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Abstract.

This article constitutes a thorough presentation of an original scheme for portable
CPU accounting and control in Java, which is based on program transformation
techniques at the bytecode level and can be used with every standard Java Virtual
Machine. In our approach applications, middleware, and even the standard Java
runtime libraries (i.e., the Java Development Kit) are modified in a fully portable
way, in order to expose details regarding the execution of threads. These transfor-
mations however incur a certain overhead at runtime. Further contributions of this
article are the systematic review of the origin of such overheads and the description
of a new static path prediction scheme targeted at reducing them.

Keywords: Java, Resource Management, Bytecode Engineering, Program Trans-
formations

1. Introduction

Resource management (i.e., accounting and controlling the consump-
tion of resources, such as CPU and memory) is extremely useful for
monitoring deployed software. Run-time monitoring of server systems
is important to quickly detect performance problems and to tune the
system according to the workload. Resource management also is a pre-
requisite to prevent malicious or accidental resource overuse, such as
denial-of-service attacks, in extensible middleware that allows hosting
of foreign, untrusted software components. In commercial application
servers, providers may charge their clients for the resources consumed
by executed software components; the corresponding contracts should
then state the maximal quantities of computing resources that the client
is allowed to use, preferably in terms of platform-independent metrics

Published in the Journal of Higher-Order and Symbolic Computing (HOSC), 2008.
Article DOI: 10.1007/s10990-008-9026-4

c© 2008 Springer Science+Business Media, LLC. The original publication is
available at http://www.springerlink.com/content/u3600t4m13480u22/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147929218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

such as the number of executed bytecodes. In emerging agent-oriented,
context-aware software systems, self-tuning abilities are expected; these
will in turn require awareness of resource availability and usage policies.
Lastly, in resource-constrained embedded systems, software has to be
aware of resource restrictions in order to prevent abnormal termination.

Currently, predominant programming languages and environments,
such as Java [19] and the Java Virtual Machine (JVM) [26], lack
standardized resource management mechanisms. Whereas some pro-
totypes have been proposed to address this lack (see the related work
section), they are unfortunately all dependent on substantial amounts
of native code, and thus prevent the deployment of resource-managed
or resource-aware systems throughout widely heterogeneous networks.
Therefore, we propose portable resource management with the aid of
program transformations. We call our approach J-RAF2 (Java Resource
Accounting Framework, 2nd edition) [4, 7, 21], which has been imple-
mented in a tool with the same name.1 J-RAF2 is independent of any
particular JVM and underlying operating system. It works with stan-
dard Java runtime systems and may be integrated into existing server
and mobile object environments. Furthermore, this approach enables
resource control within embedded systems based on Java processors,
which provide a JVM implemented in hardware that cannot be easily
modified [8].

This article concentrates on CPU management, since this is a very
useful, and at the same time particularly challenging, resource to study.
Program transformations have also been applied to the management of
other kinds of resources, such as memory management [7, 14], but
the low run-time overheads obtained did not require the development
of such advanced analysis and transformation techniques as the ones
presented here; notably, they did not involve any control flow or data
flow analysis.

The program transformations underlying J-RAF2 were first pub-
lished in reference [7]. As the transformations for CPU management
incur a certain overhead at runtime, we started developing several
optimizations [21]. Applying these techniques to the JDK itself is a
difficult task [3]. Finally, we have also presented and illustrated the
actual use of J-RAF2 by an application or middleware developer [4].

The present article is an expanded version of [21]. Its specific,
original contributions are:

1. A systematic analysis of the origin of the overheads induced by our
CPU accounting scheme.

1 http://www.jraf2.org/
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2. A complete description of our optimization schemes targeted at re-
ducing the overheads. One of them, a static path prediction scheme,
is novel as compared to our earlier work.

This article is structured as follows: In Section 2 we present the
design goals pursued. Section 3 introduces the basic ideas and principles
of CPU accounting through bytecode instrumentation. Section 4 anal-
yses the origin of various overheads that are due to the extra bytecode
instructions introduced by the instrumentation, and the following two
sections propose and evaluate several optimization schemes for reducing
these overheads. Section 7 evaluates the overall performance of applica-
tions using our new CPU accounting scheme and discusses the benefits
and limitations of our approach. This article ends with related work
and a conclusion.

2. Design Goals

Traditionally, the CPU consumption of a program is measured in
seconds. This approach, however, has several drawbacks: It is platform-
dependent (for the same program and input, the CPU time differs
depending on hardware, operating system, and virtual machine), mea-
suring it accurately may require platform-specific features (such as
special operating system functions) limiting the portability of the CPU
management services, and the resulting CPU consumption may not be
easily reproducible, as it may depend on external factors such as the
system load.

For these reasons, we use the number of executed JVM bytecode
instructions as our CPU consumption metric. While this metric is not
directly translatable into real CPU time, it has many advantages:

− Platform-independence: The number of executed bytecode in-
structions is a platform-independent, dynamic metric [17]. It is
independent of the hardware and virtual machine implementation
(e.g., interpretation versus just-in-time compilation). However, the
availability of different versions and implementations of the Java
class library (the classes of the Java development kit) may limit
the platform-independence of this metric.

− Reproducibility: For deterministic programs, the CPU con-
sumption measured in terms of executed bytecode instructions
is exactly reproducible, if the same Java class library is used.
However, reproducibility cannot be guaranteed for programs with
non-deterministic thread scheduling.
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− Comparability: CPU consumption statistics collected in different
environments are directly comparable, since they are based on the
same platform-independent metric.

− Portability and compatibility: Because counting the number
of executed bytecode instructions does not require any hardware-
or operating system-specific support, it can be implemented in a
fully portable way. Our CPU management scheme is implemented
in pure Java and it is compatible with any standard JVM.

Our CPU management scheme, which is presented in detail in Sec-
tion 3, supports the installation of CPU managers that are periodically
activated at run-time in order to collect information regarding the num-
ber of executed bytecode instructions and to enforce CPU consumption
policies. The following design goals underlie our CPU management
approach:

− Extensibility: Concrete CPU management policies are not hard-
coded in our scheme. User-defined CPU managers may implement
custom CPU consumption policies and schedulers in pure Java.

− Fine-grained activation control: Our CPU management
scheme offers a fine-grained, dynamically adjustable activation
control of CPU managers. CPU managers themselves specify the
interval between subsequent activations. This interval is expressed
in terms of the number of bytecode instructions to be executed
until the CPU manager will be re-activated.

− Deterministic activation: CPU managers are activated in a
deterministic way by each thread. For each thread, the activa-
tion of a CPU manager depends neither on a timer, nor on the
priority of the thread. Independent of the JVM, a thread acti-
vates a CPU manager after the execution of a given number of
bytecode instructions. Hence, the activation of CPU managers
does not rely on the underlying scheduling of the JVM, thereby
preserving the portability of our resource management scheme.2

Note, however, that although a CPU manager is activated by each
thread in a deterministic manner, the bytecode instrumentation
and the execution of management code may affect the scheduling

2 Thread scheduling is left loosely specified in the Java language [19] and
JVM [26], in order to facilitate the implementation of Java across a wide variety of
environments: While some JVMs seem to provide preemptive scheduling, ensuring
that a thread with high priority will execute whenever it is ready to run, other JVMs
do not respect thread priorities at all.
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of non-deterministic programs. I.e., such programs may exhibit a
different thread scheduling when they are executed with or without
instrumentation.

Because of the fine-grained, deterministic activation control of man-
agement code, a CPU manager can precisely restrict the further
execution of a thread. A CPU manager allows each thread to exe-
cute only a limited number of its own bytecode instructions before
re-executing management code. This is essential to thwart denial-of-
service attacks, which is one of our goals. Our CPU manager activation
scheme allows for pre-accounting, since a CPU manager may permit a
thread to execute a certain number of bytecode instructions only if this
execution is guaranteed not to exceed a given quota.

Our primary design goal is full portability of the CPU manage-
ment scheme, which shall be compatible with any JVM. As we rely
on bytecode instrumentation, one important issue is to keep the over-
head caused by the inserted bytecode low. While a certain overhead
inevitably is the price one has to pay for platform-independent, fully
portable CPU management, we have devised several optimization
schemes to reduce the overhead, as discussed in Sections 4, 5, and 6.

Another design goal is to support the coexistence of code that has
been transformed for CPU management with unmodified code. For
instance, a middleware system may want to account only for the exe-
cution of deployed components (e.g., Servlets, Enterprise Java Beans,
etc.), but not for the execution of certain management tasks within the
middleware platform. Accounting only for the execution of those parts
of the code where the accounting information is actually needed helps
to reduce the overall accounting overhead. For this reason, and because
of the possibility of dynamic class loading in Java, we currently abstain
from global (interprocedural or intermodular) program analysis and
transformation, to enable the user to decide for each method whether
it shall be rewritten for accounting or not. In other words, we require
that all transformations maintain the compatibility of rewritten code
with unmodified code.

3. Principles of the CPU Accounting Scheme

The general idea of our approach is that the bytecode of software
components is rewritten in order to make their resource consump-
tion explicit. We informally define a component as a group of threads
running under the supervision of the same CPU Manager. As shown
in Figure 1, threads maintain the count of executed bytecodes inside
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Per-thread accounting objects: fixed structureCPU CPU CPU CPU

Multi-threaded Java component 
(resource-aware or legacy code): 

transformed for CPU accounting and control

CPU manager CPU manager: user-defined

invoke consume(long c)

increment consumption

invoke triggerConsume()

Figure 1. Runtime Organization of a CPU-Managed Component.

individual CPU accounting objects by incrementing an integer field
called consumption.

The CPU accounting scheme of J-RAF2 does not rely on a dedi-
cated supervisor thread. Instead, the execution of management tasks is
distributed among all threads in the system. Periodically, each thread
invokes triggerConsume(), which itself calls consume(long c) on the
CPU Manager (if any), in order to aggregate the collected informa-
tion concerning its own CPU consumption within an account that is
shared by all threads of the same software component. While inside
consume(long c), each thread has the opportunity to execute manage-
ment code, such as scheduling decisions, to ensure that a given resource
quota is not exceeded. E.g., the thread may terminate the component
if there is a hard limit on the total number of bytecode instructions it
may execute, or it may delay itself (i.e., put itself to sleep) in order to
meet a restriction placed on the execution rate.

We call our approach self-accounting, because each thread accounts
for its own CPU consumption. Self-accounting is essential for the porta-
bility of management code, since its activation does not rely on the
under-specified scheduling of the JVM. Moreover, when a thread man-
ages itself, we avoid many deadlocking and access rights issues that
arise with a dedicated supervisor thread, since the consume(long c)

invocation is synchronous (i.e., blocking), and executed directly by the
thread to which the policy applies.
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3.1. Bytecode Transformation Scheme

Our two main design goals for the bytecode rewriting schemes are
to ensure portability (by following a strict adherence to the speci-
fication of the Java language and virtual machine) and performance
(i.e., minimal overhead due to the additional instructions inserted into
the original classes). In this section we present a simple, unoptimized
transformation scheme.

Each thread is permanently associated with a ThreadCPUAccount

accounting object, of which the public interface is listed in Fig-
ure 2. First, upon entering a method of a transformed component,
it is necessary to determine the ThreadCPUAccount belonging to the
currently executing thread: this is achieved through a call to get-

CurrentAccount(). Then, as execution proceeds through the body
of the method, the thread updates the consumption counter of its
ThreadCPUAccount: this is the actual CPU accounting.

public final class ThreadCPUAccount {

public static ThreadCPUAccount getCurrentAccount();

public int consumption;

public void triggerConsume();

...

}

Figure 2. Part of the ThreadCPUAccount API.

To prevent overflows of the consumption counter, which is a simple
32-bit integer,3 and, more fundamentally, to ensure the regular execu-
tion of the shared management tasks, the counter has to be steadily
checked against an adjustable granularity limit. More precisely,
each thread invokes the triggerConsume() method of its ThreadCPU-
Account, when the local consumption counter exceeds the limit defined
by the granularity variable. In the following, we refer to this periodic
check as polling.

There are dedicated JVM bytecode instructions for the compar-
ison with zero. Hence, in order to optimize the comparison of the
consumption counter to the granularity, the counter runs from
-granularity to zero, and when it equals or exceeds zero, the
triggerConsume() method is called. We use the iflt instruction,
which branches if the value on top of the operand stack is smaller
than zero, in order to skip the invocation of triggerConsume() in the
preponderant case where consumption is below zero.

3 64-bit long integers unfortunately still impose a prohibitive runtime overhead
in Java.
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Concretely, to apply this CPU accounting scheme, each non-native
and non-abstract Java method (respectively constructor) is rewritten
in the following way:

1. Insert a call to getCurrentAccount() at the beginning of the
method and save the result in a local variable (let us call it cpu).

2. Insert as few conditionals as possible in order to
implement the polling efficiently. The conditional
“if (cpu.consumption >= 0) cpu.triggerConsume();” is
inserted in the following locations:

a) At the beginning of the method and before method termination
(before a return or throw statement). This is to ensure that
the conditional is regularly evaluated in presence of recursive
methods and more generally of deeply nested call stacks. It is
a form of call/return polling as described by Feeley [18].

b) At the beginning of each JVM subroutine and before return
from the JVM subroutine. This ensures that the conditional is
regularly evaluated in the (possibly nested) execution of JVM
subroutines. Again, this is a form of call/return polling.

c) At the beginning of each exception handler. This is important
for complete call/return polling, since a method may be termi-
nated by an exception which was not thrown explicitly. E.g., a
JVM invoke instruction may throw an exception, if the callee
method throws an exception. In this case, the exception handler
that catches the exception will perform the return polling.

d) At the beginning of each loop.

e) In each possible execution path (excluding backward jumps,
since they are already taken care of as loops) after MAXPATH
bytecode instructions, where MAXPATH is a global parameter
passed to the bytecode rewriting tool. This means that the
maximum number of instructions executed within one method
before the conditional is evaluated is limited to MAXPATH.
In order to avoid an overflow of the consumption counter,
MAXPATH should not exceed 215 (see Section 3.5 for an
explanation).

We omit superfluous call/return polling in leaf methods, i.e., in
methods that do not invoke any other method (unless the invoca-
tion is inside a structure that always requires polling, such as a
loop, a subroutine or an exception handler). Furthermore, within
the constraints cited above, we try to limit polling to the paths
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that actually require it, so that execution paths that do not contain
method invocations may appear as being leaf methods on their own.
Other optimizations, such as Feeley’s balanced polling [18], could
be applied as well.

3. In order to ensure that triggerConsume() is also invoked just
before the thread terminates, the run() method of each class
that implements the Runnable interface is rewritten according
to Figure 3. Hence, it is certain that the very last amount of
CPU consumed is reported correctly, after which the thread will
terminate.

public void run(ThreadCPUAccount cpu) {

ThreadCPUAccount cpu = ThreadCPUAccount.getCurrentAccount();

try {

... // Here is the original code.

} finally {cpu.triggerConsume();}

}

Figure 3. The rewritten run() method.

4. Finally, the instructions that update the consumption counter are
inserted in the beginning of each accounting block, which we define
as the longest possible sequence of bytecode instructions where only
the first instruction may be the target of a branch and only the last
instruction may change the control flow (e.g., a branch or jump).
Thus, in contrast to the classical notion of basic block, method invo-
cations do not end a block, as this yields larger accounting blocks
without harming correctness.4 In order to reduce the accounting
overhead, the conditionals inserted for polling are not considered
as distinct accounting blocks.

3.2. Rewriting Example

Figure 4 illustrates how a method is transformed according to the
proposed, unoptimized accounting scheme. For the sake of readability,
in this article we show all transformations on Java code, whereas in
reality they take place at the JVM bytecode level.

In this example, a polling conditional might seem necessary as a final
instruction at the end of method f(int), in order to protect against
the risk of executing more than MAXPATH instructions since the last
invoked method. However, this is not required, because all execution

4 The accuracy of this solution is actually slightly degraded when exceptions are
thrown at run-time, as explained in Section 7.2.
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void f(int x) { void f(int x) {

ThreadCPUAccount cpu;

cpu = ThreadCPUAccount.getCurrentAccount();

cpu.consumption += ...;

if (cpu.consumption >= 0) cpu.triggerConsume();

g(); g();

while (x > 0) { Start:

cpu.consumption += ...;

if (cpu.consumption >= 0) cpu.triggerConsume();

if (x > 0) {

cpu.consumption += ...;

if (h(x)) { --> if (h(x)) {

cpu.consumption += ...;

i(x); i(x);

} }

cpu.consumption += ...;

--x; --x;

goto Start;

} }

cpu.consumption += ...;

} }

Figure 4. Unoptimized rewriting of a method for CPU accounting.

paths leading through an invocation to the end of this method will
necessarily pass through the beginning of the while loop, which itself
already contains a compulsory polling conditional.

We do not show the concrete values by which the consumption
variable is incremented; these values are calculated statically by the
rewriting tool and represent the number of bytecodes that are going to
be executed in the next accounting block.

Depending on the application, the concrete value for each accounting
block can be computed in different ways:

1. The number of bytecode instructions in the accounting block be-
fore the rewriting takes place. In this strategy, the resulting CPU
consumption reflects the number of bytecode instructions that
the original, unmodified program would execute. This approach is
particularly useful for benchmarking.

2. The number of bytecode instructions in the accounting block after
the rewriting, including the inserted accounting instructions. I.e.,
the resulting CPU consumption includes the accounting overhead.
In particular, this setting allows a service provider to charge a client
for the overall CPU consumption of the deployed client components.

3. For each of the previous two settings, each JVM bytecode instruc-
tion may receive a different weight, as the complexity of the various
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classes of JVM bytecode instructions varies significantly. This al-
lows to calibrate the accounting for a particular JVM, which enables
a better modeling of the effective CPU load on the given JVM.

3.3. Refining getCurrentAccount()

The functionality of the getCurrentAccount()method is to return the
ThreadCPUAccount associated with the currently executing thread. To
this end, getCurrentAccount() first obtains a reference to the thread
via the standard Thread.currentThread() method. Then, using this
reference, it could obtain the associated CPU account through a hash
table.5 This is however a costly solution, since it has to occur at each
method entry of the rewritten application. A far more efficient ap-
proach taken here is to patch the real Thread class and add the needed
reference directly to its set of instance fields.6

The required functionality of getCurrentAccount() is unfortu-
nately hard to implement during the bootstrapping of the JVM.
During this short, but crucial period, there is an initial phase where
Thread.currentThread() pretends that no thread is executing and re-
turns the value null (this is in fact because the Thread class has not yet
been asked by the JVM to create its first instance). As a consequence,
in all code susceptible to execution during bootstrapping (i.e., in the
JDK, as opposed to application code) we have to make an additional
check whether the current thread is undefined; for those cases, we have
to provide a dummy, empty ThreadCPUAccount instance, the role of
which is to prevent all references to the consumption variable in the
rewritten JDK from generating a NullPointerException. This special
functionality is provided by the jdkGetCurrentAccount() method,
which replaces the normal getCurrentAccount() whenever we rewrite
JDK classes.

As this article focuses on the optimization of bytecode transforma-
tion schemes, we will not discuss further the issues related to rewriting
the JDK. Interested readers can find more information on this subject
in [3].

5 Using the predefined ThreadLocal class of Java also amounts to searching in
hash tables.

6 We investigated also another approach, which was to make the standard Thread

class inherit from a special class provided by us, and thus receive the required
additional field by inheritance. This elegant alternative, however, does not conform
to the Java API, which stipulates that Thread is a direct subclass of Object.
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3.4. Aggregating CPU Consumption

Normally, each ThreadCPUAccount object refers to an implementation
of CPUManager, which is shared between all threads belonging to a
component. The CPUManager implementation is provided by the mid-
dleware developer and implements the actual CPU accounting and
control strategies, e.g., custom scheduling schemes. The methods of the
CPUManager interface are invoked by the triggerConsume()method of
ThreadCPUAccount. Figure 5 shows part of the CPUManager interface.

public interface CPUManager {

public void consume(long c);

public int getGranularity();

...

}

Figure 5. Part of the CPUManager interface.

For resource-aware applications, the CPUManager implementation
may provide application-specific interfaces to access information con-
cerning the CPU consumption of components, to install notification
callbacks to be triggered when the resource consumption reaches a
certain threshold, or to modify resource control strategies. Here we
focus only on the required CPUManager interface.

The intended semantics of consume(long c) has already been pre-
sented. The getGranularity() method has to return the accounting
granularity currently defined by the given CPUManager for the call-
ing thread. The accounting granularity defines the frequency of the
management activities, and may be adapted at run-time, e.g. to make
low-priority threads check often enough if they should yield the CPU
in favour of threads with imminent deadlines. The range of legal values
the granularity may take is however also bounded by choices made
during the code transformation, as explained in the next section.

Further details and examples concerning the management of
CPUManager objects, and the association of ThreadCPUAccount objects
with CPUManager objects can be found in our previous work [4].

3.5. Triggering Delay

The delay until a thread triggers the consume(long c) method of its
CPUManager is affected by the following factors:

1. The current accounting granularity for the thread. It is pos-
sible to allow the granularity to range all the way up to
Integer.MAX VALUE, i.e., 231

− 1, but it may be further restrained
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by the nature of the application to be supervised, as shown in the
following.

2. The number of bytecode instructions until the next conditional
C is executed that checks whether the consumption variable has
reached or exceeded zero. This value is bounded by the number of
bytecode instructions on the longest execution path between two
such conditionals C. The worst case is a method M that has a series
of MAXPATH invocations of a leaf method L. We assume that L

has MAXPATH − 1 bytecode instructions, no JVM subroutines,
and no loops. M will have the conditional C in the beginning
and after each segment of MAXPATH instructions, whereas C

does not occur in L. During the execution of M , C is reached
every MAXPATH ∗ (MAXPATH − 1) instructions, i.e., before
MAXPATH 2 instructions.

Considering these two factors, in the worst case the trigger-

Consume() method of ThreadCPUAccount (which in turn invokes the
consume(long) method of CPUManager) will be invoked after each
MAXDELAY = (231

− 1) + MAXPATH 2 executed bytecode in-
structions. If MAXPATH = 215, the int counter consumption in
ThreadCPUAccount will not overflow, because the initial counter value
is -granularity (a negative value) and it will not exceed 230 (i.e.
MAXPATH 2), well below Integer.MAX VALUE. Using current hardware
and a state-of-the-art JVM, the execution of 232 bytecode instructions
may take only a fraction of a second,7 of course depending on the
complexity of the executed instructions.

For a component with n concurrent threads, in total at most
n ∗ MAXDELAY bytecode instructions are executed before a thread
triggers the consume(long c) function. If the number of threads in a
component can be high, the accounting granularity may be reduced in
order to achieve a finer-grained management. However, as this delay is
not only influenced by the accounting granularity, it may be necessary
to use a smaller value for MAXPATH during the rewriting.

An interesting measurement we made was to determine the impact
of the choice of a granularity. We used the ‘compress’ program of the
SPEC JVM98 benchmark suite to this end. As shown in Figure 6,
the lower the granularity, the higher the overhead will be, and the
more frequently the management actions will take place. In our cur-
rent implementation, and on the given computer, this interval is not

7 On our test machine (see Section 4.1) this is made possible on some favorable
code segments by the combination of an efficient just-in-time Java compiler and a
CPU architecture taking advantage of implicit instruction-level parallelism.
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Figure 6. Granularity versus overhead and delay.

measurable8 with granularities below 10 000 000 bytecode instructions.
Another lesson learned is that granularities of 100 000 and more exhibit
rather similar levels of overhead, ranging approximately from 30% to
50%, whereas a granularity of only 10 000 results in an overhead as high
as 150%.

4. Introduction to Rewriting Optimizations

In this section we present an analysis of the origin of the overheads
that our rewriting scheme entails. The next two sections each present
a set of targeted optimizations designed to systematically reduce these
overheads.

4.1. Evaluation Methodology

The benchmarking was performed with SPEC JVM98 [31], a well-
known general-purpose benchmark suite, which consists of the following
Java programs:

− compress: a popular utility used to compress/uncompress files;

− jess: a Java expert system shell;

− db: a small data management program;

− javac: an old Java compiler, compiling 225,000 lines of code;
8 Intervals below the resolution of the System.currentTimeMillis() function,

i.e., one millisecond, are not measurable.
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− mpegaudio: an MP3 audio stream decoder;

− mtrt: a dual-threaded program that ray traces an image file;

− jack: a parser generator with lexical analysis;

We ran SPEC JVM98 on a Linux Fedora Core 2 computer (Intel
Pentium 4, 2.6 GHz, 512 MB RAM). For all experiments, the entire
JVM98 benchmark suite was run 40 times. Then, for each program, the
median execution time was used to compute the slowdown ratio (i.e.,
the overhead) compared to the original, unmodified version of the pro-
gram. Finally, a global overhead indicator was obtained by calculating
the geometric mean of these ratios. All executions are automatically
verified for semantic correctness by the SPEC JVM98 benchmark suite
itself, by comparing actual output with expected data. It should be
noted that with this setup our execution time measurements have a
remaining imprecision of 1%,9 although the test machine is each time
restarted and booted into a mode with only the strictly necessary
system services active.

Measurements were made on the IBM JDK 1.4.2 platform in its
default execution mode only, as well as the Sun JDK 1.5.0 platform in
its following three modes:

1. Purely interpreted mode (-Xint command-line option): this com-
pletely deactivates the just-in-time (JIT) compiler, and gives us an
idea of how the relative overheads and consecutive optimizations
might manifest themselves in a primitive Java environment, such
as on certain embedded systems with limited resources.

2. Client mode (-client command-line option): this starts the Sun
Java HotSpot [28] Client VM, which is tuned for reducing start-
up time and memory footprint, and has a JIT that incrementally
compiles bytecodes into native instructions.

3. Server mode (-server command-line option): this launches the Sun
Java HotSpot Server VM, which is designed for maximum program
execution speed and therefore contains a JIT that optimizes code
more systematically at load-time.

All other JVM-specific options take their default values. In our test
we used a single CPUManager with the most basic accounting policy, i.e.,
one which simply aggregates announced consumptions of application
threads, and with the highest possible granularity. This means that the
triggerConsume() method is invoked only once in about 231 bytecode

9 This was experimentally determined as the maximal difference between the final
results of any two complete benchmark suite executions.
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instructions, which makes its influence on the overheads negligible in
practice.

For all tests, unless noted otherwise, both the JDK and the JVM98
benchmarks were rewritten according to the tested strategy. One diffi-
culty is that many JVMs do not allow certain core JDK classes to be
transformed: they will either crash, or simply use internal, hardwired
implementations and disregard the corresponding bytecode-level repre-
sentations. With the java.lang.Object class, we were therefore able
to rewrite only a subset of the methods. The java.lang.Thread class,
on the other hand, was patched, as explained in Section 3.3. On the
virtual machines considered here, no other classes required any special
treatment.

The measurement to which all optimizations will be compared is
the result of the unoptimized transformation scheme introduced in Sec-
tion 3, which we call the Simple rewriting scheme. The corresponding
execution time overhead introduced by this scheme as compared to the
original, non-rewritten benchmark, is shown in Figure 7. The rewriting
increased the size of the corresponding class files by 17% (we refer to
Section 7.3 for a discussion on code size).

4.2. Origin of Overhead

We next analyze the origin of the overhead of our bytecode transfor-
mations, in order to be able to devise targeted optimization schemes.
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Figure 8. Evaluation of the distribution of overheads (with Simple rewriting, no
optimizations).

Although our accounting scheme only works when implemented in
its entirety, let us decompose it in order to find out which parts of
the code cause execution time overheads. To this end, we measured
three different versions of the Simple rewriting scheme presented in
Section 3, which each represents an incremental step in instrumenting
the bytecode. The three steps are:

1. Finding the proper instruction counter (with an invocation to get-

CurrentAccount())

2. Polling the value of the instruction counter (with the conditional
“if (cpu.consumption >= 0) cpu.triggerConsume();”)

3. Accounting, i.e. updating the instruction counter (with
“cpu.consumption += ...;”)

Figure 8 shows the measured average distribution of overheads
among the different steps in a rewritten method. The stacked columns
are made of the contributed overheads, summing up to the respective
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per-JVM totals of 140.8%, 38.1%, 42.1% and 38.6% (the geometric
means shown in Figure 7). We can see from this figure that on average
the most expensive part is the accounting itself (Step 3), followed by
the obtaining of the consumption counter (Step 1), and finally the
polling (Step 2). For the purely interpreted platform, Step 1 is clearly
the most expensive. This comes from the fact that here we insert an
unconditional method invocation (for obtaining the reference to the
right ThreadCPUAccount), and invocations are relatively costly on that
platform. The second most expensive step is the accounting (Step 3),
while polling (Step 2) is a relatively light operation.

It must be noted that these numbers can only be considered as an
approximation. Indeed, the storing of the ThreadCPUAccount reference
into a local variable at the beginning of each method may be discarded
by the JIT, and never executed (hence never measured), unless this
store is followed by code for reading the variable, e.g., for polling and
accounting. This means that the overhead calculated for Step 1 may
be slightly underestimated, while the overhead for Step 2 would be
slightly overestimated, except on the JVM without a JIT (the Sun
JVM in purely interpreted mode).

Based on the numbers of Figure 8, we introduce differentiated
optimizations in the next two sections.

5. Reducing the Overhead of Finding the Proper

Instruction Counter

The per-thread instruction counter is encapsulated inside a ThreadCPU-
Account object, itself to be found via a reference to the current Thread.
We have explained in Section 3.3 how the getCurrentAccount()

method is already optimized for obtaining this information by patching
the Thread class. As part of our standard optimization settings, we also
decided to directly inline the contents of getCurrentAccount() instead
of generating an invocation to it.

In order to avoid these repetitive executions of getCurrent-

Account(), we instead pass the ThreadCPUAccount as additional
argument from method to method, by changing all method signatures
during the transformation process. We describe this approach in the
following section, and thereafter we present an enhanced version of it.

5.1. Wrapper Rewriting

Figure 9 illustrates how the method shown in Figure 4 is transformed
using a CPU accounting scheme that passes the ThreadCPUAccount as
extra argument.
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void f(int x, ThreadCPUAccount cpu) {

cpu.consumption += ...;

if (cpu.consumption >= 0) cpu.triggerConsume();

g(cpu);

Start:

cpu.consumption += ...;

if (cpu.consumption >= 0) cpu.triggerConsume();

if (x > 0) {

cpu.consumption += ...;

if (h(x, cpu)) {

cpu.consumption += ...;

i(x, cpu);

}

cpu.consumption += ...;

--x;

goto Start;

}

cpu.consumption += ...;

}

Figure 9. Method rewritten for CPU accounting. The ThreadCPUAccount is passed
as extra argument.

This approach works when all client classes of a transformed class
can also be transformed, such that all method invocation sites are
updated to use the corresponding extended method signatures. Some-
times, however, this is not possible, such as when a Java method is
invoked by native code or via the reflection API. In order to cope with
such cases, we have to leave in all classes stubs with the original method
signatures, which act as wrappers for the methods with the additional
ThreadCPUAccount argument, as shown in Figure 10. Therefore we call
this general argument passing scheme the Wrapper rewriting scheme.

void f(int x) {

ThreadCPUAccount cpu = ThreadCPUAccount.getCurrentAccount();

cpu.consumption += ...; // account for execution of wrapper

f(x, cpu);

}

Figure 10. Example wrapper method with unmodified signature.

Another issue concerns the Wrapper rewriting of the JDK. In some
cases, native code in the JDK assumes that it will find a required
piece of information at a statically known number of stack frames
below itself. This is unfortunately incompatible with the generation of
wrapper methods, which introduces extra stack frames into the stack at
runtime. For this reason, the JDK cannot take advantage of the more
efficient wrapper rewriting scheme, and has to invoke jdkGetCurrent-
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Table I. Overheads and optimizations for Step 1.

Rewriting mode: Sun 1.5.0 Sun 1.5.0 Sun 1.5.0 IBM 1.4.2

JVM98-JDK interpreted client server

Simple–Simple 81.9% 9.1% 5.9% 18.2%

Wrapper–Simple 35.9% 4.2% 5.7% 5.3%

Wrapper–Wrapper 8% 4.3% 7.0% 2.5%

+Fixed arg passing 8.8% 4.6% 7.2% 2.4%

Account() in the beginning of every method. We can however, at the
expense of a comprehensive class hierarchy analysis process, completely
duplicate most JDK methods, so that there always is one version with
the original signature, and a second one with the additional Thread-
CPUAccount argument. This approach works well, but is quite complex,
and unfortunately results in an appreciable speedup only with certain
JVMs. Further details on this are to be found in [3].

Looking at Table I, we can see that considerable progress has been
made, starting from our reference, at the first line, i.e., the overhead
when rewriting both SPEC JVM98 and JDK in Simple mode. The
optimizations designed for Step 1 are particularly beneficial on the Sun
JVM in interpreted mode, which does not have the ability to dynami-
cally inline the ubiquitous invocation to jdkGetCurrentAccount(), nor
the invocations that the inlined body of getCurrentAccount() itself
contains. As expected, Wrapper mode rewriting brings the best speedup
to applications that have the highest ratios of method invocations, like
‘mtrt’ and ‘compress’ [17]. In fact, rewriting the application layer (here:
SPEC JVM98) in Wrapper mode is always a benefit, but rewriting also
the JDK in Wrapper mode is only interesting on half of the platforms
(Sun JVM in interpreted mode and IBM). The last line of the table,
entitled +Fixed arg passing, will be described in the next section.

5.2. Fixed Argument Passing

In this section we further improve the way the ThreadCPUAccount

reference is passed as an extra argument upon method invocation. Our
hypothesis is that if this extra argument is passed always at the same,
fixed position in the argument list, the JIT (if any) may skip some
machine instructions that would be required to shift this argument
from one position to another between two invocations.

To achieve this effect, the bytecode transformation tool will some-
times have to insert dummy arguments at the lower positions, when
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the original method has a shorter argument list. We found by sys-
tematic testing that, for the IBM Java platform, the best position for
the ThreadCPUAccount is the 2nd, both for virtual methods (the this

object reference being number zero), and for static methods. Figure 11
illustrates the insertion of dummy arguments for this configuration,
with methods 1–3 being virtual, and methods 5–7 static. Note that for
the first two methods in Figure 11, ThreadCPUAccount is successfully
set as second argument. In contrast, the third example method already
takes three arguments (including the implicit this reference), therefore
ThreadCPUAccount has to come at the third position.10

1: v() --> v(Dummy,ThreadCPUAccount)

2: v(int) --> v(int, ThreadCPUAccount)

3: v(int,long) --> v(int, long, ThreadCPUAccount)

5: static s() --> static s(Dummy,Dummy,ThreadCPUAccount)

6: static s(int) --> static s(int, Dummy,ThreadCPUAccount)

7: static s(int,long) --> static s(int, long, ThreadCPUAccount)

Figure 11. Examples of the insertion of ‘dummy’ arguments.

According to Table I, this scheme only seems to be profitable to
the IBM platform, and then only marginally so. However, with all
accounting code incorporated, this transformation reduces the total
overhead by 2–3% on that JVM.

6. Reducing the Overhead of Accounting

As we have seen in Figure 7, the accounting itself (i.e. keeping the value
of the CPU account up-to-date), is a fairly expensive task, responsible
for about 50% of the overhead. This is due to the frequent accesses
to the CPU account, which take place at each conditional branch in
code transformed with the Simple scheme. Therefore, we introduce a
new path prediction scheme, the role of which is to reduce the number
of updates made to the CPU account, by trying to predict statically
– i.e. during the bytecode transformation – the outcome of the condi-
tional branches that will be taken at runtime. The resulting effect is
that chains of accounting blocks that are predicted to be executed in
sequence will be merged into a single block requiring only one update
of the CPU account. As a consequence, overheads will be reduced if

10 Whereas it is relatively trivial to append new items to the end of an argu-
ment list, shifting the position of existing arguments is more difficult to implement
efficiently, since it requires the transformation tool to analyze the operand stack
upstream of each invocation site.
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Table II. Overheads of unoptimized vs. aggressive approximation (incl. unoptimized
Steps 1–2).

Accounting Sun 1.5.0 Sun 1.5.0 Sun 1.5.0 IBM 1.4.2

optimization mode interpreted client server

No optimization 140.8% 38.1% 42.1% 38.6%

With aggressive approx. 110.6% 30.4% 31.9% 34.3%

the predictions succeed, and the size of transformed class files will be
substantially lower (see Section 7.3).

Since the static prediction of execution paths (SPP) is not an easy
task, the probability of missing a prediction will remain non-negligible.
Our goal is therefore to achieve a solution where even mispredicted
branches will not, at least in theory, incur a higher overhead than with
our initial, Simple rewriting scheme.11 This solution will be described
in Section 6.2.

But first, we want to present another approach, called Aggressive
approximation, to reducing the overhead of Step 3, which will exper-
imentally give us a very low overhead for the accounting task, and
hence provide valuable information on what maximal performance can
be expected from SPP schemes.

6.1. Aggressive Approximation

Depending on the application, it may not always be necessary to do
a very precise accounting of CPU consumption. There are e.g. many
occurrences in Java code where the number of executed bytecodes only
differs by one or two units between the two outcomes of a given con-
ditional. Therefore, it might be acceptable to lose some precision in
exchange for a lower run-time overhead. An extreme case is one where
we only update the consumption once per method, or per loop body,
i.e. essentially only in conjunction with polling sites in the code: this is
what we call the aggressive approximation. The actual value to account
may be chosen statically as the average length of all possible executions,
or as the length of the longest, or most probable path.

Having implemented the latter solution, the resulting overhead is
as indicated by Table II, compared to the completely unoptimized
solution.

11 As shown later, there is some additional jumping required to implement the
scheme, thus in practice the benefit may not be complete.
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The SPP scheme should then have an overhead between those two
settings, preferably closer to the lowest values.

6.2. Static Path Prediction

The goal of the scheme we call Static Path Prediction (SPP) is to
identify sequences of accounting blocks to be conceptually merged into
execution paths that can be accounted just once. Recall that paths
diverge at each accounting block that ends with a conditional branch
(i.e. essentially if instructions at the Java source code level). The con-
crete idea of SPP is to initially update the consumption with the entire
cost of the predicted path. Hence, whenever a branch does not take
the direction that was predicted during the rewriting (thus we have a
miss of the prediction), the predicted path is left, and a corresponding
correction must be made to the CPU account, subtracting the unused
part of the exited path, and adding the cost of the new path that is
then started.

6.2.1. SPP Rewriting Example

void f(int x) { void f(int x) {

ThreadCPUAccount cpu;

cpu = ThreadCPUAccount.getCurrentAccount();

cpu.consumption += ...;

if (cpu.consumption >= 0) cpu.triggerConsume();

g(); g();

while (x > 0) { Start:

cpu.consumption += ...;

if (cpu.consumption >= 0) cpu.triggerConsume();

if (x > 0) {

if (h(x)) { --> if (h(x)) {

i(x); i(x);

} } else {

cpu.consumption -= ...; // misprediction

}

--x; --x;

} goto Start;

}

cpu.consumption -= ...; // misprediction

} }

Figure 12. Example of Simple, SPP-optimized transformation scheme.

Figure 12 shows an example of the proposed transformation scheme,
as an improvement on top of the Simple rewriting. Compared to the
transformation of Figure 4, which illustrates the unoptimized Simple
scheme, we can see that there are two fewer modifications of the
consumption variable inside the loop, and that at some places, the
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variable is decremented, reflecting the fact that a mispredicted branch
was taken. The presence of such possibly negative corrections imply
that the MAXPATH value now also has to act as a safety barrier with
respect to subtractions occurring right after a reset of the consumption
variable by the triggerConsume()method. If MAXPATH is too small,
the consumption variable might then overflow on the negative side, to
become strongly positive, which is of course wrong.

This example also shows that entirely new accounting blocks (im-
plemented by the additional else block) sometimes have to be added
to the control-flow graph in order to implement corrections due to
mispredictions. Another case that requires the insertion of dedicated
accounting blocks is the following: if a block constitutes the join point
of two execution paths that both are considered as mispredictions, then
it will not be able to do the accounting correction for the two of them.
To solve this, we create a second accounting block so that each path
may implement its own correction.

6.2.2. Chosen Heuristics
It is a challenge to define adequate heuristics for identifying successful
paths, only on the basis of the bytecode that is being processed. Such
heuristics should be relatively inexpensive to evaluate, and, for simplic-
ity, use only information available from the control flow graph. This is,
first, because we know from the aggressive approximation experiment
that the margin for improvement is relatively narrow (see Table II).
Another reason is that there is a trend towards load-time, or even run-
time instrumentation practices, which in turn urge for the development
of computationally efficient transformation tools.

The heuristics are expressed relative to the control flow graph, where
each node is a primitive accounting block. The heuristics we explored
try to identify the following kinds of branches (loosely following the
classification of [2]):

1. Loop entry branches are branches that decide whether execution
will continue into a subsequent loop or avoid it. These are expected
to lead into the loop.

2. Loop branches are branches inside a loop that determine whether
execution will continue inside or exit the loop.

a) exit branches are predicted to fail;

b) backward branches are predicted to succeed;

3. Non-loop branches, i.e. branches that are not inside loops, or that
are inside a loop, but do not exit or branch backwards:
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a) Opcode-based equality heuristics: a number of simple
tests are easily recognizable at the bytecode level (e.g.
ifnull/ifnonnull and ifeq/ifne), and are expected to allow
predicting the outcome:

i) Null test for reference types: testing if a reference is equal
to null is deemed to usually fail;

ii) Zero test and equality test: testing if a value of a primitive
type (boolean, integer, double, etc) is equal to zero is
deemed to usually fail, as well as the equality test between
two primitive types or two references.12

b) Successors-based heuristics: depending on properties of the clos-
est successor nodes, we want to determine if the branch will be
taken or not.

i) if-then without an else structures: the then part is
assumed to perform some special-case processing, and is
therefore predicted not to be taken.

ii) direct successors containing a throw statement: they are
of course expected not to be taken, since they raise an
exception.

iii) direct successors containing a return statement: they are
also intuitively deemed to be treating special cases, such as
to terminate a recursive iteration.

We implemented these heuristics and inserted additional probes into
the transformed classes, in order to collect statistics on the quality of
the predictions throughout the whole SPEC JVM98 benchmark suite.

We decided that the heuristics are to be evaluated in turn, starting
with those for which our statistics show the highest probability of
success (or hit), respectively the lowest miss rate, as detailed in the
following. We chose to consider them as exclusive, i.e. as soon as a
heuristic decides that a given successor node of the current branching
node shall be taken, the algorithm stops there.

We found that the best sequence of heuristics, which yielded an
overall miss rate of 28%, was the following:

1. Loop branches and loop entry branches are well-known to provide
a hit with good confidence [2]. In our setting, they had a total miss
rate of 23%, which is not quite as good as expected.

12 This aggregation of different cases inside the same heuristic is due to the nature
of the JVM instruction set, which has several uses for the ifeq/ifne opcodes.
Therefore, a finer analysis would be needed to distinguish between the different
cases.
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2. Successors-based heuristics, by order of efficiency:

a) Avoid direct successors that raise an exception (3% miss rate).

b) Avoid direct successors that end with a return statement (27%
miss rate).

c) In the presence of an if-then without an else structure, take
the then branch (31% miss rate); this contradicts the hypothesis
we made at point 3.b.i, but conforms to the findings of Ball
and Larus [2] in the case of the C language. This heuristic
nevertheless suffers from a high standard deviation, with e.g. a
miss rate as high as 96% with the ‘db’ program of JVM98, and
as low as 9% with ‘jess’.

3. Our default strategy is to choose the successor that follows the
current branching node sequentially instead of the one targeted by
the branch (41% miss rate). Part of the explanation for this may
stem from the fact that each Java if condition is usually compiled
into a bytecode that tests for the negation of the condition (in order
to branch to the else part, if any, otherwise to the endif); therefore
it could mean that the Java programmer tends to write his if tests
in such a way that the most common treatment is located inside
the then block, instead of the else block, if any.

We found that all other heuristics were unreliable (i.e. close to 50%
of miss rate and/or a high standard deviation), such as the opcode-
based tests for equality or nullness of operands. It is likely that such
heuristics must be enhanced with data-flow analysis to become effec-
tive. One could imagine further heuristics to experiment with, but at
the same time, it is good to have only a few that do not require too
much processing on each branching node.

As a caution, one should generalize from these results only if
the SPEC JVM98 suite actually represents “standard Java coding
practices”.

6.2.3. Benchmarking the SPP Scheme
In addition to measuring the overhead due to our SPP scheme with
the given heuristics, we also benchmarked a version of SPP where
all heuristics were replaced by a completely random choice, using the
random number generation of the Java class library. We can see that
the random version performs almost as well as SPP with heuristics,
and that the aggressive approximation performs clearly better, which
is somewhat disappointing. This is because the random version may
take good paths by chance, short-circuiting accounting operations that
would otherwise exist with the Simple scheme. At places the gain of
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Table III. Overheads of various SPP settings (incl. unoptimized Steps 1–2).

Accounting Sun 1.5.0 Sun 1.5.0 Sun 1.5.0 IBM 1.4.2

optimization mode interpreted client server

No optimization 140.8% 38.1% 42.1% 38.6%

Random SPP 124.7% 36.4% 40.5% 37.5%

SPP with heuristics 119.8% 35.8% 40.5% 37.2%

Aggressive approx. 110.6% 30.4% 31.9% 34.3%

SPP (both random and with heuristics) is minimal, and the main
explanation is probably that the resulting frequency of accesses to the
ThreadCPUAccount remains fairly high, due to the overall misprediction
rate of 28%. Comparatively, the aggressive approximation modifies the
ThreadCPUAccount far less frequently, but at the cost of a significant
loss of precision. Table III summarizes these results, along with the
numbers that were already given in Table II. Section 7.4 outlines some
opportunities for further improvements of our optimizations, including
the SPP scheme.

7. Evaluation and Discussion

We present in this section the benefits, limitations, and possible exten-
sions of this work, starting with an overall quantitative assessment of
the proposed optimizations.

7.1. Optimal Optimization Combinations

At this point, we know from all preceding experiments which partial
optimizations are best, and can aggregate them in order to present the
per-platform optimal settings:

− For Sun JDK 1.5.0, interpreted mode: SPP on top of Wrap-
per rewriting for JVM98 and Wrapper rewriting (with code
duplication) for JDK.

− For Sun JDK 1.5.0, client mode: SPP on top of Wrapper rewriting
for JVM 98, Simple rewriting for JDK.

− For Sun JDK 1.5.0, server mode: SPP on top of Wrapper rewriting
for JVM 98, Simple rewriting for JDK.
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Figure 13. Per-platform lowest overheads with CPU accounting.

− For IBM JDK 1.4.2, default mode: SPP on top of Wrapper rewrit-
ing for JVM 98, Wrapper rewriting (with code duplication) for
JDK, and fixed ThreadCPUAccount parameter position 2 both for
virtual and static methods.

The overheads corresponding to these optimal settings are detailed
in Figure 13.

7.2. Accuracy of Accounting

The aggressive approximation was designed primarily for determining
a lower bound on the accounting overhead, i.e. a limit we should try
to reach in our search for new optimization schemes targeted at Step
3. The aggressive approximation incurs an obvious loss of accounting
precision, that remains to be evaluated. On the other hand, all the
other optimizations presented here are designed to be as accurate as
possible, with the compromise that exceptions thrown at runtime may
distort the result, as described in the following.

In our approach, we always update the consumption counter with
the statically computed number of bytecodes at the beginning of each
accounting block. Exceptions at runtime may however occur at arbi-
trary instructions within the accounting block, causing the remaining
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Table IV. Relative inaccuracy of the computed number of executed bytecodes.

compress jess db javac mpegaudio mtrt jack

4,9 · 10−8 7,6 · 10−8 1,5 · 10−7 1,0 · 10−4 2,7 · 10−8 6,2 · 10−6 6,4 · 10−3

instructions in the accounting block not to be executed, even though
they have been included in the consumption counter. Consequently,
the computed consumption may indicate more bytecodes than really
executed. The degree of this inaccuracy was determined by comparison
with the exact number of executed bytecodes, which was obtained by
modifying our accounting block analysis so that any bytecode that
may throw an exception ends a block. While this allows fully precise
bytecode counting, the overhead is high (code size and execution time),
because many more locations are instrumented.

As illustrated in Table IV, the relative inaccuracy is below 0,1%
for all benchmarks except ‘jack’, which is known to be a particularly
exception-intensive program [10, 27]. We conclude that our chosen
accounting block analysis reconciles accurate bytecode counting with
reduced instrumentation overhead.

7.3. Impact on Code Size

One of our goals in designing the optimizations is to limit the num-
ber of bytecode instructions added during the transformations. This
is to avoid negative effects on locality, which may reduce overall per-
formance, and also to help making J-RAF2 a reasonable option for
embedded devices, with less memory than desktop and server systems.
The Simple rewriting scheme expands the code by 17%, whereas the
SPP transformation increases the size by 14% (averages calculated on
the JDK class files of both Sun 1.5.0 and IBM 1.4.2).

The increased size may result in code validity problems if, before
transformation, a method already is close to the limits defined by
the JVM specification [26] (the maximum number of bytecodes in a
method is 64K) and its instruction set (standard unconditional jumps
and conditional branches may only express positive and negative offsets
of 32K bytecodes). It is the task of the lower layer of our tool (currently
provided by BCEL [15]) to ensure the transparent conversion of jumps
and branches into their wide, 64K bytecodes-enabled counterparts when
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the required offsets are too large.13 Whereas the Simple transforma-
tion scheme only slightly expands existing offsets, the more advanced
schemes, like the SPP transformation, may from time to time generate
new jumps over longer distances inside the method body, in order to
execute accounting correction code. An enhanced version of SPP should
try harder than now to minimize jumping.

Other limits that might - in extreme situations - be reached after
the transformation are e.g. the number of local variables in a method,
or the number of methods in a class (in the case of Wrapper rewriting
with code duplication). If any of these limits is exceeded, BCEL will
throw an exception and our tool will in turn reject the guilty method.

7.4. Opportunities for Further Optimizations

First, it should be noted that in our performance measurements the
number of iterations of SPEC JVM98 was changed from the default
setting of 2–4 up to 40. This has the effect of enabling each JVM to fully
utilize its internal optimization capabilities, and hence it increases the
reproducibility of the experiments. As a negative consequence, some
JVMs now exhibit perceptibly higher overheads than were found in
our previous experiments [21] (this concerns essentially the IBM JVM
1.4.2). We may therefore conclude that the overheads presented here
are especially relevant to server environments, whereas short-running
applications will often show a better relative performance.

The optimizations that we have presented here reveal the limits of
our design goal of resorting only to intraprocedural optimizations. We
see several research directions for further reducing the overhead:

− Improving the SPP prediction capability on a per-application basis
with feedback from off-line profiling, as described in [25]: this would
make the SPP scheme semi-static instead of purely static, but the
predictions and resulting transformations for each given applica-
tion would still remain portable. The interest of this technique is
supported by the measurements we made, which show that the
current SPP implementation strongly benefits ‘mpegaudio’, which
seems to have fairly predictable branches, whereas it actually in-
creases the overhead of ‘jack’, which has a rather unusual control
flow, notably a frequent use of exceptions [10, 27].

13 Unfortunately, the current version of BCEL (v 5.1) does not transparently
transform conditional branches since they do not have wide equivalents, and would
require instead a transformation into a combination of instructions with one short
and one long offset.
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− Whereas polling was a relatively minor source of overhead with
our unoptimized transformations, it becomes the second most im-
portant source of overhead after application of all optimizations.
Loops remain a source of overhead because they increase the fre-
quency of polling. We are currently working on a loop unrolling
technique where a dedicated, local counter is used to create an-
other level of (less frequent) polling and accounting inside loops;
this idea is somewhat related to the “virtual” check mentioned by
Feeley [18]. Whereas this optimization seems promising for loop-
intensive, scientific applications, it is not yet certain that there will
be a real benefit for more varied code, like SPEC JVM98.

− Method inlining would contribute significantly to the reduction of
all overheads: by eliminating invocations, many occurrences of Step
1 and Step 2 would disappear, and by merging method bodies,
it would create further opportunities for SPP to identify long,
likely execution paths. We have made a preliminary test with the
Soot Framework14 [32], to apply method inlining on SPEC JVM98
(but excluding the JDK) before rewriting with J-RAF2 (using
the per-platform best settings, as described above): compared to
the geometric means in Figure 13, the resulting overhead was un-
changed for the IBM JVM, whereas we obtained a drastic 10–15%
decrease in overhead for the Sun JVM in all execution modes.
Since the effect of method inlining with Soot on JVM98 (before J-
RAF2 rewriting) is noticeably lower, it confirms that inlining has
a very welcome lever effect on our own optimizations. As a disad-
vantage, however, whole-program optimizations are not necessarily
compatible with dynamic class-loading; dynamic instrumentation
capabilities would be required to address this issue.

− If the aggregation of all other optimizations does not yield suffi-
ciently low overheads, it may be advisable to relax the accounting
accuracy. Beyond the extreme example of aggressive approxima-
tion, the exact relationship between the level of approximation
and the resulting overhead remains to be studied.

7.5. Benefits

The CPU accounting scheme based on our bytecode transformation
techniques offers the following benefits, which make it an ideal candi-
date for enhancing Java server environments and mobile object systems
with resource management features:

14 http://www.sable.mcgill.ca/soot/
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− Full portability. J-RAF2 is implemented in pure Java and all
transformations follow a strict adherence to the specification of
the Java language and virtual machine. It has been tested with
several standard JVMs in different environments, including also
the Java 2 Micro Edition [8].

− Platform-independent unit of accounting. A time-based measure-
ment unit makes it hard to establish a contract concerning the
resource usage between a client and a server, as the client does
not exactly know how much workload can be completed within a
given resource limit, since this depends on the hardware character-
istics of the server. In contrast, the number of executed bytecode
instructions is independent of system properties of the server
environment.

− Flexible accounting/controlling strategies. J-RAF2 allows custom
implementations of the CPUManager interface.

− Fine-grained control of scheduling granularity. The accounting de-
lay can be adjusted within the constraints specified in Section 3.5:
the CPUManager is allowed to dynamically adapt the granularity
of each thread between the bounds defined by Integer.MAX VALUE

and the MAXPATH value chosen at rewrite time.

− Independence of JVM thread scheduling. The present CPU ac-
counting scheme of J-RAF2 does not make any assumptions
concerning the scheduling of threads. E.g., in contrast to other
approaches to CPU management [7, 14], J-RAF2 does not rely on
a dedicated supervisor thread running at the highest priority level.

− Moderate overhead. We have shown that our CPU accounting ap-
proach results in moderate overhead. Whereas we have focussed on
designing optimization algorithms that are specific to this bytecode
rewriting scheme, it is also possible to apply prior general-purpose
transformations to further increase the performance, such as loop
unrolling, inlining or parallelization techniques, using a bytecode–
to–bytecode optimization framework like Soot. We have also tried
to target optimizations that promise a broad usability, i.e. that
bring benefits on a large number of JVMs, and that do not result
in excessive increase of code size.
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7.6. Limitations

Concerning limitations, the major hurdle of our approach is that it can-
not account for the execution of native code. It is nevertheless possible
to wrap expensive native operations, such as (de-)serialization and class
loading, with libraries that deduce the approximate CPU consumption
from the size and value of the arguments.

It should be noted that bytecode instruction counting and CPU
time are distinct metrics for different purposes. While CPU account-
ing based on bytecode instruction counting has many advantages as
discussed in Section 2, more research is needed in order to assess to
which extent and under what conditions it can be used as an accurate
prediction of real CPU time for a concrete system. For this purpose,
individual (sequences of) bytecode instructions may receive different
weights according to their complexity. This weighting would be specific
to a particular execution environment and may be generated by a cal-
ibration mechanism. Therefore, such an approach would sacrifice the
platform-independence of the accounting, but would still be applicable
with on-the-fly rewriting, as promoted starting with JDK 1.5.0 (see
discussion in next section on further deployment possibilities).

Security of our transformations (e.g. with respect to combination
with other transformations or protection from tampering with CPU-
consumption accounts, whether directly or indirectly by reflection) has
not been addressed in this article. Nevertheless, it is fairly straight-
forward to implement load-time bytecode verification algorithms to
prevent applications from tampering with their own CPU consumption
accounts. Moreover, the reflection methods of java.lang.Class (e.g.,
getFields(), getMethods(), etc.), can be patched in order to prevent
access to the internals of our CPU accounting mechanism by untrusted
code.

Another issue related to reflection is that our optimized program
transformation scheme, which passes a ThreadCPUAccount instance as
extra argument, may break existing code that relies on the reflection
API. After introduction of wrapper methods, the arrays of reflection ob-
jects returned by getConstructors(), getDeclaredConstructors(),
getMethods(), and getDeclaredMethods() of java.lang.Class

(i.e., instances of java.lang.reflect.Constructor respectively
java.lang.reflect.Method) will contain both the wrapper methods
(with the unmodified signatures) as well as methods with extended
signatures. If an application selects a method from this array consid-
ering only the method name (but not the signature), it may try to
invoke a method with extended signature, but fail to provide the extra
argument, resulting in an IllegalArgumentException. We solve this
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issue by patching the aforementioned methods of java.lang.Class to
filter out the reflection objects that represent methods with extended
signatures. This modification is straightforward, because in standard
JDKs these methods are implemented in Java (and not in native code).
Note that this issue is only relevant if an optimized program transfor-
mation scheme is used; for the Simple rewriting scheme, such problems
with reflection cannot happen.

7.7. Further Extensions

Whereas the primary motivation for this work was to monitor and
control the CPU consumption of deployed software, we are exploring
several other applications and extensions of our bytecode rewriting
techniques:

1. Profiling at the bytecode level may employ transformation tech-
niques closely related to the ones described here. Profiling allows
a detailed analysis of the resource consumption of programs under
development. It helps to detect hot spots and performance bottle-
necks, guiding the developer to the parts of a program that should
be improved. We have shown in [6] that this approach allows exact
profiling with overheads that are about two orders of magnitude
lower15 than standard tools for Java. Thus, the developer no longer
has to carefully select the sub-parts of his application that he wants
to profile.

2. While profiling provides detailed execution statistics about individ-
ual methods (e.g., calling context, invocation counter, CPU time,
etc.), benchmarking evaluates the overall performance (CPU con-
sumption, memory utilization, etc.) of a program. Benchmarking
at the bytecode level is a tool which helps compare the cost of
different algorithm implementations (for a given input), at a higher
level than what platform-dependent, plain execution times offer [5].

3. Most tools for aspect-oriented programming, such as AspectJ [24],
allow to define pointcuts, such as method invocations, the beginning
of exception handlers, etc. However, they do not give access to con-
trol flow entities like loops and basic blocks, and are therefore not
appropriate tools for the insertion of accounting code. Moreover,
it would be difficult to specify our particular scheme of passing
accounting objects as extra arguments (which involves the auto-
mated creation of wrapper methods or the duplication of code)

15 This overhead is however higher than with J-RAF2 because there is much more
information to collect and manage.
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with current aspect languages. Therefore, from a technical point
of view, a tool with the same bytecode manipulation capabilities
as ours is required. We are considering defining an aspect-oriented
language in order to factor out the parameters of the rewriting
process, and make our current tool more user-friendly. This lan-
guage would enable the developer to more conveniently define the
sites where accounting is needed and what actions should be taken
there. We are aware of no prior work on aspect languages for CPU
management, and resource management in general.

Whereas our bytecode transformations are currently implemented as
a distinct tool, there are also other deployment opportunities, depend-
ing on the needs of the envisaged application. The JDK 1.5.0 platform
introduced services that allow Java agents to instrument programs
running on the JVM. Such Java agents exploit the instrumentation
API (package java.lang.instrument) to let users install bytecode
transformations that are integrated with the JVM instead of being
provided by a separate tool. Java agents are invoked after the JVM has
been initialized, but before the real application. They are even allowed
to redefine already loaded system classes.

However, JDK 1.5.0 imposes several restrictions on the transforma-
tion of previously loaded classes. For instance, new fields or methods
cannot be added, and method signatures cannot be changed. Therefore
it is not compatible with our most advanced transformations. Nonethe-
less, if all JDK classes are rewritten according to the Simple scheme,
where each method obtains the ThreadCPUAccount instance of the
calling thread upon method entry, our bytecode transformations can
be packaged as a standard Java agent for JDK 1.5.0. This approach
also requires that the transformations themselves do not take too long,
as the rewriting would be done on the fly. As an indication, a rewriting
of the 2443 classes of IBM JDK 1.4.2 with the Simple scheme takes 40
seconds on our benchmarking machine.

Our previous work on J-RAF2 has shown that we can account for
other basic resources, such as heap memory [7] and network band-
width [22], within a single homogeneous conceptual and technical
framework. More research is needed to advance the management of
these resources to the same level of maturity as the CPU. However,
from the perspective of studying program transformations, they are
not quite as challenging, since the corresponding consumption sites are
easy to locate in the bytecode and can therefore be essentially handled
with wrapper techniques, and they are less critical – again purely from
a program transformation point of view – because they are consumed
at a slower pace than the CPU.
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8. Related Work

Altering Java semantics via bytecode transformations has been used for
many purposes that can be generally characterized as adding reflection
or aspect-orientedness to off-the-shelf software components [9, 23, 30].
Our approach also fits this description, since we reify the CPU con-
sumption, which is an original idea. J-RAF2 relies on the Byte Code
Engineering Library BCEL [15] for the low-level operations.

In the following we present related work on the two main subjects
of this article, namely resource management in Java, and static path
prediction schemes.

8.1. Resource Management in Java

Prevailing approaches to provide resource control in Java-based plat-
forms rely on a modified JVM, on native code libraries, or on program
transformations. For instance, the Aroma VM [29], KaffeOS [1], and
the MVM [12] are specialized JVMs supporting resource control. In
contrast, our approach does not require any JVM modifications and is
compatible with any standard JVM.

JRes [14] is a resource control library for Java, which uses native
code for CPU control and rewrites the bytecode of Java programs
for memory control. For CPU control, some light bytecode rewriting
is also applied to enable proper cooperation with the OS via native
code libraries. JRes does not support bytecode-level accounting, as
this seemed prohibitive in terms of performance. Another difference
is that in JRes information is obtained by polling the OS about the
CPU consumption of threads, and therefore requires a JVM with OS-
level threads, which is not always available. Researchers at Sun are also
working on incorporating resource management as an integral part of
the Java language [13]; this proposal requires substantial additional
support that has to be first introduced into the platform.

8.2. Static Path Prediction

Our path prediction scheme may be seen as just another name for
branch prediction [11]. However our purpose is slightly different from
existing approaches, which focus on lower-level objectives such as de-
signing compilers that generate optimal code for a given family of
processors [16], or predicting the worst-case execution time in view of
implementing a hard real-time system [20]. Some approaches use per-
application tailored feed-back received from off-line simulations: that
kind of prediction is in fact semi-static, as opposed to purely static
approaches like ours, which rely only on the information that can be



37

extracted through static analysis of the program [25]. Purely static
branch prediction performs of course worse than the semi-static and
dynamic approaches.

Our work on static path prediction bears many similarities to that of
Ball and Larus [2], since they employ largely the same set of techniques
for statically analyzing programs. Whereas they studied static predic-
tion with programs in the C language, we are working with Java and
could therefore introduce the (obvious) heuristic related to throwing
exceptions.

To our knowledge this is the first static prediction scheme that works
on the bytecode-to-bytecode level, with purely platform-independent
strategies and impact assessment.

9. Conclusions

Resource control with the aid of program transformations offers an
important advantage over the other approaches, because it is indepen-
dent of any particular JVM and underlying operating system. It works
with standard Java runtime systems and may be integrated into exist-
ing server and mobile object environments, as well as into embedded
systems based on Java processors.

This article has made a thorough review of the bytecode transfor-
mations that are put to work in our J-RAF2 framework, including a
systematic review of the origin of the associated overheads, and the
optimizations designed to mitigate them. It has also presented and as-
sessed an entirely new static path prediction scheme which contributes
to the reduction of accounting overheads.

We have thus shown that runtime overheads can be reduced to
fairly moderate levels, although at first the bytecode rewriting approach
might seem overly expensive. Part of the remaining overhead may still
be reduced by enhancing our intraprocedural analysis and transforma-
tion schemes. But, in the light of our experiments, it seems that the
possibility of making further significant progress strongly depends on
the adoption of complementary interprocedural analysis tools.
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