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Abstract— This paper addresses the problem of efficient rep-
resentation and compression of scenes captured by distributed
vision sensors. We propose a novel geometrical model to describe > —
the correlation between different views of a three-dimensional

scene. We first approximate the camera images by sparse expan- = P

sion over a dictionary of geometric atoms, as the most important g —

visual features are likely to be equivalently dominant in images =" — 3 .| Central
from multiple cameras. The correlation model is then built on lo- - e g ceccs
cal geometrical transformations between corresponding features § ™

taken in different views, where correspondences are defined based Y - s

on shape and epipolar geometry constraints. Based on this geo- Y 4 =

metrical framework, we design a distributed coding scheme with ‘
side information, which builds an efficient representation of the

scene without communication between cameras. The Wyner-Ziv

encoder partitions the dictionary into cosets of dissimilar atoms

with respect to shape and position in the image. The joint decoder

then determines pairwise correspondences between atoms inFig. 1. Distributed coding of 3D scenes. Multiple correlated vigwsf the

the reference image and atoms in the cosets of the Wyner-ziv Scene are encoded independently, and decoded jointly by the central decoder.
image. It selects the most likely correspondence among pairs of

atoms that satisfy epipolar geometry constraints. Atom pairing

permits to estimate the local transformations between correlated In this paper, we consider a framework where a central

images, which are later used to refine the side information . .
provided by the reference image. Experiments demonstrate that decoder reconstructs the 3D scene information based on

the proposed method leads to reliable estimation of the geometric Multiples images encoded by distributed cameras (see Fig-
transformations between views. The distributed coding scheme ure 1). Distributed coding of the camera images seems a
offers similar rate-distortion performance as joint encoding at priori suboptimal for a rate-distortion efficient representation
:;’W %',t ratef ﬁ”dd,?f‘“perf‘?rms methods based on independent of the scene. Interestingly enough, results from information
ecoding of the different images. theory have shown that it is possible to exploit the correlation
among sources without communication between encoders, as
long as the decoding is performed jointly [1], [2]. Distributed
|. INTRODUCTION coding however relies on the knowledge of a good correlation
. - model between information sources, which is a quite strong
Vision sensor networks have recently been gaining popu- CTT .
; , L 7 ) assumption in imaging problems. Most DSC schemes that are
larity as they find many applications in fields as diverse as_ . . ; . .
; : . . . . applied to video coding are based on translational motion
3DTYV, surveillance or robotics. These imaging or information’ . . . .
. o . gﬁtlmatlon at decoder and channel coding at encoder, which
processing systems rely on an efficient representation of : : :
assumes a correlation on the level of pixel bit planes modeled

scenes that includes depth or more generally geometry infor- . . )
P 9 vy y %a/ the statistics of a virtual channel. However, the correlation

mation. Distributed camera networks actually offer simple a . . A )
i . e tween images in camera networks mostly lies in the motion
cost effective solutions for scene acquisition, where sever ) . . .
the objects in a 3D scene, and translational motion of

views of the scene can be combined to produce a complge . - .
. . . . 0bserved objects cannot cope efficiently with local transforms
representation or to generate new views by interpolation.

Bandwidth or power limitations typically impose a distribute u\c/:\? as scaling or rotTtlon. trv-based lati del f
processing of the visual information, where rate-distortion € Propose a novel geometry-based correlation modet for

effective scene representations take benefit of the correlat}gﬁ design of @stnbuted coding algorithms in camera net-
orks. The main features of a 3D scene are likely to be

from multiple views in order to reproduce depth and visuég ) . . :
information. ominant in the multiple correlated views of the scene, pos-

sibly under some transformations due to the geometry of the

This work has been partly supported by the Swiss National Sciens&€ne. _\Ne pr.opose to capture these features by sparse image
Foundation, under grant 20001-107970/1. expansion with geometrical atoms taken from a redundant




dictionary of functions. The correlation model is then built ostatistical correlation among distributed cameras for 3D scene
local geometrical transformations between corresponding feapresentation.
tures taken in different different views, where correspondencesThe application of DSC principles in camera networks is
are defined based on shape and epipolar geometry constraggserally based on the disparity estimation between views
Successful pairing of correlated atoms relies on the use wfder epipolar constraints. Most of the solutions proposed
a structured dictionary that is invariant to local transformis the literature are built on coding with side information
like translation, rotation and scaling, or any combination dhat is a special case of DSC. For example, cameras can be
those. We apply this new correlation model to omnidirectiondivided into conventional cameras that perform independent
images that are particulary interesting for scene representatiorage coding and Wyner-Ziv cameras that use DSC coding [8].
due to their wide field of view and accuracy in capturinghe Wyner-Ziv images are decoded with the help of disparity
the scene geometry. Such images can easily be mapped @stimation and interpolation from independent views. Shape
processed on spherical manifolds, hence we compute spadaptation is used to enhance the side information with the
image approximations on the sphere [3] in order to captusbape information sent by the encoders. Super-resolution tech-
the most prominent image components. Local geometrigabues have been also applied to distributed coding in camera
transformations of atoms then proceed by scaling and rotatioetworks [9]. Low-resolution images from each camera are
on the sphere. It leads to an effective correlation model thadmbined after registration at the joint decoder into a high-
can be used to estimate the disparity map between differeasolution image. The image registration is performed by
views for scene rendering or multi-view coding. shape analysis and image warping with respect to the shape
The geometrical framework is then used in the design tBnsforms that are however limited to only simple translations
a distributed coding method with side information for multiand rotations. In [10] the authors propose a distributed coding
view omnidirectional images. A Wyner-Ziv coder is designedcheme for camera networks where the multi-view correlation
by partitioning the redundant dictionary into cosets basésl modeled by relating the locations of discontinuities in the
on atom dissimilarity. The joint decoder then selects th@olynomial representation of image scanlines. To the best of
best candidate atom within the coset with help of the sidmir knowledge, this scheme has however not been extended
information image. The correspondences that are found duritogthe case of natural 2D images.
decoding between atoms in both image expansions are furthePisparity-based solutions have also been proposed for multi-
used to estimate local transformations and to build a transfoxtiew video compression. In [11], the authors propose a DSC
field between correlated views. These transformations are useethod for highly correlated image sequences that combines
to refine the side information for decoding the followinglistributed video coding applied to motion-compensated tem-
atoms. Experimental results show that the proposed methmatal wavelet coding and disparity compensation for dis-
successfully identifies the local geometric transformations bigibuted multi-view compression. Authors in [12] present a
tween sparse image components in different views and implicansform-based DSC method for multi-view video coding
itly provides coarse scene geometry information. Finally, thibat tracks epipolar correspondences between macroblocks in
distributed coding scheme is shown to outperform independaetifferent views. The Wyner-Ziv encoder has however partial
coding strategies and to approach the performance of a joicess to the side information (Intra macroblocks and motion
coding strategy at low bit rate. vectors), so that this scheme cannot be classified as fully
The paper is organized as follows. A brief overview oflistributed multi-view coding scheme. On the other side, a
related work on distributed source coding is given in Section kompletely distributed stereo-view video coding method is
Section Il presents the novel geometrical correlation modetoposed in [13]. It performs independent coding of I-frames
in multi-view images, which is further refined for the case oind Wyner-Ziv coding of P frames, where the side information
omnidirectional images in Section IV. The Wyner-Ziv codings generated by fusing the disparity map with the motion field.
method that relies on the novel correlation model is describ&tie achieved bit rates are still quite far from the Slepian-
in Section VI and coding results are discussed in Section VWolf bound, mainly due to independent coding of I-frames
and this gap can be reduced by encoding more coarsely the I-
frames [14]. Finally, the DSC principles can be also exploited
for the error-resilient delivery of multi-view video in wireless
Distributed source coding (DSC) has been researched éamera networks [15].
a long time in the information theory community, but its The common characteristics of all state-of-the-art disparity-
application to imaging problems has been delayed due to thesed DSC frameworks lie on the need of at least two
difficulty of finding good models for the correlation betweerindependently encoded views in order to perform disparity
real sources. The first practical DSC schemes for imagestimation for DSC decoding, which leads to high encoding
have been proposed only recently, when the link of DSfates. Moreover, the disparity estimation usually requires high-
with channel coding has been established [4]. Most of tlesolution images, which is quite restricting in practical camera
research in the DSC framework till nowadays focused on timetwork scenarios. This work contributes to solving these two
application of DSC to low-complexity video coding [5], [6]main problems by efficiently relating the correlated data in
and error-resilient video coding [5], [7]. However, only fewmultiple views under geometric local transforms. This enables
works have addressed the problem of distributed coding time estimation of scene geometry and a correct decoding of
camera networks, mainly due to the difficulty of modeling th@/yner-Ziv frames, even with a single reference frame that has
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been highly compressed. wherec is the vector of significant elements of I labels the
set of atoms{ ¢y }rer participating in the representation, and
®; is a sub-matrix of® with respect tol. One is generally

not interested in finding an exact representation, but rather in

Images of a 3D scene taken by distributed cameras gfigging a sparse expansion with a small approximation error. In

likely correlated as they capture the same objects in the SCefiger to find the sparsest approximationyowith a bounded
from different viewpoints. The correlation between multizyror norm|jy|| < e, the following minimization problem

view images arises from the rigid motion of the object§eeds to be solved:

in the scene due to viewpoint change, and can be simply

described by local changes of image components that represent ~ min |lc[lo  subject to [ly — @scll2 <, 3)
the moving objects. In other words, if we decompose eac
image into components that capture the objects in the sce

we can assume that the most prominent components dre e ent in hich has combinatorial complexity and it
present in all images with high probability, possibly with It Nz, Whi ! ! piexity '

some local transformations. However, image decompositioEsFNP'szﬁli(;‘:e'l H‘TV\;?V::; trhere e;('Stvalg&%r‘m?S tllhrr?rt s:jaarch
by standard transforms like the wavelet or DCT do not descri g @ suboptimal solution Tor a Sparse vector a .e

the image semantics. Due to the orthogonality of the basi mp_lexﬁy. They can be Clas.s'ﬂed in two main groups: greedy
vectors, extracted image components rarely capture the sc rithms (Matching Pursuit (MP), Orthogonal MP (OMP),
objects and their geometry. On the other side, sparse ima

ak OMP, etc.) that iteratively select locally optimal basis
approximations with overcomplete dictionaries of basis vecto ctc_)rs; and.algonthms based on convex relgxauon methods
(atoms) have shown capable of capturing the image struct ﬁaS|s Pursuit) thaf[ solve hovyever a slightly different problem
and geometry using only few basis vectors [16], while offerin ere thelo norm in E_q. (3) is replaced by &l norm. For
excellent approximation performance. Sparse approximatio ‘:i%;'ls on these_algorlthms_ we r?f‘?r the reader to .[20]'
have been also successfully applied to video [17], [18] and 3{5 e are now interested in defining the correlation model
object compression [3]. One of the most important advantaq %t 4
of sparse approximations is the flexibility in the design gfnages:
an overcomplete dictionary. When the dictionary is built on y1 = ®1,00+m
geometrical functions with local support, the sparse image
decomposition results in a set of meaningful geometrical
features that represent the visual information of the scerf@ncey; andy, capture the same 3D scene, there exists a
The comparison of these features in different views permgsibset of atoms indexed respectively byc I; andJ; € I
to estimate the geometry of the scene and the correlatiiat represent image projections of the same prominent 3D
between views. The correlation between multi-view images figatures in the scene. We assume that these atoms are cor-
driven by local transformations of sparse image componetigiated, possibly under some local geometric transformations.
in different views that represent the same component in thét F'(¢) denote the transform of an atom between two image
3D scene. Interestingly, sparse image approximations wigcompositions that results from the motion of an object in
redundant dictionaries of geometrical features are believedtfie 3D space. Equivalently, it represents the transformation
mimic the behavior of the human visual system for encodirigiposed to an atong in a correlated view due to camera dis-
visual information [19]. placement. Therefore, the correlation between the images can

We briefly overview the basics of sparse signal approxpe modeled as a set of transformis between corresponding

mation that are used to build our correlation model. Givedoms in sets indexed bj and./;. The approximation of the

IIl. M ULTI-VIEW CORRELATION MODEL

IbereH - |lo denotes thd, norm. This minimization prob-
involves searching for the shortest vector of significant

ween sparse approximations of two correlated multi-view

y2 = Pr,co+1no.

a certain basis, or a redundant dictionary of atofis= imagey: can be rewritten as the sum of the contributions of
{¢r},k = 1,...,N, in a Hilbert space, every image can transformed atoms, remaining atomsIiny and noisey,:
be represented as:
P v =Y w2iFi(d) + Y Takdk+7. 4
N i€y kelz\J2
y=2r= ; TPk, (@) The hereabove model is independent of the sparse approxima-

tion algorithm used for image decomposition, and generic with
where the matrix® is composed of atomsg; as columns. respect to the overcomplete dictionary selection. However,
When the dictionary is over-completejs not unique. In order we choose a dictionary built on locally defined geometric

to find a compact image approximation one has to search fabms that can approximate multidimensional discontinuities
a sparse vector that contains a small number of significantike edges. These represent important information about the
coefficients, while the rest of coefficients are close or equal §gene geometry.

zero. In other words, we say thahas asparserepresentation  The main challenge in the proposed model is to define the
in D if it can be represented as a linear combination of a smathnsformsF; in the Eq. (4) that relate corresponding atoms in

number of atoms irD, up to an approximation erroy, i.e.,. sparse decompositions of omnidirectional multi-view images.

y=®ic+n= Z TpoK + 1, (2) 1We take two images for the sake of clarity, but the framework can be
kel generalized to any number of images.



Due to motions of objects in the 3D space various types of
transforms are introduced in the image projective space. Most
of these transforms can be represented by the 2-D similarity
group elements, which include 2-D translation, rotation and
isotropic scaling of the image features. We also consider
anisotropic scaling to further expand the space of possible (@) (b)
transforms among image features. In order to efficiently cap-

ture transforms between sparse image components, we propoge. Gaussian atoms: a) on the North pate={ 0, = 0), ¥ =
to use a structured redundant dictionary of atoms for image’ =4 b)7=F.v=F.v=fa=20=40c)7=F,v=
representation. Atoms in the structured dictionary are deriveéd” ~ L6=8.

from a single waveform that undergoes rotation, translation

and scaling. Hence, the transformation of an atom by aﬂYat wo corresponding ato and b in imagesy: and
of the 2-D similarity group elements or anisotropic scaling, P 9 M. i 9esy1

results in another atom in the same dictionary: the dictionarng are linked by a simple transiorm of the atom parameters,

invariant with respect to any transform action. More formally"j,md Eq. (5) can be rewritten as

g@vgn a generating functiog defiqed in the Hilbert space, .the he, = F(gy,) = U(Y)gy: = U(Y 07i)g- )
dictionary D = {¢r} = {9~ }er is constructed by changing o )
the atom indexy € T that defines rotation, translation and'he subset of transformd’” = {v'|h,, = F(g+,)

scaling parameters applied to the generating funggiomhis U(7')g} allows to relateg,, to the atomsh, in the

is equiva|ent to app|y|ng a unitary Operat@f(,y) to the expansion 0@2. HOWeVer, not all these transforms are feasible
generating functiory, i.e.: g, = U(v)g. When the dictionary in multi-view correlated images. The set of possible transforms
is defined this way, the transform of one atgm to another Ccan be greatly reduced by identifying two constraints between

atomg,,, reduces to a transform of its parameters, i.e.,, ~ corresponding atoms, namespape similarityconstraints and
epipolar constraint.
9v; = F(9,) =U()gy = U(Y 0)g. (5)  First, we assume that the 3D motion of an object results in

This equality holds for any transform-invariant overcomplet% limited difference between shapes of corresponding atoms

dictionary in the Hilbert space. Note that the size and redupi <€ they represent the same object in the 3D scene. There-

- o . re, we can restrict the set of possible transforms by the shape
dancy of the dictionary is directly driven by the number of. " . ; .
- ; similarity constraints between candidate atoms. We measure
distinct atom transformations.

the similarity or coherence of atoms by the inner product
w(i,5) = [{g~:» Py, )], @nd we impose a minimal coherence
IV. TRANSFORMS IN OMNIDIRECTIONAL IMAGES between candidate atoms, i.@(i,j) > s. This defines a set
Omnidirectional imaging represents an interesting and i possible transform¥}* C V? with respect to atom shape,
creasingly popular framework for 3D scene representatict®:
It offers a wider field of view and therefore necessitates VI ={y|hy, = UGy, (i, 5) > s}. (7)

only a small number of camera sensors for capturing a.QIJ:univaIently, the set of atoma,, in y, that are possible

scene. In addition, it permits to process the visual informatign . .
. . . - . transformed versions of the atogm, is denoted as thshape
without the discrepancies introduced by Euclidian assumptions . . , i :
ndidates setlt is defined by the set of atoms indexes

in planar imaging. Therefore, we address the problem %ﬁ I with
correlation modeling for multi-view omnidirectional images. ? cLw
As these image_s can be precisely mapped on a .sphere, we I% = {vjlh,, = U(Y)gy,y € VI (8)
further use a dictionary of atoms on the 2-D unit sphere.

The generating function is hence defined in the space of Second, pairs of atoms that correspond to the same 3D
square-integrable functions on a unit two-sphgfeg(6, ¢) € points have to satisfy epipolar constraints, that represent one of
L2(S2), while the dictionary is built by changing the atonthe fundamental relations in multi-view analysis. The epipolar
indexesy = (7,v,1, o, 3) € . The triplet(r, v, ) represents constraint defines the relation between 3D point projections
Euler angles that respectively describe the motion of the atdfi- 22 € R?) on two cameras, as:

on the sphere by anglesandv, and the rotation of the atom 2T TRz, =0 9)
around its axis with an angle, anda, 3 represent anisotropic 2 ’

scaling factors. As an example, Gaussian atoms on the sphehere R and T are the rotation and translation matrices
are illustrated on the Figure 2, for different motion, rotatioof one camera frame with respect to the other, dnhds

and anisotropic scaling parameters. obtained by representing the cross productiofwith Rz,

We are interested in finding correspondences between atassmatrix multiplication, i.e.7’Rz; = T x Rz,. The set
that respectively represent the imaggsand y2, generated of possible transforms between atoms from different views
by two omnidirectional cameras that capture the same sceisetherefore further reduced to the transforms that respect
For the sake of clarity, lefg, }er and{h. },cr respectively epipolar constraints between the atam, in y; and the
denote the set of functions used for the expansions of imagesdidates atoma.,, in y». The constraint given in Eq. (9)
y1 andy,. The same dictionary is used for both images, g6 rarely exactly satisfied for corresponding pixels or areas



in two multi-view images, and the decision on the epipolanys, such that the epipolar constraint from Eq. (9) is satisfied.
matching of two correspondences is commonly taken whdihis mapping is most commonly estimated by identifying
their epipolar distance is smaller than a certain threskhold corresponding feature points like corners in multi-view images
By imposing the epipolar constraint on atomsiif, we and relating their local neighborhoods by a cross-correlation
define the set/; C V of possible transforms of atom,,  similarity measure [21]. However, cross-correlation measure
as: is not rotationally invariant and it fails to capture rotation of
atterns between views. Since our correlation model relates
Vi = Ylh; = U )gv, dp a9, hoy) < K3, (10) I%cal geometric features by atoms with different scale and
where dga(g,,, h,) denotes the epipolar distance betweefptation parameters in different views, it represents a similarity
atomsg,, and h,, (see below). Similarly, we define a setmeasure that is invariant with respect to rotation and scaling.
of candidate atoms iy, called theepipolar candidates set Therefore, a pair of corresponding atoms can give a reliable

whose indexes belong ©F C T', with: estimate of the disparity map, obtained by the atom transform.
5 , , 5 We describe here the estimation of the disparity map from the
I ={jlhy; =U( )9y, v € V7 C L (A1) atom transforms, and we define a measure of the estimation

error that can be used to refine the atom pairing process.
Let's consider a pair of corresponding atoifigs, , i.-,) in
two images. We want to find a mapping of each point on
g~; to its corresponding point oh,,. Since this mapping is
point-wise, we need to defing, in the discrete space, i.e., on
S, the spherical grid7;. Then, the disparity mapping translates
to the grid distortion induced by the local transform between
gy, and h,,, denoted asF{G}. Let P, be a point ong,
given in Euclidean coordinates as. Similarly, let P, be a
point on G5, given in Euclidean coordinates as, which is
Lot i obtained by applying the grid transforsi to P;. Let further
all atoms positions .
possible a?oms positions Vi = (7, Vi, i, i, i) a.nd V= (Tj’ vi> ¥j» Oéj’ﬂj_)' The grid
transformG, = F{G, } includes two transforms:
_ _ y _ _ _ 1) transform of the motion of atong,,, given by Euler
Fig. 3. Selection of positions of atoms that satisfy epipolar constraints. angles(n, i, wi), into the motion of atorrh%., given

A graphical interpretation of the epipolar constraint for by Euler angledr;, v;,¢5) .
2) transform of anisotropic scaling of the atam,, given

spherical images is shown on the Figure 3, where we denote by the pair of scaleén,, ), into the anisotropic scaling

as S, and S, the two unit spheres corresponding to camera : . S
projection surfaces. A given atom, in y1, on the spheré;, of the atomh,,, given by the pair of scalegy;, ;).

can be a projection of infinitely many different 3D objects, &Y combining these two transforms, the poini can be

different scales and distances frofa. We show an example Written as: .

of several different objects whose projection 6 is g., z2 = R - u(Ry, - 21), (12)

and projections orf; are h,,. Due to epipolar constraints,,,here R,, and R, are rotation matrices given by Euler

the elltomsh% are pgsitioned on the part of a great _cirdga angles(n: Vi, ) arJ1d (r,v5,1;), respectively, andi(-) de-

obtained by projecting the raly; on the spheres,. This ray fines the grid transform due to anisotropic scaling. Since the

originates from the center of camera 1 and passes through érr"\‘f"sotropic scaling of atoms on the sphere is performed on

atomgs,, on the sphere;. _ ___the plane tangent to the North pole by projecting the atom
Finally, we combine the epipolar and shape similarity;i stereographic projection, the grifi is first rotated such

constraints to define the set of possible transforms for atQEL: the North pole is aligned with the center of atgg),

gy @8V, = V¥ N VI Similarly, we denote the set of yon deformed with respect to anisotropic scaling, and finally
possible parameters of the transformed atomurBsI's = otated back with the rotation matrix of atoi, .

E 1 : : .
I NTy. Given the set’; of possible atom parameters ji In more details, the stereographic projection [22] at the
corresponding to the atom, in y1, the correspondende,; in  North pole projects a pointd, ) on the sphere to a point

y2 can be defined \_/v_ith high. probability under the assumptica’ y) on the plane tangent to the North pole, and it is formally
that the decomposition af, is sparse. given with:

3D object

Camera 1

rayLi

Ci: projection of L ;

(possible candidates) Camera 2 "

V. DISPARITY MAP ESTIMATION BY ATOM TRANSFORMS x+jy = pej“’ = 2tan <9> elv. (13)

The local transformations between geometric atoms are now 2
used to estimate the correlation between pixels in multiview Let now (61, ¢1) and (62, =) denote the spherical coordi-
images, as represented bydesparity map A disparity map nates of pointsP; and P, respectively (the point belongs to
typically permits view interpolation under epipolar constraintshe unit sphere and = 1 is assumed). Under the stereographic
It is defined as the point-wise correlation between multi-vieprojection, the transform of the poif#;, ¢1) on the gridg; to
images, which relates a poirt on the imagey; to a pointz;  the point(62, ¢2) on the gridG, due to anisotropic scaling can



be obtained by scaling the stereographic projectiof@ofy,) relates atom parameters with scene geometry constraints in

with 1/a; and1/g;, in the following way: the compressed domain. We propose here a scheme for coding
1 o with side information, as a special case of DSC, where image
Tz = p2COSp2 = —qT] = —P1COSP1 y1 is independently encoded at a ratg, > H(y:), and the
Q; Q; ; . . :
1 3, image yo is encoded with coset.c.:odlng at the rafg, 2
Yo = posings = —fFiy1 = =-pisinpy, H (y2|y1). The sparse decomposition of the reference image
Bi Bj y1 is independently encoded, while the decomposition of the
whereps = 2tanf,/2 and p; = 2tan 6, /2. By solving the Wyner-Ziv imagey» is encoded by coset coding of atom
system of Eq. (14) fof, and p,, we get: indexes and entropy coding of their respective coefficients,
;3 sin oy as shown on the Figure 4. We propose to partition the set
w2 = up(p1) = arctan <M> (14) of atom indexed into distinct cosets that contain dissimilar
2V}

atoms with respect to their position and shape. Under the
02 = w(br,¢1,02) assumption that an atofn,, in the image decomposition has
61 |a?cos? gy + 32 sin? ¢y its corresponding atory,, in the side information expansion,
= 2arctan |tan o 02 cos? s + A2 sin? oy 15) " the Wyner-ziv encoder does not need to code the engjre
' ' It rather transmits only the information that is necessary to
We can therefore define the function(-) as a pair of jdentify the correct atom in the transform candidate set given
transformsu,,(¢1) and u (01,1, up(p1)) followed by the py 1, = 2 n I'”', as given by Eq. (8) and (11). The side
transform of spherical coordinaté$,, ¢2) to Euclidean coor- information and the coset index are therefore sufficient to
dinatesz,. The relation given in Eq. (12) is now completelyrecover the atong., in the Wyner-Ziv image. The achievable
defined, based on the parameters of corresponding atomgjinrate for encoding the atom inde is reduced therefore
two images. When the transformation is applied to all pointgom Ry, > H(v;]v; €T) to Ry, > H(v;]v; € Ty).
it forms the disparity map between the correlated views.  pye to the independency of epipolar and shape constraints,
Finally, we define theSymmetric epipolar atom distan@® the cosets can be designed independently for atom shape
order to quantify the mismatch between two correspondir&rameteri%a’m' and for atom positionér, ») according
atomsg,, and h,; related by the disparity map. The symyq epipolar constraints. We therefore construct two types of
metric epipolar atom distance actually measures how mug§sets, respectively the Shape coséé;, ! = 1,..., N, and
the atom pairg,, andh,; deviates from the perfect epipolarthe Position coset& 7, k = 1, ..., Ny. We design Shape cosets
matching given in the correlation model of Eq. (10), whegy distributing all atoms whose parameters belongfainto
dga(gy, hy,) = 0. Itis evaluated as the weighted average Qfifferent cosets. The encoder eventually sends for each atom
the symmetric epipolar distance of all pairs of points given byn|y the indexes of the corresponding cosets (kg.and 1,

the disparity map: in Figure 4).
Next, we propose two design methods for constructing
dpa(gyhyy) = Y wy(z1)dse(z1,22).  (16) the Position cosets, that correspond to scenario where the
21€01 camera pos€R,T) is known, or not available respectively.

The pointsz; and z, are related by the disparity mapWe first designEpipolar cosetsbased on the fact that the
and dsg(z1,22) stands for the symmetric epipolar distanceenters of two corresponding atoms, and h,,, denoted as
betweenz, andz, [21]. It is defined as: m; and m; respectively, satisfy the epipolar constraint, i.e.,

mTTRm; = 0. This condition is a special case of the general
dsg(z1,22) = \/d(zl,CzZ) + d(2z2,Cyy) (17) epipolar constraint given in the Eq. (10) whén = m;, which

whered(z,,C,,) denotes the Euclidean distance of the poir;{{anSformS IntoGy = m;. The epipolar candidates set given

z, to the epipolar circleC,, corresponding to point,. The n (11~) reduces to:
weightw,, is a normalized weight function that prioritizes the 'Y’ = {;|h,, = U(')g+,, dsp(m;, m;) < 8}, (18)
points where the atom,, has higher response. The goal of this

oo . . . : . hered represents a small threshold value on the symmetric
function is to give more importance to the disparity mismatch _. : . T i .
epipolar distance. The main design idea is to separate into

of points that lie closer to the geometrical component capturgI erent cosets the atoms that belong to the samd &efor

by the atom (typically edges). One example could be a Z2-

dimensional Gaussian weight function, anisotropically scal . : .
: . ' Selecting the number of cosets and for adapting the encoding
and oriented, which fits the atom,,. If the overcomplete . . .

. : Lo : rate. Given the side information atom,, the decoder only
dictionary is composed of Gaussian atoms, the weight functign : i .
) : : . .Needs to know the coset index bf, for joint decoding.
is equal to the atom itself. We use 2D Gaussian weight function . 4 : "
in the rest of this paper As an alternative, we propose to de§|gn Position cosets

' based onVector Quantizatiorof positions in the absence of
information about the relative camera poses. The VQ cosets
] are constructed by 2-dimensional interleaved uniform quanti-
A. Encoder and coset design zation of atom positiongr, ) on a rectangular lattice. This

The correlation model introduced before can be exploitemset design can be formulated analogously to the Epipolar

for the design of a distributed algorithm, as it explicitlcoset design, where the set of position candidates (called the

q = M The parametes can be used in the coset design for

VI. DISTRIBUTED SCENE CODING
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Fig. 4. Block diagram for the Wyner-Ziv codec.

set of epipolar candidates in Eq. (18) gathers the candidabetween coefficients can be established when the coefficients
positions (7;, v;) within the neighborhood of the referenceare obtained as projections of the image to the corresponding
atom position(r;, v;), i.e.: atom, i.e. whenc, = (y2,h,,). Under the assumption that
~v the image approximations are sparse enough the projections
Iy = {'Yj|hw =Uly )9% ; .

of two corresponding atomg,, andh., are related as:

— 7| < Aty — v < Av}.

(19)
The interleaved vector quantization ofand v will distribute (Y1, 9+,) _ (Y2, h%.> 20
the pairs(r,v) that belong to the sam&! into different n,  n; (20)

cosets, while keeping the distance between coset elements
constant and equal toAr, Av). Note that the constant intra-
coset distance can not be however guaranteed in the
of EPI cosets. Both coset design methods are used in
experiments, and their selection depends on the constraints Ac — |éi — én| ~ | (Y1, 9v.) — (Y2, ")

of the camera network application. Cn - (Y2, )

nerenl andn; denote the norms of atomgs, andh,, prior
Cto atom normalization. Therefore, the decoder can select a
%%set of atomd,, = {v;} in I, whose coefficients satisfy:

<o, (22)

where o is a chosen threshold. For eagh, € J, we have
B. Decoder and image reconstruction a set of possible transformed atoms givenihy= T'F N T*

The central decoder (CD) builds on the correlation moder I'; = T'Y (T respectively for epipolar or VQ cosets. The
based on local atom transformations, in order to establigrcoder further looks if any of the candidatesAp belongs
correspondences between atoms in the reference image nt).,.; I';. Note that, in the general case, the parameters
atoms within the cosets of the Wyner-Zivimage decompositignAr, Av, s that define the correlation sdf§ FV andI'”’ can
(see Figure 4). It also uses the information provided by threave different values for the coset design and forthe decoding.
guantized coefficients of atoms, in order to improve the atofhis permits to put more strict conditions for the selection of
matching process. In other words, for decoding of & corresponding atom pairs.
atom in the Wyner-Ziv frame, the decoder has the following The search for atom correspondences then proceeds in
information: the index of the Position cosgf,, the index two major steps. First, the decoder eliminates the candidates
of the Shape cosel,, and the coefficien¢,, after inverse that do not belong th%eJn I[';, as well as candidates with
guantization. The goal of the decoder is to select the atanlarge symmetric epipolar atom distance, i.e., for which
position (7,,, v,,) from K,;E and the atom shap@),, an,Bn) dga(gy,,h,,) > k. If all candidates inA,, get eliminated,
from K;'. Let A, denote the set of possible candidates fahe decoder decides that th&" atom iny, does not have a
decodmg thex'™ atom iny,, with [A,,| = |[K[ |-|K[" |[when|.| corresponding atom imy;. Second, the decoder selects as a
denotes the cardinality of a set. However, only a small subsetrrespondence the pair of atoms with the smallest symmetric
of atoms in A, have corresponding atoms in the referencepipolar atom distancéz(g,,,h,,) among the candidates
imagey;. The decoder has therefore to identify the possibthat have not been eliminated in the first step.
pairs of corresponding atoms betwedp and I;. Once a correspondence is identified, the decoder updates the

Since the atoms coefficients of the Wyner-Ziv imdgeare transform field that represents the estimates of the disparity
known at the decoder, the decoder selects a subset of atonaps for each pixel in the Wyner-Ziv image, with respect
in I; whose coefficient values are close &g. The relation to the reference image. The transform field is updated by



combining the disparity map induced by the last pair of atoms

with the disparity maps from correspondences that have been
defined previously. The transform field represents the fusion
of disparity maps from multiple correspondences, which is

performed by selecting the most confident mapping for each
point z; from different mappingszgl),z' =1,...,n, defined by

n correspondences. The final mapping pahis selected as:

: (@) (b) y2
Z] = arg (i{ﬂ'aﬁi Wey, (Zgz))v (22) Fig. 5. Original Room images (128x128).
Z; 7 1=1,n
where we have used the same weight function as for the
symmetric epipolar atom distance.

The transformation of the reference image with respect to
the transform field provides an approximation of the Wyner-
Ziv image that is used as a side information for decoding the
following atoms in the Wyner-Ziv image expansion. The atoms
that do not have any correspondence in the reference frame
are simply decoded based on the maximal projection on the
residual image. The residual image is evaluated as a difference
between the side information and previously decoded atoms.

Finally, the reconstruction of the Wyner-Ziv imadg is
obtained as a linear combination of the decoded imgge Fig. 6. Original Lab images. The natural omnidirectional images partially

formed of recovered atoms fromk and the transformed °ve" the sphere due to the boundaries of the mirror in an omnidirectional
Iz, camera. Here we display a cropped image from the 128x128 spherical image,

reference imagey,, i.e.,: which corresponds to the captured scene.
Yo = Ya + AVq Yir. (23)

The matrix¥,; denotes the orthogonal complement to the bas_ir?1 d funcii N G L direct

formed by the decoded atomsdr,, and\ is an optimization g tiecon udn(c:j lon rt(.epresfen ZSDaG aussian w;hone thlrec IOT
. . e second derivative of a aussian in the orthogona

parameter. The reconstructed Wyner-Ziv image benefits fr ction (i.e., edge-like atoms similar to the ones resgnte d

both the decoded information and the transformed features tH4 It ' ."tt 9 P

are not present in the decoded data. We estimate the valud'l ). Itis written as

A from the energy conservation principle. Namely, under thﬁHF(G 0) = _ 1 (16a2 tan? ¢ cos® o — 2) (25)

. ’ K 2

assumption that @ ; y,.-|| = || ¥4 y||, we get) from Eq. (23) ox (—4tan2 0 (a2 cos? o + 2 sin? ))

as A ~ /1 —|lvall?/lly=||?, where the energy of the original p 2 v ¥

image||y2||? is sent to the decoder as side information.

(b) y2

where K is a normalization factor. The position parameters
7 and v can take 128 different valuesV{ = N, = 128),
VII. EXPERIMENTAL RESULTS while the rotation parameter uses 16 orientations, between
We analyze here the performance of the above Wyner-Zivand . The scales are distributed in a logarithmic scale
coding method for two sets of multi-view images: synthetifom 1 to NV, /8 for the Gaussian atoms and from 2 1g,/2
spherical images of the Room scene (Fig. 5) and natufgl edge-like atoms, with 3 scales per octave. The choice of

omnidirectional images of the Lab scene (Fig. 6). Each setfe dictionary is mainly driven by its good approximation
images includes tw28 x 128 spherical images; andy» cap- properties demonstrated in [3].

tured from different viewpoints. The natural omnidirectional The imagey,; is encoded independently, witho0 MP

images are mapped to spherical images as explained in [23bms, where the coefficients are quantized by taking benefit
For the Room scene the relative pose of one camera W§h the energy decay properties of Matching Pursuit expan-
respect to the other is given witl = I and7 = [0 0.3 0]". sjons [25]. The decoded reference images for the Room and
For the Lab scene the camera pose has been estimated Usilscene are shown on the Figures 7(a) and 8(a) respectively.
an algorithm based on sparse approximations (see [24]), afkk atom parameters for the expansion of imagare coded
it is given by R ~ I andT = [0.8677 0.0957 0.4878]. with the proposed Wyner-Ziv scheme. The EPI cosets for
Sparse image expansions have been constructed USinBoéition coding use a correlation paramedfes /5 which
Matching Pursuit (MP) algorithm implemented on the sphergiyes 1024 Position cosets. Alternatively, Position cosets have
The dictionary is based on two generating functions in order ¥sg peen implemented using VQ in order to generate the
capture both low-frequency components and edge-like featueggne number of cosets. Note that when the center of an atom
in the scene. The first one consists in a 2D Gaussian functigf,cjose to the epipoles (i.e., degenerative case of epipolar

given as : constraints) its parameters have to be encoded independently
00, 5 9 . o in the scheme based on EPI cosets. It leads to an overhead
grr(0,¢) = exp  — tan 3 (a” cos™ o + 37 sin® ) |, in the coding rate for the case of EPI cosets compared to VQ

(24) cosets. For the shape cosets, the correlation parameter has been
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Fig. 7. DSC results for the Room images: (a) decoded reference inaffeSNR=30.95dB); (b) transformed reference imagge (c) decoded Wyner-Ziv
imageg- at 0.0534bpp; (d) decoded second imggé” when encoded with MP at 0.0534bpp; (€) inverted resitluger | = 1 — |1 —y2| without transform
compensation (white pixel denotes no error); (f) inverted residueles| = 1 — |g2 — y2| after DSC decoding.

(@) 91 (€) 92 @1 —|i—y2| =1—lei]
(B) yir (d) 92" (0 1—[g2 —yo| =1 —[e2]

Fig. 8. DSC results for the Lab images: (a) decoded reference imagBSNR=31.82dB); (b) transformed reference imagge (c) decoded Wyner-Ziv
imageys at 0.038 bpp; (d) decoded second im@@éP when encoded with MP at 0.039 bpp; (e) inverted resitlugle;| = 1 —|§1 — y2| without transform
compensation (white pixel denotes no error); (f) inverted residueles| = 1 — |2 — y2| after DSC decoding.

PSNR[dB]
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Fig. 9. Rate-distortion performance for the Room image set.

set tosg = 0.85 (for Gaussian atoms) angy = 0.51 (for ¢>. The proposed scheme clearly outperforms the independent
anisotropic atoms), such that the atoms in the same coset @eeoding strategy, especially at low rates. The dash-dotted
sufficiently different. These values lead 188 shape cosets. line represents the RD curve of the side information image,

Finally, the coefficients of the Wyner-Ziv image are obtainedbtained by the application of the transform field on the

by projecting the imagey, on the atoms selected by MPreference image, showing that the transform field significantly

in order to improve the atom matching process. They amaproves the side information. Moreover, it can be noted that
qguantized uniformly. the combination ofy,; (dotted line with triangles) andj,.

The rate-distortion (RD) performance of the propose@sults in a better overall PSNR of the. The images;, and
scheme for the Wyner-Ziv image is shown in Figures 9(a) afid &€ presented in Figures 7(b)-(c) and 8(b)-(c) for Room and
9(b) for the Room scene (for EPI and VQ cosets respectivel;'r)?b scene respectively. They correspond to the case of coding
and in Figure 10 for the Lab scene. The dashed line represefitd! VQ cosets at the rate df.053 bpp and0.039 bpp. We
the RD curve of independent coding with Matching Pursuifa" clearly see how the transform field deforms the reference
while the solid line represents the proposed distributed codii§ag€ in order to compensate for different object transforms.
scheme, given by the RD curve of the reconstructed imafigures 7(d) and 8(d) illustrate the Wyner-Ziv image encoded
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independently with MP at the same rategas resulting in a close to the joint encoding at lower rates, where the number of
lower quality than the DSC coded image. correspondences between views is higher due to the greediness
of MP. However, when the number of correspondences drops,
the RD performance of DSC saturates. Therefore, the proposed
method should be seen as scene geometry estimation and
‘ ' ] prediction technique that could constitute a first predictive
step in a hybrid DSC coding scheme, similar to motion
estimation in the hybrid video coding methods. Our correlation
model is certainly more advantageous than the block-based
motion model since it is able to compensate rotation and
scale transforms in addition to translations captured by motion

26

24

23+

PSNR [dB]

22

estimation.

ol S LA Finally, we analyze the efficiency of the geometry-based
/ ) correlation model. We analyze the residue after DSC coding,

T T e denoted withe; = 42 — y2, and compare it with the difference

rate [bpp]

between the reference image and the original Wyner-Zivimage
= g1 — yo (residue without transform compensation).
ures 7(c) and (e) and 8(c) and (e) show the inverted
residuesl — |e;| and 1 — |ep| for Room and Lab scene
. respectively, such that the white pixels correspond to no error.
Figure 11 compares the RD performance of our DS@he energy of the erroe; is respectively82.65 and 82.85
scheme using EPI and VQ cosets. When the decoder finds {§€the Room and Lab image sets, where the energy is given
same number of correspondences (the curves at lower ragg).the norm of the inner product computed on the sphere.
EPI cosets give worse performance due to the rate overheadyfgg energy of the erroe, is respectively47.12 and 15.65
independently coded atoms. However, since EPI cosets offggpectively, which confirms the efficiency of the model based
better matching of atoms, the decoder is able to find mog@ |ocal geometrical transformations. Unlike— |e;| where
correspondences and the coding with EPI cosets OUtperforﬁi’sSplacements of objects result in high error areas (dark parts),

€2
Fig. 10. Rate-distortion performance for the Room image set (VQ Positilm
cosets). 9

coding with VQ cosets. the residue after DSC decoding,) is almost exclusively
composed of high frequencies since the object transforms have
T T R been captured efficiently. The distribution of the residue after

transform compensation and decoding can be modeled with the
Laplace distribution (see Figure 13). It greatly facilitates the
correlation modeling towards the potential DSC encoding of
the residual texture information in hybrid coding approaches.
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VIII. CONCLUSIONS

~
N

We have presented a geometry-based framework for the
S efficient representation of 3D scenes, where camera images are
P SRS S S S~ S85SL approximated by a sparse expansion of prominent geometrical
rte o) features. A novel correlation model has been proposed based
on local geometrical transformations that permit to pair atoms
Fig. 11.  Rate-distortion coding performance with different position cosg different images under shape and epipolar geometry con-
design methods (Room image). straints. It provides an implicit estimation of the scene geome-
try that permits to design distributed processing algorithms in
Figure 12 compares the proposed DSC method with joichmera networks. We have built on this novel framework and
encoding, where the joint encoder finds the atom correspatesigned a distributed coding scheme with side information
dences and encodes only the parameter differences for that offers an efficient rate-distortion representation of 3D
Wyner-Ziv image, while the atoms without correspondencegenes. It can lead to effective solutions for distributed sensing
were encoded independently. The reference image is encodad processing of 3D scenes, or high resolution distributed
independently at the same rate as in the DSC scheme, whegding when combined with hybrid methods for the represen-
the coefficients are quantized in the same manner. This joiation of texture or unstructured information.
encoding strategy is analogous to our DSC scheme, with the
difference that the encoder has access to the side-information.
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