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designed to apture the linking relationships at a level of preision that makes itpossible to trak the removals and insertions that implement movements betweendata strutures. We realize this goal by providing three mehanisms:1. Role De�nitions: The role de�nitions speify the referening relationshipsfor eah role. For all referenes to an objet o playing a given role, the rolede�nition spei�es the �eld where the referene to o is stored and the role ofthe objet ontaining this referene. On the other hand, for eah refereneoriginating at the objet playing the role, the role de�nitions speify theroles of the objets to whih it refers. The role de�nitions therefore provideomplete heap aliasing information for eah objet at the granularity of roles.2. Role Delarations: The programmer an delare the role of the objet towhih eah loal variable or parameter refers. In e�et, these role delara-tions express additional appliation-spei� safety properties not apturedby standard type systems.3. Operation E�ets: The programmer an delare how operations hangethe roles of the objets that they aess, providing useful information aboutthe e�et of eah operation at the granularity of roles.2 ExamplesWe next present several examples that illustrate the role spei�ation language.The �rst example illustrates how roles apture distintions that arise from thesemantis of the underlying appliation domain. The seond example illustrateshow roles apture shape invariants of linked data strutures at suÆient preisionto apture removals (and orresponding insertions) from the data struture.2.1 Airraft ExampleOur �rst example illustrates how roles an apture the distintion between air-raft that are parked at a gate, airraft that are taxiing on the ground, and yingairraft. Eah parked or taxiing airraft is assoiated with an airport, with theground ontrollers at the airport responsible for its movements. Flying airraftare not assoiated with a spei� airport; instead, the ontrollers at a ontrolenter are responsible for its ight path.Airraft are represented in the system by instanes of the Airraft lass fromFigure 1. Eah Airraft objet has two instane variables:  is its ontrol enterwhen it is ying, and ap is its airport when it is parked or taxiing. Figure 1 alsopresents the de�nitions of the roles that Airraft objets an play. The Parkedand Taxiing role de�nitions speify that the ap �eld of eah Parked and Taxiingairraft refers to a spei�, non-null Airport objet where the airraft is loated.The  �eld is null for objets playing these roles, as an airport is ontrollingthese airraft.Coneptually, eah role has a set of slots �lled by inoming referenes fromother objets; the role de�nitions speify the number of slots and the roles and



�elds of the referenes that may �ll eah slot. In our example, eah Parkedairraft has an inoming slot �lled by a referene from the Gate objet wherethe airraft is parked; this referene is the only heap referene to a Parkedairraft. Taxiing airraft have a slot �lled by a referene from the runway thatthe airraft is on; this referene is the only heap referene to a Taxiing airraft.The  �eld of Flying airraft refers to a non-null ControlCenter objet thatrepresents the ontrol enter responsible for the airraft's ight plan; the ap �eldis null. Flying airraft have a single slot, �lled by a referene from the ontrollingenter's list of airraft.In addition to the textual representation, Figure 1 presents a graphial repre-sentation of the roles and their referening relationships. Eah box in the piturerepresents either a role or a lass. Arrows with losed heads represent referenesbetween objets, while arrows with open heads represent the partition of a lassinto the roles that objets from that lass an play.lass Airraft {ControlCenter ;Airport ap;}role Parked of Airraft {fields ap: Airport, : null;slots Gate.p;}role Taxiing of Airraft {fields ap: Airport, : null;slots Runway.p;}role Flying of Airraft {fields : ControlCenter, ap: null;slots ControlCenterListNode.airraft;}
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Fig. 1. Airraft Example Role De�nitionsThe developer an use roles to improve the preision of operation interfaes.Figure 2 presents a sample operation on an airraft. The land operation exeuteswhen an airraft lands at an airport. The parameter delarations state thatlanding airraft must be playing the Flying role. The e�ets delarations speifythat ontrol of the landing airraft passes from the ontrol enter to the airport,with the airraft's role hanging from Flying to Taxiing. Other operations(takeoff, pushbak, et.) plae similar requirements on the roles that theirparameters play and have similar e�ets on these roles. From these operations,it is possible to automatially extrat the role transition diagram for Airraftobjets, whih is presented in Figure 3.



void land(Flying p, Runway r, Airport a)effets { p.ap = a; p. = null; r.p = p;roleChange(p : Taxiing); }{ p.ap = a; p. = null; r.p = p;roleChange(p : Taxiing);} Fig. 2. The land Operation
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pushbackFig. 3. Role Transition Diagram for Airraft Objets2.2 Doubly Linked List ExampleThis example illustrates the use of roles with a simple doubly-linked list datastruture. The data struture has a dummy header node followed by some innernodes whih refer to the elements stored in the list. Figure 4 presents the rolede�nitions for the list data strutures. The nodes in the linked list are all objetsof the doubleNode lass, whih has three roles. The dummy header plays thedoubleHeader role, whih requires the header to have a null ontent �eld. Innernodes play the doubleInner role, whih require the inner nodes to have a non-null ontent �eld. An objet playing the doubleNode role an play either thedoubleHeader or doubleInner role. Finally, the soloNode is a node that hasbeen deleted from the list.The role de�nitions for the doubleHeader and doubleInner roles require thenext and prev �elds of objets playing these roles to point to non-null objetsplaying either the doubleHeader or doubleInner role, and that prev.next andnext.prev paths terminate at the objet where they started, i.e., the two linksare inverses. The next and prev �elds of objets playing the soloNode role arenull, and there are no heap referenes to soloNode roles.We next disuss the removal of a node from a doubleNode list. The proedurenavigates the list until it reahes the node to remove or returns bak to the headernode. If it �nds the node to remove, it removes it, hanging the node's role fromdoubleInner to soloNode. The e�ets statement of the remove operation statesthat the operation may set the ontent �eld of one of the nodes in the list tonull and hange the role of a list node to soloNode. The operation may alsoread and write some of the �elds of the nodes in the list.



lass doubleNode {doubleNode next, prev;Element ontent;}role doubleHeader of doubleNode {fields next: doubleHeader | doubleInner,prev: doubleHeader | doubleInner, ontent: null;slots (doubleHeader | doubleInner).prev,(doubleHeader | doubleInner).next;identities prev.next, next.prev;}role doubleInner of doubleNode {fields next: doubleHeader | doubleInner,prev: doubleHeader | doubleInner, ontent: stored;slots (doubleHeader | doubleInner).prev,(doubleHeader | doubleInner).next;identities prev.next, next.prev;}role soloNode of doubleNode {fields next: null, prev: null;slots ;}role stored of Element {slots doubleInter.ontent;}role soloElem of Element {slots ;} Fig. 4. Roles for the Cirular Linked List



void remove(doubleHeader d, stored )effets {read(d.next);(([x, y : d.next*℄ x.* = y;[x : d.next*℄ x.ontent = null; hangeRole(x : soloNode);[x : d.next*℄ read(x.*);hangeRole( : soloElem)) | skip) }{ doubleNode n = d.next;do {if (n.ontent == ) {assert(n : doubleInner);doubleNode nn = n.next, np = n.prev;nn.prev = n.prev; np.next = n.next;n.next = null; n.prev = null;n.ontent = null;hangeRole(n : soloNode);hangeRole( : soloElem);return;}n = n.next;} while (n != d);} Fig. 5. Code for Removing a Node from a Doubly Linked List



3 The Role De�nition LanguageWe next present the full role de�nition language.3.1 Basi ConstraintsThe heart of the role de�nition language is a set of basi onstraints that theprogrammer an use to identify the relationships that de�ne a role. There areseveral kinds of onstraints:Field onstraints: Eah �eld onstraint is of the form�eld : role1j � � � jrolekwhere �eld is the name of a �eld in the objet and role1 through rolek are thenames of roles. If this onstraint appears in the de�nition of a given role, allobjets playing the role have a �eld named �eld that refers to an objet playingone of the roles role1 through rolek.Slot onstraints: Eah role has a number of slots, or inoming referenes.There is a slot onstraint assoiated with eah slot that de�nes the kinds ofreferenes that an �ll the slot. Eah slot onstraint has the formrole1:�eld1 j � � � j rolek:�eldkwhere role1 through rolek are role names and �eld1 through �eldk are �eld names.If a given objet is playing a role whose de�nition ontains this onstraint, theremust exist an i suh that the �eld �eldi in some objet playing role rolei ontainsa referene to the given objet.Identity onstraints: Eah identity onstraint is of the form �eld1:�eld2, where�eld1 and �eld2 are two �eld names. If this onstraint appears in the de�nitionof a given role and an objet o is playing the role, o:�eld1:�eld2 refers bak to o.The standard example is a doubly linked list node l, where l.next.prev = l.Property onstraints: Eah property onstraint onsists of a prediate overthe primitive �elds (integers, booleans, doubles, et.) of the objet. When anobjet satis�es a role whih ontains some property onstraint p, then p mustevaluate to true on this objet. In this way, properties allow the spei�ation ofuser-de�ned abstrations of objet state.Ayliity onstraints: Eah ayliity onstraint is a spei�ation of theform regExp, where regExp is a regular expression over the �eld names. Givenan objet playing the role, this onstraint states that there are no yles in thesubgraph obtained by following paths that 1) start from the given objet and 2)onform to the regular expression.Figure 6 summarizes the syntax for basi role de�nitions.



role r{fields f1 :r11 j r12 j � � � j r1p1 ;� � �fn :rn1 j rn2 j � � � j rnpn ;slots r011:f011 j � � � j r01q1 :f01q1 ;� � �r0m1:f0m1 j � � � j r0mqm :f0mqmidentities f1:g1; : : : ; fk:gk;properties p1; : : : ; pl;ayli regExp1; : : : ; regExpt}Fig. 6. General Form of Basi Role Spei�ation3.2 MultislotsAn objet of basi role with k slots requires exatly k referenes from otherobjets. In some ases an objet may be referred to by a statially undeterminednumber of other objets. This possibility an be spei�ed using multislots.multislots role1:�eld1; : : : ; rolek:�eldk;A multislot allows arbitrary number of referenes of types role1:�eld1 throughrolek:�eldk. All referenes must be distint and they must also to be distintfrom all referenes mentioned in the slots delaration.3.3 Compound RolesAs desribed so far, eah objet plays a single role at any given time, with itsrole hanging over time as it moves between data strutures and its relationshipswith other objets hange. It is also sometimes useful for an objet to playmultiple roles at the same time. For example, an objet may partiipate inboth a linked list and a tree, playing the linked list and tree roles at the sametime. We support this onept by allowing the programmer to de�ne ompoundroles, whih ombine multiple roles into a single new role. Syntatially, theprogrammer delares a ompound role as follows.role r = r1 + : : :+ rn ;The �elds and slots of the role r are the disjoint union of the �elds and slots ofroles r1 through rn. A objet of role r satis�es all identity, property, and ayliityonstraints of roles r1 through rn.



3.4 Parameterized RolesIt is useful to parameterize roles with respet to other roles or with respet toindividual referenes.Role Parameters allow the de�nition of a role to be parametrized by names ofother roles. This is a form of parametri polymorphism for role de�nitions. Forexample, a list an be parametrized by the role of its elements. Role parametersare introdued by < > brakets in the role de�nition. One introdued, roleparameters an be used inside the role de�nition in all plaes where a �xed rolename is expeted. In order to be used as an ordinary role, a parametrized roleneeds to be supplied with atual role arguments, written in < > brakets.role List<T> {fields first : ListNode<T>;}role ListNode<T> {fields next : ListNode<T> | null,elem : T;slots ListNode<T>.next | List<T>.first;}role Airport {fields landed : List<Airraft>;} Fig. 7. Parametrization by RolesReferene Parameters allow role de�nitions to be parametrized by individualreferenes from some objet, where the identity of the objet may not be knownuntil run-time. This allows very �ne-grained role de�nitions, suitable even fordesriptions of nested data strutures. Referene parameters are introdued intorole de�nitions using [ ℄ brakets after the role name. Referene parametersan be used in slots or to instantiate other referene-parametrized roles. Everyreferene-parametrized role must be instantiated with an appropriate number ofreferene arguments supplied in [ ℄ brakets. Arguments an be �eld names orother role parameters.The example in �gure 8 illustrates the use of referene parameters. TheGraphList role represents a list of disjoint graphs: there are no edges betweennodes of graphs reahable from di�erent nodes of the GraphListNode role. Nodesof the list are represented by objets with GraphListNode role. Eah graph ismade up of GraphNodes. The disjointness of the graphs is ensured by parametriz-ing the GraphNode role.Referene parameters for roles, unlike role parameters, annot in general beeliminated by soure-to-soure transformation at the role de�nition time. Note,



role GraphList {fields first : GraphListNode;}role GraphListNode {fields next : GraphListNode | null,graph : GraphNode[graph℄;slots GraphListNode.next | GraphList.first;}role GraphNode[f℄ {fields su : List<GraphNode[f℄>slots f | ListNode<GraphNode[f℄>.elem;} Fig. 8. Parametrization by Referenes: List of Disjoint Graphshowever, that parametrization by individual referenes does not prevent thestati analysis of data strutures. If, for referenes o1:f1 and o2:f2, either f1 6= f2or the alias analysis implies o1 6= o2, then two data strutures parametrized byroles o1:f1 and o2:f2 are known to be disjoint.3.5 Roles and ClassesOur role system an be realized as a re�nement of a stati lass system whereeah role is a re�nement of some lass, with one lass being re�ned into multipleroles. To indiate that a role rl re�nes a lass l, we write the name of  after thede�nition of role r. role rl of l { : : : }We note that it is also possible to use roles as a stand-alone type system.4 The Role Programming ModelDue to the �ne-grained nature of load statements x.f=y and store statementsx=y.f, role onstraints tend to be temporarily violated at ertain program points.In this setion we provide a programming model that gives the minimal require-ments for a program to be role orret. A stati program analysis an enfore astronger role heking poliy; it may not aept a weaker role heking poliy.We assume a type safe programming language with a lean memory model, suhas Java [5℄. In the absene of ayliity onstraints, at any given program point,the set of all objets on the heap an be partitioned into:1. onstage objets whih are referened by at least one loal variable of theurrently exeuting proedure;2. o�stage objets whih are not referened by any of the loal variables ofthe urrently exeuting proedure.Only onstage objets an have their role onstraints temporarily violated. Morepreisely, we have the following invariant.



roleDef ::= "role" roleName("<" roleParams ">")? ("[" refParams "℄")? "of"ClassName "{"("fields" �eldDels ";")?("slots" slotDels ";")?("multislots"multislotDel";")?("identities" identDels";")?("ayli" ayliDels ";")? "}"j "role" roleName "=" disjRole ";"j "role" roleName "=" roleSum ";"�eldDels ::= �eldDel j �eldDels "," �eldDel�eldDel ::= �eld ":" disjRoledisjRole ::= role j disjRole "|" roleslotDels ::= slotDel j slotDels "," slotDelslotDel ::= referene j slotDel "|" referenemultislotDel ::= referene j multislotDel"," refereneidentDels ::= identDel j identDels"," identDelidentDel ::= �eld "." �eldayliDels ::= ayliDel j ayliDels "," ayliDelayliDel ::= regExpreferene ::= role "." �eldroleSum ::= role j roleSum "+" rolerole ::= roleName("<" roleArg ">")? ("[" refArg "℄")?roleArg ::= role j roleArg "," rolerefArg ::= �eld j refParamroleParams ::= ID j roleParams "," IDrefParams ::= ID j refParams "," IDFig. 9. Syntax of Role Spei�ations



Loal Role Consisteny Invariant: At every program point, there exists anassignment of roles to all objets of the heap suh that the onstraints for allo�stage objets are satis�ed.Next, we introdue the notion of program hekpoints. The hekpoints in-lude at least proedure entry, proedure exit, and proedure all points. Theymay also inlude additional program points spei�ed by the programmer usingthe roleChek() ommand.Global Role Consisteny Invariant: At every program hekpoint, thereexists an assignment of roles to all objets of the heap suh that the onstraintsfor all objets are satis�ed.Note that it is not neessary to have a hekpoint in every loop of theontrol-ow graph. This allows the veri�ation of nonloal hanges to the heapwithout omplex global loop invariants.Role hanges to onstage objets are spei�ed using the hangeRole onstrut.The statement hangeRole(x : r) hanges the urrent role of the onstage ob-jet o, referened by loal variable x, to role r. Loal role onsisteny implies thatthe onstraints of all o�stage objets adjaent to o must be onsistent with thenew role of o. (The onsisteny of the objet o with its own role is not hekeduntil o goes o�stage, or until a hekpoint is reahed.)In some ases it is useful to hange roles of multiple o�stage objets, withoutbringing them onstage �rst. The hangeRoles statement is used for this purpose.It spei�es a regular expression denoting a region of the heap, and a set of roletransitions to be performed on this region. Every role transition spei�es aninitial role and a �nal role. As in Setion 5, a regular expression denotes allobjets reahable from the given variable without passing though other variablesin the urrent sope.statement ::= : : :j "hangeRole" "(" var ":" role ")" onstage role hangej "hangeRoles" "(" regExp "," "{"roleTrans"}" ")" o�stage role hangesj "roleChek()" global role hekroleTrans ::= roleTrans "," roleTran role transition listroleTran ::= role1 "->" role2 role transitionFig. 10. Role Changing StatementsAyliity Constraints: Ayliity onstraints introdue the need to take intoaount the reahability of one onstage objet from another to ensure that theprogram does not introdue a yle into a region of the heap that the rolesrequire to be free of yles.



5 The Invariant Spei�ation LanguageInvariants allow the programmer to speify properties that hold at a given pro-gram point. The assert statement is used to enfore invariants. An invariant isa propositional formula over atomi properties. Atomi properties allow stating1) roles of objets at a given program point; 2) aliasing between two given ref-erenes; and 3) an upper bound on the set of paths between two objets in theurrent heap.statement ::= : : :j "assert" "(" prop ")" assertionprop ::= atomi atomi propositionj "!" prop negationj prop1 "||" prop2 disjuntionj prop1 "&&" prop2 onjuntionatomi ::= obj1 ":" role role assertionj obj1 "==" obj2 aliasingj obj1 "*>" obj2 ":" regExp reahabilityobj ::= var j obj "." �eld objet refereneregExp ::= "empty" j "none" empty path, empty setj �eld single �eldj regExp1 "." regExp2 onatenationj regExp1 "|" regExp2 unionj regExp "*" Kleene starj regExp "&" In�nite pathsFig. 11. Invariant Spei�ationsRoles at a given program point are asserted by the proposition obj : role. Thisallows the developer to verify the statially omputable role of an objet at agiven program point.To speify that objets obj1 and obj2 must be aliased, the assertion obj1==obj2is used. Objets are referred to using a sequene of �elds starting from pro-gram variables. To speify that obj1 and obj2 must not be aliased, the assertion! (obj1==obj2) is used. Omitting the aliasing relation between these two objetsallows for both ases. Note that both must and may aliasing information an bespei�ed.The expression obj1 *> obj2 denotes the set of all �nite and in�nite diretedpaths in the heap that lead from obj1 to obj2 without going through any on-stage objets. (Paths that may pass through onstage objets an be split intosegments that pass only through o�stage objets.) Conrete sets of paths arespei�ed using regular expressions, extended with the & operator, whih al-lows the spei�ation of in�nite paths. This allows the preise spei�ation ofyliity. The symbol ":" denotes path subset, so obj1 *> obj2 : regExp gives



may-reahability information in the form of an upper bound on the set of pathsbetween two objets. For example, in the ontext of variables x and y, the on-straint x *> y : none implies that any sequene of operations that has aessonly to x annot perform strutural modi�ations on the objet pointed to byy. Using negation, it is possible to express must reahability information, whihis a poweful tool when ombined with aliasing onstraints in role de�nitions,allowing the analysis of nonloal operations on tree-like data strutures.6 Proedure Spei�ationsIn this setion we present the sublanguage for speifying proedure e�ets. It isdesigned to onvey detailed yet onise proedure summaries whih an be usedas a basis for a ompositional ow-sensitive interproedural analysis with strongupdates. The use of proedure summaries allows the use of preise analysis teh-niques inside proedures while retaining an overall linear analysis omplexity inthe total size of the program. Among our design goals for proedure spei�ationswere:1. the ability to approximate inremental hanges to the regions of the heap;2. easy instantiation of proedure spei�ation in the ontext of the aller;3. the ability to preisely speify the e�ets of simple proedures that performloal transformations on the heap;4. the ability to speify aliasing ontexts among proedure parameters as wellas regions of heap reahable from parameters.The �rst goal led us to a language whose primitives are loal e�ets similar toloads and stores. These e�ets an be ombined using nondeterministi hoie,and their loation spei�ed using regular expressions. The seond goal impliedthe deision to interpret all regular expressions in a proedure spei�ation withrespet to the state of the heap at proedure invoation time. The e�ets ofsimple proedures an be easily spei�ed as a ombination of elementary e�ets.The proedure ontexts an be spei�ed in a exible way using the onditionale�et onstrution. The syntax of proedure e�ets is given in �gure 12.Formally, an e�et with no free variables is a binary relation between theinitial heap and the �nal heap. We de�ne the following hierarhy of e�ets: 1)primitive e�ets 2) simple e�ets 3) e�ets. Eah lass inludes the previous ones.Primitive e�ets are the building bloks of all e�ets. A write e�et orre-sponds to a store statement or modi�ation of a primitive �eld. A read e�etspei�es a load statement or read of a primitive �eld of a given objet, withoutspeifying whih loal variable reeives the value. The role hange e�ets speifya hange of roles for one or more objets and orrespond to the hangeRoleand hangeRoles statements in the proedure. The skip statement denotes anempty e�et; it does nothing. The expression fail denotes the e�et whih al-ways fails. It is allowed to all the proedure only from ontexts for whih theproedure e�et does not fail.



e�et ::= simpleE�et simple e�etj e�et1 "|" e�et2 nondeterministi hoiej e�et1 ";" e�et2 sequenej prop "->" e�et onditional e�etj "[" bindings"℄" simpleE�et variable bindingsj simpleE�et "*" iterationsimpleE�et ::= primitive primitive e�etj simpleE�et1 "|" simpleE�et2 nondeterministi hoiej simpleE�et1 ";" simpleE�et2 sequenej prop "->" simpleE�et onditional simple e�etprimitive ::= obj "." �eldSpe "=" valSpe writej "read" "(" obj "." �eldSpe ")" readj "hangeRole" "(" var ":" role ")" onstage role hangej "hangeRoles" "(" regExp "," { roleTrans} ")" o�stage role hangesj "skip" empty e�etj "fail" failurebindings ::= binding j bindings"," binding binding sequenebinding ::= var ":" "regExp" existing objet bindingj var ":" "new" role new objet bindingvalSpe ::= obj j "null" j "any" value spei�ation�eldSpe ::= �eld j "any" �eld spei�ationobj ::= var j paramRef objetparamRef ::= param j global j paramRef "." �eld objet at �xed pathFig. 12. Proedure E�ets



Objets an be referred to via a �xed sequene of �eld names starting fromparameters (and global variables), or via a variable bound to a region of the heapor a new objet identi�er. In both write and read e�ets it is possible to abstrataway from the value written or the �eld name by using the any keyword.Simple e�ets are built out of primitive e�ets using nondeterministi hoie,sequene, and onditional. The nondeterministi hoie operator "|" spei�esthe union of the e�et relations. In the expression e�et1 j e�et2, both e�et1and e�et2 an our; the alled preedure is free to hoose either one of them.The sequene of the e�ets e�et1; e�et2 denotes exeution of e�et1 followedby the exeution of e�et2. This orresponds to the omposition of the e�etrelations. The onditional e�et prop ! e�et is the restrition of e�et to thestates whih satisfy the proposition prop. The e�et relation ats as the identityon all states for whih prop prediate is not satis�ed. The syntax for propositionsis the same as in Setion 5.E�ets are built out of simple e�ets using variable binding and iteration in ad-dition to nondeterministi hoie, sequene, and onditional. A variable bindingspei�es a list of bindings for the free variables of an e�et expression. A variablean be bound either to a nondeterministially hosen objet in the region of theinitial heap spei�ed by a given regular expression (notation var : regExp), or toa newly alloated objet of a given role (notation var : new role). The �rst formsummarizes strutural hanges of a given region of the heap. The seond formallows naming of objets reated inside the proedure. This is important sinenew objets are often inorporated into existing data strutures, so that e�etsthat involve them determine the reahability properties of the heap after theproedure exeution. The iteration operator * denotes repetition of the e�et anunspei�ed number of times. It an be used to summarize the e�et of loops inthe proedure.7 Parallelization with RolesIt is possible to use the role de�nitions and operation e�et statements as a basisfor the automati parallelization of programs that manipulate linked data stru-tures. Beause the role de�nitions haraterize the aliasing relationships in whihobjets engage, the ompiler an use the role de�nitions to disover omputationsthat aess disjoint regions of reursive data strutures. The role de�nitions of theobjets in a tree data struture, for example, enable the ompiler to determinethat di�erent subtrees rooted at the same node are disjoint. The ombination ofthis information with the operation e�ets information enables the ompiler to,for example, parallelize standard reursively-de�ned omputations that updatetree nodes but do not hange the struture of the tree. Similar transformationsare possible for other omputations that aess linked data strutures.



8 Related WorkThe onept of role models as a generalization of the stati lass system hasbeen present in the objet modelling ommunity for some time [13℄, but usuallywith no formal relationship with program ode. The idea of stati analysis oftypes whih hange at run-time was explored in [17℄, but without any treatmentof relationships between objets in the heap. A system for objet relassi�a-tion is presented in [3℄, but the lass hanges are designed to be transparent toaliasing; in our approah, the roles hange when the aliases hange, whih is arequirement for reasoning about the role hanges that take plae when objetsmove between data strutures. Our system also assoiates a set of invariantswith the urrent role of every objet, allowing stronger strutural propertiesto be expressed. Another di�erene is that implementation of the language in[3℄ is based on performing additional run-time heks whereas our language isprimarily an interfae to a stati program analysis system.The sublanguage we use for speifying ontext-spei� invariants is similarto the logi desribed in [1℄ whih also explains the relationship with [8℄. A moregeneral system used for dependene testing is desribed in [9℄.There appears to be surprisingly little work on languages for desribing pre-ise e�ets proedures with respet to the heap. The importane of proedurespei�ations for pointer analysis was indiated in [14℄. A language for annotat-ing software libraries is desribed in [6℄. E�ets systems in general were used infuntional languages with side e�ets [10℄. Our spei�ation language bears somesimilarities to propositional dynami logi [7℄. Similarly to [4℄, our e�et languagespei�es operations on heap. Unlike graph rewrite rules, our e�et spei�ationsare based on primitive e�ets whih orrespond to statements in imperative pro-grams. The e�ets of omplex proedures also tend to be more nondeterministithan graph rewrite rules due to their approximate nature.Although the fous in this paper is on the spei�ation language, the ana-lyzability of the language was our major onern. The tehniques useful for roleanalysis are disussed in [15℄, [12℄, [4℄. More restritive approahes rely on theextensions of linear type systems or on ownership types [16℄, [11℄, [2℄.9 ConlusionWe have proposed a language for speifying invariants of objets whih movebetween dynamially hanging data strutures. We have given the syntax andsemantis of the language and illustrated its use on several examples.The role de�nition sublanguage enables the lassi�ation of objets aordingto their membership in di�erent data strutures as well as the spei�ation ofsome essential data struture heap invariants. The invariant spei�ation sublan-guage allows the ommuniation of additional ontext-spei� reahability andaliasing properties. Finally, the proedure e�et sublanguage is designed to ap-ture preise e�ets of short proedures and to summarize omplex modi�ationsperformed in regions of the heap reahable from proedure parameters.
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