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Abstract— This paper addresses the problem of efficient rep-
resentation and compression of scenes captured by distributed
vision sensors. We propose a novel geometrical model to describe
the correlation between different views of a three-dimensional
scene. We first approximate the camera images by sparse expan-
sion over a dictionary of geometric atoms, as the most important
visual features are likely to be equivalently dominant in images
from multiple cameras. The correlation model is then built on lo-
cal geometrical transformations between corresponding features
taken in different views, where correspondences are defined based
on shape and epipolar geometry constraints. Based on this geo-
metrical framework, we design a distributed coding scheme with
side information, which builds an efficient representation of the
scene without communication between cameras. The Wyner-Ziv
encoder partitions the dictionary into cosets of dissimilar atoms
with respect to shape and position in the image. The joint decoder
then determines pairwise correspondences between atoms in
the reference image and atoms in the cosets of the Wyner-Ziv
image. It selects the most likely correspondence among pairs of
atoms that satisfy epipolar geometry constraints. Atom pairing
permits to estimate the local transformations between correlated
images, which are later used to refine the side information
provided by the reference image. Experiments demonstrate that
the proposed method leads to reliable estimation of the geometric
transformations between views. The distributed coding scheme
offers similar rate-distortion performance as joint encoding at
low bit rate and outperforms methods based on independent
decoding of the different images.

I. I NTRODUCTION

Vision sensor networks have recently been gaining popu-
larity as they find many applications in fields as diverse as
3DTV, surveillance or robotics. These imaging or information
processing systems rely on an efficient representation of 3D
scenes that includes depth or more generally geometry infor-
mation. Distributed camera networks actually offer simple and
cost effective solutions for scene acquisition, where several
views of the scene can be combined to produce a complete
representation or to generate new views by interpolation.
Bandwidth or power limitations typically impose a distributed
processing of the visual information, where rate-distortion
effective scene representations take benefit of the correlation
from multiple views in order to reproduce depth and visual
information.

This work has been partly supported by the Swiss National Science
Foundation, under grant 20001-107970/1.
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Fig. 1. Distributed coding of 3D scenes. Multiple correlated viewsyi of the
scene are encoded independently, and decoded jointly by the central decoder.

In this paper, we consider a framework where a central
decoder reconstructs the 3D scene information based on
multiples images encoded by distributed cameras (see Fig-
ure 1). Distributed coding of the camera images seems a
priori suboptimal for a rate-distortion efficient representation
of the scene. Interestingly enough, results from information
theory have shown that it is possible to exploit the correlation
among sources without communication between encoders, as
long as the decoding is performed jointly [1], [2]. Distributed
coding however relies on the knowledge of a good correlation
model between information sources, which is a quite strong
assumption in imaging problems. Most DSC schemes that are
applied to video coding are based on translational motion
estimation at decoder and channel coding at encoder, which
assumes a correlation on the level of pixel bit planes modeled
by the statistics of a virtual channel. However, the correlation
between images in camera networks mostly lies in the motion
of the objects in a 3D scene, and translational motion of
observed objects cannot cope efficiently with local transforms
such as scaling or rotation.

We propose a novel geometry-based correlation model for
the design of distributed coding algorithms in camera net-
works. The main features of a 3D scene are likely to be
dominant in the multiple correlated views of the scene, pos-
sibly under some transformations due to the geometry of the
scene. We propose to capture these features by sparse image
expansion with geometrical atoms taken from a redundant
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dictionary of functions. The correlation model is then built on
local geometrical transformations between corresponding fea-
tures taken in different different views, where correspondences
are defined based on shape and epipolar geometry constraints.
Successful pairing of correlated atoms relies on the use of
a structured dictionary that is invariant to local transforms
like translation, rotation and scaling, or any combination of
those. We apply this new correlation model to omnidirectional
images that are particulary interesting for scene representation
due to their wide field of view and accuracy in capturing
the scene geometry. Such images can easily be mapped and
processed on spherical manifolds, hence we compute sparse
image approximations on the sphere [3] in order to capture
the most prominent image components. Local geometrical
transformations of atoms then proceed by scaling and rotation
on the sphere. It leads to an effective correlation model that
can be used to estimate the disparity map between different
views for scene rendering or multi-view coding.

The geometrical framework is then used in the design of
a distributed coding method with side information for multi-
view omnidirectional images. A Wyner-Ziv coder is designed
by partitioning the redundant dictionary into cosets based
on atom dissimilarity. The joint decoder then selects the
best candidate atom within the coset with help of the side
information image. The correspondences that are found during
decoding between atoms in both image expansions are further
used to estimate local transformations and to build a transform
field between correlated views. These transformations are used
to refine the side information for decoding the following
atoms. Experimental results show that the proposed method
successfully identifies the local geometric transformations be-
tween sparse image components in different views and implic-
itly provides coarse scene geometry information. Finally, the
distributed coding scheme is shown to outperform independent
coding strategies and to approach the performance of a joint
coding strategy at low bit rate.

The paper is organized as follows. A brief overview of
related work on distributed source coding is given in Section II.
Section III presents the novel geometrical correlation model
in multi-view images, which is further refined for the case of
omnidirectional images in Section IV. The Wyner-Ziv coding
method that relies on the novel correlation model is described
in Section VI and coding results are discussed in Section VII.

II. RELATED WORK

Distributed source coding (DSC) has been researched for
a long time in the information theory community, but its
application to imaging problems has been delayed due to the
difficulty of finding good models for the correlation between
real sources. The first practical DSC schemes for images
have been proposed only recently, when the link of DSC
with channel coding has been established [4]. Most of the
research in the DSC framework till nowadays focused on the
application of DSC to low-complexity video coding [5], [6]
and error-resilient video coding [5], [7]. However, only few
works have addressed the problem of distributed coding in
camera networks, mainly due to the difficulty of modeling the

statistical correlation among distributed cameras for 3D scene
representation.

The application of DSC principles in camera networks is
generally based on the disparity estimation between views
under epipolar constraints. Most of the solutions proposed
in the literature are built on coding with side information
that is a special case of DSC. For example, cameras can be
divided into conventional cameras that perform independent
image coding and Wyner-Ziv cameras that use DSC coding [8].
The Wyner-Ziv images are decoded with the help of disparity
estimation and interpolation from independent views. Shape
adaptation is used to enhance the side information with the
shape information sent by the encoders. Super-resolution tech-
niques have been also applied to distributed coding in camera
networks [9]. Low-resolution images from each camera are
combined after registration at the joint decoder into a high-
resolution image. The image registration is performed by
shape analysis and image warping with respect to the shape
transforms that are however limited to only simple translations
and rotations. In [10] the authors propose a distributed coding
scheme for camera networks where the multi-view correlation
is modeled by relating the locations of discontinuities in the
polynomial representation of image scanlines. To the best of
our knowledge, this scheme has however not been extended
to the case of natural 2D images.

Disparity-based solutions have also been proposed for multi-
view video compression. In [11], the authors propose a DSC
method for highly correlated image sequences that combines
distributed video coding applied to motion-compensated tem-
poral wavelet coding and disparity compensation for dis-
tributed multi-view compression. Authors in [12] present a
transform-based DSC method for multi-view video coding
that tracks epipolar correspondences between macroblocks in
different views. The Wyner-Ziv encoder has however partial
access to the side information (Intra macroblocks and motion
vectors), so that this scheme cannot be classified as fully
distributed multi-view coding scheme. On the other side, a
completely distributed stereo-view video coding method is
proposed in [13]. It performs independent coding of I-frames
and Wyner-Ziv coding of P frames, where the side information
is generated by fusing the disparity map with the motion field.
The achieved bit rates are still quite far from the Slepian-
Wolf bound, mainly due to independent coding of I-frames
and this gap can be reduced by encoding more coarsely the I-
frames [14]. Finally, the DSC principles can be also exploited
for the error-resilient delivery of multi-view video in wireless
camera networks [15].

The common characteristics of all state-of-the-art disparity-
based DSC frameworks lie on the need of at least two
independently encoded views in order to perform disparity
estimation for DSC decoding, which leads to high encoding
rates. Moreover, the disparity estimation usually requires high-
resolution images, which is quite restricting in practical camera
network scenarios. This work contributes to solving these two
main problems by efficiently relating the correlated data in
multiple views under geometric local transforms. This enables
the estimation of scene geometry and a correct decoding of
Wyner-Ziv frames, even with a single reference frame that has
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been highly compressed.

III. M ULTI -VIEW CORRELATION MODEL

Images of a 3D scene taken by distributed cameras are
likely correlated as they capture the same objects in the scene
from different viewpoints. The correlation between multi-
view images arises from the rigid motion of the objects
in the scene due to viewpoint change, and can be simply
described by local changes of image components that represent
the moving objects. In other words, if we decompose each
image into components that capture the objects in the scene,
we can assume that the most prominent components are
present in all images with high probability, possibly with
some local transformations. However, image decompositions
by standard transforms like the wavelet or DCT do not describe
the image semantics. Due to the orthogonality of the basis
vectors, extracted image components rarely capture the scene
objects and their geometry. On the other side, sparse image
approximations with overcomplete dictionaries of basis vectors
(atoms) have shown capable of capturing the image structure
and geometry using only few basis vectors [16], while offering
excellent approximation performance. Sparse approximations
have been also successfully applied to video [17], [18] and 3D
object compression [3]. One of the most important advantages
of sparse approximations is the flexibility in the design of
an overcomplete dictionary. When the dictionary is built on
geometrical functions with local support, the sparse image
decomposition results in a set of meaningful geometrical
features that represent the visual information of the scene.
The comparison of these features in different views permits
to estimate the geometry of the scene and the correlation
between views. The correlation between multi-view images is
driven by local transformations of sparse image components
in different views that represent the same component in the
3D scene. Interestingly, sparse image approximations with
redundant dictionaries of geometrical features are believed to
mimic the behavior of the human visual system for encoding
visual information [19].

We briefly overview the basics of sparse signal approxi-
mation that are used to build our correlation model. Given
a certain basis, or a redundant dictionary of atomsD =
{φk}, k = 1, ..., N , in a Hilbert space, every imagey can
be represented as:

y = Φx =
N∑

k=1

xkφk, (1)

where the matrixΦ is composed of atomsφk as columns.
When the dictionary is over-complete,x is not unique. In order
to find a compact image approximation one has to search for
a sparse vectorx that contains a small number of significant
coefficients, while the rest of coefficients are close or equal to
zero. In other words, we say thaty has asparserepresentation
in D if it can be represented as a linear combination of a small
number of atoms inD, up to an approximation errorη, i.e.,:

y = ΦIc + η =
∑

k∈I

xkφk + η, (2)

wherec is the vector of significant elements ofx, I labels the
set of atoms{φk}k∈I participating in the representation, and
ΦI is a sub-matrix ofΦ with respect toI. One is generally
not interested in finding an exact representation, but rather in
finding a sparse expansion with a small approximation error. In
order to find the sparsest approximation ofy with a bounded
error norm ||η|| ≤ ε, the following minimization problem
needs to be solved:

min
c
||c||0 subject to ||y − ΦIc||2 ≤ ε, (3)

where || · ||0 denotes thel0 norm. This minimization prob-
lem involves searching for the shortest vector of significant
coefficient in x, which has combinatorial complexity and it
is NP-complete. However, there exist algorithms that search
for a suboptimal solution for a sparse vectorx with a limited
complexity. They can be classified in two main groups: greedy
algorithms (Matching Pursuit (MP), Orthogonal MP (OMP),
Weak OMP, etc.) that iteratively select locally optimal basis
vectors; and algorithms based on convex relaxation methods
(Basis Pursuit) that solve however a slightly different problem
where thel0 norm in Eq. (3) is replaced by anl1 norm. For
details on these algorithms we refer the reader to [20].

We are now interested in defining the correlation model
between sparse approximations of two correlated multi-view
images1:

y1 = ΦI1c1 + η1

y2 = ΦI2c2 + η2.

Since y1 and y2 capture the same 3D scene, there exists a
subset of atoms indexed respectively byJ1 ∈ I1 andJ2 ∈ I2

that represent image projections of the same prominent 3D
features in the scene. We assume that these atoms are cor-
related, possibly under some local geometric transformations.
Let F (φ) denote the transform of an atom between two image
decompositions that results from the motion of an object in
the 3D space. Equivalently, it represents the transformation
imposed to an atomφ in a correlated view due to camera dis-
placement. Therefore, the correlation between the images can
be modeled as a set of transformsFi between corresponding
atoms in sets indexed byJ1 andJ2. The approximation of the
imagey2 can be rewritten as the sum of the contributions of
transformed atoms, remaining atoms inI2, and noiseη2:

y2 =
∑

i∈J1

x2,iFi(φi) +
∑

k∈I2\J2

x2,kφk + η2. (4)

The hereabove model is independent of the sparse approxima-
tion algorithm used for image decomposition, and generic with
respect to the overcomplete dictionary selection. However,
we choose a dictionary built on locally defined geometric
atoms that can approximate multidimensional discontinuities
like edges. These represent important information about the
scene geometry.

The main challenge in the proposed model is to define the
transformsFi in the Eq. (4) that relate corresponding atoms in
sparse decompositions of omnidirectional multi-view images.

1We take two images for the sake of clarity, but the framework can be
generalized to any number of images.
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Due to motions of objects in the 3D space various types of
transforms are introduced in the image projective space. Most
of these transforms can be represented by the 2-D similarity
group elements, which include 2-D translation, rotation and
isotropic scaling of the image features. We also consider
anisotropic scaling to further expand the space of possible
transforms among image features. In order to efficiently cap-
ture transforms between sparse image components, we propose
to use a structured redundant dictionary of atoms for image
representation. Atoms in the structured dictionary are derived
from a single waveform that undergoes rotation, translation
and scaling. Hence, the transformation of an atom by any
of the 2-D similarity group elements or anisotropic scaling,
results in another atom in the same dictionary: the dictionary is
invariant with respect to any transform action. More formally,
given a generating functiong defined in the Hilbert space, the
dictionaryD = {φk} = {gγ}γ∈Γ is constructed by changing
the atom indexγ ∈ Γ that defines rotation, translation and
scaling parameters applied to the generating functiong. This
is equivalent to applying a unitary operatorU(γ) to the
generating functiong, i.e.: gγ = U(γ)g. When the dictionary
is defined this way, the transform of one atomgγi

to another
atomgγj reduces to a transform of its parameters, i.e.,

gγj = F (gγi) = U(γ′)gγi = U(γ′ ◦ γi)g. (5)

This equality holds for any transform-invariant overcomplete
dictionary in the Hilbert space. Note that the size and redun-
dancy of the dictionary is directly driven by the number of
distinct atom transformations.

IV. T RANSFORMS IN OMNIDIRECTIONAL IMAGES

Omnidirectional imaging represents an interesting and in-
creasingly popular framework for 3D scene representation.
It offers a wider field of view and therefore necessitates
only a small number of camera sensors for capturing a 3D
scene. In addition, it permits to process the visual information
without the discrepancies introduced by Euclidian assumptions
in planar imaging. Therefore, we address the problem of
correlation modeling for multi-view omnidirectional images.
As these images can be precisely mapped on a sphere, we
further use a dictionary of atoms on the 2-D unit sphere.
The generating functiong is hence defined in the space of
square-integrable functions on a unit two-sphereS2, g(θ, ϕ) ∈
L2(S2), while the dictionary is built by changing the atom
indexesγ = (τ, ν, ψ, α, β) ∈ Γ. The triplet(τ, ν, ψ) represents
Euler angles that respectively describe the motion of the atom
on the sphere by anglesτ andν, and the rotation of the atom
around its axis with an angleψ, andα, β represent anisotropic
scaling factors. As an example, Gaussian atoms on the sphere
are illustrated on the Figure 2, for different motion, rotation
and anisotropic scaling parameters.

We are interested in finding correspondences between atoms
that respectively represent the imagesy1 and y2, generated
by two omnidirectional cameras that capture the same scene.
For the sake of clarity, let{gγ}γ∈Γ and{hγ}γ∈Γ respectively
denote the set of functions used for the expansions of images
y1 and y2. The same dictionary is used for both images, so

(a) (b) (c)

Fig. 2. Gaussian atoms: a) on the North pole (τ = 0, ν = 0), ψ = 0, α =
2, β = 4; b) τ = π

4
, ν = π

4
, ψ = π

8
, α = 2, β = 4; c) τ = π

4
, ν = π

4
, ψ =

π
8
, α = 1, β = 8.

that two corresponding atomsgγi and hγj in imagesy1 and
y2 are linked by a simple transform of the atom parameters,
and Eq. (5) can be rewritten as

hγj
= F (gγi

) = U(γ′)gγi
= U(γ′ ◦ γi)g. (6)

The subset of transformsV 0
i = {γ′|hγj

= F (gγi
) =

U(γ′)gγi} allows to relategγi to the atomshγj in the
expansion ofy2. However, not all these transforms are feasible
in multi-view correlated images. The set of possible transforms
can be greatly reduced by identifying two constraints between
corresponding atoms, namelyshape similarityconstraints and
epipolar constraint.

First, we assume that the 3D motion of an object results in
a limited difference between shapes of corresponding atoms
since they represent the same object in the 3D scene. There-
fore, we can restrict the set of possible transforms by the shape
similarity constraints between candidate atoms. We measure
the similarity or coherence of atoms by the inner product
µ(i, j) = |〈gγi , hγj 〉|, and we impose a minimal coherence
between candidate atoms, i.e.,µ(i, j) > s. This defines a set
of possible transformsV µ

i ⊆ V 0
i with respect to atom shape,

as:
V µ

i = {γ′|hγj = U(γ′)gγi , µ(i, j) > s}. (7)

Equivalently, the set of atomshγj in y2 that are possible
transformed versions of the atomgγi is denoted as theshape
candidates set. It is defined by the set of atoms indexes
Γµ

i ⊂ Γ, with

Γµ
i = {γj |hγj = U(γ′)gγi , γ

′ ∈ V µ
i }. (8)

Second, pairs of atoms that correspond to the same 3D
points have to satisfy epipolar constraints, that represent one of
the fundamental relations in multi-view analysis. The epipolar
constraint defines the relation between 3D point projections
(z1, z2 ∈ R3) on two cameras, as:

zT
2 T̂Rz1 = 0, (9)

where R and T are the rotation and translation matrices
of one camera frame with respect to the other, andT̂ is
obtained by representing the cross product ofT with Rz1

as matrix multiplication, i.e.,T̂Rz1 = T × Rz1. The set
of possible transforms between atoms from different views
is therefore further reduced to the transforms that respect
epipolar constraints between the atomgγi in y1 and the
candidates atomshγj in y2. The constraint given in Eq. (9)
is rarely exactly satisfied for corresponding pixels or areas
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in two multi-view images, and the decision on the epipolar
matching of two correspondences is commonly taken when
their epipolar distance is smaller than a certain thresholdκ.

By imposing the epipolar constraint on atoms inV 0
i , we

define the setV E
i ⊆ V 0

i of possible transforms of atomgγi

as:

V E
i = {γ′|hγj

= U(γ′)gγi
, dEA(gγi

, hγj
) < κ}, (10)

where dEA(gγi
, hγj

) denotes the epipolar distance between
atoms gγi and hγj (see below). Similarly, we define a set
of candidate atoms iny2, called theepipolar candidates set,
whose indexes belong toΓE

i ⊂ Γ, with:

ΓE
i = {γj |hγj = U(γ′)gγi , γ

′ ∈ V E
i } ⊂ Γ. (11)

ray L
i

C
i
: projection of    L

i

all atoms positions

possible atoms positions

S
1

L
i

C
i

S
2

(possible candidates)

 

3D object

Camera 2

Camera 1

Fig. 3. Selection of positions of atoms that satisfy epipolar constraints.

A graphical interpretation of the epipolar constraint for
spherical images is shown on the Figure 3, where we denote
as S1 and S2 the two unit spheres corresponding to camera
projection surfaces. A given atomgγi in y1, on the sphereS1,
can be a projection of infinitely many different 3D objects, at
different scales and distances fromS1. We show an example
of several different objects whose projection onS1 is gγi

and projections onS2 are hγj . Due to epipolar constraints,
the atomshγj are positioned on the part of a great circleCi

obtained by projecting the rayLi on the sphereS2. This ray
originates from the center of camera 1 and passes through the
atomgγi on the sphereS1.

Finally, we combine the epipolar and shape similarity
constraints to define the set of possible transforms for atom
gγi , as Vi = V E

i ∩ V µ
i . Similarly, we denote the set of

possible parameters of the transformed atom iny2 as Γi =
ΓE

i ∩Γµ
i . Given the setΓi of possible atom parameters iny2

corresponding to the atomgγi in y1, the correspondencehγj in
y2 can be defined with high probability under the assumption
that the decomposition ofy2 is sparse.

V. D ISPARITY MAP ESTIMATION BY ATOM TRANSFORMS

The local transformations between geometric atoms are now
used to estimate the correlation between pixels in multiview
images, as represented by adisparity map. A disparity map
typically permits view interpolation under epipolar constraints.
It is defined as the point-wise correlation between multi-view
images, which relates a pointz1 on the imagey1 to a pointz2

ony2, such that the epipolar constraint from Eq. (9) is satisfied.
This mapping is most commonly estimated by identifying
corresponding feature points like corners in multi-view images
and relating their local neighborhoods by a cross-correlation
similarity measure [21]. However, cross-correlation measure
is not rotationally invariant and it fails to capture rotation of
patterns between views. Since our correlation model relates
local geometric features by atoms with different scale and
rotation parameters in different views, it represents a similarity
measure that is invariant with respect to rotation and scaling.
Therefore, a pair of corresponding atoms can give a reliable
estimate of the disparity map, obtained by the atom transform.
We describe here the estimation of the disparity map from the
atom transforms, and we define a measure of the estimation
error that can be used to refine the atom pairing process.

Let’s consider a pair of corresponding atoms(gγi
, hγj

) in
two images. We want to find a mapping of each point on
gγi

to its corresponding point onhγj
. Since this mapping is

point-wise, we need to definegγi in the discrete space, i.e., on
the spherical gridG1. Then, the disparity mapping translates
to the grid distortion induced by the local transform between
gγi and hγj , denoted asF{G1}. Let P1 be a point onG1,
given in Euclidean coordinates asz1. Similarly, let P2 be a
point on G2, given in Euclidean coordinates asz2, which is
obtained by applying the grid transformF to P1. Let further
γi = (τi, νi, ψi, αi, βi) andγj = (τj , νj , ψj , αj , βj). The grid
transformG2 = F{G1} includes two transforms:

1) transform of the motion of atomgγi , given by Euler
angles(τi, νi, ψi), into the motion of atomhγj , given
by Euler angles(τj , νj , ψj)

2) transform of anisotropic scaling of the atomgγi , given
by the pair of scales(αi, βi), into the anisotropic scaling
of the atomhγj , given by the pair of scales(αj , βj).

By combining these two transforms, the pointz2 can be
written as:

z2 = R−1
γj
· u(Rγi · z1), (12)

where Rγi and Rγj are rotation matrices given by Euler
angles(τi, νi, ψi) and (τj , νj , ψj), respectively, andu(·) de-
fines the grid transform due to anisotropic scaling. Since the
anisotropic scaling of atoms on the sphere is performed on
the plane tangent to the North pole by projecting the atom
with stereographic projection, the gridG1 is first rotated such
that the North pole is aligned with the center of atomgγi ,
then deformed with respect to anisotropic scaling, and finally
rotated back with the rotation matrix of atomhγj .

In more details, the stereographic projection [22] at the
North pole projects a point(θ, ϕ) on the sphere to a point
(x, y) on the plane tangent to the North pole, and it is formally
given with:

x + jy = ρejϕ = 2tan

(
θ

2

)
ejϕ. (13)

Let now (θ1, ϕ1) and (θ2, ϕ2) denote the spherical coordi-
nates of pointsP1 and P2 respectively (the point belongs to
the unit sphere andr = 1 is assumed). Under the stereographic
projection, the transform of the point(θ1, ϕ1) on the gridG1 to
the point(θ2, ϕ2) on the gridG2 due to anisotropic scaling can



7

be obtained by scaling the stereographic projection of(θ1, ϕ1)
with 1/αj and1/βj , in the following way:

x2 = ρ2 cos ϕ2 =
1
αj

αix1 =
αi

αj
ρ1 cos ϕ1

y2 = ρ2 sin ϕ2 =
1
βj

βiy1 =
βi

βj
ρ1 sin ϕ1,

whereρ2 = 2 tan θ2/2 and ρ1 = 2 tan θ1/2. By solving the
system of Eq. (14) forθ2 andϕ2, we get:

ϕ2 = up(ϕ1) = arctan
(

αjβi sin ϕ1

αiβj cos ϕ1

)
(14)

θ2 = ut(θ1, ϕ1, ϕ2)

= 2 arctan

[
tan

θ1

2

√
α2

i cos2 ϕ1 + β2
i sin2 ϕ1

α2
j cos2 ϕ2 + β2

j sin2 ϕ2

]
(15)

We can therefore define the functionu(·) as a pair of
transformsup(ϕ1) and ut(θ1, ϕ1, up(ϕ1)) followed by the
transform of spherical coordinates(θ2, ϕ2) to Euclidean coor-
dinatesz2. The relation given in Eq. (12) is now completely
defined, based on the parameters of corresponding atoms in
two images. When the transformation is applied to all points,
it forms the disparity map between the correlated views.

Finally, we define theSymmetric epipolar atom distancein
order to quantify the mismatch between two corresponding
atomsgγi and hγj related by the disparity map. The sym-
metric epipolar atom distance actually measures how much
the atom pairgγi and hγj deviates from the perfect epipolar
matching given in the correlation model of Eq. (10), when
dEA(gγi , hγj ) = 0. It is evaluated as the weighted average of
the symmetric epipolar distance of all pairs of points given by
the disparity map:

dEA(gγi , hγj ) =
∑

z1∈G1

wγi(z1)dSE(z1, z2). (16)

The points z1 and z2 are related by the disparity map
and dSE(z1, z2) stands for the symmetric epipolar distance
betweenz1 andz2 [21]. It is defined as:

dSE(z1, z2) =
√

d(z1, Cz2) + d(z2, Cz1) (17)

whered(z1, Cz2) denotes the Euclidean distance of the point
z1 to the epipolar circleCz2 corresponding to pointz2. The
weightwγi is a normalized weight function that prioritizes the
points where the atomgγi has higher response. The goal of this
function is to give more importance to the disparity mismatch
of points that lie closer to the geometrical component captured
by the atom (typically edges). One example could be a 2-
dimensional Gaussian weight function, anisotropically scaled
and oriented, which fits the atomgγi . If the overcomplete
dictionary is composed of Gaussian atoms, the weight function
is equal to the atom itself. We use 2D Gaussian weight function
in the rest of this paper.

VI. D ISTRIBUTED SCENE CODING

A. Encoder and coset design

The correlation model introduced before can be exploited
for the design of a distributed algorithm, as it explicitly

relates atom parameters with scene geometry constraints in
the compressed domain. We propose here a scheme for coding
with side information, as a special case of DSC, where image
y1 is independently encoded at a rateRy1 ≥ H(y1), and the
image y2 is encoded with coset coding at the rateRy2 ≥
H(y2|y1). The sparse decomposition of the reference image
y1 is independently encoded, while the decomposition of the
Wyner-Ziv image y2 is encoded by coset coding of atom
indexes and entropy coding of their respective coefficients,
as shown on the Figure 4. We propose to partition the set
of atom indexesΓ into distinct cosets that contain dissimilar
atoms with respect to their position and shape. Under the
assumption that an atomhγj

in the image decomposition has
its corresponding atomgγi in the side information expansion,
the Wyner-Ziv encoder does not need to code the entireγj .
It rather transmits only the information that is necessary to
identify the correct atom in the transform candidate set given
by Γi = ΓE

i ∩ Γµ
i , as given by Eq. (8) and (11). The side

information and the coset index are therefore sufficient to
recover the atomgγj

in the Wyner-Ziv image. The achievable
bit rate for encoding the atom indexγj is reduced therefore
from Ry2 ≥ H(γj |γj ∈ Γ) to Ry2 ≥ H(γj |γj ∈ Γi).

Due to the independency of epipolar and shape constraints,
the cosets can be designed independently for atom shape
parameters(ψ, α, β), and for atom positions(τ, ν) according
to epipolar constraints. We therefore construct two types of
cosets, respectively the Shape cosets:Kµ

l , l = 1, ..., N2 and
the Position cosetsKE

k , k = 1, ..., N1. We design Shape cosets
by distributing all atoms whose parameters belong toΓµ

i into
different cosets. The encoder eventually sends for each atom
only the indexes of the corresponding cosets (i.e.,kn and ln
in Figure 4).

Next, we propose two design methods for constructing
the Position cosets, that correspond to scenario where the
camera pose(R, T ) is known, or not available respectively.
We first designEpipolar cosetsbased on the fact that the
centers of two corresponding atomsgγi and hγj , denoted as
mi and mj respectively, satisfy the epipolar constraint, i.e.,
mT

j T̂Rmi = 0. This condition is a special case of the general
epipolar constraint given in the Eq. (10) whenG1 = mi, which
transforms intoG2 = mj . The epipolar candidates set given
in (11) reduces to:

Γ̃E
i = {γj |hγj = U(γ′)gγi , dSE(mi,mj) ≤ δ}, (18)

whereδ represents a small threshold value on the symmetric
epipolar distance. The main design idea is to separate into
different cosets the atoms that belong to the same setΓE

i for
G1 = mi. The parameterδ can be used in the coset design for
selecting the number of cosets and for adapting the encoding
rate. Given the side information atomgγi , the decoder only
needs to know the coset index ofhγj for joint decoding.

As an alternative, we propose to design Position cosets
based onVector Quantizationof positions in the absence of
information about the relative camera poses. The VQ cosets
are constructed by 2-dimensional interleaved uniform quanti-
zation of atom positions(τ, ν) on a rectangular lattice. This
coset design can be formulated analogously to the Epipolar
coset design, where the set of position candidates (called the
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DecoderEncoder

Fig. 4. Block diagram for the Wyner-Ziv codec.

set of epipolar candidates in Eq. (18) gathers the candidates
positions (τj , νj) within the neighborhood of the reference
atom position(τi, νi), i.e.:

Γ̃V
i = {γj |hγj = U(γ′)gγi , |τi − τj | < ∆τ, |νi − νj | < ∆ν}.

(19)
The interleaved vector quantization ofτ andν will distribute
the pairs (τ, ν) that belong to the samẽΓV

i into different
cosets, while keeping the distance between coset elements
constant and equal to(∆τ, ∆ν). Note that the constant intra-
coset distance can not be however guaranteed in the case
of EPI cosets. Both coset design methods are used in the
experiments, and their selection depends on the constraints
of the camera network application.

B. Decoder and image reconstruction

The central decoder (CD) builds on the correlation model
based on local atom transformations, in order to establish
correspondences between atoms in the reference image and
atoms within the cosets of the Wyner-Ziv image decomposition
(see Figure 4). It also uses the information provided by the
quantized coefficients of atoms, in order to improve the atom
matching process. In other words, for decoding of thenth

atom in the Wyner-Ziv frame, the decoder has the following
information: the index of the Position cosetkn, the index
of the Shape cosetln, and the coefficient̂cn after inverse
quantization. The goal of the decoder is to select the atom
position (τn, νn) from KE

kn
and the atom shape(ψn, αn, βn)

from Kµ
ln

. Let An denote the set of possible candidates for
decoding thenth atom iny2, with |An| = |KE

kn
|·|Kµ

ln
| when|·|

denotes the cardinality of a set. However, only a small subset
of atoms inAn have corresponding atoms in the reference
imagey1. The decoder has therefore to identify the possible
pairs of corresponding atoms betweenAn andI1.

Since the atoms coefficients of the Wyner-Ziv imageĉn are
known at the decoder, the decoder selects a subset of atoms
in I1 whose coefficient values are close toĉn. The relation

between coefficients can be established when the coefficients
are obtained as projections of the image to the corresponding
atom, i.e. whencn = 〈y2, hγn〉. Under the assumption that
the image approximations are sparse enough the projections
of two corresponding atomsgγi andhγj are related as:

〈y1, gγi〉
ni

=
〈y2, hγj 〉

nj
, (20)

whereni andnj denote the norms of atomsgγi andhγj prior
to atom normalization. Therefore, the decoder can select a
subset of atomsJn = {γi} in I1 whose coefficients satisfy:

∆c = | ĉi − ĉn

ĉn
| ≈ | 〈y1, gγi〉 − 〈y2, hγn〉

〈y2, hγn〉
| < σ, (21)

whereσ is a chosen threshold. For eachgγi ∈ Jn we have
a set of possible transformed atoms given byΓ̃i = Γ̃E

i

⋂
Γµ

i

or Γ̃i = Γ̃V
i

⋂
Γµ

i respectively for epipolar or VQ cosets. The
decoder further looks if any of the candidates inAn belongs
to

⋃
γi∈Jn

Γ̃i. Note that, in the general case, the parameters
δ,∆τ, ∆ν, s that define the correlation setsΓ̃E

i , Γ̃V
i andΓµ

i can
have different values for the coset design and for the decoding.
This permits to put more strict conditions for the selection of
corresponding atom pairs.

The search for atom correspondences then proceeds in
two major steps. First, the decoder eliminates the candidates
that do not belong to

⋃
γi∈Jn

Γ̃i, as well as candidates with
a large symmetric epipolar atom distance, i.e., for which
dEA(gγi , hγj ) > κ. If all candidates inAn get eliminated,
the decoder decides that thenth atom in y2 does not have a
corresponding atom iny1. Second, the decoder selects as a
correspondence the pair of atoms with the smallest symmetric
epipolar atom distancedEA(gγi , hγj ) among the candidates
that have not been eliminated in the first step.

Once a correspondence is identified, the decoder updates the
transform field that represents the estimates of the disparity
maps for each pixel in the Wyner-Ziv image, with respect
to the reference image. The transform field is updated by
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combining the disparity map induced by the last pair of atoms
with the disparity maps from correspondences that have been
defined previously. The transform field represents the fusion
of disparity maps from multiple correspondences, which is
performed by selecting the most confident mapping for each
point z2 from different mappingsz(i)

1 , i = 1, ..., n, defined by
n correspondences. The final mapping pointz∗1 is selected as:

z∗1 = arg max
z(i)
1 ,i=1,n

wγi
(z(i)

1 ), (22)

where we have used the same weight function as for the
symmetric epipolar atom distance.

The transformation of the reference image with respect to
the transform field provides an approximation of the Wyner-
Ziv image that is used as a side information for decoding the
following atoms in the Wyner-Ziv image expansion. The atoms
that do not have any correspondence in the reference frame
are simply decoded based on the maximal projection on the
residual image. The residual image is evaluated as a difference
between the side information and previously decoded atoms.

Finally, the reconstruction of the Wyner-Ziv imagêy2 is
obtained as a linear combination of the decoded imageyd,
formed of recovered atoms fromΦI2 , and the transformed
reference imageytr, i.e.,:

ŷ2 = yd + λΨd ytr. (23)

The matrixΨd denotes the orthogonal complement to the basis
formed by the decoded atoms inΦI2 , andλ is an optimization
parameter. The reconstructed Wyner-Ziv image benefits from
both the decoded information and the transformed features that
are not present in the decoded data. We estimate the value of
λ from the energy conservation principle. Namely, under the
assumption that‖Ψd ytr‖ ≈ ‖Ψd y2‖, we getλ from Eq. (23)
asλ ≈

√
1− ‖yd‖2/‖y2‖2, where the energy of the original

image‖y2‖2 is sent to the decoder as side information.

VII. E XPERIMENTAL RESULTS

We analyze here the performance of the above Wyner-Ziv
coding method for two sets of multi-view images: synthetic
spherical images of the Room scene (Fig. 5) and natural
omnidirectional images of the Lab scene (Fig. 6). Each set of
images includes two128×128 spherical imagesy1 andy2 cap-
tured from different viewpoints. The natural omnidirectional
images are mapped to spherical images as explained in [23].
For the Room scene the relative pose of one camera with
respect to the other is given withR = I andT = [0 0.3 0]T .
For the Lab scene the camera pose has been estimated using
an algorithm based on sparse approximations (see [24]), and
it is given byR ≈ I andT = [0.8677 0.0957 0.4878].

Sparse image expansions have been constructed using a
Matching Pursuit (MP) algorithm implemented on the sphere.
The dictionary is based on two generating functions in order to
capture both low-frequency components and edge-like features
in the scene. The first one consists in a 2D Gaussian function,
given as :

gLF (θ, ϕ) = exp
(
− tan2 θ

2
(
α2 cos2 ϕ + β2 sin2 ϕ

))
,

(24)

(a) y1 (b) y2

Fig. 5. Original Room images (128x128).

(a) y1

(b) y2

Fig. 6. Original Lab images. The natural omnidirectional images partially
cover the sphere due to the boundaries of the mirror in an omnidirectional
camera. Here we display a cropped image from the 128x128 spherical image,
which corresponds to the captured scene.

The second function represents a Gaussian in one direction
and the second derivative of a 2D Gaussian in the orthogonal
direction (i.e., edge-like atoms similar to the ones presented
in [3]). It is written as

gHF (θ, ϕ) = − 1
K

(
16α2 tan2 θ

2 cos2 ϕ− 2
)

(25)

· exp
(−4 tan2 θ

2

(
α2 cos2 ϕ + β2 sin2 ϕ

))
,

where K is a normalization factor. The position parameters
τ and ν can take 128 different values (Nt = Np = 128),
while the rotation parameter uses 16 orientations, between
0 and π. The scales are distributed in a logarithmic scale
from 1 to Nt/8 for the Gaussian atoms and from 2 toNp/2
for edge-like atoms, with 3 scales per octave. The choice of
the dictionary is mainly driven by its good approximation
properties demonstrated in [3].

The imagey1 is encoded independently, with100 MP
atoms, where the coefficients are quantized by taking benefit
of the energy decay properties of Matching Pursuit expan-
sions [25]. The decoded reference images for the Room and
Lab scene are shown on the Figures 7(a) and 8(a) respectively.
The atom parameters for the expansion of imagey2 are coded
with the proposed Wyner-Ziv scheme. The EPI cosets for
position coding use a correlation parameterδ = π/5 which
gives1024 Position cosets. Alternatively, Position cosets have
also been implemented using VQ in order to generate the
same number of cosets. Note that when the center of an atom
is close to the epipoles (i.e., degenerative case of epipolar
constraints) its parameters have to be encoded independently
in the scheme based on EPI cosets. It leads to an overhead
in the coding rate for the case of EPI cosets compared to VQ
cosets. For the shape cosets, the correlation parameter has been
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(a) ŷ1 (b) ytr (c) ŷ2 (d) ŷMP
2 (e) 1− |ŷ1 − y2| (f) 1− |ŷ2 − y2|

Fig. 7. DSC results for the Room images: (a) decoded reference imageŷ1 (PSNR=30.95dB); (b) transformed reference imageytr ; (c) decoded Wyner-Ziv
imageŷ2 at 0.0534bpp; (d) decoded second imageŷMP

2 when encoded with MP at 0.0534bpp; (e) inverted residue1−|e1| = 1−|ŷ1−y2| without transform
compensation (white pixel denotes no error); (f) inverted residue1− |e2| = 1− |ŷ2 − y2| after DSC decoding.

(a) ŷ1 (c) ŷ2 (e) 1− |ŷ1 − y2| = 1− |e1|

(b) ytr (d) ŷMP
2 (f) 1− |ŷ2 − y2| = 1− |e2|

Fig. 8. DSC results for the Lab images: (a) decoded reference imageŷ1 (PSNR=31.82dB); (b) transformed reference imageytr ; (c) decoded Wyner-Ziv
imageŷ2 at 0.038 bpp; (d) decoded second imageŷMP

2 when encoded with MP at 0.039 bpp; (e) inverted residue1−|e1| = 1−|ŷ1−y2| without transform
compensation (white pixel denotes no error); (f) inverted residue1− |e2| = 1− |ŷ2 − y2| after DSC decoding.
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Fig. 9. Rate-distortion performance for the Room image set.

set to sG = 0.85 (for Gaussian atoms) andsA = 0.51 (for
anisotropic atoms), such that the atoms in the same coset are
sufficiently different. These values lead to128 shape cosets.
Finally, the coefficients of the Wyner-Ziv image are obtained
by projecting the imagey2 on the atoms selected by MP
in order to improve the atom matching process. They are
quantized uniformly.

The rate-distortion (RD) performance of the proposed
scheme for the Wyner-Ziv image is shown in Figures 9(a) and
9(b) for the Room scene (for EPI and VQ cosets respectively),
and in Figure 10 for the Lab scene. The dashed line represents
the RD curve of independent coding with Matching Pursuit,
while the solid line represents the proposed distributed coding
scheme, given by the RD curve of the reconstructed image

ŷ2. The proposed scheme clearly outperforms the independent
decoding strategy, especially at low rates. The dash-dotted
line represents the RD curve of the side information image,
obtained by the application of the transform field on the
reference image, showing that the transform field significantly
improves the side information. Moreover, it can be noted that
the combination ofyd (dotted line with triangles) andytr

results in a better overall PSNR of theŷ2. The imagesytr and
ŷ2 are presented in Figures 7(b)-(c) and 8(b)-(c) for Room and
Lab scene respectively. They correspond to the case of coding
with VQ cosets at the rate of0.053 bpp and0.039 bpp. We
can clearly see how the transform field deforms the reference
image in order to compensate for different object transforms.
Figures 7(d) and 8(d) illustrate the Wyner-Ziv image encoded
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independently with MP at the same rate asŷ2, resulting in a
lower quality than the DSC coded imageŷ2.
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Fig. 10. Rate-distortion performance for the Room image set (VQ Position
cosets).

Figure 11 compares the RD performance of our DSC
scheme using EPI and VQ cosets. When the decoder finds the
same number of correspondences (the curves at lower rate),
EPI cosets give worse performance due to the rate overhead for
independently coded atoms. However, since EPI cosets offer
better matching of atoms, the decoder is able to find more
correspondences and the coding with EPI cosets outperforms
coding with VQ cosets.
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Fig. 11. Rate-distortion coding performance with different position coset
design methods (Room image).

Figure 12 compares the proposed DSC method with joint
encoding, where the joint encoder finds the atom correspon-
dences and encodes only the parameter differences for the
Wyner-Ziv image, while the atoms without correspondences
were encoded independently. The reference image is encoded
independently at the same rate as in the DSC scheme, where
the coefficients are quantized in the same manner. This joint
encoding strategy is analogous to our DSC scheme, with the
difference that the encoder has access to the side-information.
For the sake of fair comparison, the reconstructed image with
joint encodingŷJ

2 is also obtained as a combination of the
transformed imageytr and the decoded imageyJ

d , giving a bet-
ter overall performance. The new DSC scheme performs very

close to the joint encoding at lower rates, where the number of
correspondences between views is higher due to the greediness
of MP. However, when the number of correspondences drops,
the RD performance of DSC saturates. Therefore, the proposed
method should be seen as scene geometry estimation and
prediction technique that could constitute a first predictive
step in a hybrid DSC coding scheme, similar to motion
estimation in the hybrid video coding methods. Our correlation
model is certainly more advantageous than the block-based
motion model since it is able to compensate rotation and
scale transforms in addition to translations captured by motion
estimation.

Finally, we analyze the efficiency of the geometry-based
correlation model. We analyze the residue after DSC coding,
denoted withe2 = ŷ2−y2, and compare it with the difference
between the reference image and the original Wyner-Ziv image
e2 = ŷ1 − y2 (residue without transform compensation).
Figures 7(c) and (e) and 8(c) and (e) show the inverted
residues1 − |e1| and 1 − |e2| for Room and Lab scene
respectively, such that the white pixels correspond to no error.
The energy of the errore1 is respectively82.65 and 82.85
for the Room and Lab image sets, where the energy is given
by the norm of the inner product computed on the sphere.
The energy of the errore2 is respectively47.12 and 15.65
respectively, which confirms the efficiency of the model based
on local geometrical transformations. Unlike1 − |e1| where
displacements of objects result in high error areas (dark parts),
the residue after DSC decoding (e2) is almost exclusively
composed of high frequencies since the object transforms have
been captured efficiently. The distribution of the residue after
transform compensation and decoding can be modeled with the
Laplace distribution (see Figure 13). It greatly facilitates the
correlation modeling towards the potential DSC encoding of
the residual texture information in hybrid coding approaches.

VIII. C ONCLUSIONS

We have presented a geometry-based framework for the
efficient representation of 3D scenes, where camera images are
approximated by a sparse expansion of prominent geometrical
features. A novel correlation model has been proposed based
on local geometrical transformations that permit to pair atoms
in different images under shape and epipolar geometry con-
straints. It provides an implicit estimation of the scene geome-
try that permits to design distributed processing algorithms in
camera networks. We have built on this novel framework and
designed a distributed coding scheme with side information
that offers an efficient rate-distortion representation of 3D
scenes. It can lead to effective solutions for distributed sensing
and processing of 3D scenes, or high resolution distributed
coding when combined with hybrid methods for the represen-
tation of texture or unstructured information.
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