
A Quantitative Evaluation of the Contribution of
Native Code to Java Workloads

Walter Binder
Faculty of Informatics
University of Lugano
Lugano, Switzerland

Email: walter.binder@unisi.ch

Jarle Hulaas and Philippe Moret
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH–1015 Lausanne, Switzerland
Email:

�
jarle.hulaas, philippe.moret � @epfl.ch

Abstract— Many performance analysis tools for Java focus
on tracking executed bytecodes, but provide little support in
determining the specific contribution of native code libraries.
This paper introduces and assesses a portable approach for
characterizing the amount of native code executed by Java
applications. A profiling agent based on the JVM Tool Inter-
face (JVMTI) accurately keeps track of all runtime transitions
between bytecode and native code. It relies on a combination of
JVMTI events, Java Native Interface (JNI) function interception,
bytecode instrumentation, and hardware performance counters.1

I. INTRODUCTION

The Java Virtual Machine (JVM) promotes the develop-
ment of portable software, since applications are represented
as platform-independent bytecode. However, the JVM also
supports the integration of platform-specific, native code,
which does not have a corresponding bytecode representation.
E.g., many functions of the Java Development Kit (JDK) are
implemented in native code, sometimes in order to increase
performance, but more often in order to get access to otherwise
unavailable lower-level functionality.

Profiling and resource monitoring tools that are fundamen-
tally based on analyzing and/or instrumenting Java bytecode
offer many benefits, such as platform-independence and low
measurement overhead [1]–[5]. However, because such tools
do not track the execution of native code, the measurement
results are only meaningful insofar as the measured application
does not spend significant time in native code. Moreover, in
prevailing profilers, such as the ‘hprof’ profiling agent that is
included in standard JDKs, there is no support for segregating
execution time spent in native code from time spent in
interpreted or dynamically compiled bytecode, although this
information is important in order to understand the program
under development and to determine which parts of it can
be further improved. When speaking about native code, we
refer exclusively to code which has no corresponding bytecode
representation. Note that this definition of native code does
not cover code that is dynamically generated by a just-in-time
(JIT) compiler, since then there is a corresponding bytecode

1This work was conducted while the first author was affiliated with the
Artificial Intelligence Laboratory of the Ecole Polytechnique Fédérale de
Lausanne (EPFL), Switzerland.

representation (the JIT compiler input). This distinction pro-
vides a very valuable measure of the effective potential of
bytecode instrumentation tools at transforming a sufficiently
representative amount of the overall program code.

The general intuition that execution of native code con-
tributes only a minor fraction of the total execution time is not
easy to confirm in practice, because it is difficult to perform
the required fine-grained measurements without introducing
significant perturbations. Also, until recently, JVMs did not
offer the APIs needed to fulfil this task, forcing researchers
to modify virtual machines at the source code level [6]–
[8]. Therefore, a way had to be found to measure native
code execution that would by design be both portable and
with moderate overhead, in order to minimize measurement
perturbations.

In this paper we introduce a new methodology to charac-
terize the execution of native code in Java applications. We
present a portable and non-intrusive profiling agent, based on
the JVM Tool Interface (JVMTI), in order to measure native
code execution. Our profiling agent relies on a combination
of JVMTI functions and bytecode instrumentation in order to
keep track of transitions between bytecode and native code
execution. The exploitation of hardware performance counters
ensures high measurement accuracy. A performance evaluation
shows that our profiling agent causes only moderate overhead.

Our tool presently provides a summary of the number of
invocations to Java, respectively native methods, and of total
CPU time spent in those two kinds of methods; it thus demon-
strates the feasibility of a portable technique for gathering such
low-level information, a feature until now restricted to system-
specific profilers only. Moreover, a possible extension of our
technique is to make it track complete call chains including
a mix of Java and native methods; this is not possible with
current profilers, since they are either Java-only or system-
specific, and are therefore not aware of the frames of both
Java and native C-language execution stacks.

This paper is structured as follows. Section II presents the
basic APIs and libraries our approach depends on. Section III
presents a first, unoptimized profiling agent, and Section IV
shows a second, greatly improved agent. Section V evaluates
our approach. Section VI presents related work, before con-
cluding.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147929232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. JNI, JVMTI, AND PCL

The methodology presented here relies on the Java Native
Interface (JNI), the JVM Tool Interface (JVMTI), and the
Performance Counter Library (PCL), as explained in the
following.

A. JNI

The Java Native Interface (JNI) [9] is a native programming
interface. It allows bytecode executing inside the JVM to
interoperate with applications and libraries written in other
programming languages, such as C, C++, and assembly.

Bytecode may invoke native code through methods that
are declared as native. I.e., native methods mark transi-
tions from bytecode into native code. Native code libraries
are loaded with the System.loadLibrary(String)
method, which is typically called within the class initialization
method. The JNI defines a resolution strategy to map native
methods to the corresponding native code library functions.

The JNI also allows native code to access Java classes
and objects. E.g., there are JNI functions to invoke Java
instance methods or static methods; these JNI functions mark
transitions from native code into bytecode.

B. JVMTI

The JVM Tool Interface (JVMTI) [10], introduced in
JDK 1.5, is a native programming interface for use by tools.
It provides both a way to inspect the state and to control the
execution of applications running in the JVM. As a standard
interface, the JVMTI enables the development of portable
profiling and debugging tools.

In the following we briefly summarize the JVMTI features
our profiling agents rely on. For the sake of easy readability, in
this paper we adopt an abstract, Java-like pseudo-code notation
and omit low-level implementation details.

a) Events: The JVMTI can signal a variety of profiling
events. In this paper we make use of the following events:� ThreadStart(Thread t): Generated by a new

thread t before its initial method executes.� ThreadEnd(Thread t): Generated by a terminating
thread t after its initial method has finished execution.� VMDeath(): Notifies the agent of the termination of the
JVM. No JVMTI events will occur afterwards.� MethodEntry(Thread t, Method m):
Generated upon entry of Java programming language
methods, including native methods; thread t invokes
method m. We use m.isNative() to check whether m
is a native method.� MethodExit(Thread t, Method m): Generated
upon exit from Java programming language methods,
including native methods; thread t exits method m, either
by executing a return instruction or by throwing an
exception.

b) Thread-local Storage: Thread-local storage allows to
associate a datastructure with each thread. Our profiling agents
keep the profiling statistics for each thread in thread-local stor-
age, which enables efficient update without synchronization
needs. Upon thread start, we initialize the thread-local storage,
and upon thread termination, we extract the profiling statistics
from the thread-local storage.

In this paper, we represent thread-local storage as
a map, which is accessed via the static methods
ThreadLocalStorage.put(Thread, Object)
and ThreadLocalStorage.get(Thread).

c) Raw Monitor: A raw monitor is a synchronization aid.
We use a raw monitor to synchronize access to global data,
i.e., the overall profiling statistics, which are updated upon
thread termination.

d) JNI Function Interception: The JNI maintains a table
of functions that can be invoked through the JNI. The JVMTI
allows us to change that table in order to intercept calls to
certain functions.

e) Native Method Prefixing: Native method prefixing
was introduced in the JVMTI, version 1.1 [11], which is part
of JDK 1.6.2 It modifies the failure handling of native method
resolution by retrying with a prefix prepended to the method
name.

C. PCL

Standard Java APIs do not provide the level of resolution
required for measuring the time spent by a given thread inside
native code methods.3 Therefore, we decided to exploit the
added precision provided by processor cycle counters, as found
in hardware performance counter (HPC) enabled processors
(such as the Intel Pentium 4).

We use the Performance Counter Library (PCL) [12], which
is a lightweight HPC library with C, C++, Fortran, and Java
APIs. PCL supports per-thread cycle counters (requiring an
OS kernel patch on some operating systems) and enables our
time measurement scheme, and hence the profiling agent, to
become portable across a wide variety of operating systems
and architectures. Note, however, that we only require the
cycle counter functionality of PCL, something which can often
directly be obtained from the underlying system, although not
in a standardized way.

In the pseudo-code notation of this paper, we introduce
a fictive static method PCL.getTimestamp(Thread) in
order to read the cycle counter for a given thread.

III. SIMPLE PROFILING AGENT (SPA)

In this Section we describe our initial, simple profiling
agent (SPA) to compute the percentage of native code ex-
ecution in Java applications. SPA is based on the JVMTI,
version 1.0 [10], which was introduced in JDK 1.5. As the
JVMTI features used by SPA also exist in the now outdated

2At the time of writing this paper, JDK 1.6 is still in a pre-release stage.
3On our test machines, we experienced resolutions severely out of scale

with the speed at which GHz-class CPUs execute native code.

class TC_SPA { // Thread Context
long timestamp, timeBytecode = 0, timeNative = 0;
boolean[] stack = new boolean[MAX_STACK_SIZE]; int sp = 0;

TC_SPA(Thread t) { timestamp = PCL.getTimestamp(t); }
}

class SPA {
long totalTimeBytecode = 0, totalTimeNative = 0;

// Initialize SPA;
// Enable the events ThreadStart, ThreadEnd, MethodEntry, MethodExit, and VMDeath;
SPA() { ... }

// JVMTI events:

void ThreadStart(Thread t) { ThreadLocalStorage.put(t, new TC_SPA(t)); }

void ThreadEnd(Thread t) {
TC_SPA tc = GetThreadLocalStorage(t);
boolean inNative = true; if (tc.sp > 0) inNative = tc.stack[tc.sp - 1];
long delta = PCL.getTimestamp(t) - tc.timestamp;
if (inNative) tc.timeNative += delta; else tc.timeBytecode += delta;
synchronized (this) {

totalTimeBytecode += tc.timeBytecode; totalTimeNative += tc.timeNative;
}

}

void MethodEntry(Thread t, Method m) {
TC_SPA tc = GetThreadLocalStorage(t);
boolean isNativeM = m.isNative();
boolean isNativeCaller = true; if (tc.sp > 0) isNativeCaller = tc.stack[tc.sp - 1];
if (isNativeM != isNativeCaller) {

long currentTime = PCL.getTimestamp(t); long delta = currentTime - tc.timestamp;
if (isNativeCaller) tc.timeNative += delta; else tc.timeBytecode += delta;
tc.timestamp = currentTime;

}
tc.stack[tc.sp++] = isNativeM;

}

void MethodExit(Thread t, Method m) {
TC_SPA tc = GetThreadLocalStorage(t);
tc.sp--;
boolean isNativeM = tc.stack[tc.sp]; // method being left (== m.isNative())
boolean isNativeCaller = true; if (tc.sp > 0) isNativeCaller = tc.stack[tc.sp - 1];
if (isNativeM != isNativeCaller) {

long currentTime = PCL.getTimestamp(t); long delta = currentTime - tc.timestamp;
if (isNativeM) tc.timeNative += delta; else tc.timeBytecode += delta;
tc.timestamp = currentTime;

}
}

void VMDeath() { ... } // Print statistics (totalTimeBytecode, totalTimeNative);

// Helper routines:

static TC_SPA GetThreadLocalStorage(Thread t) {
TC_SPA tc = (TC_SPA)ThreadLocalStorage.get(t);
if (t == null) { tc = new TC_SPA(t); ThreadLocalStorage.put(t, tc); }
return tc;

}
}

Fig. 1. SPA pseudo-code.

native int foo(int a); --> int foo(int a) {
IPA.J2N_Begin();
try {

return _prefixed_foo(a);
}
finally {

IPA.J2N_End();
}

}

native int _prefixed_foo(int a);

Fig. 2. Example wrapper for a native method, created by static bytecode instrumentation.

JVMPI [13], [14], SPA could be easily ported to run in older
Java environments that only support the JVMPI.

Figure 1 presents SPA as Java-based pseudo-code. Our
actual implementation is coded in C. SPA maintains a thread-
local data structure, the thread context TC SPA, for each
thread in the system. Whenever a thread is started (the
ThreadStart event), a TC SPA instance is allocated and
associated with the new thread. The thread context includes
counters for the cycles spent by the thread executing (possibly
compiled) bytecode (timeBytecode) respectively native
code (timeNative). It also stores the thread’s most recent
timestamp obtained via PCL. Moreover, we reify the execution
stack of each thread (stack and sp) in order to keep track
whether stack frames correspond to Java methods or to native
methods.

Upon method entry (the MethodEntry event), the
implementation-type (native or not) of the callee is pushed
onto the reified stack. If the implementation-type of caller
and callee differ, a transition between bytecode and native
code has been detected and the thread-local execution statistics
are updated accordingly. We assume that each thread initially
executes native code when it is started.

Upon method exit (the MethodExit event), the
implementation-type of the callee (the method being exited)
is popped off the reified stack. In a similar way as for method
entry, the thread-local execution statistics are updated, if the
implementation-type of caller and callee differ. Note that
without the reified stack, we would not be able to determine
the implementation-type of the caller upon method exit.

Upon thread termination (the ThreadEnd event), the over-
all execution statistics (the counters totalTimeBytecode
and totalTimeNative) are updated in a synchronized way,
using a raw monitor of the JVMTI. Finally, upon termination
of the JVM (the VMDeath event), the overall statistics are
printed out.

Note that in the code of the ThreadEnd, MethodEntry,
and MethodExit events, we do not assume that the
thread context has been created before. The helper
method GetThreadLocalStorage(Thread) allocates
the thread context on demand. This is necessary because
the JVMTI does not signal the ThreadStart event for
the bootstrapping thread. Hence, the initial execution of the

bootstrapping thread (e.g., initialization of SPA) cannot be
tracked by a JVMTI-based profiling agent.

We designed SPA in such a way that the execution of mea-
surement code (access to PCL) is minimized. SPA does not re-
quire a timestamp upon each method entry/exit event, but only
upon transitions between bytecode and native code. Moreover,
using a thread-local datastructure, we can avoid possibly costly
synchronization. Synchronization is only needed upon thread
termination in order to update the overall execution statistics.

SPA meets our first design goal of portability, because it is
programmed against a standard interface and does not require
any modifications to the JVM. However, SPA completely
fails to meet our second design goal of low overhead and
measurement perturbation. Enabling the MethodEntry and
MethodExit events prevents JIT compilation. Hence, SPA
causes excessive overhead (see Section V) and consequently
also significant measurement perturbation.

IV. IMPROVED PROFILING AGENT (IPA)

In this Section we present our improved profiling agent
(IPA) to compute the percentage of native code execution in
Java applications. IPA is based on the JVMTI, version 1.1 [11].
In contrast to SPA, IPA does not rely on the MethodEntry
and MethodExit events that prevent JIT compilation. IPA
executes measurement code only upon transitions between
bytecode and native code. In the following, N2J refers to
a native code to bytecode transition (native code calling a
JNI method invocation function), whereas J2N relates to a
bytecode to native code transition (invocation of a native
method).

In order to intercept N2J transitions, IPA exploits
the JVMTI feature called JNI function interception.
IPA registers wrappers for all JNI functions that are
used to invoke methods: Call �����	��

� Method ����������

� (),
CallStatic ��������

� Method ����������

� (), as well as
CallNonvirtual ��������

� Method ����������
�� (). The ��������

�
notation specifies the return type and may be Object,
Boolean, Byte, Char, Short, Int, Long, Float,
Double, or Void. ����������

� selects one of 3 possible ways of
parameter passing. I.e., in total �����	�����! #"$� wrappers have
to be registered. Each wrapper first signals a N2J Begin()
transition, then invokes the original JNI function (resulting in

class TC_IPA { // Thread Context
long timestamp, timeBytecode = 0, timeNative = 0;
boolean inNative = true;

TC_IPA(Thread t) { timestamp = PCL.getTimestamp(t); }
}

class IPA {
long totalTimeBytecode = 0, totalTimeNative = 0;

// Initialize IPA;
// Enable the events ThreadStart, ThreadEnd, and VMDeath;
// Install wrappers for JNI method invocation functions (JNI function interception);
// Enable native method prefixing;
IPA() { ... }

// JVMTI events:

void ThreadStart(Thread t) { TC_IPA tc = new TC_IPA(t); ThreadLocalStorage.put(t, tc); }

void ThreadEnd(Thread t) {
TC_IPA tc = GetThreadLocalStorage(t);
long delta = PCL.getTimestamp(t) - tc.timestamp;
if (tc.inNative) tc.timeNative += delta; else tc.timeBytecode += delta;
synchronized (this) {

totalTimeBytecode += tc.timeBytecode; totalTimeNative += tc.timeNative;
}

}

void VMDeath() { ... } // Print statistics (totalTimeBytecode, totalTimeNative);

// IPA transitions:

static void N2J_Begin() {
Thread t = Thread.currentThread(); TC_IPA tc = GetThreadLocalStorage(t);
long currentTime = PCL.getTimestamp(t);
tc.timeNative += (currentTime - tc.timestamp); tc.timestamp = currentTime;
tc.inNative = false;

}

static void N2J_End() { J2N_Begin(); }

static void J2N_Begin() {
Thread t = Thread.currentThread(); TC_IPA tc = GetThreadLocalStorage(t);
long currentTime = PCL.getTimestamp(t);
tc.timeBytecode += (currentTime - tc.timestamp); tc.timestamp = currentTime;
tc.inNative = true;

}

static void J2N_End() { N2J_Begin(); }

// Helper routines:

static TC_IPA GetThreadLocalStorage(Thread t) {
TC_IPA tc = (TC_IPA)ThreadLocalStorage.get(t);
if (t == null) { tc = new TC_IPA(t); ThreadLocalStorage.put(t, tc); }
return tc;

}
}

Fig. 3. IPA pseudo-code.

a Java method invocation), and finally signals a N2J End()
transition.

For J2N transitions, IPA relies on a new feature of JVMTI,
version 1.1, called native method prefixing. It allows to intro-
duce wrappers for methods declared as native. Using byte-
code instrumentation, for each native method a corresponding
Java method with the same name and signature (but without
the native declaration) is added. The original native method
is renamed, as we will explain later.

The added Java method acts as a wrapper for the native
method (see Figure 2): First it calls IPA in order to signal the
J2N Begin() transition. Afterwards it invokes the renamed
native method with the received arguments and returns the
result. A finally clause ensures that before termination
of the wrapper method, IPA is called again to signal the
J2N End() transition. The finally clause ensures that IPA
is called also in case of an exception.

Native methods are renamed by prepending a well-chosen
prefix that is announced to the JVM (the prefix should not oc-
cur in any method name). When linking native code libraries,
the JVM is able to match method names declared with a prefix
with unchanged method names in native code libraries.

We have considered two different approaches to instrument
the bytecode:

1) Static instrumentation of all used classes (including the
classes of the JDK) before the application to be profiled
is executed.

2) Dynamic instrumentation whenever a class is loaded.
Static instrumentation has the advantage of causing less

overhead and measurement perturbation at runtime, because
the instrumentation happens before the profiling. Moreover,
we can use one of many available Java-based bytecode instru-
mentation libraries, such as e.g. ASM [15], BCEL [16], Javas-
sist [17], JOIE [18], BIT [19], JikesBT [20], or SERP [21].
The drawback of static instrumentation is that dynamically
generated or loaded code is not instrumented. However, usu-
ally such code does not declare any native methods so that an
instrumentation is not necessary.

Dynamic instrumentation delegates the instrumentation task
to the profiling agent. Whenever a class is loaded4, the
profiling agent checks if the class contains a native method.
If this is the case, the profiling agents performs the byte-
code instrumentation. As bytecode instrumentation happens
at runtime of the application being profiled, overhead and
measurement perturbation increase. Furthermore, a Java-based
bytecode instrumentation library cannot be used, because the
instrumentation is already needed during the bootstrapping of
the JVM. Trying to use a bytecode instrumentation library
at such an early stage would disrupt the JVM’s class-loading
sequence, resulting in a crash. Therefore, the instrumentation
has to be done either in a separate JVM process which is
contacted through the Inter-Process-Communication facilities
of the underlying operating system, or in native code. The first

4The JVMTI supports a ClassFileLoadHook event allowing a profiling
agent to change the bytecode of classes before they are linked into the JVM.

approach increases overhead and measurement perturbation,
while the second one results in increased development effort,
because to the best of our knowledge, there is no complete
bytecode instrumentation library implemented in native code
publicly available.5

For these reasons, we resort to static instrumentation. Our
bytecode instrumentation tool is based on ASM [15]. It
processes individual class files or archives of class files. We
also applied our instrumentation tool to the classes of the JDK,
including the core classes within the library ‘rt.jar’. We
use the JVM’s ‘-Xbootclasspath/p:’ option in order to
load the instrumented classes at runtime.

Figure 3 illustrates the pseudo-code of our profiling agent.
The code executed upon ThreadStart and ThreadEnd
events is similar to the SPA presented in the previous Section.
The MethodEntry and MethodExit events are disabled.
Instead of handling these events, the JNI method invocation
wrappers (implemented in C) and the native method wrappers
(provided as bytecode by the static instrumentation) invoke
IPA’s transition routines only upon transitions between native
code and bytecode. In order to enable native method wrappers
to call these transition routines from bytecode, we created
a Java class corresponding to IPA which declares the four
corresponding static methods as native (this special class is
excluded from instrumentation).

Note that invocations of IPA’s transition routines are not
JVMTI events; these routines are called during the normal con-
trol flow. While in the pseudo-code we use the static method
Thread.currentThread() to obtain the current thread,
the implementation avoids to explicitly obtain a reference to
the current thread, because the JVMTI functions to access
the thread-local storage accept a null value to represent the
current thread.

In order to simplify the presentation, we assumed
N2J End() and J2N Begin() (resp. J2N End() and
N2J Begin()) to execute the same profiling code. However,
in our implementation we adjust the timestamp obtained from
PCL in order to compensate for the average execution time
of the corresponding wrapper. I.e., we aim at excluding the
wrappers’ execution time from the profiling statistics in order
to reduce measurement perturbations.

V. EVALUATION

In this Section we first evaluate the overhead caused by SPA
and IPA, and second present some profiling statistics generated
by IPA.

Our evaluation is based on the SPEC JVM98 benchmark
suite [22] (problem size 100), which consists of 7 benchmarks
(‘compress’, ‘jess’, ‘db’, ‘javac’, ‘mpegaudio’, ‘mtrt’, ‘jack’),
as well as the SPEC JBB2005 benchmark [23] (warehouse
sequence 1, 2, 3, 4) on a Linux Fedora Core 2 computer
(Intel Pentium 4, 2.66 GHz, 1024 MB RAM). The metric
used by SPEC JVM98 is the execution time in seconds,

5The JVMTI demo distributed with Sun’s JDK covers some bytecode
instrumentation implemented in native code, but this cannot be considered
a general-purpose bytecode instrumentation library.

TABLE I
EXECUTION TIME AND PROFILING OVERHEAD FOR SPA AND IPA USING THE JVM98 AND JBB2005 BENCHMARKS.

benchmark time original [s] time SPA [s] time IPA [s] overhead SPA overhead IPA
compress 5.74 445.86 6.38 7 667.60% 11.15%
jess 1.49 237.20 1.53 15 819.46% 2.68%
db 14.25 231.88 14.35 1 527.23% 0.70%
javac 3.80 224.73 4.32 5 813.95% 13.68%
mpegaudio 2.54 251.50 2.65 9 801.57% 4.33%
mtrt 1.16 485.75 1.16 41 775.00% 0.00%
jack 3.47 123.12 4.17 3 448.13% 20.17%

geom. mean 3.35 261.17 3.59 7 696.25% 7.31%

benchmark throughput throughout SPA throughput IPA overhead SPA overhead IPA
JBB2005 7 251 66.4 6 021 10 820.18% 20.43%

TABLE II
PROFILING STATISTICS FOR THE JVM98 (15 RUNS) AND JBB2005 (WAREHOUSE SEQUENCE 1, 2, 3, 4) BENCHMARKS.

benchmark % native execution JNI calls native method calls
compress 4.54% 1 538 45 858
jess 5.38% 918 492 762
db 0.84% 512 595 849
javac 16.82% 25 633 3 701 694
mpegaudio 0.95% 571 106 117
mtrt 1.62% 513 73 357
jack 20.26% 1 308 4 991 615

JBB2005 12.19% 770 123 199 879

whereas SPEC JBB2005 measures the throughput in opera-
tions/second. All benchmarks were run in single-user mode (no
networking) and we removed background processes as much
as possible in order to obtain reproducible results. We present
our measurements obtained with Sun JDK 1.6.0-rc-b97 in its
‘server’ mode, which enables the optimizing Hotspot Server
JIT compiler. Our statistics are to be considered preliminary,
because at the time of writing this paper JDK 1.6 still is in a
pre-release stage.

A. Overhead

Table I shows the execution time and profiling overhead
for both SPA and IPA. For each setting and each benchmark,
we took the median of 15 runs. For the SPEC JVM98
suite, we also computed the geometric mean of the 7 bench-
marks. For the SPEC JVM98 benchmarks, the overhead is
computed as % execution time with profiling

execution time without profiling & �	' , while for the
SPEC JBB2005 benchmark, the overhead is calculated as% operations/second without profiling

operations/second with profiling & � ' .
The overhead due to SPA is between 1 500% and 42 000%,

whereas IPA causes an overhead of only 0–20%. The excessive
overhead for SPA is caused by the MethodEntry and

MethodExit events, which prevent JIT compilation. There-
fore, SPA cannot be used to accurately measure the fraction
of native code execution in a Java workload, as the enor-
mous overhead results in serious measurement perturbation:
The performance characteristics of the profiled application is
significantly different from executing the application without
profiling. Moreover, because of the high overhead, SPA is not
suited for long-running applications. In contrast to SPA, IPA is
much less intrusive. Except for transitions between bytecode
and native code, there is no overhead for method invocation
and termination. Thanks to its moderate overhead, IPA can be
used to profile long-running applications.

B. Profiling Statistics

Table II shows the profiling statistics generated by IPA for
the previously mentioned benchmarks. For each benchmark,
we present the percentage of execution time spent in native
code, as well as the number of intercepted JNI calls (native
to bytecode transitions) and the number of native method
invocations (from bytecode). These results correspond to 15
runs of the SPEC JVM98 benchmarks, respectively to a
warehouse sequence 1, 2, 3, 4 in the case of SPEC JBB2005.

The most interesting result is that the execution time spent
in native code is within 20% for all benchmarks. Several
benchmarks, such as ‘compress’, ‘db’, ‘mpegaudio’, and
‘mtrt’ (which is the most object-oriented benchmark in the
SPEC JVM98 suite according to [24]), spend less than 5% of
their execution in native code. In all benchmarks we measured,
the execution time spent in bytecode is significantly higher
than the time spent in native code. Therefore, we conclude that
techniques for the platform-independent performance analysis
of Java applications [1]–[5], which focus on the bytecode
execution and may neglect the execution of native code, can
be appropriate for many Java workloads.

VI. RELATED WORK

The present work concentrates on dynamic metrics, i.e.,
metrics that have to be gathered at runtime, as opposed to
static metrics, which are based on off-line code analysis.
In [25] the authors present a variety of dynamic metrics for
Java programs. They introduce a tool called *J [26] for the
metrics computation. *J relies on the JVMPI [13], [14], a
former profiling interface for the JVM, which is known to
cause very high measurement overhead. Hence, *J is only
applicable to programs with short execution time. Dynamic
metrics concerning native code execution are not addressed
in [25], [26].

The number of actual invocations to native methods is
a dynamic metric that can be obtained by incrementing a
counter at runtime. The work presented in reference [6] uses an
instrumented version of the Kaffe virtual machine [27] without
JIT compilation (purely interpreted mode) in order to gather
this metric. Thus, that approach is not portable and provides
only a very coarse-grained view of where the CPU is actually
spent.

Some researchers have managed to provide a detailed break-
down of where CPU time is spent in Java workloads [7], [8].
However, they also had to modify a JVM and thus did not
provide a portable profiling tool. To increase measurement
accuracy, some authors advocate the incorporation of per-
thread hardware performance counters directly inside proces-
sors, e.g., processor cycle (also called timestamp) counters,
in order to avoid the overhead of virtualizing such counters
in software [7]. However, this software virtualization is well
accepted, since integrated into widely used operating systems
such as Microsoft Windows, Sun Solaris, and IBM AIX,
whereas Linux is an exception which currently requires a
kernel patch.6

Our goal is to realize accurate profiling, as opposed to
sampling-based profilers (e.g., IBM tprof) that are able to
calculate the time spent in native code very efficiently, but at
the expense of a slight loss of accuracy. These profilers work
by periodically sampling the PC, and comparing this value to a
map of active code modules, such as the native code libraries

6See the web sites of the Performance Counter Library (PCL) (http:
//www.fz-juelich.de/zam/PCL/) and the Performance Application
Programming Interface (PAPI) [28] (http://icl.cs.utk.edu/papi/).

loaded by a JVM, a technique which is inherently system-
dependent. In contrast to our approach, such tools are not able
to construct accurate counts of the number or frequency of JNI
calls, nor do they have the potential of exposing the details of
mixed Java/native call chains.

In contrast to related work that relies on an instrumented
JVM, our Improved Profiling Agent (IPA) is portable to any
JVM that supports the JVMTI (since version 1.1 [11]), and
to any hardware platform that supports hardware performance
counters compatible with PCL. To our best knowledge, the
work presented here is the first portable methodology which
allows to measure how much of their CPU time Java programs
spend executing native code.

VII. CONCLUSION

This paper has presented a portable approach for character-
izing the amount of native code executed by Java applications.
It consists of a profiling agent based on the JVM Tool Interface
(JVMTI), and accurately keeps track of all runtime transitions
between bytecode and native code. Our methodology relies on
a combination of JVMTI events, Java Native Interface (JNI)
function interception, bytecode instrumentation, and hardware
performance counters. Our performance evaluation shows that
this approach causes moderate overhead of 0–20%. Using our
profiling agent, we were able to report that for SPEC JVM98
and SPEC JBB2005 run on Sun JDK 1.6 (beta version), native
code contributes to 1–20% of total execution time. Conse-
quently, we may conclude that, on this first platform, bytecode
instrumentation is an effective technique which provides a
good coverage of actually executed code in Java programs.

Our tool presently provides a summary of the number of
invocations to Java, respectively native methods, and of total
CPU time spent in those two kinds of methods; it thus demon-
strates the feasibility of a portable technique for gathering such
low-level information, a feature until now restricted to system-
specific profilers only. Moreover, we are currently working on
an extension which consists in tracking complete call chains
including a mix of Java and native methods, a capability which
opens up new debugging and profiling perspectives; this would
not be possible with current profilers, since they are either
Java-only or system-specific, and are therefore not aware of the
frames of both Java and native C-language execution stacks.

REFERENCES

[1] W. Binder, “A portable and customizable profiling framework for Java
based on bytecode instruction counting,” in Third Asian Symposium on
Programming Languages and Systems (APLAS 2005), ser. Lecture Notes
in Computer Science, vol. 3780. Tsukuba, Japan: Springer Verlag, Nov.
2005, pp. 178–194.

[2] W. Binder, “Portable and accurate sampling profiling for Java,” Software:
Practice and Experience, vol. 36, no. 6, pp. 615–650, 2006.

[3] M. Dmitriev, “Profiling Java applications using code hotswapping and
dynamic call graph revelation,” in WOSP ’04: Proceedings of the Fourth
International Workshop on Software and Performance. ACM Press,
2004, pp. 139–150.

[4] J. Hulaas and W. Binder, “Program transformations for portable CPU
accounting and control in Java,” in Proceedings of PEPM’04 (2004 ACM
SIGPLAN Symposium on Partial Evaluation & Program Manipulation),
Verona, Italy, August 24–25 2004, pp. 169–177.

[5] J. D. Turner, “A dynamic prediction and monitoring framework for
distributed applications,” PhD Thesis, Department of Computer Science,
University of Warwick, UK, May 2003.

[6] D. Gregg, J. F. Power, and J. Waldron, “A method-level comparison of
the Java Grande and SPEC JVM98 benchmark suites,” Concurrency and
Computation: Practice and Experience, 2005.

[7] N. M. Hanish and W. E. Cohen, “Hardware support for profiling
java programs,” in Workshop on Hardware Support for Objects And
Microarchitectures for Java, October 10 1999.

[8] G. Lashari and S. Srinivas, “Characterizing Java application perfor-
mance,” in IPDPS ’03: Proceedings of the 17th International Symposium
on Parallel and Distributed Processing. Washington, DC, USA: IEEE
Computer Society, 2003, p. 138.1.

[9] Sun Microsystems, Inc., “Java Native Interface (JNI),” Web pages at
http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html.

[10] Sun Microsystems, Inc., “JVM Tool Interface (JVMTI), Version 1.0,”
Web pages at http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/.

[11] Sun Microsystems, Inc., “JVM Tool Interface (JVMTI) version 1.1,”
Web pages at
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/index.html.

[12] R. Berrendorf and H. Ziegler, “PCL – The Performance Counter Library:
A common interface to access hardware performance counters on mi-
croprocessors (version 2.2),” Central Institute for Applied Mathematics,
Research Centre Juelich GmbH, Tech. Rep., 2003,
http://www.fz-juelich.de/zam/PCL/.

[13] S. Liang and D. Viswanathan, “Comprehensive profiling support in the
Java virtual machine,” in Proceedings of the 5th USENIX Conference
on Object-Oriented Technologies and Systems (COOTS-99). Berkeley,
CA: USENIX Association, May 3–7 1999, pp. 229–240.

[14] Sun Microsystems, Inc., “Java Virtual Machine Profiler Interface
(JVMPI),” Web pages at
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/.

[15] ObjectWeb, “ASM,” Web pages at http://asm.objectweb.org/.
[16] M. Dahm, “Byte code engineering,” in Java-Information-Tage 1999

(JIT’99), Sept. 1999, http://jakarta.apache.org/bcel/.
[17] S. Chiba, “Load-time structural reflection in Java,” in Proceedings

of the 14th European Conference on Object-Oriented Programming
(ECOOP’2000), ser. Lecture Notes in Computer Science. Cannes,
France: Springer Verlag, June 2000, vol. 1850, pp. 313–336.

[18] G. Cohen, J. Chase, and D. Kaminsky, “Automatic program
transformation with JOIE,” in 1998 USENIX Annual Technical
Symposium, 1998, pp. 167–178. [Online]. Available at
http://www.cs.duke.edu/ (gac/joie/joie.ps

[19] H. B. Lee and B. G. Zorn, “BIT: A tool for instrumenting Java
bytecodes,” in Proceedings of the USENIX Symposium on Internet
Technologies and Systems (ITS-97). Berkeley: USENIX Association,
Dec. 8–11 1997, pp. 73–82.

[20] IBM, “Jikes Bytecode Toolkit,” Web pages at
http://www.alphaworks.ibm.com/tech/jikesbt.

[21] BEA, “Serp,” Web pages at http://serp.sourceforge.net/.
[22] The Standard Performance Evaluation Corporation, “SPEC JVM98

Benchmarks,” Web pages at http://www.spec.org/osg/jvm98/.
[23] The Standard Performance Evaluation Corporation, “SPEC JBB2005

(Java Business Benchmark),” Web pages at
http://www.spec.org/osg/jbb2005/.

[24] J. Dujmovic and C. Herder, “Visualization of Java workloads using
ternary diagrams,” Software Engineering Notes, vol. 29, no. 1, pp. 261–
265, 2004.

[25] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge, “Dynamic metrics
for Java,” ACM SIGPLAN Notices, vol. 38, no. 11, pp. 149–168, Nov.
2003.

[26] B. Dufour, L. Hendren, and C. Verbrugge, “*J: A tool for dynamic
analysis of Java programs,” in OOPSLA ’03: Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. New York, NY, USA: ACM
Press, 2003, pp. 306–307.

[27] T. Wilkinson, “Kaffe - a Java virtual machine,” Web pages at
http://www.kaffe.org/.

[28] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A
portable programming interface for performance evaluation on modern
processors,” The International Journal of High Performance Computing
Applications, vol. 14, no. 3, pp. 189–204, Fall 2000. Available at
http://citeseer.ist.psu.edu/browne00portable.html

