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Interactive low-dimensional human
motion synthesis by combining motion
models and PIK

By Schubert R. Carvalho*, Ronan Boulic and Daniel Thalmann
..........................................................................

This paper explores the issue of interactive low-dimensional human motion synthesis. We
compare the performances of two motion models, i.e. Principal Components Analysis (PCA)
or Probabilistic PCA (PPCA), for solving a constrained optimization problem within a
low-dimensional latent space. We use PCA or PPCA as a first step of preprocessing to
reduce the dimensionality of the database to make it tractable, and to encapsulate only the
essential aspects of a specific motion pattern. Interactive user control is provided by
formulating a low-dimensional optimization framework that uses a Prioritized Inverse
Kinematics (PIK) strategy. The key insight of PIK is that the user can adjust a motion by
adding constraints with different priorities. We demonstrate the robustness of our approach
by synthesizing various styles of golf swing. This movement is challenging in the sense that
it is highly coordinated and requires a great precision while moving with high speeds.
Hence, any artifact is clearly noticeable in the solution movement. We simultaneously show
results comparing local and global motion models regarding synthesis realism and
performance. Finally, the quality of the synthesized animations is assessed by comparing
our results against a per-frame PIK technique. Copyright © 2007 John Wiley & Sons, Ltd.
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Introduction

Nowadays, it is common to leverage on motion cap-
tured databases to improve interactive human motion
synthesis by constructing a low-dimensional latent space
from the data.1–5 Constrained optimization can be
performed within the latent space to obtain movements
enforcing a new set of constraints. However, reducing the
dimensionality of the motion data space is not sufficient
to guarantee the quality of the solution. This is in part
due to the style variability characterizing the motion
database. Moreover, to produce acceptable synthesized
results challenging issues might also be treated, such
as: handling the size of the database to achieve faster
synthesis results,2 dealing with artifacts added on the
solution animation,1,3,5 and allowing the user to interac-
tively synthesize an animation by adding constraints.1,2,4
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In this paper, we propose a solution for the problem
of interactive low-dimensional human motion synthesis,
by using a framework that combines motion models
and Prioritized Inverse Kinematics (PIK). We compare
two motion models, one based on Principal Components
Analysis (PCA) and the other on Probabilistic PCA
(PPCA), for solving a low-dimensional constrained
optimization. These models are used to reduce the
dimensionality of the database to make it tractable, and to
enclose the key aspects of a specific motion pattern. PIK
allows the user to add constraints with different levels
of priorities while interactively editing an animation.
To produce realistic results and to improve synthesis
performance, we exploit the restricted space provided by
local models (i.e., models learned from the same motion
style).

We demonstrate the performance and robustness of
our approach on the specific case of golf by synthesizing
various styles of golf swing—such as the ones shown
in Figure 7. This movement is challenging because
it is highly synergistic and requires a great precision
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Figure 1. With our approach the user needs to adjust just one
key frame with PIK to realistically synthesize the motion as a

whole.

while moving with high speeds.6–9 We show that by
using our system the user can precisely synthesize
a motion just by adjusting one key frame (e.g., the
hitting position in the case of golf, Figure 1) and the
system automatically synthesize the movement as a
whole. Our experiments show that, when local models
are used, the synthesis process runs faster and more
realistic animations are produced. We observed that the
PCA motion model produced better quality results in
extrapolation situations compared to PPCA. Finally, the
quality of the synthesized animations is assessed by
comparing our results against a per-frame PIK motion
editing technique.10

Related Work

Motion editing is a well known approach used to
produce new motions from existing ones. Constrained-
based techniques enable the user to specify constraints
over the entire motion or at specific times while editing
an animation. Most approaches10–14 solve the synthesis
problem on the full-postural space described by the
characters joint angles. The problem of low-dimensional
human motion synthesis has been already addressed
by some authors.1,2,4,5 Safanova et al.1 proposed a
motion synthesis framework able to synthesize new
motions by optimizing a set of constraints within a
low-dimensional space constructed with PCA. They
used IK, just on the characters limbs, as a second step

process to clean undesirable artifacts. Glardon et al.5

developed an integrated walking and running engine
able to extrapolate data beyond the space described by
the PCA basis. IK was also used to prevent feet sliding
by exploiting the predictive capability of the model.
Grochow et al.2 proposed a non-linear PCA to solve
the low-dimensional human motion synthesis problem.
However, their approach cannot handle large data sets
due to the complexity of the model. Shin et al.4 proposed
a framework for low-dimensional motion synthesis by
using linear models. They provided a 2D grid describing
a low-dimensional representation of the data where the
user can synthesize a motion by dragging the mouse
pointer on this grid. However, the user cannot add
constraints on this 2D grid.

Overview

We formulate a low-dimensional optimization frame-
work with PIK. The key feature of this technique is that
prioritized constraints are sorted into layers of priorities.
The priority strategy ensures that the most important
constraints are satisfied first and the less important ones
are satisfied as much as possible without disturbing the
vital constraints.15 Basically, our approach is divided into
two main steps:

1. Learning motion models: We learn motion models from
motion captured data of people performing the same
activity many times. Each motion is represented as a
normalized motion vector containing N poses (section
Motion Representation). Given the motion database,
we use a motion model such as PCA or PPCA to
find a low-dimensional latent space that can efficiently
encapsulate the important characteristics of a specific
motion pattern.

2. Low-dimensional optimization with PIK: We adapted the
Resolved Motion Rate Control (RMRC) proposed by
Whitney16 to solve the low-dimensional optimization
problem, by considering a set of user specified
constraints with different priorities. To achieve this
end, we exploit the chain rule by combining two
Jacobian matrices—one relating the position or
orientation of a set of end-effectors with a pose—and
the other relating this pose with a basis. The final
Jacobian relates the increment of the motion model
parameters to the displacement of the end-effector in
space. The solution is iteratively solved at regular time
steps.
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Learning Motion Models

Motion Representation

In this section, we recall how a motion can be represented
as a normalized motion vector. Let us define a character
pose, �, as a state vector describing the 3D global
position (P1) and 3D global orientation (θ1) of the root
node, and a set of joint angles (θn):

� = [
P1, θ1, θj, . . . , θn

]
(1)

θj is the local transformation of the jth joint expressed
by exponential map.17 The number of degrees of
freedom (DoF) of the skeleton model is: 3(n+ 1). As
each person tends to perform the same activity with
some variability in speed, each training motion is
time warped normalized using quaternion spherical
interpolation,18 to alleviate time variation duration and
to align key postures.19,20 A motion is then represented
as a normalized line vector of the form:

� = [
�t0 ,�tk , . . . ,�t1

]
, 0 ≤ k ≤ 1 (2)

Each motion has dimension: 1×D, D = 3(n+ 1) ∗N.
Where N is the total number of poses. �tk is a posture
corresponding to the normalized time tk.

PCA Motion Model

Given a set of training motions, the PCA efficiently ap-
proximates the motion pattern with a linear combination
of the mean motion,

�◦ = 1
d

d∑
i=1

�i,

(d is the number of motions), and a set of Principal
Components (PCs).21 To perform PCA, we compute the
eigenvectors of the motion data covariance matrix S:

S = YYT (3)

Y is the d ×Dmean-subtracted motion matrix whose ith
line is written as:

Y = (�i −�◦), 1 ≤ i ≤ d,

S is a d × d matrix. Then, the eigenvectors are computed
by Singular Value Decomposition (SVD) of S. The SVD

gives the matrices V, U, and �, such that:

S = V�UT (4)

where the columns of V and U are orthonormal vectors,
and � is a d × d diagonal matrix containing the non-
negative eigenvalues ordered by decreasing magnitude:
λi ≥ λi+1. By projecting all the motions on the eigenvector
matrix U:

Ê =
d∑
i=1

uT
i (�i −�◦)

A linear mapping is constructed to obtain the eigen-
motions: Êi, 1 ≤ i ≤ d21 (the term eigen-motions will refer
to the PC learned from motion data). Therefore, any
motion � can be approximated as:

� ≈ �◦ +
q∑
i=1

uiÊi (5)

where, u = (u1, . . . , uq) are the Principal Coefficients
(PCs) that characterize the motion and q ≤ d controls the
fraction of the total variance of the training data that is
captured by the sub-space denoted by ρ(q):

ρ(q) =

q∑
i=1
λi

d∑
i=1
λi

(6)

q represents the number of eigen-motions required to
approximate a learned motion pattern. Following the
notation of Equation (5), a pose can be defined as a
function of the scalar coefficients, {ui}and the normalized
time tk:

ψ(tk, u1, . . . , uq) ≈ �◦ (tk)+
q∑
i=1

uiÊi(tk) (7)

Êi(tk) represents an eigen-pose and �◦(tk) the mean pose
for a specific normalized time.

PPCA Motion Model

As the second motion model, we use the PPCA to
estimate a set of q-dimensional latent variables Ẽ
(eigen-motions) from a set of d-dimensional motion data

............................................................................................
Copyright © 2007 John Wiley & Sons, Ltd. Comp. Anim. Virtual Worlds (in press)

DOI: 10.1002/cav



S. R. CARVALHO, R. BOULIC AND D. THALMANN
...........................................................................................

vectors �. Let us recall the parameters of the PPCA:22

σ2 = 1
d − q

d∑
j=q+1

λj (8)

W = Uq(�q − σ2I)1/2R (9)

Differently from PCA, where the PCs with less vari-
ance are discarded, in PPCA they are modeled as noise.
The noise term σ2 represents the average loss per dis-
carded dimension. W corresponds to the q-dimensional
loadings matrix of the model.Uq is the d × q eigenvector
matrix of S, with corresponding eigenvalues in the q× q
diagonal matrix �q, R is an arbitrary q× q orthogonal
rotation matrix, and I is the q× q identity matrix.

During Maximum Likelihood Estimation (MLE) the
matrix R is set to the identity. However, to recover the
true principal axis,Uq, this matrix needs to be computed.
According to Bishop et al.,22 R is the eigenvectors of the
q× q matrix:

WTW = RT(�q − σ2I)R (10)

In PPCA the PCs and the eigen-motions are computed,
respectively, as:

W̃ =W(WTW)−1

and

Ẽ =
d∑
i=1

wT
i (�i −�◦)

We refer the interested reader to Reference [22] for more
details about these equations. Following the notations of
Equations (5) and (7) any motion � can be approximated
as follows:

� ≈ �◦ +
q∑
i=1

w̃iẼi (11)

And a pose:

ψ(tk, w̃1, . . . , w̃q) ≈ �◦(tk)+
q∑
i=1

w̃iẼi(tk) (12)

Models Comparison

Synthesizing golf swings confronts the system with
challenging problems, such as: dealing with different

styles of swings, time precision (e.g., the hitting position
of the golf club head) and the swing is normally executed
in high speeds.7–9 To handle these problems, we build
motion models to operate within the motion space instead
of the pose space.19

We learned motion models from golf swing motions
played on three different types of terrain: (1) golf swing
executed on a flat ground, for a total of 16 motion; (2)
golf swing executed on an up slope ground for angles
ranging from 0.5◦ to 5.0◦ (anti-clockwise), by increments
of 0.5◦, for a total of 16 motions; (3) golf swing executed
on a down slope ground for angles ranging from 0.5◦ to
5.0◦ (clockwise), by increments of 0.5◦, for a total of 16
motions.

The golf swing motions executed on the up and
down slopes were synthetically produced from the flat
ground motions by using a motion editing system.10

Note that these synthetic motions were produced by only
adjusting the position of the feet according to the ground
inclination, because adjusting the position of the golf club
head showed to add discontinuities. In what follows we
learned three local models and one global model for both
PCA and PPCA, respectively. Local models: one motion
model for flat ground swings, one for up slope swings,
and one for down slope swings. Global model: a model
for the combined flat, up and down slope ground swings
(i.e., a multi-pattern model).

The percentage of the database, ρ(q), as a function
of the eigen-motions for the global and local models is
shown in Figure 2. For the local models the percentage
is practically the same because the up and down slope

Figure 2. Percentage of the database that can be generated with
a given number of eigen-motions. This percentage is the same
for the PCA and PPCA motion models because they have the

same eigenvalues, λi.
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motions were produced synthetically. We found that for
the locals and global models q = 15 eigen-motions out of
a possible of 16 and 48 captured approximately 100% of
the total variance. Note that considering a high database
percentage can prevent the addition of artifacts (e.g.,
foot sliding).19

Low-Dimensional
Optimization With PIK

Constraints

Constraints tend to fall into two categories:1,23,24

geometric constraints, such as a point position in space;
and physical constraints, such as velocities and forces.
Our system is able to handle geometric constrains,
such as position or orientation of end-effectors. These
constraints are more intuitive for interactive motion
synthesis because the user can edit a motion just by
dragging the character’s end-effector to a new position.

All the constraints are specified directly on the
character body and the user needs just to adjust for
a single pose end-effectors goals and by associating a
priority to them. As a second step, the constraints are
projected onto the low-dimensional motion space before
the optimizer solves for a pose that is very close to the
eigen-poses of a specific motion pattern.

Constraints such as position of the center of mass or
joint angle limits are discarded, because the solution is
achieved within the latent space of physically balanced
motions. Likewise it is not necessary to explicitly provide
for constraints on accelerations and velocities because, by
construction, these constraints are intrinsically modeled
through the eigen-motions.

Low-Dimensional IK

In this section, we show how to specify a set of constraints
and how to solve them within the low-dimensional latent
space.

Given a pose of a virtual character as a function of
the normalized time and a set of PCs: ψ(tk, α1, . . . , αq),
where αi can be either ui or w̃i (Equations (7) and (12),
respectively). And a task to satisfy a set of c-constraints:

�x = (�x0, . . . , �xc) ,

where �xi the ith m-dimensional constraint. We recast
the low-dimensional IK problem based on the RMRC

technique15,16 as follows:

�α = J †ξα �x+ PN(Jα)z (13)

with

PN(Jα) = Iq − J †αJα

�α is the optimal PCs increment, Jα is the (mc× q)
Jacobian relating the tasks’ increment with the PCs, PN(Jα)

is the projection operator onto the Null-space of Jα, J †ξα is
the damped pseudoinverse, J †α is the pseudoinverse, Iq
is the q× q identity matrix and z is an arbitrary vector
expressing a variation of a posture on the eigen-motions
space.23,25 The Jacobian Jα can be easily computed with
the chain rule:19

Jα = J�tk
JE(tk ) (14)

J�tk
is the Jacobian expressing the full dimensional

joint angle space (the root node is included), and the
Jacobian JE(tk ) can be interpreted as the linear mapping
onto the low-dimensional eigen-motions space—where
E(tk) can be either Ê(tk) or Ẽ(tk) (Equations 7 and
12, respectively). By using the proposed formulation
(Equation (13)) the problem can easily becomes over-
constrained due to the restrictive space provided by
the low-dimensional motion space or if more than one
pose is constrained during the synthesis process. We
alleviate this problem by constructing eigen-motions of
the same behavior, where constraints can be met, and
by constraining only one frame of the motion. However,
if no solution exists to the IK problem, a solution that
minimizes the error norm is found.

Solving Multiple Constraints With
PIK Within the Latent Space

In this section, we show how constraints with
different priorities can be solved, how our system
can automatically synthesize the motion as a whole,
and how artifacts can be managed. The complete
solution that extends Equation (13) and solves the low-
dimensional optimization problem with PIK is described
by Algorithm 1. The solution is found by iteratively
minimizing the error norm.19 j is the current priority-
layer, p is the total number of priority-layers, and JA

αj
is
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the augmented Jacobian,23 here defined as:

JA
αj
=




Jα1

Jα2

...

Jαj




(15)

Algorithm 1. Low-dimensional optmization.

1: α̃← α; �α̃◦ ← 0; JE(tk) ← E(tk), PN (Jα̃0 )← Iq
2: while not converged do
3: Compute {JA

αj
,�x}

4: for j = 1 to p do
5: �x̂j ← �xj − Jα̃j�α̃j−1
6: J̃α̃j ← Jα̃jPN

(
JA
α̃j−1

)
7: �α̃j ← �α̃j−1 + J†ξα̃j�x̂j
8: P

N
(
JA
α̃j

)← P
N
(
JA
α̃j−1

) − J̃†α̃j J̃α̃j
9: end for

10: �α̃← �α̃p + PN(JA
α̃p

)z

11: α̃← α̃+�α̃
12: �tk ← �◦(tk)+ α̃E(tk)
13: end while

14: �̃← �◦ +
q∑
i=1
α̃iEi

Note that the α̃ vector defines one full motion resulting
from the constraint on one pose �tk . Our systems can
synthesize the others frames when the convergence is
completed (line 14 of Algorithm 1). Moreover, continuity
between frames is intrinsically enforced through the
latent space.

The key advantage of associating a higher priority to
a constraint is the guarantee to converge to a motion
that at least enforce the most important ones in terms
of realism (e.g., feet on the ground). An important
parameter used in our system to smooth out artifacts
is the regularization factor ξ (Equation 13), giving a
high value for the damping stabilize singular context
but at the cost of a slower convergence. Such singular
context happens when the PIK solver tries to achieve
unreachable poses, i.e, poses that are not in the database.
We exploit the approach proposed by Maciejewsky et al.26

to compute an appropriate damping value. This value is
a function of the minimum singular value of Jα.

Experiments

In this section, we analyze the performance and
robustness of our framework and show a number of
synthesized results generated for a virtual character with
93 DoF. To synthesize a motion with our approach the
user needs to specify the final goal position and the
priority value of each end-effector just for one frame—
the one that should be adjusted—and the optimizer
solves for a pose that is very close to the eigen-poses of
a specific motion pattern. As a second step, the system
automatically updates the solution for the others poses.
The motion synthesis framework proposed in this paper
was integrated into the Autodesk/Maya software as
plug-in and MEL scripts. In all the experiments reported
in this paper we add constraints near the golf club head
to control the hit position of the golf club, and in some
cases on the feet to treat slope situations. Figure 3 shows
a common constraining configuration used in our system
to synthesize a golf swing motion. All the experiments
were run on a 3.2 GHz Pentium Xeon(TM) with 1 GB
memory.

Convergence Performance

The convergence performance of our system depends
on many parameters: the choice of a motion model,
the priority given for constraints, and the intrinsic
parameters of the optimizer (i.e., the damping factor, ξ =
10, and the number of iterations, which we set to 1500).
The computing cost of each iteration is approximately
5.3 ms.

We verified the convergence performance of our
system by synthesizing the same golf swing played on a

Figure 3. A typical constraint configuration used to edit a golf
swing. 1 means the highest priority and 2 is the second one,

see Algorithm 1 for more details.
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flat ground in three different constraints configurations:
first, by attaching one constraint near of the golf club
head, to synthesize a flat ground swing just by shifting
the hit position; second, by attaching three constraints on
the feet with highest priority and one constraint near the
golf club head with lower priority, to synthesize an up
slope swing with 5◦; third, by attaching three constraints
on the feet and one constraint near the golf club with
the same priorities, to synthesize an up slope swing with
5◦. The hit position was the same in all three cases. For
each configuration, we used eight motion models: one
local model learned from flat swings, one local model
learned from up slope swings, one local model learned
from down slope swings and a multi-pattern model for
the combined flat, up, and down slope swings, for PCA
and PPCA, respectively.

The optimization convergence runs faster when a local
model of the same behavior of the synthesized motion
was used. Giving different levels of priority for each set
of constraints also provided faster convergence solutions
than giving the same importance for all the constraints,
thanks to the priority strategy formulation used in our
system.23 Figure 4(a) and (b) shows the convergence
results for the local models learned from flat motions and
for the multi-pattern model. The ‘y’ axis shows the error
norm. We found similar convergence results, as shown in
Figure 4, for the local models learned from up and down
slopes swings.

Local Versus Global Models

The low-dimensional space provided by local models
produced realistic results for synthesized animations of
the same behavior of the eigen-motions. We verified this
by synthesizing a flat ground swing motion on an up
slope ground. When we used eigen-motions learned from
a database containing up slope swing motions all the syn-
thesized results demonstrated realism, but eigen-motions
learned from down slope or flat grounds swings pro-
duced less realistic results. In the last case, we noticed that
the algorithm converged for the adjusted frame produc-
ing a realistic pose, but the eigen-motions were not able to
synthesize the motion as a whole. This happened because
the eigen-motions should have a similar information of
slope to propagate this information through the motion.

The low-dimensional space provided by global models
learned from the flat, up, and down slopes golf
swings motions generated more synthesized motions.
We observed this by synthesizing a flat ground swing
motion in different situations: considering flat ground
and up and down slopes grounds with different degrees
of inclination, and considering different hit positions.
In the majority of the cases plausible synthesized
animations were produced. However, we noticed that
the algorithm needed more iterations to converge and
to consequently produce similar quality results achieved
by local models.

Figure 4. Convergence performance. The red, green, and black lines corresponding to the first, second, and third constraints
configuration (see ‘Convergence Performance’ subsection for more details). (a) Local model learned from flat swings; (b) global

model learned from flat, up, and down swings.

............................................................................................
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Figure 5. Extrapolation context.

PCA Versus PPCA

We verified that in some experiments (e.g., when the
optimizer tried to achieve unreachable poses) the PCAs
motion models produced synthesis results with much
less artifacts compared to the PPCAs ones; for the same
value of the regularization factor, (ξ), and the same
number of iterations.

Figure 5 shows the error norm and the delta alpha
vector norm—‖�α‖—of an extrapolation context. Note
the smoother convergence of PCA compared to PPCA.

Although PPCA has demonstrated a faster conver-
gence, it produced results with discontinuities in some
joints.

Figure 6 shows the trajectory of the left elbow joint in
quaternion space, for the original and the synthesized
motions obtained with PCA and PPCA, by using local
models (similar results were found with global models).
However, these artifacts were gracefully removed by
increasing the value of the damping factor.

Comparisons With Per-Frame PIK

In this section, we compare our approach against a
per-frame PIK motion editing technique10 regarding
performance, robustness, simplicity, and realism, by

Figure 6. Rotation trajectory of the left elbow.

Figure 7. Synthesized motions, by using our system, from the
swing motion shown in Figure 1. (a) 7◦ down slope ground;

(b) flat ground; (c) 7◦ up slope ground.

synthesizing golf swing motions executed on three dif-
ferent types of terrain: flat, up, and down slope grounds
(Figure 7, submitted video). To edit a motion with the per-
frame PIK the user has to specify the trajectory and the
priority of each end-effector and the ease-in and ease-out
time intervals for which the constraints will be activated.
Note that this technique can add more significant
deformations to an input motion than our approach.

For a fair comparison of both techniques, in the per-
frame technique we set the parameters of the optimizer
as suggested by the authors (first line of Table 1) to
obtain the best tradeoff between realistic synthesized
motions and computing time performance. We made the
same with our approach (second line of Table 1) and
we used the PCAs local models. For the experiments,
we synthesized the same golf swing motion, with

First case Second case Third case

I=100, D=10 I=100, D=10 I=100, D=10
I=25, D=1.5 I=400, D=0.8 I=400, D=0.8

Table 1. Optimizer parameters values
I is the number of iterations and D is the
damping.
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132 frames, executed on a flat ground (Figure 1) in
three different cases: first, by synthesizing a golf swing
executed on a flat ground just by shifting the hit position
of the golf club head, Figure 7(b); second, by synthesizing
a golf swing executed on a flat ground by considering
an up slope ground with 7◦ anti-clockwise and also by
shifting the hit position of the golf club head, Figure 7(c);
and third, by synthesizing a golf swing executed on a
flat ground by considering a down slope ground with
7◦ clockwise and also by shifting the hit position of the
golf club head, Figure 7(a). Note that the 7◦ slope was not
learned by the eigen-motions. The adjusted frame, 94, and
the position of the golf club with respect to the hands of
the virtual character were the same in all situations.

By using the per-frame approach in all the three cases,
we needed to add five constraints: three on the feet with
highest priority (activated frames 1–132), to prevent foot
sliding or to elevate the feet according to the ground
inclination; one on the center of mass (activated frames
1–132) with lower priority, to prevent unbalance poses;
and one near the golf club head (activated frames 90–
99) with middle priority, to control the hit position. The
computing cost for the first case was approximately
80 second and for the second and third cases was
approximately 105 second, without visualization. We
also noticed inter penetration of the arms in some
situations and always the presence of discontinuities
(e.g., body balance) around the hit position (see,
submitted videos). Such artifact is usually fixed with a
pass filtering stage that may alter constraint enforcement.

On the contrary, with the proposed approach only
one constraint was necessary in the first case—the golf
club head constraint—to achieve a globally continuous
motion. The computing cost for the first case was
approximately 0.2 second, without visualization. For the
second and third cases, we needed to add three more
constraints in addition to the golf club head: three on
the feet with highest priority to control the position of the
feet according to the ground inclination. The computing
cost for the second and third cases was approximately
3 second, without visualization. Our approach provided
more fluid motions and faster results because we just
needed to constrain one key event: the hit frame.

Conclusions

We have presented a new approach for interactive low-
dimensional human motion synthesis, by combining
motion models and prioritized inverse kinematics. We
developed a constrained optimization framework to

solve the synthesis problem within a low-dimensional
latent space. In this space, a movement enforcing a new
set of user specified constraints could be obtained in just
one step. We demonstrated the performance, robustness,
and simplicity of our approach by synthesizing various
styles of golf swings; and by comparing the quality of the
synthesized results against a per-frame PIK technique.
We showed that by constraining and adjusting just one
key frame our approach provided faster and more fluid
results without the need of an additional filtering stage.
Moreover, building motion models instead of pose models
demonstrated two important advantages, i.e., our system
could automatically synthesize the movement as a whole
without introducing artifacts and impose continuity
between frames through the latent space.

Given an appropriate database containing motion
samples of the same style, we can build local models
and use them to improve motion synthesis. The
experiments reported in this paper showed that local
models provided faster synthesis results compared to
multi-pattern models. Likewise, by giving constraints
different priorities also demonstrated an improvement
in synthesis performance. In interpolation contexts, i.e.,
when the optimizer solved for a motion closer to the
database motions, PCA and PPCA models produced
very similar synthesized results. In extrapolation
contexts, the PCA produced smoother convergence
compared to the PPCA. However, we attenuated this
problem by increasing the value of the damping factor.

Extrapolation and interpolation of the golf swings
could be performed from 0◦ to 8◦ for up and down slopes,
beyond this value the algorithm converges toward a
result minimizing the error norm. We believe that this
problem can be solved by increasing the variability
of the motion database (e.g., by adding higher slopes
information of the same swing style).

Our approach is well suited to deal with deformations
and retargeting problems. In this paper, we have mainly
focused our study on synthesizing motions that need
a great precision while moving in high speeds. Our
approach can also be exploited for a wider range of
coordinated motions (e.g., baseball, tennis, jumping,
boxing, and others).
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