
A Language for Role Spe
i�
ationsViktor Kun
ak, Patri
k Lam, and Martin RinardLaboratory for Computer S
ien
eMassa
husetts Institute of Te
hnologyCambridge, MA 02139fvkun
ak, plam, rinardg�l
s.mit.eduAbstra
t. This paper presents a new language for identifying the
hang-ing roles that obje
ts play over the
ourse of the
omputation. Ea
h ob-je
t's points-to relationships with other obje
ts determine the role that it
urrently plays. Roles therefore re
e
t the obje
t's membership in spe
i�
data stru
tures, with the obje
t's role
hanging as it moves between datastru
tures. We provide a programming model whi
h allows the developerto spe
ify the roles of obje
ts at di�erent points in the
omputation. Themodel also allows the developer to spe
ify the e�e
t of ea
h operationat the granularity of role
hanges that o

ur in identi�ed regions of theheap.1 Introdu
tionIn standard type systems for obje
t-oriented languages, ea
h obje
t is
reated asan instan
e of a spe
i�

lass, with the obje
t's type determined by that
lass.Be
ause the obje
t's
lass does not
hange, the obje
t has the same type for itsentire existen
e in the
omputation. This property limits the ability of the typesystem to
apture dynami
ally
hanging obje
t properties. Spe
i�
ally, a givenobje
t may play many di�erent roles during its lifetime in the
omputation,with the distin
tions between these roles
ru
ial to the
omputation's safetyand
orre
tness. The inability of the type system to model these
hanging rolesprevents it from
apturing these important distin
tions.This paper presents a new kind of type system,
alled a role system, whi
henables a developer to express the di�erent roles that ea
h obje
t plays during itslifetime in the
omputation. The role of ea
h obje
t is determined by its points-to relationships with other obje
ts. As these relationships
hange, the obje
t'stype
hanges to re
e
t its
hanging role in the
omputation. Our system
antherefore
apture important distin
tions between obje
ts of the same
lass asthey play di�erent roles in the
omputation.Be
ause roles are determined by the linking relationships, role
hanges often
orrespond to movements between data stru
tures. Our role system is therefore? This resear
h was supported in part by DARPA Contra
t F33615-00-C-1692, NSFGrant CCR00-86154, NSF Grant CCR00-63513, and an NSERC graduate s
holar-ship.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147929782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

designed to
apture the linking relationships at a level of pre
ision that makes itpossible to tra
k the removals and insertions that implement movements betweendata stru
tures. We realize this goal by providing three me
hanisms:1. Role De�nitions: The role de�nitions spe
ify the referen
ing relationshipsfor ea
h role. For all referen
es to an obje
t o playing a given role, the rolede�nition spe
i�es the �eld where the referen
e to o is stored and the role ofthe obje
t
ontaining this referen
e. On the other hand, for ea
h referen
eoriginating at the obje
t playing the role, the role de�nitions spe
ify theroles of the obje
ts to whi
h it refers. The role de�nitions therefore provide
omplete heap aliasing information for ea
h obje
t at the granularity of roles.2. Role De
larations: The programmer
an de
lare the role of the obje
t towhi
h ea
h lo
al variable or parameter refers. In e�e
t, these role de
lara-tions express additional appli
ation-spe
i�
 safety properties not
apturedby standard type systems.3. Operation E�e
ts: The programmer
an de
lare how operations
hangethe roles of the obje
ts that they a

ess, providing useful information aboutthe e�e
t of ea
h operation at the granularity of roles.2 ExamplesWe next present several examples that illustrate the role spe
i�
ation language.The �rst example illustrates how roles
apture distin
tions that arise from thesemanti
s of the underlying appli
ation domain. The se
ond example illustrateshow roles
apture shape invariants of linked data stru
tures at suÆ
ient pre
isionto
apture removals (and
orresponding insertions) from the data stru
ture.2.1 Air
raft ExampleOur �rst example illustrates how roles
an
apture the distin
tion between air-
raft that are parked at a gate, air
raft that are taxiing on the ground, and
yingair
raft. Ea
h parked or taxiing air
raft is asso
iated with an airport, with theground
ontrollers at the airport responsible for its movements. Flying air
raftare not asso
iated with a spe
i�
 airport; instead, the
ontrollers at a
ontrol
enter are responsible for its
ight path.Air
raft are represented in the system by instan
es of the Air
raft
lass fromFigure 1. Ea
h Air
raft obje
t has two instan
e variables:

 is its
ontrol
enterwhen it is
ying, and ap is its airport when it is parked or taxiing. Figure 1 alsopresents the de�nitions of the roles that Air
raft obje
ts
an play. The Parkedand Taxiing role de�nitions spe
ify that the ap �eld of ea
h Parked and Taxiingair
raft refers to a spe
i�
, non-null Airport obje
t where the air
raft is lo
ated.The

 �eld is null for obje
ts playing these roles, as an airport is
ontrollingthese air
raft.Con
eptually, ea
h role has a set of slots �lled by in
oming referen
es fromother obje
ts; the role de�nitions spe
ify the number of slots and the roles and

�elds of the referen
es that may �ll ea
h slot. In our example, ea
h Parkedair
raft has an in
oming slot �lled by a referen
e from the Gate obje
t wherethe air
raft is parked; this referen
e is the only heap referen
e to a Parkedair
raft. Taxiing air
raft have a slot �lled by a referen
e from the runway thatthe air
raft is on; this referen
e is the only heap referen
e to a Taxiing air
raft.The

 �eld of Flying air
raft refers to a non-null ControlCenter obje
t thatrepresents the
ontrol
enter responsible for the air
raft's
ight plan; the ap �eldis null. Flying air
raft have a single slot, �lled by a referen
e from the
ontrolling
enter's list of air
raft.In addition to the textual representation, Figure 1 presents a graphi
al repre-sentation of the roles and their referen
ing relationships. Ea
h box in the pi
turerepresents either a role or a
lass. Arrows with
losed heads represent referen
esbetween obje
ts, while arrows with open heads represent the partition of a
lassinto the roles that obje
ts from that
lass
an play.
lass Air
raft {ControlCenter

;Airport ap;}role Parked of Air
raft {fields ap: Airport,

: null;slots Gate.p;}role Taxiing of Air
raft {fields ap: Airport,

: null;slots Runway.p;}role Flying of Air
raft {fields

: ControlCenter, ap: null;slots ControlCenterListNode.air
raft;}
Aircraft

ControlCenter Airport

Flying Taxiing Parked

GateRunway

controlCenterListNode

p pap apcc

aircraft

Fig. 1. Air
raft Example Role De�nitionsThe developer
an use roles to improve the pre
ision of operation interfa
es.Figure 2 presents a sample operation on an air
raft. The land operation exe
uteswhen an air
raft lands at an airport. The parameter de
larations state thatlanding air
raft must be playing the Flying role. The e�e
ts de
larations spe
ifythat
ontrol of the landing air
raft passes from the
ontrol
enter to the airport,with the air
raft's role
hanging from Flying to Taxiing. Other operations(takeoff, pushba
k, et
.) pla
e similar requirements on the roles that theirparameters play and have similar e�e
ts on these roles. From these operations,it is possible to automati
ally extra
t the role transition diagram for Air
raftobje
ts, whi
h is presented in Figure 3.

void land(Flying p, Runway r, Airport a)effe
ts { p.ap = a; p.

 = null; r.p = p;roleChange(p : Taxiing); }{ p.ap = a; p.

 = null; r.p = p;roleChange(p : Taxiing);} Fig. 2. The land Operation
ParkedTaxiingFlying

land

takeoff

gate

pushbackFig. 3. Role Transition Diagram for Air
raft Obje
ts2.2 Doubly Linked List ExampleThis example illustrates the use of roles with a simple doubly-linked list datastru
ture. The data stru
ture has a dummy header node followed by some innernodes whi
h refer to the elements stored in the list. Figure 4 presents the rolede�nitions for the list data stru
tures. The nodes in the linked list are all obje
tsof the doubleNode
lass, whi
h has three roles. The dummy header plays thedoubleHeader role, whi
h requires the header to have a null
ontent �eld. Innernodes play the doubleInner role, whi
h require the inner nodes to have a non-null
ontent �eld. An obje
t playing the doubleNode role
an play either thedoubleHeader or doubleInner role. Finally, the soloNode is a node that hasbeen deleted from the list.The role de�nitions for the doubleHeader and doubleInner roles require thenext and prev �elds of obje
ts playing these roles to point to non-null obje
tsplaying either the doubleHeader or doubleInner role, and that prev.next andnext.prev paths terminate at the obje
t where they started, i.e., the two linksare inverses. The next and prev �elds of obje
ts playing the soloNode role arenull, and there are no heap referen
es to soloNode roles.We next dis
uss the removal of a node from a doubleNode list. The pro
edurenavigates the list until it rea
hes the node to remove or returns ba
k to the headernode. If it �nds the node to remove, it removes it,
hanging the node's role fromdoubleInner to soloNode. The e�e
ts statement of the remove operation statesthat the operation may set the
ontent �eld of one of the nodes in the list tonull and
hange the role of a list node to soloNode. The operation may alsoread and write some of the �elds of the nodes in the list.

lass doubleNode {doubleNode next, prev;Element
ontent;}role doubleHeader of doubleNode {fields next: doubleHeader | doubleInner,prev: doubleHeader | doubleInner,
ontent: null;slots (doubleHeader | doubleInner).prev,(doubleHeader | doubleInner).next;identities prev.next, next.prev;}role doubleInner of doubleNode {fields next: doubleHeader | doubleInner,prev: doubleHeader | doubleInner,
ontent: stored;slots (doubleHeader | doubleInner).prev,(doubleHeader | doubleInner).next;identities prev.next, next.prev;}role soloNode of doubleNode {fields next: null, prev: null;slots ;}role stored of Element {slots doubleInter.
ontent;}role soloElem of Element {slots ;} Fig. 4. Roles for the Cir
ular Linked List

void remove(doubleHeader d, stored
)effe
ts {read(d.next);(([x, y : d.next*℄ x.* = y;[x : d.next*℄ x.
ontent = null;
hangeRole(x : soloNode);[x : d.next*℄ read(x.*);
hangeRole(
 : soloElem)) | skip) }{ doubleNode n = d.next;do {if (n.
ontent ==
) {assert(n : doubleInner);doubleNode nn = n.next, np = n.prev;nn.prev = n.prev; np.next = n.next;n.next = null; n.prev = null;n.
ontent = null;
hangeRole(n : soloNode);
hangeRole(
 : soloElem);return;}n = n.next;} while (n != d);} Fig. 5. Code for Removing a Node from a Doubly Linked List

3 The Role De�nition LanguageWe next present the full role de�nition language.3.1 Basi
 ConstraintsThe heart of the role de�nition language is a set of basi

onstraints that theprogrammer
an use to identify the relationships that de�ne a role. There areseveral kinds of
onstraints:Field
onstraints: Ea
h �eld
onstraint is of the form�eld : role1j � � � jrolekwhere �eld is the name of a �eld in the obje
t and role1 through rolek are thenames of roles. If this
onstraint appears in the de�nition of a given role, allobje
ts playing the role have a �eld named �eld that refers to an obje
t playingone of the roles role1 through rolek.Slot
onstraints: Ea
h role has a number of slots, or in
oming referen
es.There is a slot
onstraint asso
iated with ea
h slot that de�nes the kinds ofreferen
es that
an �ll the slot. Ea
h slot
onstraint has the formrole1:�eld1 j � � � j rolek:�eldkwhere role1 through rolek are role names and �eld1 through �eldk are �eld names.If a given obje
t is playing a role whose de�nition
ontains this
onstraint, theremust exist an i su
h that the �eld �eldi in some obje
t playing role rolei
ontainsa referen
e to the given obje
t.Identity
onstraints: Ea
h identity
onstraint is of the form �eld1:�eld2, where�eld1 and �eld2 are two �eld names. If this
onstraint appears in the de�nitionof a given role and an obje
t o is playing the role, o:�eld1:�eld2 refers ba
k to o.The standard example is a doubly linked list node l, where l.next.prev = l.Property
onstraints: Ea
h property
onstraint
onsists of a predi
ate overthe primitive �elds (integers, booleans, doubles, et
.) of the obje
t. When anobje
t satis�es a role whi
h
ontains some property
onstraint p, then p mustevaluate to true on this obje
t. In this way, properties allow the spe
i�
ation ofuser-de�ned abstra
tions of obje
t state.A
y
li
ity
onstraints: Ea
h a
y
li
ity
onstraint is a spe
i�
ation of theform regExp, where regExp is a regular expression over the �eld names. Givenan obje
t playing the role, this
onstraint states that there are no
y
les in thesubgraph obtained by following paths that 1) start from the given obje
t and 2)
onform to the regular expression.Figure 6 summarizes the syntax for basi
 role de�nitions.

role r{fields f1 :r11 j r12 j � � � j r1p1 ;� � �fn :rn1 j rn2 j � � � j rnpn ;slots r011:f011 j � � � j r01q1 :f01q1 ;� � �r0m1:f0m1 j � � � j r0mqm :f0mqmidentities f1:g1; : : : ; fk:gk;properties p1; : : : ; pl;a
y
li
 regExp1; : : : ; regExpt}Fig. 6. General Form of Basi
 Role Spe
i�
ation3.2 MultislotsAn obje
t of basi
 role with k slots requires exa
tly k referen
es from otherobje
ts. In some
ases an obje
t may be referred to by a stati
ally undeterminednumber of other obje
ts. This possibility
an be spe
i�ed using multislots.multislots role1:�eld1; : : : ; rolek:�eldk;A multislot allows arbitrary number of referen
es of types role1:�eld1 throughrolek:�eldk. All referen
es must be distin
t and they must also to be distin
tfrom all referen
es mentioned in the slots de
laration.3.3 Compound RolesAs des
ribed so far, ea
h obje
t plays a single role at any given time, with itsrole
hanging over time as it moves between data stru
tures and its relationshipswith other obje
ts
hange. It is also sometimes useful for an obje
t to playmultiple roles at the same time. For example, an obje
t may parti
ipate inboth a linked list and a tree, playing the linked list and tree roles at the sametime. We support this
on
ept by allowing the programmer to de�ne
ompoundroles, whi
h
ombine multiple roles into a single new role. Synta
ti
ally, theprogrammer de
lares a
ompound role as follows.role r = r1 + : : :+ rn ;The �elds and slots of the role r are the disjoint union of the �elds and slots ofroles r1 through rn. A obje
t of role r satis�es all identity, property, and a
y
li
ity
onstraints of roles r1 through rn.

3.4 Parameterized RolesIt is useful to parameterize roles with respe
t to other roles or with respe
t toindividual referen
es.Role Parameters allow the de�nition of a role to be parametrized by names ofother roles. This is a form of parametri
 polymorphism for role de�nitions. Forexample, a list
an be parametrized by the role of its elements. Role parametersare introdu
ed by < > bra
kets in the role de�nition. On
e introdu
ed, roleparameters
an be used inside the role de�nition in all pla
es where a �xed rolename is expe
ted. In order to be used as an ordinary role, a parametrized roleneeds to be supplied with a
tual role arguments, written in < > bra
kets.role List<T> {fields first : ListNode<T>;}role ListNode<T> {fields next : ListNode<T> | null,elem : T;slots ListNode<T>.next | List<T>.first;}role Airport {fields landed : List<Air
raft>;} Fig. 7. Parametrization by RolesReferen
e Parameters allow role de�nitions to be parametrized by individualreferen
es from some obje
t, where the identity of the obje
t may not be knownuntil run-time. This allows very �ne-grained role de�nitions, suitable even fordes
riptions of nested data stru
tures. Referen
e parameters are introdu
ed intorole de�nitions using [℄ bra
kets after the role name. Referen
e parameters
an be used in slots or to instantiate other referen
e-parametrized roles. Everyreferen
e-parametrized role must be instantiated with an appropriate number ofreferen
e arguments supplied in [℄ bra
kets. Arguments
an be �eld names orother role parameters.The example in �gure 8 illustrates the use of referen
e parameters. TheGraphList role represents a list of disjoint graphs: there are no edges betweennodes of graphs rea
hable from di�erent nodes of the GraphListNode role. Nodesof the list are represented by obje
ts with GraphListNode role. Ea
h graph ismade up of GraphNodes. The disjointness of the graphs is ensured by parametriz-ing the GraphNode role.Referen
e parameters for roles, unlike role parameters,
annot in general beeliminated by sour
e-to-sour
e transformation at the role de�nition time. Note,

role GraphList {fields first : GraphListNode;}role GraphListNode {fields next : GraphListNode | null,graph : GraphNode[graph℄;slots GraphListNode.next | GraphList.first;}role GraphNode[f℄ {fields su

 : List<GraphNode[f℄>slots f | ListNode<GraphNode[f℄>.elem;} Fig. 8. Parametrization by Referen
es: List of Disjoint Graphshowever, that parametrization by individual referen
es does not prevent thestati
 analysis of data stru
tures. If, for referen
es o1:f1 and o2:f2, either f1 6= f2or the alias analysis implies o1 6= o2, then two data stru
tures parametrized byroles o1:f1 and o2:f2 are known to be disjoint.3.5 Roles and ClassesOur role system
an be realized as a re�nement of a stati

lass system whereea
h role is a re�nement of some
lass, with one
lass being re�ned into multipleroles. To indi
ate that a role rl re�nes a
lass
l, we write the name of
 after thede�nition of role r. role rl of
l { : : : }We note that it is also possible to use roles as a stand-alone type system.4 The Role Programming ModelDue to the �ne-grained nature of load statements x.f=y and store statementsx=y.f, role
onstraints tend to be temporarily violated at
ertain program points.In this se
tion we provide a programming model that gives the minimal require-ments for a program to be role
orre
t. A stati
 program analysis
an enfor
e astronger role
he
king poli
y; it may not a

ept a weaker role
he
king poli
y.We assume a type safe programming language with a
lean memory model, su
has Java [5℄. In the absen
e of a
y
li
ity
onstraints, at any given program point,the set of all obje
ts on the heap
an be partitioned into:1. onstage obje
ts whi
h are referen
ed by at least one lo
al variable of the
urrently exe
uting pro
edure;2. o�stage obje
ts whi
h are not referen
ed by any of the lo
al variables ofthe
urrently exe
uting pro
edure.Only onstage obje
ts
an have their role
onstraints temporarily violated. Morepre
isely, we have the following invariant.

roleDef ::= "role" roleName("<" roleParams ">")? ("[" refParams "℄")? "of"ClassName "{"("fields" �eldDe
ls ";")?("slots" slotDe
ls ";")?("multislots"multislotDe
l";")?("identities" identDe
ls";")?("a
y
li
" a
y
li
De
ls ";")? "}"j "role" roleName "=" disjRole ";"j "role" roleName "=" roleSum ";"�eldDe
ls ::= �eldDe
l j �eldDe
ls "," �eldDe
l�eldDe
l ::= �eld ":" disjRoledisjRole ::= role j disjRole "|" roleslotDe
ls ::= slotDe
l j slotDe
ls "," slotDe
lslotDe
l ::= referen
e j slotDe
l "|" referen
emultislotDe
l ::= referen
e j multislotDe
l"," referen
eidentDe
ls ::= identDe
l j identDe
ls"," identDe
lidentDe
l ::= �eld "." �elda
y
li
De
ls ::= a
y
li
De
l j a
y
li
De
ls "," a
y
li
De
la
y
li
De
l ::= regExpreferen
e ::= role "." �eldroleSum ::= role j roleSum "+" rolerole ::= roleName("<" roleArg ">")? ("[" refArg "℄")?roleArg ::= role j roleArg "," rolerefArg ::= �eld j refParamroleParams ::= ID j roleParams "," IDrefParams ::= ID j refParams "," IDFig. 9. Syntax of Role Spe
i�
ations

Lo
al Role Consisten
y Invariant: At every program point, there exists anassignment of roles to all obje
ts of the heap su
h that the
onstraints for allo�stage obje
ts are satis�ed.Next, we introdu
e the notion of program
he
kpoints. The
he
kpoints in-
lude at least pro
edure entry, pro
edure exit, and pro
edure
all points. Theymay also in
lude additional program points spe
i�ed by the programmer usingthe roleChe
k()
ommand.Global Role Consisten
y Invariant: At every program
he
kpoint, thereexists an assignment of roles to all obje
ts of the heap su
h that the
onstraintsfor all obje
ts are satis�ed.Note that it is not ne

essary to have a
he
kpoint in every loop of the
ontrol-
ow graph. This allows the veri�
ation of nonlo
al
hanges to the heapwithout
omplex global loop invariants.Role
hanges to onstage obje
ts are spe
i�ed using the
hangeRole
onstru
t.The statement
hangeRole(x : r)
hanges the
urrent role of the onstage ob-je
t o, referen
ed by lo
al variable x, to role r. Lo
al role
onsisten
y implies thatthe
onstraints of all o�stage obje
ts adja
ent to o must be
onsistent with thenew role of o. (The
onsisten
y of the obje
t o with its own role is not
he
keduntil o goes o�stage, or until a
he
kpoint is rea
hed.)In some
ases it is useful to
hange roles of multiple o�stage obje
ts, withoutbringing them onstage �rst. The
hangeRoles statement is used for this purpose.It spe
i�es a regular expression denoting a region of the heap, and a set of roletransitions to be performed on this region. Every role transition spe
i�es aninitial role and a �nal role. As in Se
tion 5, a regular expression denotes allobje
ts rea
hable from the given variable without passing though other variablesin the
urrent s
ope.statement ::= : : :j "
hangeRole" "(" var ":" role ")" onstage role
hangej "
hangeRoles" "(" regExp "," "{"roleTrans"}" ")" o�stage role
hangesj "roleChe
k()" global role
he
kroleTrans ::= roleTrans "," roleTran role transition listroleTran ::= role1 "->" role2 role transitionFig. 10. Role Changing StatementsA
y
li
ity Constraints: A
y
li
ity
onstraints introdu
e the need to take intoa

ount the rea
hability of one onstage obje
t from another to ensure that theprogram does not introdu
e a
y
le into a region of the heap that the rolesrequire to be free of
y
les.

5 The Invariant Spe
i�
ation LanguageInvariants allow the programmer to spe
ify properties that hold at a given pro-gram point. The assert statement is used to enfor
e invariants. An invariant isa propositional formula over atomi
 properties. Atomi
 properties allow stating1) roles of obje
ts at a given program point; 2) aliasing between two given ref-eren
es; and 3) an upper bound on the set of paths between two obje
ts in the
urrent heap.statement ::= : : :j "assert" "(" prop ")" assertionprop ::= atomi
 atomi
 propositionj "!" prop negationj prop1 "||" prop2 disjun
tionj prop1 "&&" prop2
onjun
tionatomi
 ::= obj1 ":" role role assertionj obj1 "==" obj2 aliasingj obj1 "*>" obj2 ":" regExp rea
habilityobj ::= var j obj "." �eld obje
t referen
eregExp ::= "empty" j "none" empty path, empty setj �eld single �eldj regExp1 "." regExp2
on
atenationj regExp1 "|" regExp2 unionj regExp "*" Kleene starj regExp "&" In�nite pathsFig. 11. Invariant Spe
i�
ationsRoles at a given program point are asserted by the proposition obj : role. Thisallows the developer to verify the stati
ally
omputable role of an obje
t at agiven program point.To spe
ify that obje
ts obj1 and obj2 must be aliased, the assertion obj1==obj2is used. Obje
ts are referred to using a sequen
e of �elds starting from pro-gram variables. To spe
ify that obj1 and obj2 must not be aliased, the assertion! (obj1==obj2) is used. Omitting the aliasing relation between these two obje
tsallows for both
ases. Note that both must and may aliasing information
an bespe
i�ed.The expression obj1 *> obj2 denotes the set of all �nite and in�nite dire
tedpaths in the heap that lead from obj1 to obj2 without going through any on-stage obje
ts. (Paths that may pass through onstage obje
ts
an be split intosegments that pass only through o�stage obje
ts.) Con
rete sets of paths arespe
i�ed using regular expressions, extended with the & operator, whi
h al-lows the spe
i�
ation of in�nite paths. This allows the pre
ise spe
i�
ation of
y
li
ity. The symbol ":" denotes path subset, so obj1 *> obj2 : regExp gives

may-rea
hability information in the form of an upper bound on the set of pathsbetween two obje
ts. For example, in the
ontext of variables x and y, the
on-straint x *> y : none implies that any sequen
e of operations that has a

essonly to x
annot perform stru
tural modi�
ations on the obje
t pointed to byy. Using negation, it is possible to express must rea
hability information, whi
his a poweful tool when
ombined with aliasing
onstraints in role de�nitions,allowing the analysis of nonlo
al operations on tree-like data stru
tures.6 Pro
edure Spe
i�
ationsIn this se
tion we present the sublanguage for spe
ifying pro
edure e�e
ts. It isdesigned to
onvey detailed yet
on
ise pro
edure summaries whi
h
an be usedas a basis for a
ompositional
ow-sensitive interpro
edural analysis with strongupdates. The use of pro
edure summaries allows the use of pre
ise analysis te
h-niques inside pro
edures while retaining an overall linear analysis
omplexity inthe total size of the program. Among our design goals for pro
edure spe
i�
ationswere:1. the ability to approximate in
remental
hanges to the regions of the heap;2. easy instantiation of pro
edure spe
i�
ation in the
ontext of the
aller;3. the ability to pre
isely spe
ify the e�e
ts of simple pro
edures that performlo
al transformations on the heap;4. the ability to spe
ify aliasing
ontexts among pro
edure parameters as wellas regions of heap rea
hable from parameters.The �rst goal led us to a language whose primitives are lo
al e�e
ts similar toloads and stores. These e�e
ts
an be
ombined using nondeterministi

hoi
e,and their lo
ation spe
i�ed using regular expressions. The se
ond goal impliedthe de
ision to interpret all regular expressions in a pro
edure spe
i�
ation withrespe
t to the state of the heap at pro
edure invo
ation time. The e�e
ts ofsimple pro
edures
an be easily spe
i�ed as a
ombination of elementary e�e
ts.The pro
edure
ontexts
an be spe
i�ed in a
exible way using the
onditionale�e
t
onstru
tion. The syntax of pro
edure e�e
ts is given in �gure 12.Formally, an e�e
t with no free variables is a binary relation between theinitial heap and the �nal heap. We de�ne the following hierar
hy of e�e
ts: 1)primitive e�e
ts 2) simple e�e
ts 3) e�e
ts. Ea
h
lass in
ludes the previous ones.Primitive e�e
ts are the building blo
ks of all e�e
ts. A write e�e
t
orre-sponds to a store statement or modi�
ation of a primitive �eld. A read e�e
tspe
i�es a load statement or read of a primitive �eld of a given obje
t, withoutspe
ifying whi
h lo
al variable re
eives the value. The role
hange e�e
ts spe
ifya
hange of roles for one or more obje
ts and
orrespond to the
hangeRoleand
hangeRoles statements in the pro
edure. The skip statement denotes anempty e�e
t; it does nothing. The expression fail denotes the e�e
t whi
h al-ways fails. It is allowed to
all the pro
edure only from
ontexts for whi
h thepro
edure e�e
t does not fail.

e�e
t ::= simpleE�e
t simple e�e
tj e�e
t1 "|" e�e
t2 nondeterministi

hoi
ej e�e
t1 ";" e�e
t2 sequen
ej prop "->" e�e
t
onditional e�e
tj "[" bindings"℄" simpleE�e
t variable bindingsj simpleE�e
t "*" iterationsimpleE�e
t ::= primitive primitive e�e
tj simpleE�e
t1 "|" simpleE�e
t2 nondeterministi

hoi
ej simpleE�e
t1 ";" simpleE�e
t2 sequen
ej prop "->" simpleE�e
t
onditional simple e�e
tprimitive ::= obj "." �eldSpe
 "=" valSpe
 writej "read" "(" obj "." �eldSpe
 ")" readj "
hangeRole" "(" var ":" role ")" onstage role
hangej "
hangeRoles" "(" regExp "," { roleTrans} ")" o�stage role
hangesj "skip" empty e�e
tj "fail" failurebindings ::= binding j bindings"," binding binding sequen
ebinding ::= var ":" "regExp" existing obje
t bindingj var ":" "new" role new obje
t bindingvalSpe
 ::= obj j "null" j "any" value spe
i�
ation�eldSpe
 ::= �eld j "any" �eld spe
i�
ationobj ::= var j paramRef obje
tparamRef ::= param j global j paramRef "." �eld obje
t at �xed pathFig. 12. Pro
edure E�e
ts

Obje
ts
an be referred to via a �xed sequen
e of �eld names starting fromparameters (and global variables), or via a variable bound to a region of the heapor a new obje
t identi�er. In both write and read e�e
ts it is possible to abstra
taway from the value written or the �eld name by using the any keyword.Simple e�e
ts are built out of primitive e�e
ts using nondeterministi

hoi
e,sequen
e, and
onditional. The nondeterministi

hoi
e operator "|" spe
i�esthe union of the e�e
t relations. In the expression e�e
t1 j e�e
t2, both e�e
t1and e�e
t2
an o

ur; the
alled pre
edure is free to
hoose either one of them.The sequen
e of the e�e
ts e�e
t1; e�e
t2 denotes exe
ution of e�e
t1 followedby the exe
ution of e�e
t2. This
orresponds to the
omposition of the e�e
trelations. The
onditional e�e
t prop ! e�e
t is the restri
tion of e�e
t to thestates whi
h satisfy the proposition prop. The e�e
t relation a
ts as the identityon all states for whi
h prop predi
ate is not satis�ed. The syntax for propositionsis the same as in Se
tion 5.E�e
ts are built out of simple e�e
ts using variable binding and iteration in ad-dition to nondeterministi

hoi
e, sequen
e, and
onditional. A variable bindingspe
i�es a list of bindings for the free variables of an e�e
t expression. A variable
an be bound either to a nondeterministi
ally
hosen obje
t in the region of theinitial heap spe
i�ed by a given regular expression (notation var : regExp), or toa newly allo
ated obje
t of a given role (notation var : new role). The �rst formsummarizes stru
tural
hanges of a given region of the heap. The se
ond formallows naming of obje
ts
reated inside the pro
edure. This is important sin
enew obje
ts are often in
orporated into existing data stru
tures, so that e�e
tsthat involve them determine the rea
hability properties of the heap after thepro
edure exe
ution. The iteration operator * denotes repetition of the e�e
t anunspe
i�ed number of times. It
an be used to summarize the e�e
t of loops inthe pro
edure.7 Parallelization with RolesIt is possible to use the role de�nitions and operation e�e
t statements as a basisfor the automati
 parallelization of programs that manipulate linked data stru
-tures. Be
ause the role de�nitions
hara
terize the aliasing relationships in whi
hobje
ts engage, the
ompiler
an use the role de�nitions to dis
over
omputationsthat a

ess disjoint regions of re
ursive data stru
tures. The role de�nitions of theobje
ts in a tree data stru
ture, for example, enable the
ompiler to determinethat di�erent subtrees rooted at the same node are disjoint. The
ombination ofthis information with the operation e�e
ts information enables the
ompiler to,for example, parallelize standard re
ursively-de�ned
omputations that updatetree nodes but do not
hange the stru
ture of the tree. Similar transformationsare possible for other
omputations that a

ess linked data stru
tures.

8 Related WorkThe
on
ept of role models as a generalization of the stati

lass system hasbeen present in the obje
t modelling
ommunity for some time [13℄, but usuallywith no formal relationship with program
ode. The idea of stati
 analysis oftypes whi
h
hange at run-time was explored in [17℄, but without any treatmentof relationships between obje
ts in the heap. A system for obje
t re
lassi�
a-tion is presented in [3℄, but the
lass
hanges are designed to be transparent toaliasing; in our approa
h, the roles
hange when the aliases
hange, whi
h is arequirement for reasoning about the role
hanges that take pla
e when obje
tsmove between data stru
tures. Our system also asso
iates a set of invariantswith the
urrent role of every obje
t, allowing stronger stru
tural propertiesto be expressed. Another di�eren
e is that implementation of the language in[3℄ is based on performing additional run-time
he
ks whereas our language isprimarily an interfa
e to a stati
 program analysis system.The sublanguage we use for spe
ifying
ontext-spe
i�
 invariants is similarto the logi
 des
ribed in [1℄ whi
h also explains the relationship with [8℄. A moregeneral system used for dependen
e testing is des
ribed in [9℄.There appears to be surprisingly little work on languages for des
ribing pre-
ise e�e
ts pro
edures with respe
t to the heap. The importan
e of pro
edurespe
i�
ations for pointer analysis was indi
ated in [14℄. A language for annotat-ing software libraries is des
ribed in [6℄. E�e
ts systems in general were used infun
tional languages with side e�e
ts [10℄. Our spe
i�
ation language bears somesimilarities to propositional dynami
 logi
 [7℄. Similarly to [4℄, our e�e
t languagespe
i�es operations on heap. Unlike graph rewrite rules, our e�e
t spe
i�
ationsare based on primitive e�e
ts whi
h
orrespond to statements in imperative pro-grams. The e�e
ts of
omplex pro
edures also tend to be more nondeterministi
than graph rewrite rules due to their approximate nature.Although the fo
us in this paper is on the spe
i�
ation language, the ana-lyzability of the language was our major
on
ern. The te
hniques useful for roleanalysis are dis
ussed in [15℄, [12℄, [4℄. More restri
tive approa
hes rely on theextensions of linear type systems or on ownership types [16℄, [11℄, [2℄.9 Con
lusionWe have proposed a language for spe
ifying invariants of obje
ts whi
h movebetween dynami
ally
hanging data stru
tures. We have given the syntax andsemanti
s of the language and illustrated its use on several examples.The role de�nition sublanguage enables the
lassi�
ation of obje
ts a

ordingto their membership in di�erent data stru
tures as well as the spe
i�
ation ofsome essential data stru
ture heap invariants. The invariant spe
i�
ation sublan-guage allows the
ommuni
ation of additional
ontext-spe
i�
 rea
hability andaliasing properties. Finally, the pro
edure e�e
t sublanguage is designed to
ap-ture pre
ise e�e
ts of short pro
edures and to summarize
omplex modi�
ationsperformed in regions of the heap rea
hable from pro
edure parameters.

We have
onstru
ted this language to serve as a foundation for a
ompo-sitional
ow-sensitive interpro
edural program analysis. Su
h an analysis
anin
rease a programmer's
on�den
e in program
orre
tness. Moreover, it
anenable a variety of program transformations.Referen
es1. Mi
hael Benedikt, Thomas Reps, and Mooly Sagiv. A de
idable logi
 for linkeddata stru
tures. In Pro
. 8th European Symposium on Programming, 1999.2. David G. Clarke, John M. Potter, and James Noble. Ownership types for
exiblealias prote
tion. In Pro
. 13th Annual Conferen
e on Obje
t-Oriented Program-ming, Systems, Languages, and Appli
ations, 1998.3. S. Drossopoulou, F. Damiani, M. Dezani-Cian
aglini, and P. Giannini. Fi
kle:Dynami
 obje
t re-
lassi�
ation. In Pro
. 15th European Conferen
e on Obje
t-Oriented Programming, LNCS 2072, pages 130{149. Springer, 2001.4. Pas
al Fradet and Daniel Le Metayer. Shape types. In Pro
. 24th ACM POPL,1997.5. James Gosling, Bill Joy, Guy Steele, and Gilad Bra
ha. The Java Language Spe
-i�
ation. Sun Mi
rosystems, In
., 2001.6. Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing softwarelibraries. In Se
ond Conferen
e on Domain Spe
i�
 Languages, 1999.7. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynami
 Logi
. The MIT Press,Cambridge, Mass., 2000.8. Joseph Hummel, Laurie J. Hendren, and Alexandru Ni
olau. Abstra
t des
rip-tion of pointer data stru
tures: An approa
h for improving the analysis and opti-mization of imperative programs. ACM Letters on Programming Languages andSystems, 1(3), September 1993.9. Joseph Hummel, Laurie J. Hendren, and Alexandru Ni
olau. A language for
on-veying the aliasing properties of dynami
, pointer-based data stru
tures. In Pro
.8th International Parallel Pro
essing Symposium, Can
un, Mexi
o, April 26{291994.10. Pierre Jouvelot and David K. Gi�ord. Algebrai
 re
onstru
tion of types and e�e
ts.In Pro
. 18th ACM POPL, 1991.11. Naoki Kobayashi. Quasi-linear types. In Pro
. 26th ACM POPL, 1999.12. Anders M�ller and Mi
hael I. S
hwartzba
h. The Pointer Assertion Logi
 Engine.In Pro
. ACM PLDI, 2001.13. Trygve Reenskaug. Working With Obje
ts. Prenti
e Hall, 1996.14. Radu Rugina and Martin Rinard. Design-driven
ompilation. In Pro
. 10th Inter-national Conferen
e on Compiler Constru
tion, 2001.15. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis prob-lems in languages with destru
tive updating. In Pro
. 23rd ACM POPL, 1996.16. F. Smith, D. Walker, and G. Morrisett. Alias types. In Pro
. 9th European Sym-posium on Programming, Berlin, Germany, Mar
h 2000.17. Robert E. Strom and Shaula Yemini. Typestate: A programming language
on
eptfor enhan
ing software reliability. IEEE Transa
tions on Software Engineering,January 1986.

