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ABSTRACT
Ontologies are being successfully used to overcome semantic het-
erogeneity, and are becoming fundamental elements of the Seman-
tic Web. Recently, it has also been shown that ontologies can be
used to build more accurate and more personalized recommenda-
tion systems by inferencing missing user’s preferences. However,
these systems assume the existence of ontologies, without consid-
ering their construction. With product catalogs changing continu-
ously, new techniques are required in order to build these ontologies
in real time, and autonomously from any expert intervention.

This paper focuses on this problem and show that it is possible to
learn ontologies autonomously by using clustering algorithms. Re-
sults on the MovieLens and Jester data sets show that recommender
system with learnt ontologies significantly outperform the classical
recommendation approach.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine systems

General Terms
Algorithms, Experimentation, Performance.

Keywords
Ontology, Recommendation System, Clustering.

1. INTRODUCTION
With the growing importance of the internet, people are becom-

ing overwhelmed by information. Recommender systems have been
designed to help people in this situation by finding the most rele-
vant items based on the preferences of the person and others.

Today, the most widely used technique is item-based collabora-
tive filtering, ([10], CF). Given a user, the goal of CF is to recom-
mend items based on the experience of the user as well as other
similar users. Collaborative filtering captures the user’s experience
by asking him to rate the items he has interacted with, and stores
all these historical data in a user-item matrix R.
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Unfortunately, collaborative filtering suffers from scalability[10]
and cold-start problems[11]. The former problem is due to the
neighborhood of items that must be constructed in order to extract
the experience of similar users, while the latter is a consequence of
the unconstrained search space that requires many items to be rated
in order to find the right neighbors.

To constrain the search space, a novel technique called ontology
filtering has been proposed([12], OF). This approach infers pref-
erence ratings of items based on the ratings of known items, and
their relative position in an ontology. The ontology is defined as
a multi-inheritance graph structure, where an edge represents one
or more features, and an item is an instance of at least one con-
cept. Given this ontology, OF associates with each concept c an
a-priori score, APS(c), which captured the information contained
by a concept. To predict the user’s rating of an unrated concept y,
the system uses knowledge of the normalized rating S(x) of the
closest concept x, and the lowest common ancestor to concepts x
and y in the ontology. Formally, the inference is as follows:

S(y|x) =

(
APS(lca)

APS(x)

)
S(x) + (APS(y)−APS(lca)) (1)

where lca is the lowest common ancestor between concepts x
and y. Informally, Equation 1 infers the score of concept y by first
looking at the closest concept x that has a score. Then, it looks at
the commonalities between the concept x and lca, which measures
how much information is preserved going up the tree. Finally, we
add the information gained by adding the extra features between
concepts lca and y. Thus, the recommended items are the ones
achieving the best score. Note that contrary to CF, OF only uses
the user’s preferences for the inference process.

To illustrate these two approaches, we are going to build a sim-
ple recommendation system for helping a user choose a means of
transportation. Figure 1(a) shows the matrix R that contains the
preferences of three users: David, Paolo, and Alex. Such a ma-
trix is the input of traditional recommendation system. The ratings
range from 1 to 5, and the symbol x means that no preferences were
stated by the users. Let’s now imagine that Alex is planning to visit
one of his friends who lives far away. Further imagine that to get
there, Alex can only use a car or the train.

 Bike Car Train Plane 

David 4 5 x x 

Paolo x x 5 4 

Alex 4 x x 4 

 

(a) user-item matrix R 

 Bike Car Train Plane 

Bike 1 -1 x 0 

Car -1 1 x x 

Train x x 1 -1 

Plane 0 x -1 1 

(b) item-item matrix S 

 Figure 1: (a) matrix R, while (b) is matrix S computed from (a)

To use item-based collaborative filtering, the system starts by
constructing the item-item similarity matrix S (Figure 1(b)). This
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matrix is constructed from R using Equation 3 (see section 2.1),
where Si,j is the similarity between items i and j. Given Alex,
the predicted rating of an item i is computed using a weighted av-
erage of Alex’s ratings by the similarity of closest neighbors to i.
Formally, the predicted rating of item i, R̂Alex,i, is computed as
follows[8]:

R̂Alex,i = Ri +

∑
j∈ K(Si,j ∗ (RAlex,j −Rj))∑

j∈ K |Si,j |
(2)

where K is the set of the k-closest neighbors to item i. If we
set |K| to 2, the predicted ratings of items train and car become 5
(i.e.: R̂Alex,train = R̂Alex,car = 5). As both items have identical
predicted ratings, CF would recommend both to Alex.
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(a) The ontology modeling the domain 

Concept nc APS 

Bike 0 1/2  

Car 0 1/2 

Train 0 1/2 

Plane 0 1/2 

Public 2 1/4 

Private 1 1/3 

Individual 1 1/3 

Transport 7 1/9 

 

 

(b) The a-priori scores (APS) 

 Figure 2: (a) An ontology modeling the Transport domain with
the a-priori score of each concept in (b)

On the other hand, ontology filtering needs an ontology to in-
fer missing user preferences. Figure 2(a) shows a possible hier-
archical ontology that was designed by engineers and fed as in-
put to our recommendation system. Given this ontology, the in-
ferred score of the concept Train is equal to S(Train|Plane) =
S(Plane) ∗ (APS(Public)/APS(Plane) + (APS(Train) −
APS(Public)) = 7/12, while the one of the concept Car is equal
to S(Car|Bike) = S(Bike)∗(APS(Transport)/APS(Bike)+
(APS(Car)−APS(Transport)) = 23/54. As S(Train|Plane)
> S(Car|Bike), the recommended item will be the train, .

Given Alex’s preferences, it is quite easy to see that the predic-
tion made by ontology filtering is more coherent than the one from
CF; as the majority of users who like to travel by public transport
would also prefer to travel by train rather than by car. This behavior
is represented by the fact that both concepts Plane and Train share
the same ancestor, which is different from the ancestor of the con-
cept Car. Moreover, if Alex liked to travel by car, then he would
have stated it; as users tend to state the preferences they really care
about. Note also that ontology filtering uses less data than collab-
orative filtering as the structure of the ontology limits the search
space to the closest concept with a rating.

In E-commerce applications, many items with new features are
being constantly added to E-catalogs. Inversely, old items are re-
moved from the E-catalogs as they become obsolete. In such sit-
uations, it is unrealistic to imagine that such an ontology can be
maintained by a group of experts. Furthermore, the ontology does
not exploit the similarities as expressed by the matrix S. Finally,
we think that using the same ontology for every user is suboptimal
as each user perceives reality differently from others.

This paper focuses on the problem of learning these ontologies
using unsupervised learning algorithms. Given this set of ontolo-
gies and a particular user, we propose another algorithm to select
which ontology to use based on the user’s preferences. We show
that hierarchical clustering algorithms can be used to learn the on-

tologies, and that ontology filtering with these learnt ontologies
still outperforms item-based collaborative filtering. We also de-
fine a new algorithm that is capable of building multi-hierarchical
ontologies, and show that this more complex structure brings some
robustness to the prediction accuracy. Finally, we provide fresh
experimental results concerning the behavior of hierarchical clus-
tering algorithms and ontology filtering recommendation system on
two data sets that contain real users data (MovieLens and Jester).

The rest of this paper is organized as follows. First, we intro-
duce all the necessary background that is used throughout the pa-
per, while our algorithms used to learn and select which ontology
to use are presented in Section 3. In the experiment section, we
give detailed results of the behavior of learnt ontologies and show
that these learnt ontologies actually outperform item-based collab-
orative filtering on the Jester and MovieLens data sets. Finally, we
conclude this paper in Section 5.

2. BACKGROUND
In both collaborative filtering and ontology filtering, users state

their preferences by rating a set of items, which are then stored in
the user-item matrix R. Formally, this matrix contains all the users’
profiles, where the rows represent the users U = {u1, , um}, the
columns correspond to the set of items I = {i1, , in}, and Ru,i is
the rating assigned to item i by the user u. It is common practice to
denote the average rating of user u by R̄u, and the average rating
of the item i by R̄i.

2.1 Collaborative Filtering
Item-based collaborative filtering works by finding similar items

to the ones bought by the user, and then combines those similar
items into a recommendation list. The fundamental assumption be-
hind CF is that similar users like similar items. Formally, the rec-
ommendation process is as follows. First, CF computes the pair-
wise similarities between all the items in the matrix R. These sim-
ilarities are computed using the adjusted cosine similarity metric,
which is defined as follows[10]:

sim(i, j) =

∑
u∈ U (Ru,i − R̄u)(Ru,j − R̄u)√∑

u∈ U (Ru,i − R̄u)2
√∑

u∈ U (Ru,j − R̄u)2
(3)

Once the item-item similarity matrix S has been computed, the
predicted rating of an item i is computed using the k most similar
items to i, which is commonly known as i’s neighborhood. Thus,
the predicted rating is computed using a weighted average of the
user’s ratings by the similarity of item i’s neighborhood (Equation
2). Once all the possible items to be recommended have been rated,
we simply select the N items with the best predicted rating. This
selection process is called the top-N recommendation strategy.

By working on the items rather than on the users, CF is able to
reduce the search space, which makes it scalable to E-commerce
environments. For example, Amazon.com with its 29 million cus-
tomers uses item-based collaborative filtering to personalize its rec-
ommendations([7]). However, with thousands of items in current
E-commerce catalogs, the search space remains huge and uncon-
strained. Thus, CF requires the user to rate many items in order to
find highly correlated neighbors. Moreover, the recommendation
accuracy is greatly influenced by the size of the item’s neighbor-
hood.

2.2 Ontology Filtering
In ontology filtering, two input structures are required: the users’

historical data R and an ontology modeling the domain. The on-



tology is defined as a directed acyclic graph, where an edge is a bi-
nary isa relation that models some features. Note that the features
are usually not made explicit when defining the ontology. Take for
example a bottle of red and a bottle of white wine. Both bottles
would be children of the wine concept, and the color of the wine
would be the feature that differentiates the red wine sub-concept
from the white wine one. However, the taste would also be a fea-
ture that differentiates these two subconcepts, but this feature will
remain implicit.

Ontology filtering starts by extracting the information contained
in the ontology. This is achieved by computing an expected normal-
ized score of each concept c, known as the a-priori score, APS(c).
The APS is defined as a lower bound of the actual score an instance
of the concept might have. We define the APS of a concept c as:

APS(c) =
1

nc + 2
(4)

where nc is the number of descendants of the concept c [12].
As for collaborative filtering, the user expresses his preferences

by rating a set of items. For each rated item, the algorithm extracts
its features and computes the score of each concept based on the
specified rating. Unfortunately, it is very unlikely that the user was
able to give enough ratings to compute the score of all the concepts
in the ontology. To overcome this problem, for all the concepts y
without any score, OF will infer it by transferring the score of the
closest concept x (Equation 1).

In Equation 1, the coefficient α(x, lca) = APS(lca)/APS(x)
represents the ratio of features which are both liked in the concept
x and lca, while β(y, lca) = APS(y) − APS(lca) measures
how much the new features added to the lowest common ancestor
will be liked[12]. The former coefficient represents the score being
preserved when traveling upwards to the concept lca, while the
latter contains the score gained by traveling downwards from the
lca . Note that the inference assumes that the relationships between
real scores are the same as those between a-priori scores.

To minimize the error during the inference, OF needs to find
the closest concept x to any given concept y in the ontology. To
perform this crucial task, Schickel and Faltings[12] derived a new
distance function from Equation 1 called OSS. In [13], OSS was re-
fined and it was showed that it actually outperforms state of the art
metrics on WordNet and the GeneOntology. Formally, OSS defines
the distance between concepts x and y in an ontology as follows:

D(x, y) =
log(1 + 2β(x, lca))− log(α(y, lca))

maxD
(5)

where α and β are the same coefficients as in Equation 1.

2.3 CF vs. OF
There are three fundamental differences between ontology filter-

ing and collaborative filtering. First, rather than using the item-item
similarity matrix S, the item similarity in ontology filtering is re-
stricted to a hierarchical ontology. This reasoning topology allows
to constrain the search space, which limits the number of ratings the
system has to elicit from the user. Experimental results have shown
that ontology filtering leads to significant improvements in the pre-
diction accuracy over CF, especially when little data about the user
is known [12]. Second, ontology filtering infers the missing score
from the closest concept with preferences rather than from a neigh-
borhood. As less data is required, it makes this approach much
more scalable than collaborative filtering. Finally, missing user
preferences are inferred from the user’s past experience instead of
using other people’s preferences, which increases the personaliza-
tion of the recommendations list[12].

The main assumption in ontology filtering is that an ontology

modeling the items’ features exists. Unfortunately, this is an un-
reasonable assumption when we consider the fact that hundreds of
items get added or removed from E-catalogs each day. Further-
more, the ontology should capture the item similarities as expressed
by the user population. Thus, new techniques are required for
building these ontologies automatically, and without any user in-
tervention. Moreover, collaborative filtering proved that using col-
laborative data increased the prediction accuracy. Thus, we show
that it is possible to construct these ontologies from the matrix R
using clustering algorithms, which allows the ontologies to capture
the knowledge of a user population.

3. LEARNING THE ONTOLOGIES
Users are being continuously solicited to express ratings on items

they have either seen or bought. As a consequence, rated items are
becoming widely available. For example, buyers on eBay.com are
invited to evaluate a seller each time they have bought an item,
while on YouTube.com, users can rate videos they have seen. Mi-
crosoft Office also invites users to rate the help tips they have re-
ceived. Given these ratings, our first contribution is to show that
hierarchical clustering algorithms can successfully be used to learn
a set of hierarchical trees that will later be used as ontology in the
ontology filtering approach.

3.1 Clustering Algorithms
Over the years, researchers in the data mining community have

proposed many clustering algorithms in order to perform unsuper-
vised learning. These algorithms can be classified into at least six
categories[6]: fuzzy clustering, nearest-neighbor clustering, hierar-
chical clustering, artificial neural networks for clustering, statistical
clustering algorithms, and density-based clustering. In this paper,
we are interested in building hierarchical ontologies. Thus, we will
focus our research on hierarchical clustering algorithms, which can
build such a structure.

Hierarchical algorithms can in fact be categorized into two sub-
categories: distance-based clustering and conceptual-based clus-
tering. Both approaches construct hierarchical trees, but they use
very different data representation. With distance-based clustering,
objects are represented in a well defined space, like a vector in a 2D
cartesian space. Thus, two or more objects will be assigned to the
same cluster if they are close according to a given distance func-
tion. However, with concept-based clustering, objects are defined
by a set of concepts, where a concept is usually an attribute-value
pair. Given this representation, two or more objects belong to the
same cluster if they share common concepts.

3.1.1 Distance-Based Clustering
When considering distance-based clustering, there are in fact two

distinct ways to build a hierarchical tree: the bottom-up or top-
down approach. These approaches are respectively known as the
agglomerative clustering and partitional clustering.

Partitional algorithms start by assigning all the items to be clus-
tered into a unique cluster. Then, one cluster Cj is chosen and is
then further bisected into Ci, where i ∈ [1, 2] clusters. For each
item in Cj , we assign them to the cluster Ci that optimizes a dis-
tance function. This process continues until either all the items are
found on the leaf of the tree, or the number of clusters has met a
given threshold θ.

Inversely, agglomerative clusterings assign each item to its own
cluster Ci,where i ∈ [1, n]. Then, the two closest clusters are
merged into a unique cluster. As for partitional clustering, the pro-
cess reiterates until the entire tree is created, or the number of clus-
ters has met a given threshold θ.



The main advantage of partitional algorithms is their low com-
plexities, which allow them to cluster millions of elements. How-
ever, partitional algorithms can suffer from local minima, and are
dependent on the input order of the items. On the other hand, in
general, agglomerative algorithms give better clustering solutions
than partitional algorithms. However in [15], Zhao et Karypis have
shown that for clustering document data sets, partitional clusterings
always led to better clustering solutions than agglomerative ones.
The main disadvantage of agglomerative clusterings is their com-
plexities. In the first step of the algorithm, all pairwise similarities
must be computed, leading to a complexity of O(n2).

3.1.2 Concept-Based Clustering
The most famous (incremental) conceptual clustering algorithm

is COBWEB, which was introduced by Fisher[3] in 1987. Contrary
to the first two clustering algorithms, items need to be represented
by a set of attribute-value pairs. For example, a mammal could
be modeled by the attributes body cover, heart chamber and body
temperature, which have the following respective values: hair, four,
and regulated. Given this representation, a node (class) in the tree
represents the probability of the occurrence of each attribute-value
pair for all the instances of that node. Thus, the root node repre-
sents all the possible attribute-value pairs defined in the system, and
nodes become more specific as we go down the tree.

For each item to classify, COBWEB will incrementally incor-
porate it to the classification tree by descending the tree along an
appropriate path, updating counts along the way, and performing
one of the four operators at each level. These operators are as fol-
lows.

• add - adds the item to an existing class,
• create - creates a new class for the item,
• merge - merges two classes, and
• split - splits a class into several ones.

As item are added incrementally, the ordering of the initial input
can lead to different classification results. To reduce this problem,
[3] uses the operators merge and split. Furthermore, node merging
and splitting are roughly inverse operators, and allow COBWEB to
move bidirectionally through a space of possible hierarchies.

The choice of the operator will by be guided by a category utility
function that rewards traditional virtues held in clustering, i.e.: sim-
ilar objects should appear in the same class, while dissimilar ones
should be in different classes. Thus, the category utility function is
in fact a trade off between intra-class similarity and inter-class dis-
similarity of items. A detailed explanation of category utility can
be found in [3].

One of the main advantages of COBWEB over the partitional
and agglomerative clustering algorithms is that it allows new items
to be added incrementally to the classification tree, without recom-
puting the entire tree. Note also that the process is bidirectional,
which means that a node that has been created can be merged again
later on. Second, conceptual clustering uses probabilistic descrip-
tions of concepts, rather than distances. Furthermore, the opera-
tors merge and split guarantee homogeneity of the content of the
class. However, COBWEB has some known problems. First, the
classification tree is not height-balanced which leads to space and
time complexity to degrade dramatically. The overall complexity of
COBWEB is exponential to the number of attributes, as the cate-
gory utility function requires analyzing all the attribute-value pairs.

Despite these problems, and because most authors assume that
the number of attributes is small, COBWEB is becoming increas-
ingly popular in the Semantic Web. For example in [1], Clerkin et
al. proposed to use COBWEB directly on the user-item matrix R to
build meaningful hierarchical ontologies of songs. To do this, they

consider each item as an attribute, and the rating assigned to each
item is transformed in the feature value good if it had a rating su-
perior or equal to 4, or bad otherwise. In [14], Sea and Ozden have
used COBWEB to generate the ontology from files’ description in
order to perform ontology-based file naming.

3.2 Learning Hierarchical Ontologies
In the collaborative filtering research community, it is an estab-

lished fact that users can be categorized in different communities,
and that a community of users behaves in a similar fashion. Follow-
ing these observations, we believe that using just one ontology for
all the users is not appropriate, and that it is better to select which
ontology to use based on the user’s preferences. Following this,
we will use many clustering algorithms to generate a whole set of
ontologies Λ, and then select the best ontology based on the user’s
preferences.

In order to generate these ontologies, we will use different dis-
tance functions or criteria functions ([15]). Table 1 shows the crite-
ria functions that we use in our algorithms, where k is the number
of clusters to consider, nr denotes the number of elements in clus-
ter r, Cr is the rth cluster, Ct

r is the centroid of the rth cluster, and
sim(i, j) is the similarity between items i and j.
Table 1: Criteria functions used for distance-based clustering
1 I1 maximize

∑k
r=1

1
nr

(∑
i,j∈Cr

sim(i, j)
)

2 I2 maximize
∑k

r=1

∑
i∈Cr

sim(i, Ct
r)

3 E1 minimize
∑k

r=1 nrsim(Ct
r, C)

4 G1 minimize
∑k

r=1
cut(Cr,C−Cr∑
i,j∈Cr

sim(i,j)

5 H1 maximizeI1E1
6 H2 maximizeI2E1
7 slink maxi∈Ci,j∈Cj sim(i, j)
8 clink mini∈Ci,j∈Cj sim(i, j)
9 UPGMA maximise 1

ni,nj

∑
i∈Ci,j∈Cj

sim(i, j)

During partitional clustering, a distance function is required in
order to assign each item in Cj to the cluster Ci that optimizes
the distance function. Thus, our algorithm will use the criteria I1,
I2, E1, H1, and H2 as distance functions. I1 and I2 are inter-
nal criteria functions that focus on producing a clustering solution
that optimizes the function over the items of each cluster individu-
ally. The essential difference between I1 and I2 is that the former
maximizes the average pairwise similarities between all the items
assigned to each cluster, while the latter represents each cluster by
a center of gravity, known as centroid, and then looks at the simi-
larity between the items and this centroid. Notice that I2 is in fact
equivalent to the very popular K-Means algorithm, with K set to 2.
However, E1 is known as an external criterion function as it looks
on how the various clusters are different from each other, and tries
to minimize the cosine between the centroid of each cluster. G1 is a
graph based criterion function that models the items as a graph (the
node corresponds to an item, while an edge between a pair of nodes
measures the similarity between each of these nodes), and uses a
variant clustering quality measures (the min-max cut,[2]) as the cri-
terion function. Finally, H1 and H2 are hybrid criteria functions
that simultaneously optimize multiple individual criteria functions.
Many techniques have been proposed for selecting which clusters
to choose next for bisection, ranging from random policy, to size
analysis. In order to obtain a more natural hierarchical solution,
[15] proposed to choose the cluster among the k possible choices
as the one that leads to the k+1 clustering solutions that optimized
one of the above criteria functions.

The key criterion in agglomerative clustering is the function used
to merge a pair of clusters. Table 1 shows three criteria functions



commonly used today. The single-link, slink, and complete-link,
clink, criteria functions both compute the similarities by consider-
ing a pair of items in the different clusters. The main difference
lies in the fact that the single-link considers the closest elements of
the two clusters, while the complete-link looks at the furthest pair.
However, these criteria functions do not perform well in practice
because they only use limited information. The UPGMA criterion
function overcomes these problems by measuring the similarity of
two clusters as the average of the pairwise similarity of the items in
each cluster. Besides these three functions, the first six functions in
Table 1 can also be used for selecting which clusters to merge[15].

Formally, Algorithm 1 generates a set of hierarchical ontologies
from the user-item matrix R as follows. First, we initialize a set Λ
that will contain all the learnt ontologies. In step 2, we compute the
item-item similarity matrix S from the matrix R using Equation
3. Using Si,j as sim(i, j), and a threshold θ as the number of
leaf clusters, we generate 15 distinct hierarchical trees using the
partitional (step 4) and agglomerative clustering (step 6) algorithms
introduced in subsection 3.1.1.

Algorithm 1 Learning the ontologies Λ with θ leaf clusters

Input: The user-item matrix R, and θ leaf clusters.
Output: A set Λ containing 15 ontologies
1. Λ = φ
2. Compute matrix S from user-item matrix R using equation (3)
3. For criteria function 1 to 6 do

4. Λ ← Λ∪ tree generated by partitional clustering.
5. For each criteria function 1 to 9 do

6. Λ ← Λ∪ tree generated by agglomerative clustering.
7. return Λ

If the threshold parameter θ is set to any value less than the to-
tal number of items to cluster, then some leaf clusters will contain
more than one item. As users can express a rating on any item, it
may well occur that a concept has more than one item with different
scores assigned to them. In the model defined by [12], each con-
cept is represented by a unique feature, rather than a set of them.
Furthermore, the score is defined as a lower bound on the expected
likelihood of the user liking the concept. This means that for a
user to like a concept, he must also like its subconcepts. However,
how the score of a concept is computed has not yet been prop-
erly defined. Following our ontology construction, a concept will
represent a set of items, each having a possible rating assigned by
the user. In the literature [9], these concepts can be referred to as
messy concepts. These families of concepts have three character-
istics: they have gray areas of interpretation (open-textured), they
change (non-stationary), and they have exceptions (non-convex).
Formally, exceptions in concept can occur if a negative example
resides in the concept’s interior. To solve this problem, we propose
to compute the score of a concept as an average of the user’s rat-
ings assigned to the concept’s instances. Formally, the score of a
concept c for a user u is computed as follows:

S(c) =

∑
i∈LSC R̃u,i

|LSC| (6)

where LS is the set of items that have been rated by the user u,
LSC is a subset of LS and contains the rated items that are instance
of concept c, and R̃u,i is the normalized rating of item i made by the
user u. Notice that the average computation will compensate the
fact that some items (exceptions) have been incorrectly classified.

The inference process defined in Equation 1 needs to find the
closest concept with a score to the one we want to find the score

in order to minimize the error. Furthermore, as the inference is
done from only one concept, the selection of the closest concept
is fundamental. As users tend to like similar items, this implies
that theses items will be represented by concepts in the ontology
which are close to each other. Thus, if the concepts that represents
the items liked by the user are too distant from the disliked ones,
then the inference will introduce a bias towards the liked concepts.
As a consequence, we must select the ontology that minimizes the
distance between the liked concepts and the disliked ones. Algo-
rithm 2 is a two step process that is based on this idea. First it
selects a subset of ontologies that we will perform the best, and
then select the ontology that minimizes the distance between liked
and disliked concepts for the selected ontologies. The first stage of
the algorithm simply limits the search of the right ontology as the
computation of distances is computationally expensive.

Algorithm 2 Selecting the best ontology from Λ for user u

Input: The set of ontologies Λ, and u’s learning set LS
Output: The best ontology λi for user u.
1. Split u’s learning set LS into LSL and LST .
2. For each λi in Λ do

3. Predict the score of items in LST based on items in LSL.
4. preci(λi)← precision of the items in LST

4. Λ2 ← ontologies with best preci(λi)
5. For each λi in Λ2 do

6. compute Dist(λi) =
∑

n∈Liked,m∈Disliked D(n,m)

|Liked||Disliked|
7. return λi|argλi∈Λ2min(Dist(λi))

Algorithm 2 starts by splitting the user’s preferences LS into two
sets: LSL and LST . LSL will be used for learning the scores,
and will contain 90% of the data in LS. For each ontology we have
learnt using Algorithm 1, we infer the score of the items in LST
based on the score of the items in LSL. Then, we compute the pre-
cision of the inferred scores based on the real score found in LST ,
where the precision is defined as the ratio of correct items found
by the size of LST . In step 4, we select the ontology that achieves
the best precision. This selection process is as follows. If we have
at least two ontologies with the highest precision value, then we
return these ontologies. Otherwise, we select the best ontologies
and also the ontologies with the second best precision value. This
selection process ensures that we always have at least two ontolo-
gies for the rest of the algorithm. For each selected ontologies Λ2,
and using Equation 5, step 6 computes the distance between the
concepts liked by the user and the disliked ones in the user’s learn-
ing set LS, where n and m are concepts respectively from the set
of concepts Liked that are liked by the user, and from the set of
concepts Disliked that he disliked. Note that LS is a partition
composed of the sets Liked and Disliked. Finally in step 7, we
return the ontology that minimizes the distance.

To summarize, Algorithm 1 uses distance-based clustering algo-
rithms to learn a set of ontologies that capture the pairwise simi-
larities between the items. Given these ontologies, Algorithm 2 se-
lects the personalized ontology that represents best the user’s pref-
erences. Finally, ontology filtering will use the selected ontology to
infer the missing preferences, and recommend a set of N items to
that particular user. Consequently, we will call this new approach
Personalized Ontology Filtering, pOF.

3.3 Learning Multi-Hierarchical Ontologies
We believe that the recommendation accuracy can be further im-

proved if we slightly increase the search space. When using clas-
sical hierarchical clustering algorithms to generate the ontologies,



all the implicit features between a concept and its sub-concept will
be stored in a single edge. This could potentially limit the concept
representation, and thus limit OF’s inference process. Moreover,
hierarchical clustering algorithms used in Algorithm 1 always se-
lect the best cluster to merge/split based on the optimization of one
of the criterion function in Table 1. Thus, it ignores other possible
suboptimal candidates.

In the next section, experimental results show that, on average,
it is the agglomerative clustering with the complete-link criterion
function that achieves the best result. Algorithm 3 extends this al-
gorithm in order to build multi-hierarchical ontologies.

Algorithm 3 Learning a Multi-Hierarchical Ontology with a win-
dow size α and threshold cluster θ

Input: A set of items I , and the similarity matrix S, α, and θ.
Output: a clustering tree modeling a multi-hierarchical ontology.
1. C ← φ
2. Assign each item i to its own cluster Ci and C = C ∪ Ci.
3. while |C| > θ do

4. X ← φ
5. For each Ci, Cj in C do

6. X ← X ∪ (xCi,Cj = mini∈Ci,j∈Cj sim(i, j))
7. xCi,Cj ← max(X)
8. Ck ← merge(Ci,Cj)
9. Cm ← {Ci, Cj}
10. C ← C/Cm

11. window ← xi,j − αxi,j ; X ← φ
12. For each Cp in Cm, Cq in C do

13. xCp,Cq ← minp∈Cp,q∈Cq sim(p, q)
14. if xCp,Cq > window then

15. Cr ← merge(Cp,Cq)
16. C ← C ∪ Cr

17. C ← C ∪ Ck

The first 10 steps and the step 17 of Algorithm 3 are in fact the
classical agglomerative clustering with the complete-link criterion
function, where the complete-link criterion function is being used
in step 6. Given a coefficient α ∈ [0..1] as input parameter, step 11
computes a window size of acceptable clusters based on the value
of the criterion value and α. Given this window size, we look at
all the possible pairs of clusters that can be made with one of the
merged cluster Ci or Cj , and see if its criterion value is within
the window size. For each of these pairs, we merge them into a
unique cluster and add it to the list of open clusters C. Notice that
xCp,Cq cannot be bigger than xCi,Cj as the pair Ci Cj optimizes
the criterion function in step 6. As cluster Cp has a already got a
parent (i.e.: Ck), step 15 makes cluster Cr another parent of Cp.

Cj Cj=Cp
Cq

Ck
Cr
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Figure 3: Illustration of Algorithm 3

4. EXPERIMENTS
To evaluate our algorithms, we performed two identical experi-

ments on two famous data sets: MovieLens1 and Jester2. Movie-
Lens is the most famous data set in the recommendation system
community; it contains the ratings of 943 real users on at least 20
movies. There are 1682 movies in total, which can be described
by 19 themes: drama, action, and so forth. Jester is another famous
data set that contains the users’ ratings on jokes collected over a pe-
riod of 4 years. The data set contains over 4.1 Million ratings and is
actually split into three zip files: jester-data-1.zip, jester-data-2.zip,
jester-data-3.zip. In this paper, we only used the first data set; it
contains already 24,983 users on all the 100 jokes.

These sets were used for three reasons. First and most impor-
tantly, they are the most widely used data sets, which makes it easy
to reproduce the experiments. Second, both of those data sets con-
tain (real) rated items which are necessary for filling in the user-
item matrix R. Finally, these sets are very different in content and
sparsity, where the sparsity is defined as the fraction of entries in
the matrix R without values [10] over the total number of possible
entries. For example, MovieLens contains movies that can easily
be defined with some features such as the theme, duration, and so
forth. However, Jester is made up of jokes, which is much harder
to describe and thus is an ideal candidate to test our ontology learn-
ing algorithm. Notice also that the sparsity of MovieLens(0.937) is
much greater than the one of Jester(0.447).

The experiment set up was as follows. First, we selected all the
users who rated at least 65 items, and used the remaining one to
populate the user-rating matrix R. After removing users with less
than 65 ratings, we are left with 407 users in MovieLens and 6199
users for Jester. For each remaining user, we randomly separated its
ratings into two non-overlapping sets IS and TS. The intermediate
set IS contains exactly 50 ratings, while the set TS contains the
remaining ratings.

The intermediate set IS is used to study the behavior of the rec-
ommendation algorithms with different amounts of rating data to
learn the model. In the first case, we extracted 5 ratings from IS
that we put into a learning set LS, in order to simulate the case
when few preferences about the user are known. In the other situa-
tion, we used all 50 ratings in IS to see how the algorithms behave
when a lot of ratings are available for learning the model. The test-
ing set TS is used for computing the prediction using the top-N
recommendation policy, with N set to 5.

For these experiments, we used the toolkit CLUTO3 version 2.1.1
that implements all of the partitional and agglomerative clustering
algorithms used by Algorithm 1. For the COBWEB algorithm, we
used the java package WEKA4 version 3.4.

4.1 Evaluating Recommendation Algorithms
Many metrics have been proposed for evaluating the accuracy

of the predictions made by recommendation systems. The most
famous metric used to be the Mean Absolute Error, (MAE, [10]),
which evaluates the accuracy by measuring the mean average devi-
ation between the expected rating and the true rating. Later on in
[5], it was argued that this metric was in fact not very accurate when
considering rated items for users, as a user is usually interested to
know if he’s going to like the item or not. As a consequence, [5]
proposed to use the classical information retrieval metrics: preci-
sion and recall. Given a recommendation set RS, precision is de-
fined as the ratio of relevant items Nok by the total number of items
shown in RS, while recall is defined by the ratio of relevant items
to the total number of relevant items available in the database, Nr .

Precision =
Nok

|RS| ; Recall =
Nok

Nr
(7)

1http://www.cs.umn.edu/Research/GroupLens/data
2http://www.ieor.berkeley.edu/∼goldberg/jester-data/
3http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
4http://www.cs.waikato.ac.nz/∼ml/weka/



There are two challenges when using precision and recall for
evaluating the accuracy of recommendation systems. First, preci-
sion and recall need to be considered as a whole to fully evaluate
the performance. Second, it has been observed in many applica-
tions that precision and recall are in fact inversely related. Thus,
we need to use a metric that is able to combine both precision and
recall. As a consequence, and following the results in [5], we use
the F1 metric to evaluate the accuracy of a recommendation sys-
tem. This metric combines the precision and recall into a harmonic
mean ranging from 0 to 1, where 0 occurs when both precision and
recall are null. Inversely, the value 1 only happen if both precision
and recall are both equal to 1. Formally, the F1 metric is defined as
follows:

F1 =
2Precision ∗Recall

Precision + Recall
(8)

The main objective of our learnt ontologies is to help recom-
mender systems to correctly recommend items. Thus, we will also
use the F1 measure on the recommended items to evaluate the qual-
ity of the learnt ontologies.

4.2 Hierarchical Clustering Analysis
In this experiment, we studied the behavior of the ontologies

generated by Algorithm 1, and their efficiency as ontologies in
the personalized ontology filtering approach. Following Algorithm
1, we analyzed all the possible combinations made by the criteria
functions given in Table 1. Thus, we obtained 15 different ontolo-
gies: 6 using the partitional approach, and 9 with the agglomerative
approach. Given these ontologies, we implemented pOF with Al-
gorithm 2 to see whether or not the ontology personalization helps
to increase the prediction accuracy. Note that the COBWEB algo-
rithm was use to benchmark the learnt ontologies. Table 2 summa-
rizes the various algorithms used in this experiment.

Table 2: Notations used by the various algorithms
P i1 Partitional clustering using criterion I1

P i2 Partitional clustering using criterion I2

P e1 Partitional clustering using criterion E1
P g1 Partitional clustering using criterion G1

P h1 Partitional clustering using criterionH1

P h2 Partitional clustering using criterionH2

A i1 Agglomerative clustering using criterion I1

A i2 Agglomerative clustering using criterion I2

A e1 Agglomerative clustering using criterion E1
A g1 Agglomerative clustering using criterion G1

A h1 Agglomerative clustering using criterionH1

A h2 Agglomerative clustering using criterionH2

A slink Agglomerative clustering using criterion slink
A clink Agglomerative clustering using criterion clink
A upgma Agglomerative clustering using criterion UPGMA
COBWEB The concept-based clustering algorithm
pOF Personalized ontology filtering(Algorithm 1 & 2)

Each learnt ontology was then fed as input ontology to the ontol-
ogy filtering algorithm, and prediction on all the users were made.
To measure the quality of the ontologies, we used the prediction
accuracy defined in Equation 8 (i.e.: the F1 metric). The under-
lying assumption is that a good ontology should generate good
recommendations, and thus increase the prediction accuracy. The
results obtained by the different criteria functions significantly di-
verge within the same family of algorithms (i.e.: partitional or ag-
glomerative). As a consequence, we thought that using a simple
average measure over all the criteria would induce too much bias.
Especially when we consider the fact that there are more agglom-
erative algorithms than partitional. To simplify the understanding,

we transformed the F1 results into relative F1 value, rF1. This is
done by dividing the F1 results by the maximum possible value be-
tween the 15 possible ontologies. Notice that the relative F1 value
is very similar to the relative Fscore introduced in [15]. To have a
better understanding of the behavior of each ontology, we tested it
with different numbers of leaf clusters, ranging from 5 to the num-
ber of items available. Notice also that such a detail study was not
performed by [15].

#clusters 5 10 20 40 60 80 100 Avg

P-i1 0.92373 0.97397 1 0.98208 0.92791 0.8884 0.89714 0.94189

P-i2 1 0.99023 0.98308 0.98267 0.90027 0.90149 0.85413 0.94455

P-e1 0.72432 0.69181 0.78296 0.79208 0.76153 0.75762 0.84822 0.76551

P-g1 0.66714 0.72318 0.74148 0.90908 0.97757 0.99919 1 0.85966

P-h1 0.95538 1 0.92673 0.89358 0.91473 0.87 0.85138 0.91597

P-h2 0.96416 0.97633 0.93697 0.87226 0.78784 0.81062 0.85169 0.8857

A-i1 0.9235 0.94892 0.97217 0.95752 0.93228 0.89474 0.89714 0.93233

A-i2 0.93752 0.9719 0.98335 0.92592 0.88596 0.84463 0.87532 0.9178

A-e1 0.79454 0.73172 0.667 0.66709 0.70788 0.80379 0.84534 0.74534

A-g1 0.66714 0.72394 0.77269 0.90744 1 1 0.97004 0.86303

A-h1 0.74057 0.83112 0.76735 0.79804 0.82775 0.83622 0.8558 0.80812

A-h2 0.84804 0.85124 0.80934 0.73035 0.84645 0.87914 0.90457 0.83845

A-upgma 0.93958 0.98224 0.95688 0.96617 0.93888 0.89702 0.88038 0.93731

A-slink 0.66677 0.68665 0.70083 1 0.99565 0.96017 0.97172 0.85454

A-clink 0.95016 0.9561 0.95704 0.97443 0.95343 0.88577 0.89153 0.93835

pOF 1.07357 1.10116 1.07586 1.0788 1.05005 0.9517 0.91722 1.03548

COBWEB 0.70159 0.69947 0.66771 0.64461 0.62035 0.6091 0.63131 0.65345

Figure 4: Relative F1 values for Jester, 5 ratings in LS
Figure 4 and 5 display the relative F1 values obtained on the

Jester data set. First, we can see that on average, pOF using Algo-
rithm 2 to select the best learnt ontology performs better than any
of the simple clustering algorithms (rF1 = 1.0355 and rF1 =
1.0469), whatever the size of the learning set. This tends to confirm
our intuition that not one ontology is strictly better than the others,
but rather that some users will reach a better accuracy with a given
ontology. Notice that having a relative score superior to 1 for pOF
is not a mistake. It is due to the fact that the maximum is computed
on the 15 simple clustering ontologies only. Another important re-
sult is that the ontology learnt by COBWEB is the worst performing
ontology. The main reason for this lies in the definition of COB-
WEB: it is a conceptual clustering algorithm. As a consequence,
items need to be defined by a set of attribute-value pairs. In our
E-commerce context, this data is unavailable as we only have the
user-matrix R. This is also an indication that the technique [1] of
transforming the item-to-item similarity matrix into attribute-value
pairs is not suitable in this domain. When 5 items are used for
learning the user’s score, the partitional clustering with the i2 crite-
ria function (P-i2) has the best average relative score. Then, parti-
tional clustering with the h1 function (P-h1) becomes the best algo-
rithm when 50 items are used for learning the data set. This tends to
go in the direction of Zhao’s conclusions [15] that partitional clus-
tering algorithms perform better than agglomerative ones. Notice
the evolution of the clustering P-g1 with the number of clusters. If
only very few clusters are created, then P-g1 performs badly. How-
ever, when we have many clusters, P-g1 performs really well which
tends to show that the graph criterion requires many leaf clusters to
generate a good ontology. When the number of clusters are set to
either 40, 60, 80, and LS to 5, then interestingly agglomerative al-
gorithms do perform better than partitional clustering ones. This
would indicate (and the results with MovieLens confirm this) that
agglomerative clustering needs enough leaf clusters to perform cor-
rectly, while partitional algorithm seems better with less clusters. It
makes sense when we consider the fact that partitional algorithms
are top down approaches that recursively split clusters. Thus, too
many splits may degrade the ontology, as it generally increases the
variance. Inversely, agglomerative clusterings are bottom up ap-
proaches that recursively merge clusters.

When looking at the MovieLens data set (Figure 7 and 8), we



#clusters P-i1 P-i2 P-e1 P-g1 P-h1 P-h2 A-i1 A-i2 A-e1 A-g1 A-h1 A-h2 A-upgma A-slink A-clink COBWEB

Jester 100 0.247922 0.264556 0.271966 0.435304 0.469359 0.531173 0.198463 0.21052 0.21581 0.219471 0.33306 0.360501 0.197228 0.195981 0.196595 0.751616

MovieLens 1682 147.4204 185.8118 196.6213 120.7714 1293.98 1592.284 34.79125 35.89776 37.59519 33.97908 694.5894 835.5383 36.59017 37.22639 33.58081 30816

Figure 6: Execution time in seconds required for the clustering algorithm to generate the ontology.

#clusters 5 10 20 40 60 80 100 Avg

P-i1 0.92199 1 0.9502 0.92113 0.94957 0.89892 0.94203 0.94055

P-i2 1 0.94498 0.9513 0.93071 0.92297 0.91032 0.90704 0.93819

P-e1 0.86218 0.77141 0.6962 0.81741 0.71435 0.72781 0.89892 0.78404

P-g1 0.59848 0.62347 0.6806 0.82298 0.97371 1 0.89384 0.79901

P-h1 0.98554 0.99668 1 1 0.95368 0.86795 0.90357 0.9582

P-h2 0.94253 0.98046 0.96519 0.95347 0.9027 0.84852 0.90338 0.92803

A-i1 0.98182 0.96576 0.92109 0.9156 0.94747 0.89915 0.94203 0.93899

A-i2 0.95756 0.97014 0.92747 0.90997 0.91396 0.92123 0.96367 0.93771

A-e1 0.90571 0.8353 0.61178 0.59828 0.64679 0.76108 0.90683 0.75225

A-g1 0.59848 0.62783 0.68842 0.81516 0.95787 0.9641 0.94361 0.79935

A-h1 0.72858 0.76684 0.71589 0.73853 0.7958 0.81557 0.92598 0.78389

A-h2 0.83612 0.8311 0.76491 0.68172 0.81398 0.86419 1 0.82743

A-upgma 0.9528 0.92766 0.92468 0.96043 0.95605 0.91222 0.9804 0.94489

A-slink 0.60301 0.60367 0.63717 0.97247 1 0.92229 0.9835 0.81744

A-clink 0.99592 0.96524 0.95768 0.92494 0.95371 0.90206 0.96859 0.95259

pOF 1.10507 1.08234 1.05344 1.05072 1.05502 1.02225 0.95915 1.04686

COBWEB 0.64866 0.64406 0.63953 0.63206 0.62773 0.62337 0.69863 0.64486

Figure 5: relative F1 score for Jester, 50 ratings in LS

can see that the results are very similar than the one obtained with
Jester. For example, personalized ontology filtering performs better
on average than any of the clustering algorithms taken separately,
whatever the size of the learning set LS. As a mater of fact, the
improvement is even more significant than with Jester. Second,
the ontology produced by COBWEB is again giving a very poor
prediction accuracy. For the first time, the agglomerative clustering
with the clink criteria function is the best performing clustering
algorithm when 5 items are used for learning the user’s model. Note
however, that P-i1 is nearly as good as A-clink, and thus no clear
conclusion can be drawn from this result.

#clusters 5 20 60 100 500 1000 1682 Avg

P-i1 0.84069 0.91926 0.98805 0.93512 1 1 0.98595 0.95272

P-i2 0.87627 0.79532 0.79741 0.74341 0.8143 0.97471 0.87408 0.83936

P-e1 0.90203 0.83749 0.68534 0.64131 0.68346 0.63691 0.89353 0.7543

P-g1 0.9193 0.87733 0.72397 0.68421 0.82052 0.88072 0.88207 0.82687

P-h1 0.9281 1 0.79987 0.73797 0.99298 0.9237 0.81748 0.88573

P-h2 0.8758 0.82128 0.67032 0.62582 0.70004 0.69636 0.79924 0.74127

A-i1 0.72539 0.64607 0.5235 0.4808 0.50637 0.91393 1 0.68515

A-i2 0.85194 0.74609 0.61221 0.57204 0.58314 0.89917 0.90802 0.73894

A-e1 0.7468 0.65229 0.52695 0.4808 0.74603 0.84548 0.80962 0.68685

A-g1 0.74558 0.67179 0.55442 0.53726 0.67057 0.90855 0.82148 0.70138

A-h1 0.88115 0.91094 0.75327 0.79041 0.8596 0.83508 0.70466 0.8193

A-h2 1 0.88216 0.77272 0.83676 0.86767 0.82843 0.74439 0.84745

A-upgma 0.87567 0.76542 0.62262 0.58107 0.61131 0.91952 0.95968 0.76218

A-slink 0.72786 0.63624 0.52852 0.4808 0.50637 0.61383 0.90483 0.62835

A-clink 0.89295 0.91503 1 1 0.98353 0.93932 0.96958 0.9572

pOF 1.20871 1.20327 1.18411 1.09918 1.20731 1.07737 0.80673 1.11238

COBWEB 0.82724 0.72471 0.59 0.55166 0.58101 0.52325 0.50779 0.61509

Figure 7: Relative F1 values for MovieLens, 5 ratings in LS

When 50 ratings are used in LS, the best performing ontology
is again the one learnt using the partitional clustering with the H1

function. This tends to suggest that, on average and when sufficient
data about the user is known, partitional clustering with theH1 cri-
teria function performs the best. A detailed analysis of the ontology
size reveals in fact that the agglomerative clustering with the clink
function can outperform P-i1 if the number of clusters are set to
either 100 or 500. Fortunately, our pOF approach with Algorithm
2 is capable of predicting which ontology to use as its relative F1
score is always bigger than 1, and whenever the number of clusters
are less or equal to 1000.

When considering which clustering algorithm to use, the accu-
racy of the prediction should not be the only criterion. The exe-
cution time required to build the tree should also be an important
aspect. In Figure 6, we indicated the execution time (in seconds)
required for the clustering algorithm to generate its tree. As ex-
pected, the execution time does vary a lot from one algorithm to

#clusters 5 20 60 100 500 1000 1682 Avg

P-i1 0.85819 0.90691 0.93299 0.89813 0.86582 0.87823 0.8595 0.88568

P-i2 0.77527 0.92806 0.97378 0.89361 0.88676 0.86677 0.86777 0.88458

P-e1 1 0.94035 0.92338 0.88621 0.72445 0.68143 0.68595 0.83454

P-g1 0.86951 0.87643 0.91947 0.89565 0.88505 0.79018 0.78512 0.8602

P-h1 0.94444 1 1 0.92986 0.96069 0.9099 0.90909 0.95057

P-h2 0.91684 0.846 0.89171 0.86179 0.84053 0.71635 0.72727 0.82864

A-i1 0.52208 0.51313 0.53684 0.49868 0.47846 0.80507 0.80992 0.59488

A-i2 0.64579 0.58586 0.62117 0.601 0.59558 0.8178 0.80165 0.66698

A-e1 0.58947 0.52755 0.55189 0.51796 0.84788 1 1 0.71925

A-g1 0.56556 0.58262 0.66565 0.70807 0.74149 0.79567 0.78512 0.69203

A-h1 0.83433 0.89713 0.90878 0.91827 0.91451 0.79441 0.78512 0.86465

A-h2 0.9038 0.90267 0.90827 0.91641 0.85527 0.76771 0.75207 0.85803

A-upgma 0.72438 0.65738 0.68674 0.66053 0.64499 0.84773 0.82645 0.72117

A-slink 0.52469 0.47677 0.5641 0.53024 0.47789 0.69957 0.67769 0.56442

A-clink 0.90848 0.92253 0.92626 1 1 0.79018 0.77686 0.90347

pOF 1.26798 1.34464 1.34023 1.35016 1.27567 1.19754 1.06612 1.26319

COBWEB 0.71347 0.63978 0.67423 0.65088 0.64279 0.55043 0.91736 0.68414

Figure 8: Relative MovieLens Jester, 50 ratings in LS

another. The worst performing algorithm is COBWEB, which re-
quires nearly 9 hours to come up with a clustering tree on Movie-
Lens! We expected such a result as the complexity is exponential
to the number of attribute-value pairs, which in the case is equal
to 1682 different items (attribute) and two values (good or bad).
As a consequence, COBWEB clearly does not scale well to big
problems. However, it is good to point out that this computation
can be broken into smaller parts, as COBWEB is an incremental
algorithm. Very surprisingly, agglomerative clusterings took less
time to compute than partitional clusterings, which is obviously not
what is expected when reading the general literature. This is not a
mistake, and there are two explanations for this. First, the most ex-
pensive step in agglomerative clustering is the pairwise similarity
computation of all the pairs of items. In our situation, the matrix S
containing this data has already been computed, and thus remove
thisO(n2) step. Second, as highlighted by Zhao[15], the pair-wise
similarities or the improvements in the value of the criterion func-
tion achieved by merging a pair of clusters i and j do not change
during the different agglomerative step, as long as i and j is not
selected to be merged.

Finally, using the criteria functions H1 and H2 significantly in-
creases the execution time of the clustering algorithm. These re-
sults are coherent with the theory as H1 and H2 are both hybrid
functions that respectively combine criteria I1 with E1, and I2 with
E1.

4.3 Multi-Hierarchical Clustering Analysis
In this experiment, we wanted to see whether the multi-hierarchical

ontology generated by Algorithm 3 does increase the recommen-
dation accuracy or not. To test this aspect (and due to the limited
amount of space) we only reproduced the Jester experiment, and
compared it with the behavior of the agglomerative clustering us-
ing the clink criterion function.

First, we looked at the number of extra clusters generated by
the step 11 to 16 of Algorithm 3. As expected, the dotted line
in Figure 9 shows that by increasing the coefficient α, many ex-
tra clusters are being created. Notice that following algorithm 3,
one extra cluster implies that 2 clusters will have at least 2 parents.
An interesting aspect is to consider whether keeping increasing the
size of the window will always improve the accuracy of the recom-
mendation. The plain line in Figure 9 shows the average accuracy
of the recommendation made by using Algorithm 3 for generating
the ontology. The average accuracy was obtained by averaging the
F1 values when respectively using 5, 10, 20, 40, 60, 80, and 100
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Figure 9: Number of extra clusters generated by Algorithm 3

leaf clusters in the ontology. Note also that the F1 metric values
were scaled up to fit in the interval 0 to 90 by using the formula
y = 3000 ∗F1value−900. The solid line clearly indicates that in-
creasing the window size leads to better prediction accuracy. How-
ever, if the window becomes to big (i.e. α > 0.4), then the struc-
ture becomes overloaded by inheritance edges, which significantly
increases the search space. Finally, notice that increasing the coef-
ficient α will also increase the computational resources required to
build the ontology. Thus, a tradeoff will need to be done between
prediction accuracy and ontology quality.

In Figure 10, we plotted the prediction accuracy obtained using
the ontology filtering approach with different learning sets sizes.
The plain line is ontology filtering using Algorithm 3 to build the
ontology, while the doted line is OF that uses the classical agglom-
erative clustering with clink for the ontology construction. This is
respectively represented by the Algorithm 3 * and A clink * and
lines, where ∗ is the size of the learning set for learning the scores.
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Figure 10: Accuracy for the Jester data set, with α set to 0.4

These results tend to go in favor of our hypothesis, which states
that a multi-hierarchical structure leads to a better ontology than
a simple hierarchical one. As one can see, the ontology gener-
ated with the multiple inheritance algorithm reaches nearly always
the best prediction accuracy, with the best improvements when the
ontology contains at least 80 leaf clusters. When using agglom-
erative clustering with the clink criterion function, the prediction
accuracy fluctuates up and down depending on the parameter num-
ber of leaf clusters, and significantly decreases when the ontology
contains 100 leaves. This unwanted behavior is not observed with
the multiple inheritance algorithm, which seems more robust to the
number of leaf clusters. This can be explained by the fact that Al-
gorithm 3 builds many extra inheritance edges, which means that
the inference process has a higher probability of finding a shorter
path between two given concepts. This shorter path will allow more
score to be transferred between these concepts, which leads to a
better inference process.

4.4 Recommendation Accuracy
The first experiment showed that our personalized ontology fil-

tering led to the best results compared to classical clustering algo-
rithms. Following these results, we focus on whether our person-
alized ontology filtering approach is in fact better or worse than
collaborative filtering.

For the experiments, we analyzed the item-based collaborative
filtering (CF) using the adjusted cosine similarity for the similar-
ity between pairs of items, and the personalized ontology filtering
(pOF) defined in section 3.2. CF was used as benchmark as it is the
most widely used recommendation system. For the ontology filter-
ing, we used Algorithm 1 to generate all the ontologies, and used
Algorithm 2 to select the best ontology to be used by each user.

The performance of CF greatly depends on the number of neigh-
bors used to compute the prediction (Equation (2)). At the same
time, the ontologies generated by Algorithm 1 will be different de-
pending on the number of leaf clusters (i.e.:threshold θ) that were
specified. To test these aspects, we ran the algorithms using various
values of leaf clusters and neighbors.

Figure 11 shows the accuracy of the pOF and CF recommen-
dation systems on the Jester data set. The dashed lines represent
collaborative filtering, while the plain lines are the personalized
ontology filtering. The notation *-5LS and *-50LS means that 5
and respectively 50 items were used to learn the model. The x-
axis shows the number of neighbors that were used for CF, which
is also the same parameter used for the number of leaf clusters in
Algorithm 1. The y-axis measures the accuracy of the recommen-
dation using the F1 metric.
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Figure 11: Accuracy for the Jester data set
First, and most important, we can see that ontology filtering us-

ing the learnt ontologies performs much better than CF. The result
is even more emphasized when very few ratings (only 5, OF-5LS)
are used to learn the model. As a matter of fact, the improvement
of our personalized OF is always significant (p-value << 0.01).
Furthermore, OF with just 5 ratings performs better than CF with
10 times more data.

Notice that the accuracy of CF actually increases with the num-
ber of neighbors, and then decreases again. This is a well known
result [4] and is due to two reasons. First, CF needs to have enough
neighbors in order to correctly predict items. However, if too many
low correlated neighbors are included in the computation, then the
accuracy will decrease. This phenomenon seems amplified when
50 items are present in LS. Finally, we can see that pOF is more
robust to the number of clusters in the ontology than CF is to the
number of neighbors. This is because OF inference is done using
the closest element, while CF uses a neighborhood of items.

Figure 12 shows the accuracy of the same experiment, but per-
formed on the MovieLens data set. Notice that for Jester, the max-
imum number of neighbors was set to 100 as Jester contained 100
items. However, MovieLens contains 1682 different movies, which
could theoretically lead to a hierarchical tree with 1682 leaves.



However, due to the sparsity of the user-item matrix, the similar-
ities between some items could not be computed, which lead to
only 1668 clusters. Again, pOF performs much better than CF, and
shows significant (with p-value <0.05) improvement when 5 rat-
ings are used to learn the model.
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Figure 12: Accuracy for the MovieLens data set
When looking at the behavior of CF, the results are similar to

the one observed with Jester. However, the accuracy seems inde-
pendent of the number of neighbors when it is lees than 100. This
can be explained by the fact that the MovieLens data set is much
sparser than Jester. Thus, many more ratings are necessary to build
a correct model of the users.

Overall, we can see that pOF is performing extremely well and
leads to significant improvement over CF. Furthermore, pOF with
just 5 ratings in LS has a prediction accuracy that is nearly as good,
sometime better, than the one of CF with ten times more training
data. This tends to suggest that the learnt ontologies are of good
quality. One important fact that needs to be taken into account is
that CF’s accuracy tends to be proportional to the number of neigh-
bors. When the size of the user’s preference set increases, this leads
to significant scalability problems. Ontology filtering is less criti-
cal to this problem as the inference is carried out from the closest
concept, not on a neighborhood.

4.5 Discussion
These experiments bring more insight into the use of clustering

algorithms to build ontologies. From these, three main conclusions
can be drawn. First, when considering partitional and agglomer-
ative clusterings for building ontologies, there is no clear winner
even though on average, partitional ones seem slightly better. The
accuracy will greatly be influenced by the number of leaf clusters
set as parameter. Second, our intuition that using the same ontol-
ogy for ever user will be not be the best seems correct, and explains
why Algorithm 2 leads to significant increase in prediction accu-
racy. Finally, we showed that adding more inheritance edges be-
tween concepts leads to better prediction accuracy, which suggest
that multi-hierarchical ontologies are more robust for E-commerce
applications.

5. CONCLUSION
In this paper, we have introduced three algorithms. The first one

learns a set of ontologies based on some historical data, while the
second is capable of selecting which one to use based on the user’s
preferences. Our third algorithm extends the famous complete-link
agglomerative clustering by building a multi-hierarchical ontology
based on a predefined window size. Experimental results on the
famous MovieLens and Jester data sets showed that our algorithms
produce good quality ontologies and significantly increase the pre-
diction accuracy. Furthermore, the learnt ontologies can even out-
perform traditional item-based collaborative filtering.

This paper has also given some more insight into the behavior
of hierarchical clustering algorithms. This has lead to four con-
clusions. First, COBWEB is unsuitable for generating ontologies
from historical data as we do not have proper attribute-value pairs.
Second, partitional clustering algorithms produce ontologies that,
in general, achieve higher prediction accuracy than if they were
obtained by agglomerative approaches. Third, the quality of the
ontology will also be dependant on the number of leaf clusters be-
ing used, and this threshold will deeply influence which cluster-
ing algorithm will give the best ontology. Finally, we showed that
ontologies can be made more robust by adding more inheritance
edges, but this will require more computational resources.
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