability of an extension of MSOL that al-
lows stating relations |A| = k where A is a set of inte-
gers and k is an integer variable. Note that by saying
∃k.|A| = k∧|B| = k we can express |A| = |B|, so we ob-
tain MSOL with equicardinality constraints. However,
extensions of MSOL over strings with equicardinality
constraints are known to be undecidable; we review
some reductions in Section 11.2. Undecidability results
such as these are what perhaps led to the conjecture
that BAPA itself is undecidable [57, Page 12]. In this
paper we have shown that BAPA is, in fact, decidable
and has an elementary decision procedure. Moreover,
we next present a combination of BA with MSOL over
n-successors that is still decidable.

8.1 Decidability of MSOL with Cardinalities

on Uninterpreted Sets

Consider the multisorted language BAMSOL defined
as follows. First, BAMSOL contains all relations of
monadic second-order logic of n-successors, whose vari-
ables range over strings over an n-ary alphabet and sets
of such strings. Second, BAMSOL contains sets of un-
interpreted elements and boolean algebra operations on
them. Third, BAMSOL allows stating relationships of
the form |x| = k where x is a set of uninterpreted ele-
ments and k is a string representing a natural number.
Because all PA operations are definable in MSOL of 1-
successor, the algorithm α applies in this case as well.
Indeed, the algorithm α only needs a “lower bound”
on the expressive power of the theory of integers that
BA is combined with: the ability to state constraints
of the form l′i = l2i−1 + l2i, and quantification over in-
tegers. Therefore, applying α to a BAMSOL formula
results in an MSOL formula. This shows that BAMSOL

is decidable and can be decided using a combination of
algorithm α and tool such as [24]. By Lemma 4, the
decision procedure for BAMSOL based on translation
to MSOL has upper bound of expn(O(n)) using a deci-
sion procedure such as [24] based on tree automata [11].
The corresponding non-elementary lower bound follows
from the lower bound on MSOL itself [48].

9 Related Work

Presburger arithmetic. The original result on de-
cidability of Presburger arithmetic is [37] (see [51, Page
24] for review). This decision procedure was improved
in [12] and subsequently in [36]. The best known bound
on formula size is obtained using bounded model prop-
erty techniques [17]. An analysis based on the num-
ber of quantifier alternations is presented in [40]. [8]
presents a proof-generating version of [12]. The omega
test as a decision procedure for Presburger arithmetic
is described in [39]. [38] describes how to compute the
number of satisfying assignments to free variables in a
Presburger arithmetic formula, and describes the appli-
cations for computing those numbers for the purpose of
program analysis and optimization. Some bounds on
quantifier-elimination procedures for Presburger arith-
metic are presented in [52]. Automata-theoretic [24, 6]
and model checking approaches [20, 46] can also be used
to decide Presburger arithmetic and its fragments.

Boolean Algebras. The first results on decidability
of Boolean algebras are from [47, 32, 50], [1, Chapter
4] and use quantifier elimination, from which one can
derive small model property; [25] gives the complexity
of the satisfiability problem. [7] gives an overview of
several fragments of set theory including theories with
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quantifiers but no cardinality constraints and theories
with cardinality constraints but no quantification over
sets.

Combinations of Decidable Theories. The tech-
niques for combining quantifier-free theories [35, 42] and
their generalizations such as [55, 56] are of great im-
portance for program verification. This paper shows
a particular combination result for quantified formulas,
which add additional expressive power in writing spec-
ifications. Among the general results for quantified for-
mulas are the Feferman-Vaught theorem for products
[16], and term powers [27, 28].

Our decidability result is inspired by [57] which gives
a solution for the combination of Presburger arithmetic
with a notion of sets and quantification of elements,
and conjectures that adding the quantification over sets
leads to an undecidable theory. The results of this paper
prove that the conjecture is false and give an elementary
upper bound on the complexity of the combined theory.

We note that [16, Section 8, Page 90] presents the
decidability of the first-order theory of a single-sorted
variant of BAPA, where the domain is the set of all
subsets of some (potentially infinite) set, and the struc-
ture contains the equicardinality operator, as suggested
in Section 5.1. 3 Compared to [16], we identify the
importance of the problem for static program analy-
sis, provide a formalized algorithm in a functional pro-
gramming language, and analyze the complexity of the
algorithm.

Analyses of Dynamic Data Structures. Our new
decidability result enables verification tools to reason
about sets and their sizes. This capability is partic-
ularly important for analyses that handle dynamically
allocated data structures where the number of objects
is statically unbounded [30, 31, 29, 54, 53, 43, 44]. Re-
cently, these approaches were extended to handle the
combinations of the constraints representing data struc-
ture contents and constraints representing numerical
properties of data structures [43, 10]. Our result pro-
vides a systematic mechanism for building precise and
predictable versions of such analyses.

10 Conclusion

Motivated by static analysis and verification of rela-
tions between data structure content and size, we have
introduced the first-order theory of Boolean algebras
with Presburger arithmetic (BAPA), established its de-
cidability, presented a decision procedure via reduction
to Presburger arithmetic, and showed an elementary
upper bound on the worst-case complexity. We expect
that our decidability result will play a significant role

3We thank Alexis Bes for pointing out the relevance of the
Section 8 of [16] in November 2004.

in verification of programs [35, 14, 18, 5], especially for
programs that manipulate dynamically changing sets of
objects [30, 31, 29, 54, 53, 43, 44].
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11 Appendix

11.1 Quantifier Elimination for PA

For completeness, this section reviews a procedure for
quantifier elimination in Presburger arithmetic. For ex-
pository purposes we present a version of the quanti-
fier elimination procedure that first transforms the for-
mula into disjunctive normal form. The transforma-
tion to disjunctive normal form can be avoided, as ob-
served in [12, 36, 40]. However, our results in Section 5
can be used with other variations of the quantifier-
elimination for Presburger arithmetic, and can be for-
mulated in such a way that they not only do not depend
on the technique for quantifier elimination for Pres-
burger arithmetic, but do not depend on the technique
for deciding Presburger arithmetic at all, allowing the
use of automata-theoretic [24] and model checking tech-
niques [20].

Figure 11 presents the syntax of Presburger arith-
metic formulas. We interpret formulas over the struc-
ture of integers, with the standard interpretation of log-
ical connectives, quantifiers, irreflexive total order on
integers, addition, subtraction, and constants. We al-
low multiplication by a constant only (the case C · T
in Figure 11), which is expressible using addition and
subtraction. If c is a constant and t is a term, the no-
tation c dvd t denotes that c divides t i.e., t mod c = 0.
We assume that c > 0 in each formula c dvd t.

We review a simple algorithm for deciding Pres-
burger arithmetic inspired by [37], [51, Page 24], [12].

The algorithm we present eliminates an existential
quantifier from a conjunction of literals in the language
of Figure 11, which suffices by Section 4.1. Note first
that we may eliminate all equalities t1 = t2 because

t1 = t2 ⇐⇒ (t1 < t2 + 1) ∨ (t2 < t1 + 1)

Next, we have ¬(t1 < t2) ⇐⇒ t2 < t1 + 1 and

¬(c dvd t) ⇐⇒
c−1
_

i=1

c dvd t+i

which means that it suffices to consider the elimina-
tion of an existential quantifier from the formula of
the form

∧n
i=1A where each A is an atomic formula

of the form t1 < t2 or of the form c dvd t. Each of
the terms t1, t2, t is linear, so we can write it in the
form c0 +

∑k
i=1 cixi. Consequently, we may transform

the atomic formulas into forms 0 < c0 +
∑k

i=1 cixi and

c dvd c0 +
∑k

i=1 cixi. Consider an elimination of an ex-
istential quantifier ∃x from a conjunction of such atomic
formulas. Let c1, . . . , cp be the coefficients next to x
in the conjuncts and let M > 0 be the least common
multiple of c1, . . . , cp. Multiply each atomic formula
of the form 0 < cix + t by M/|ci|, and multiply each
atomic formula of the form c dvd cix+ t by M/ci (yield-
ing Mc dvdMx+ (M/ci)t). The result is an equivalent
conjunction of formulas with the property that, in each
conjunct, the coefficient next to x is M or −M . The
conjunction is therefore of the form F0(Mx) for some
formula F0. The formula ∃x.F0(Mx) is equivalent to
the formula ∃y.(F0(y) ∧M dvd y). By moving x to the
left-hand side if its coefficient is −1 in the term t of
each atomic formula 0 < t, replacing c dvd−y + t by
c dvd y − t, and renaming y as x, it remains to elimi-
nate an existential quantifier from ∃x.F (x) where

F (x) ≡

q
^

i=1

x < ai ∧

p
^

i=1

bi < x ∧
r̂

i=1

ci dvdx+ ti

where x does not occur in any of ai, bi, ti. Let N be the
least common multiple of c1, . . . , cr. Clearly, if x = u
is a solution of F1(x) ≡

∧r
i=1 ci dvdx+ ti, then so is

x = u + Nk for every integer k. If p = 0 and q =
0 then ∃y.F (y) is equivalent to e.g.

∧N
i=1 F (i), which

eliminates the quantifier. Otherwise, suppose that p >
0 (the case q > 0 is analogous, and if p > 0 and q >
0 then both are applicable). Suppose for a moment
that we are given an assignment to free variables of
∃x.F (x). Then the formula ∃x.F (x) is equivalent to∨

u F1(u) where u ranges over the elements u such that

max(b1, . . . , bp) < u < min(a1, . . . , aq)

Let b = max(b1, . . . , bp). Then ∃x.F (x) is equivalent to
∨N

i=1 F (b+ i). Namely, if a solution exists, it must be of
the form b+ i for some i > 0, and it suffices to check N
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consecutive numbers as argued above. Of course, we do
not know the assignment to free variables of ∃x.F (x), so
we do not know for which bi we have b = bi. However,
we can check all possibilities for bi. We therefore have
that ∃y.F (y) is equivalent to

p
_

j=1

N
_

i=1

F (bj + i)

This completes the sketch of the quantifier elimination
for Presburger arithmetic. We obtain the following re-
sult.

Fact 4 For every first-order formula φ in the language
of Presburger arithmetic of Figure 11 there exists a
quantifier-free formula ψ such that ψ is a disjunction
of conjunctions of literals, the free variables of ψ are a
subset of the free variables of φ, and ψ is equivalent to
φ over the structure of integers.

11.2 Undecidability of MSOL of Integer Sets

with Cardinalities

We first note that there is a reduction from the Post
Correspondence Problem that shows the undecidabil-
ity of MSOL with equicardinality constraints. Namely,
we can represent binary strings by finite sets of natural
numbers. In this encoding, given a position, MSOL it-
self can easily express the local property that, at a given
position, a string contains a given finite substring. The
equicardinality gives the additional ability of finding an
n-th element of an increasing sequence of elements. To
encode a PCP instance, it suffices to write a formula
checking the existence of a string (represented as set A)
and the existence of two increasing sequences of equal
length (represented by sets U andD), such that for each
i, there exists a pair (aj , bj) of PCP instance such that
the position starting at Ui contains the constant string
aj , and Ui+1 = Ui + |aj|, and similarly the position
starting at Di contains bj and Di+1 = Di + |bj |.

The undecidability of MSOL over strings extended
with equicardinality can also be shown by encoding mul-
tiplication of natural numbers. Given A = {1, 2, ..., x}
and B = {1, 2, ..., y}, we can define a set the set
C = {x, 2x, ...y · x} as the set with the same number
of elements as B, that contains x, and that is closed
under unary operation z 7→ z + y. Therefore, if we
represent a natural number n as the set {1, . . . , n}, we
can define both multiplication and addition of integers.
This means that we can write formulas whose satisfia-
bility answers the existence of solutions of Diophantine
equations, which is undecidable by [33]. A similar re-
duction to a logic that does not even have quantification
over sets is presented in [57].

11.3 O’Caml source code of algorithm α

(* -------------------------------------------- *)

(* datatype of formulas *)

(* -------------------------------------------- *)

type ident = string

type binder = | Forallset | Existsset

| Forallint | Existsint

| Forallnat | Existsnat

type form =

| Not of form

| And of form list

| Or of form list

| Impl of form * form

| Bind of binder * ident * form

| Less of intTerm * intTerm

| Inteq of intTerm * intTerm

| Seteq of setTerm * setTerm

| Subseteq of setTerm * setTerm

and intTerm =

| Intvar of ident

| Const of int

| Plus of intTerm list

| Minus of intTerm * intTerm

| Times of int * intTerm

| Card of setTerm

and setTerm =

| Setvar of ident

| Emptyset

| Fullset

| Complement of setTerm

| Union of setTerm list

| Inter of setTerm list

let maxcard = "MAXC"

(* -------------------------------------------- *)

(* algorithm \alpha *)

(* -------------------------------------------- *)

(* replace Seteq and Subseteq with Card(...)=0 *)

let simplify_set_relations (f:form) : form =

let rec sform f = match f with

| Not f -> Not (sform f)

| And fs -> And (List.map sform fs)

| Or fs -> Or (List.map sform fs)

| Impl(f1,f2) -> Impl(sform f1,sform f2)

| Bind(b,id,f1) -> Bind(b,id,sform f1)

| Less(it1,it2) -> Less(siterm it1, siterm it2)

| Inteq(it1,it2) -> Inteq(siterm it1,siterm it2)

| Seteq(st1,st2) -> And[sform (Subseteq(st1,st2));

sform (Subseteq(st2,st1))]

| Subseteq(st1,st2) -> Inteq(Card(Inter[st1;Complement st2]),Const 0)

and siterm it = match it with

| Intvar _ -> it

| Const _ -> it

| Plus its -> Plus (List.map siterm its)

| Minus(it1,it2) -> Minus(siterm it1, siterm it2)

| Times(k,it1) -> Times(k,siterm it1)

| Card st -> it

in sform f

(* split f into quantifier sequence and body *)

let split_quants_body f =

let rec vl f acc = match f with

| Bind(b,id,f1) -> vl f1 ((b,id)::acc)

| f -> (acc,f)

in vl f []

(* extract set variables from quantifier sequence *)

let extract_set_vars quants =

List.map (fun (b,id) -> id)

(List.filter (fun (b,id) -> (b=Forallset || b = Existsset))

quants)

type partition = (ident * setTerm) list

(* make canonical name for integer variable naming a cube *)

let make_name sts =

let rec mk sts = match sts with

| [] -> ""

| (Setvar _)::sts1 -> "1" ^ mk sts1

| (Complement (Setvar _))::sts1 -> "0" ^ mk sts1

| _ -> failwith "make_name: unexpected partition form"

in "l_" ^ mk sts

(* make all cubes over vs *)

let generate_partition (vs : ident list) : partition =

let add id ss = (Setvar id)::ss in

let addc id ss = Complement (Setvar id)::ss in

let add_set id inters =

List.map (add id) inters @

List.map (addc id) inters in

let mk_nm is = (make_name is, Inter is) in

List.map mk_nm

(List.map List.rev

(List.fold_right add_set vs [[]]))

(* is the set term true in the set valuation

-- reduces to propositional reasoning *)

let istrue (st:setTerm) (id,ivaluation) : bool =

let valuation = match ivaluation with

| Inter v -> v

| _ -> failwith "wrong valuation" in
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let lookup v =

if List.mem (Setvar v) valuation then true

else if List.mem (Complement (Setvar v)) valuation then false

else failwith "istrue: unbound var in valuation" in

let rec check st = match st with

| Setvar v -> lookup v

| Emptyset -> false

| Fullset -> true

| Complement st1 -> not (check st1)

| Union sts -> List.fold_right (fun st1 t -> check st1 || t) sts false

| Inter sts -> List.fold_right (fun st1 t -> check st1 && t) sts true

in check st

(* compute cardinality of set expression

as a sum of cardinalities of cubes *)

let get_sum (p:partition) (st:setTerm) : intTerm list =

let get_list (id,inter) = match inter with

| Inter ss -> ss

| _ -> failwith "failed inv in get_sum"

in

List.map (fun (id,inter) -> Intvar id)

(List.filter (istrue st) p)

(* replace cardinalities of sets with sums of

variables denoting cube cardinalities *)

let replace_cards (p:partition) (f:form) : form =

let rec repl f = match f with

| Not f -> Not (repl f)

| And fs -> And (List.map repl fs)

| Or fs -> Or (List.map repl fs)

| Impl(f1,f2) -> Impl(repl f1,repl f2)

| Bind(b,id,f1) -> Bind(b,id,repl f1)

| Less(it1,it2) -> Less(irepl it1,irepl it2)

| Inteq(it1,it2) -> Inteq(irepl it1,irepl it2)

| Seteq(_,_)|Subseteq(_,_) -> failwith "failed inv in replace_cards"

and irepl it = match it with

| Intvar _ -> it

| Const _ -> it

| Plus its -> Plus (List.map irepl its)

| Minus(it1,it2) -> Minus(irepl it1, irepl it2)

| Times(k,it1) -> Times(k, irepl it1)

| Card st -> Plus (get_sum p st)

in repl f

let apply_quants quants f =

List.fold_right (fun (b,id) f -> Bind(b,id,f)) quants f

let make_defining_eqns id part =

let rec mk ps = match ps with

| [] -> []

| (id1,Inter (st1::sts1)) :: (id2,Inter (st2::sts2)) :: ps1

when (st1=Setvar id && st2=Complement (Setvar id) && sts1=sts2) ->

(Inter sts1,make_name sts1,id1,id2) :: mk ps1

| _ -> failwith "make_triples: unexpected partition form" in

let rename_last lss = match lss with

| [(s,l,l1,l2)] -> [(s,maxcard,l1,l2)]

| _ -> lss in

rename_last (mk part)

(* -------------------------- *)

(* main loop of the algorithm *)

(* -------------------------- *)

let rec eliminate_all quants part gr = match quants with

| [] -> gr

| (Existsint,id)::quants1 ->

eliminate_all quants1 part (Bind(Existsint,id,gr))

| (Forallint,id)::quants1 ->

eliminate_all quants1 part (Bind(Forallint,id,gr))

| (Existsnat,id)::quants1 ->

eliminate_all quants1 part (Bind(Existsnat,id,gr))

| (Forallnat,id)::quants1 ->

eliminate_all quants1 part (Bind(Forallnat,id,gr))

| (Existsset,id)::quants1 ->

let eqns = make_defining_eqns id part in

let newpart = List.map (fun (s,l’,_,_) -> (l’,s)) eqns in

let mk_conj (_,l’,l1,l2) = Inteq(Intvar l’,Plus[Intvar l1;Intvar l2]) in

let conjs = List.map mk_conj eqns in

let lquants = List.map (fun (l,_) -> (Existsnat,l)) part in

let gr1 = apply_quants lquants (And (conjs @ [gr])) in

eliminate_all quants1 newpart gr1

| (Forallset,id)::quants1 ->

let eqns = make_defining_eqns id part in

let newpart = List.map (fun (s,l’,_,_) -> (l’,s)) eqns in

let mk_conj (_,l’,l1,l2) = Inteq(Intvar l’,Plus[Intvar l1;Intvar l2]) in

let conjs = List.map mk_conj eqns in

let lquants = List.map (fun (l,_) -> (Forallnat,l)) part in

let gr1 = apply_quants lquants (Impl(And conjs, gr)) in

eliminate_all quants1 newpart gr1

(* putting everything together *)

let alpha (f:form) : form =

(* assumes f in prenex form *)

let (quants,fm) = split_quants_body f in

let fm1 = simplify_set_relations fm in

let setvars = List.rev (extract_set_vars quants) in

let part = generate_partition setvars in

let g1 = replace_cards part fm1 in

eliminate_all quants part g1
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