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Abstract
Images of a scene captured with multiple cameras have dif-

ferent color values due to variations in capture and color render-
ing across devices. We present a method to accurately retrieve
color information from uncalibrated images taken under uncon-
trolled lighting conditions with an unknown device and no access
to raw data, but with a limited number of reference colors in the
scene. The method is used to assess skin tones for cosmetics rec-
ommendations. A subject is imaged with a calibration target in
the scene. This target is extracted and its color values are used to
compute a color correction transform that is applied to the entire
image. We establish that the best mapping is done using a target
consisting of skin colored patches representing a range of human
skin colors. We show that color information extracted from im-
ages is well correlated with color data derived from spectral mea-
surements of skin. Skin color can be consistently assessed across
cameras with different color rendering and resolutions ranging
from 0.1 Mpixels to 4.0 Mpixels.

Introduction
Our goal is to retrieve accurate color information from un-

calibrated images taken with unknown cameras. Due to incom-
plete illuminant compensation and to the different characteristics
of available cameras, consistent color rendering is not achieved
and the same object captured with different cameras have different
pixel values in the resulting images. Consequently, the retrieval
of accurate color information requires either the pre-calibration
of the imaging devices and the control of the illuminant, or addi-
tional scene information.

We are interested in retrievingcolorimetric as opposed to
spectral information about the scene. Thus, to use any con-
sumer camera as a colorimeter, we need known color information
present in the scene in the form of a calibration target, whose pixel
values are used as reference for the color correction of images.
The method we present is developed for the color correction and
classification of skin tones, but can be generalized to other colors.

The appearance of skin has been studied mostly for render-
ing purposes in computer graphics, for face detection and tracking
in computer vision, for diagnostic purposes in dermatology, and
for makeup and skin care in cosmetics. However, there is little
research on how to assess skin tones accurately from digital im-
ages. Perceived color is the most discriminative of skin attributes
and depends on its pigmentation, blood microcirculation, rough-
ness, sebum, and perspiration [2]. Its objective measurement has
been made mostly by traditional reflectance spectrometry (for a
review see [5]) and using narrow band spectrometers developed
specifically for dermatology [8]. Spectrometry of skin has two

Figure 1. uncorrected images (top row) and corrected images (bottom row)

for cameras (from left to right) Canon S400, HP850, Nikon D1, Nokia 6820

main drawbacks: the area measured is about 0.05cm2, but skin is
not homogeneous [2]. Additionally, the pressure of the probe on
the skin can be an important source of bias [7]. Still, traditional
spectrometers are inexpensive and simple to use and thus widely
employed.

To overcome the problem of the probe pressure on skin, a
proprietary device composed of an integrating sphere, a spectrom-
eter, and a tri-CCD camera was developed [3], allowing non con-
tact spectroscopy of different parts of the face and simultaneous
imaging for estimation of the skin color inhomogeneity.

Due to uneven tan, blemish, or shine, the color and appear-
ance of skin are usually not uniform across a subject’s face. More-
over, because of its volume, there are also important shadows and
specularities across the face, making the estimation of skin color
from images more difficult.

We present a simple and inexpensive method to assess skin
color from digital images for applications such as online shop-
ping, for which the use of calibrated devices is not feasible, or
for automated suggestion of personal appearance products, such
as makeup or clothing that complement skin tone. Uncalibrated
images taken under unknown illuminants are color corrected by
mapping selected pixel values onto reference values present in
the scene in the form of a target. This target is extracted and a
3×4 linear color transform is computed by least mean square er-
ror between the extracted target color values and pre-computed
color values. This color correction transform is then applied to
the entire image and face pixel values extracted. Figure 1 shows
the results of our method applied to images of the same subject
captured with four different cameras.

We show that our method allows color correcting skin tones
with an accuracy in terms ofCIELABcolor difference of∆E∗

ab <
1. Face color values extracted from color corrected images show
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Figure 2. The pipeline consists mainly in image color correction, face pixel extraction, and classification of skin tones.

high correlation with skin color derived from in vivo spectral mea-
surements, and also show high correlation across a wide range of
cameras from different manufacturers and different quality levels.

The article is structured as follows: in the next section we
present the color assessment with uncalibrated cameras, then we
describe the experiments, report the main results, and conclude
the article.

Color assessment with uncalibrated cameras
Color values of an object are never identical when imaged

with multiple uncalibrated cameras, even when the lighting con-
dition is the same. This is due to imperfect illuminant compen-
sation, different sensor responses, and to variations in image pro-
cessing algorithms and in hardware quality. Accurate color as-
sessment thus requires either pre-calibration of the devices or a
color correction of the output images.

We propose a method to retrieve skin color information from
digital images taken with a single, casually posed consumer cam-
era. The illuminant spectra and sensor responses are unknown
but we use a calibrated target present in the scene as reference to
compute a linear color correction transform.

A subject is imaged along with the reference target, which
is automatically detected and whose pixels are extracted. A 3×4
linear transform mapping the image extracted target values onto
pre-computed reference target values is computed by least mean
square error and then applied to the entire image. The color trans-
form is computed insRGB[1], i.e. the reference values aresRGB
values. We work under the assumption that the output images are
already encoded insRGB. In other words, the in-camera process-
ing should result in color triplets that are already close tosRGB
values. The color correction method is explained in detail in [6].

The face is extracted using a Viola-Jones face detector [9]
and then its skin tone is classified according to the extracted face
pixel values. Figure 1 shows an example of color correction.

The processing pipeline can be divided into three main steps:
1) image color correction 2) face pixel extraction, and 3) classifi-
cation of skin tones (see Figure 2). In this paper, we will focus on
the color transform and on its performance. For a discussion of
the whole image pipeline, see [4].

Computation of the color correction transform
The color correction transform is a 3×4 matrixA mapping

the mean patch camera color valuesM onto thesRGBreference
target valuesT.

T{3×n} = A{3×4} ·M{4×n} (1)

whereT is a matrix whoseith column contains theith value of
then reference patchest i = (tred

i , tgreen
i , tblue

i )T andM is a matrix
whoseith column contains theith value of then mean camera

patch colormi = (mred
i ,mgreen

i ,mblue
i ,1)T .

We want to findA minimizing ‖T −AM‖, i.e. minimizing
the least mean square error insRGBcolor encoding.A is given by

A{3×4} = T{3×n}M+
{n×4} = T{3×n}MT

{n×4}(MMT)−1
{4×4} (2)

where+ denotes the Moore-Penrose pseudo-inverse.A provides
a 3×3 color transform plus a per-component offset.

The choice ofsRGBas a reference encoding was made for
computational and simplicity reasons. Performing the least mean
square computation of the transform in a perceptual space such
asCIELAB requires more calculation and non-linear transforms
of sRGBvalues. The use ofsRGBas reference encoding rather
than linearsRGBis motivated by the presence of a non-linearity
in sRGB, which is perceptually more relevant that linear RGB
values.

Reference target
The target contains three rows of eight patches set against

a black background and surrounded by a frame used for its au-
tomatic detection (see Figure 3). The first row contains primary
and secondary colors and two shades of grey. The two last rows
contain 16 patches characteristic of human skin colors ordered by
uniformly increasing lightness alternating on two rows.

We printed the target on photopaper with close to lambertian
surface characteristics and measured the reflectance spectrumSk

of each patchk. These measures were used to computesRGB
reference values using a simple image formation model

(Xk
D65,Y

k
D65,Z

k
D65) =

1
N ∑

λi

Sk
λi
·ED65

λi
· (xλi

,yλi
,zλi

) (3)

whereED65 is the illuminant spectrum,Sk the reflectance spec-
trum, N a normalization constant, andx,y,z the CIE 1931 2◦

color matching functions. We then use theCIEXYZ to sRGB
transform specified in [1]. For each image, the target patches
are extracted and the color transformA (1) is computed using the
Moore-Penrose pseudo-inverse (2). This transform is then applied
to the entire image prior to face pixel extraction and color classi-
fication.

Experiment
53 people holding a copy of the calibration target were im-

aged with four different RGB cameras. The cameras were an
HP850 (3.9 Mpixels), a Nikon D1 (2.7 Mpixels), a Canon S400
(4.0 Mpixels), and a Nokia 6820 cell phone camera (0.1 Mpixels).
The reflectance of each skin was also measured using a portable
Microflash spectrometer with a 0◦/45◦ geometry. The illumina-
tion conditions vary across subjects, but are constant in all four
images of one subject imaged with the different devices. Figure 1
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Figure 3. The reference target contains three rows of eight patches. The

last two rows are representative of human skin tones.

shows an example of before and after color correction computed
using the 16 skin tones patches. The first row shows the uncor-
rected images having resolutions from 0.1 to 4.0 Mpixels and dif-
ferent color qualities, and the second row the images corrected
using the method described in this paper.

Optimal choice of target reference values
We investigated the colorimetry of the target color patches

to determine which reference values should be used in the com-
putation of the color correction matrixA. Our target primarily
consists of color patches representative of human skin tones. For
an accurate color correction of skin tones, it is important to have
a dense sampling in this region of the color space. We thus use
skin tones for the computation of the color transformA. The two
shades of grey can be used for an additional white balancing of the
images and may influence the color correction of skin color. The
black and white background can also be used in the color correc-
tion computation, but those colors are more likely to be clipped in
the images and were thus not considered. We want to determine
which selection of patches should be used in the color transform
and if the middle greys should be taken into account in order to
obtain an accurate color correction of skin tones.

As the target is the only element in the image whose color
properties are known, it is used to estimate the performance of
the color transform. Several subsets of 8 skin patches, with and
without the grey patches, are used to computeA using eq. (2).
Each test transform is computed and applied to the 53 images
taken with the HP 850 camera. The target values are re-extracted
and used to compute the error on the 8 remaining skin colored
patches not used in the transform calculation. The transform using
all 16 skin patches was also computed for comparison.

The five tested transforms were computed using:
1. The first row of skin tones (odd numbers in Figure 3) and

the two middle grey patches.
2. The first row of skin tones (odd numbers) only.
3. The second row of skin tones (even numbers) and the two

middle grey patches.
4. The second row of skin tones (even numbers) only.
5. 8 patches (1, 2, 5, 8, 9, 10, 12, and 15) forming a convex

hull of all skin patches inCIELAB, plus two patches in the center.
These five transforms were tested by estimating the error in

computing∆E∗
ab color differences inCIELAB, i.e. the euclidian

distances between the values extracted from images and the target
reference values.

Table 1 shows the values of∆E∗
ab for the five transforms,

computed on the 8 skin patches not used in the color transform

and on all 16 patches. Comparing the results for the transforms
using the grey patches (transforms 1 and 3) with the transforms
using skin patches only (transforms 2, 4, and 5), we see that leav-
ing out the grey patches gives a better color correction of skin
tones, with a color prediction ofE∗

ab≈ 0.8 as opposed to∆E∗
ab≈ 1

with the neutral tones. The difference among the∆E∗
ab values ob-

tained for the three transforms using solely skin patches is not
large enough to be significant.

Table 1: ∆E∗
ab estimated on 8 and 16 patches

∆E∗
ab estimated on 8 patches

Transform mean ∆E∗
ab var ∆E∗

ab
1. skins 1 + grey 1.19 0.12
2. skins 1 1.05 0.05
3. skins 2 + grey 1.45 0.05
4. skins 2 1.18 0.26
5. skins in Lab 0.81 0.03
∆E∗

ab estimated on 16 patches
Transform mean ∆E∗

ab var ∆E∗
ab

1. skins 1 + grey 1.08 0.11
2. skins 1 0.82 0.04
3. skins 2 + grey 1.17 0.11
4. skins 2 0.79 0.20
5. skins in Lab 0.82 0.04

Correlation between spectrally derived and image
extracted color values

We extracted face pixels from the color corrected images
and compared these values with spectrometric measurements of
the subject’s skin. Spectrometry allows objective measurement of
color and has traditionally been used in many applications. How-
ever, spectrally derived skin colors may not always accurately rep-
resent the average color of a subject’s face. The skin spectra mea-
surements were thus systematically done on a uniform area of the
face with minimal probe pressure.

The faces are extracted from the images using the Viola-
Jones face detection [9] and only the face pixels having a light-
ness between 10% and 90% (computed asY = (R+G+B)/3) are
considered in order to remove outliers due to hair, eyebrows, eyes,
lips, teeth, shadows, and specularities. The meansRGBvalues of
the remaining pixels are then used as the skin color estimate.

The skin reflectance spectra were used to computesRGB
values (3). These values were then compared with mean val-
ues of face pixels extracted from each of the 53 images taken
with the HP850 camera and color corrected with the transform
A computed using all skin colored patches. TheCIEXYZ to
sRGBtransform is computed as indicated in [1].sRGBvalues are
converted into normalized color coordinatesY = (R+ G+ B)/3,
r = R/(R+G+B), andg = G/(R+G+B). The correlation be-
tween extracted(Yimage, r image,gimage) face color values and spec-
trally derived(Yspectra, rspectra,gspectra) values is high (see Fig-
ure 4). However, spectrally derived values have systematically
smallerr components and largerY components than values ex-
tracted from the images. This difference can have several causes.
The skin is not lambertian, flat, and untextured, and its reflectance
measurements can be biased by the pressure of the probe. More-
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Figure 4. Spectrally derived values (x-axis) vs. image extracted values (y-

axis) for Canon S400, HP850, Nikon D1, and Nokia 6820. The top row shows

lightness values Y = (R+G+B)/3. The bottom row shows normalized color

coordinates r = R/(R+ G+ B) and g = G/(R+ G+ B). The black dotted line

indicates the linear relation.

over, the average of face pixel values is a simple estimate but may
not optimally represent skin color, as it is generally uneven across
a subject’s face. There may still be a significant amount of shad-
ows despite selecting skin pixels according to their lightness.

Consistency of extracted skin color values across
a variety of cameras

Despite the discrepancy in lightness observed between spec-
trally derived and image face color values, the high consistency
in color prediction across subjects indicates that the color correc-
tion is coherent. Most importantly, we want to make sure that
the method is also consistent also across devices, such that with
proper training, the system can assign skin tones for any new un-
known RGB camera. The correlation is high across values derived

Table 2: Correlation coefficients across (Y, r,g) components for
each pair of cameras and the corresponding CIELAB∆E∗

ab color
difference averaged over all images

Y HP nokia nikon canon
HP 1
nokia 0.93 1
nikon 0.98 0.90 1
canon 0.98 0.91 0.96 1

r HP nokia nikon canon
HP 1
nokia 0.80 1
nikon 0.89 0.57 1
canon 0.96 0.71 0.94 1

g HP nokia nikon canon
HP 1
nokia 0.80 1
nikon 0.86 0.82 1
canon 0.91 0.84 0.85 1

av. ∆E∗
ab HP nokia nikon canon

HP 0
nokia 3.59 0
nikon 3.28 5.32 0
canon 1.90 4.00 3.40 0

from all four cameras and the relation is linear (see Figures 5 and
6). Table 2 reports the correlation coefficients across the(Y, r,g)
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Figure 5. Lightness Y = (R+ G+ B)/3 values compared for each pair of

cameras. The x-axis shows (from left to right) cameras HP850, Nikon D1,

and Nokia 6820 and the y-axis shows (from top to bottom) cameras Nikon

D1, Nokia 6820, and Canon S400. The black dotted line indicates the linear

relation.s

values for each pair of cameras and the correspondingCIELAB
∆E∗

ab color difference averaged over all images. Correlation co-
efficients range from 0.57 to 0.98 and most values are above 0.8.
The lowest correlation is obtained with the Nokia cell phone cam-
era, which was expected considering that it has the lowest quality.
At this resolution, the size of one target patch is about 10× 10
pixels (see Figure 7). JPEG artifacts then become important and
may introduce an error in the estimation of the patch color val-
ues. The results are noisy but still give an estimate of skin tones
with a ∆E∗

ab ≃ 5. To compare this value against the range of all
possible human skin tones, we computeCIELAB values using
the spectral measurements of the reference target for the light-
est(L∗ = 71.6, a∗ = 9.01, b∗ = 14.8) and darkest(L∗ = 31.17,
a∗ = 8.91, b∗ = 9.47) skin colored patches, giving a color differ-
ence∆E∗

ab = 40.7. Even though the error∆E∗
ab ≃ 5 is quite large,

it still allows a good classification of skin tones. An accuracy of
∆E∗

ab = 1, considered as the distance between two distinguishable
color stimuli, may not be required for all applications. The re-
sults using the Nikon D1 camera are also quite low, despite the
much higher resolution, but this set of pictures has systematically
important clipping in the three color channels.

The error in the skin color assessment has several sources of
error adding up. There is an error in the estimation of the color
correction transform inherent to the least mean square estimation.
It is related to the quality of the imaging devices and can also be
worsened by mixed illuminants, clipping in the images, or shad-
ows projected on the target. There is also an error in the estimation
of skin pixels. Shadows and specularities may not be completely
eliminated by the lightness bounds and shift the mean face color.

Note though that these results were obtained using four cam-
eras with very different characteristics and resolutions without by-
passing any of the in-camera image processing.
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Figure 6. Normalized color coordinates r = R/(R+G+B) and g = G/(R+

G+ B) compared for each pair of cameras. The x-axis shows (from left to

right) cameras HP850, Nikon D1, and Nokia 6820 and the y-axis shows (from

top to bottom) cameras Nikon D1, Nokia 6820, and Canon S400. The black

dotted line indicates the linear relation.

Figure 7. When using low resolution cameras, JPEG artifacts become

important and can introduce errors in the color transform estimation.

Conclusion
We present a method that allows accurate assessment of skin

color from uncalibrated images taken with uncalibrated consumer
cameras under unknown illuminants. Images are color corrected
using pre-computed reference values present in the image in the
form of a calibration target consisting of patches representing a
range of human skin tones. Skin color estimated with this tech-
nique correlates well with spectral data and across a variety of
uncalibrated devices with resolutions as low as 0.1 Mpixels, with-
out control of the illuminant.

The accuracy of color assessment is lowered by the uneven-
ness of skin and the error in the extraction of face pixels. Thus our
method allows consistent, though not perfect, skin color assess-
ment without requiring any expensive calibrated imaging devices
or control of the illuminant and can be performed with any con-
sumer camera. This method can be applied to other limited color
gamuts.
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