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ABSTRACT 

We pose the estimation of the parameters of multiple 
superimposed exponential signals in additive Gaussian noise 
problem as a Maximum Likelihood (ML) estimation problem. 
The ML problem is very non linear and hard to solve. Some 
previous works focused on finding alternative estimation 
procedures, for example by denoising. In contrast, we tackle 
the ML estimation problem directly. First, we use the same 
transformation as the first step of Iterative Quadratic 
Maximum Likelihood (IQML) and transform the ML problem 
into another optimization problem that gets rid of the 
amplitude coefficients. Second, we solve the remaining 
optimization problem with a gradient descent approach 
(“pseudo-quadratic maximum likelihood”). We also use this 
algorithm for Ultra-Wideband channel estimation and 
estimate ranging in non-line of sight environment.  

I. INTRODUCTION 

The estimation of the parameters of multiple 
superimposed exponential signals in additive Gaussian noise 
is of interest in time series analysis and system identification 
and in antenna array processing. 

Based on the ML formulation, we developed a new 
estimation algorithm that outperforms the existing ones. [1] 
formulated the ML criterion which a multidimensional cost 
function with many local minima including the global 
minimum, which is of greatest interest since it leads to the 
smallest estimation error that can be obtained. Using directly 
the obtained cost function would need adaptive techniques 
(with a big number of iterations). Our idea was to force the 
cost function to be quadratic in terms of the parameters to be 
estimated. The known techniques [1] (IQML) using this 
approach leads to good estimates for high values of the Signal 
to Noise Ratio (SNR) (about more than 50dB). At low values 
of the SNR, the proposed techniques diverge and the global 
ML cost function minimum is not found. We showed that this 
in-ability to find the global ML minimum is essentially due to 
the presence of noise in the ML cost function which biases the 
obtained estimates. We proposed an original estimation 
algorithm which leads the global ML minimum. The 
derivation of the algorithm is based on the proper formulation 
of the gradient of the ML cost function and its global 
convergence is in two iterations (a substantial reduction in 
process complexity compared to adaptive ML techniques) and 
its initialization is done implicitly (we do not need an explicit 
initialization using another estimation procedure). The 
obtained performance of the proposed estimation algorithm is 
quasi-optimal (since it resolves the noiseless ML optimization 
criteria) and its processing complexity is very low: only two 
iterations are requested to obtain a very accurate position 

estimate. 
We also use this algorithm for Ultra-Wideband channel 

estimation and estimate ranging in non-line of sight 
environment. 

Section II introduces our system model. In Section III we 
transform our maximum likelihood estimation problem into a 
pseudo-quadratic one. In Section IV we define our proposed 
pseudo-quadratic maximum likelihood algorithm. In Section 
V we use our algorithm for Ultra-wideband channel 
estimation and ranging. Section VI shows simulation results. 

II. SYSTEM MODEL 

Suppose that plane waves from L point sources from 
distinct directions impinge on a M element line array. The 
M signal samples at thj instant in time are embedded in a 

vector jyr called snapshot vector [7]. 

( ) ( ) ( )[ ]Tjjjj Myyyy 1,,1,0 −= L
r

                  (1) 

A set of J measured data vectors Jjy j ,,1, L
r

= ,is 
available. The observed samples consists of signals from the 
L  point sources, ( ) ( ) ( )[ ]Tjjjj Mwwww 1,,1,0 −= L

r and 

noise ( ) ( ) ( )[ ]Tjjjj MnnnN 1,,1,0 −= L
r

. That is 

jjj nwy rrr
+=        Jj ,,1L=                 (2) 

The signal samples at the  thk element at the thj  snapshot 
is modelled as follows [6]. 
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where L : number of point sources 
     d :spacing between elements 
    χ : wavelength of radiation 
    M : number of elements in the array: LM 2>  
     lθ : Bearing of the thl source 

     lja : Amplitude of the thl  source at the thj  snapshot 

     ljρ : Phase angle of the thl  source at the  thj  
snapshot. 

In a simplified form the signal sample are written as 

( ) ∑
=

=
L

l

k
lljj akw

1
λ     1,,0 −= Mk L               (4) 

W here  ( )ll jfexp=λ  and ( ) ll df θχ sin=  and assume 
it is distinct from the other 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147929144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07) 

signals ,i.e, 21,
21

llll ≠∀≠ λλ . lja is the complex amplitude 

of the l th signal in the j  th snapshot, which may vary across 
j . 

The M components of the j th vector jy are given by  

( ) ( )knaky j

L

l

k
lljj += ∑

=1
λ    1,,0 −= Mk L     (5)  

where ( )kn j are complex normal random variables 

uncorrelated across both k and j ,with uncorrelated real and 

imaginary components, each of variance 22σ . 
We can write (5) in the following vector notation. 

( ) jjj NaVy
rrrr

+= λ                               (6) 
where 

( ) ( ) ( )[ ]Tjjjj Myyyy 1,,1,0 −= L
r

 

[ ]Lλλλλ ,,, 21 L
r
=  

( ) [ ]12 ,,,,1 −= M
llllv λλλλ L  

( ) ( ) ( ) ( )[ ]LvvvV λλλλ ,,, 21 L
r
=  

[ ]TLjjjj aaaa ,,, 21 L
r

=  

( ) ( ) ( )[ ]Tjjjj MnnnN 1,,1,0 −= L
r

 

The superscript T refers to the transpose operator and 
H refers to the Hemitian-transpose operator.  

     The above formulation encompasses the data model for 
a variety of problems. The case 1=J  corresponds to the 
single experiment time series problem with uniform sampling, 
the components of the vector 1yy rr

= being the M time 
samples of the measured signal. The case 1>J corresponds 
to a multiple experiment with a time series, or equivalently to 
a multiple experiment with a time series, or equivalently, to 
the data model for a linear uniform narrow-band array, with 
multiple plane waves (far-field sources) present. In the latter 
case, the components of the measurement vector represent the 
output from M  individual elements. 

Assume that the number of signals L is known, given the 
data { }J

jjy
1=

r
,we need to estimate the signal parameter vector 

λ
r

 and the signal amplitude { }J
jja

1=

r
. Finally, we can 

compute bearing of the source [ ]TLθθθθ ,,, 21 L
r
=  with  

λ
r

. 

III. MAXIMUM LIKELIHOOD ESTIMATION 

When the observation noise is Gaussian, the Maximum 
Likelihood (ML) criterion is equivalent to a Least Squares 
(LS) one. The ML estimate of the signal parameters λ

r
 and 

amplitudes { }J
jja

1=

r
 is obtained by solving the nonlinear least 

squares problem 

( )∑
=

−
J

j
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aVy
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2

,
min rrr
r λ
λ

                       (7) 

where ⋅ represents the Euclidean norm. 

Assume that we pick a ( )λrV , the best jar for that choice 

of ( )λrV  is obtained by  

( ) jj yVa rrr +
= λˆ                                       (8) 

where ( ) ( ) ( )[ ] ( )λλλλ
rrrr

HH VVVV
1−+

=  is the pseudo 

inverse of ( )λrV . By substituting (8) into (7), the problem (7) 
is reduced to the following formulations: 
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r
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trace operator, and ∑
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 is the sample 

autocorrelation matrix of jyr . Once the ML estimate λ̂
r

 is 

determined by solving (9), jâr  are found by the (8). 

As ( )λrV  is a Vanderonde matrix, there exists a Toeplitz 

matrix, B , of dimension ( )LMM −×  such that 

( ) 0=λ
r

VB H                                   (10) 
The matrix B is given by  
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and its elements are taken from the coefficients of polynomial 
( ) L

LL bzbzbzb +++= − L1
10                     (12) 

with roots equals to { }Lλλλ ,,, 21 L . 

[ ]Lbbbb ,, ,10 L
r
=  has following constraints: 

1) 0≠b
r

     2) 1=b
r

  3) Libbb iLi ,,0,: * L
r

== −  

From Eq.(10), we know  

BV PP =⊥                                            (13) 
We can write Eq.(9) as follows: 

[ ]{ } ( )[ ]{ }y
HH

byBb
RBBBBtrRPtr ˆminˆmin 1−

= rr      (14) 

Once b̂
r

is obtained by Eq.(14), λ
r

is obtained by the roots 
of ( )zb . 
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Since HB is linear in *b
r

(where the superscript * refers to 
the complex conjugate operation), a matrix jY  filled out with 

the elements of jyr can be found such that *bYyB jj
H

rr
= . 

Eq.(14) becomes 
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rr

r        where BBR H=    (15) 

Because J is a constant, Eq.(15) is equivalent to  
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j

T
j
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In iterative quadratic maximum likelihood (IQML) 
algorithm [1], the search b

r
 is replaced by an iterative 

procedure. For a given IQML iteration, the vector b
r

 in TR −  
is held fixed, and the Eq.(16) is then quadratic in the 
remaining involving b

r
 and can be minimized in closed-form. 

The resulting  b
r

  is then used to fix TR − , and the process is 

repeated until b
r

 converges. IQML algorithm leads to good 
estimates for high values of the Signal to Noise Ratio (SNR). 
At low values of the SNR, the IQML approach diverge and 
the global ML cost function minimum is not found. In the 
next part, we used pseudo-quadratic maximum likelihood 
(PQML) algorithm to find the global ML cost function 
minimum in the low SNR environments. 

IV. PSEUDO-QUADRATIC MAXIMUM LIKELIHOOD 

In [2][3], the Pseudo Quadratic Maximum Likelihood 
(PQML) approach was shown to outperform proposed ML 
based multichannel estimation techniques and to lead to the 
ML cost function minimum. Following a development similar 
to the one in [4], it can be shown that the gradient of the ML 
cost function can be written as ( )bb

rr
Γ ,where ( )b

r
Γ is (ideally) 

positive semi-definite. A stationary point of the ML cost 
function satisfies ( ) bbb

rrr
0=Γ . This nonlinear eigenvalue 

problem is solved using the following iterative algorithm. 
1. Choose a starting point  0b

r
 

2. For each kb
r

 ,construct ( )kb
r

Γ   

3.Choose 1+kb
r

  to be the eigenvector corresponding to the 

smallest absolute eigenvalue of   ( )kb
r

Γ  
4. Repeat until convergence. 
For our problem, ( )b

r
Γ  can be got from Eq.(16) as 

follows: 
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where matrix jΨ is defined as j
H

j yBRT r1−=  and 

bBT jj

r
Ψ= . 

For finite M , the matrix ( )b
r

Γ is indefinite and applying 
directly the PQML strategy will not work except for high 
SNR. We introduce an arbitrary γ  in the minimization 
criterion, which becomes: 
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with semi-definite positive constraint on the central 
matrix.Hence, b

r
can be found as the minimal generalized 

eigenvector of ∑
=

−
J

j
j

TT
j YRY

1

*  and ∑
=

ΨΨ
J

j
j

H
j

1
 . γ  is the 

corresponding minimum generalized eigenvalue. 
Asymptotically, there is a global convergence for b

r
 , which 

converges to the ML minimum. Note also that the stationary 
points of PQML are the same as those of ML criterion; this is 
why PQML has the same performance as the ML criterion 
and hence gives the global ML minimum. 

V. ULTRA-WIDEBAND CHANNEL ESTIMATION AND 
RANGING 

We will use the PQML algorithm for ultra-wideband 
channel estimation and ranging in this section. Consider a 
multipath channel with finite delay spread and an impulse 
response given by 

( ) ( )∑
=

−=
L

l
ll tath

1
τδ                        (19) 

where la  and lτ  denote the amplitude and the time delays of 

the L channel paths, respectively. Define 
[ ]TLττττ ,,, 21 L

r
= and [ ]TLaaaa ,,, 21 L

r
= . 

Assume that a sequence of Ultra-Wideband (UWB) pulses 
with waveform, ( )tw  of duration pT , is received through this 
channel. The received signal can be expressed as 

( ) ( ) ( )tntwatr
L

l
ll +−= ∑

=1

τ                  (20) 

where ( )tn  is an additive independent white Gaussian noise 

with zero mean and variance equal to 2σ . We also assume 
the transmitter and the receiver are synchronized. 

We are interested in the joint estimation of the τr  and ar . 
Assume we receive Q samples, concatenated in the vector 

rr ( Q  satisfies so MTT =  and sT  denotes the sampling rate) 

through the transmission of G  samples forming the UWB 
pulse ( sp GTT =  and QG < ).  

Assuming that the signal has finite energy, taking the 
Fourier transform of the received signal and assuming that 
M samples of the Fourier transform are available at the set of 
frequencies { }Mfff ,,, 21 L ,we obtain 

( ) ss NaSVr
rrrr

+= λ                        (21) 
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where sr
r

( ( ) ( )[ ]TMsss frfrr ,,1 L
r
= ) is the Fourier 

transform of the received signal. S is an MM × full rank  
diagonal matrix and its elements corresponds to the Fourier 
transform of the UWB pulse, ( )fW

r
 taken at the set of 

frequencies { }Mfff ,,, 21 L  such that ,
M
kfk =+1 and 

1,,1,0 −= Mk L . S  is defined as 

( )

( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

MfW

fW
S O
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                 (22)  

( )λrV  is an LM ×  matrix which is defined as follows: 

lM
j

l e
τ

π

λ
2

−
=  

( ) [ ]12 ,,,,1 −= M
llllv λλλλ L  

 ( ) ( ) ( ) ( )[ ]LvvvV λλλλ ,,, 21 L
r
=  

The elements of sN
r

 will be additive, independent Gaussian 
variables.  

Multiple 1−S on the both sides of Eq.(21),we can get: 

( ) NaVy
rrrr

+= λ                            (23) 

where srSy rr 1−=  and sNSN
rr

1−= . N
r

 is still 
additive ,independent Gaussian noise. 

The problem of Eq.(23) corresponds to the case 1=J  in 
Eq.(6).  

We can estimate λ
r

 and ar  with PQML algorithm first. 

And use 
lM

j

l e
τ

π

λ
2

−
=  to get τr . 

  In case of ranging for UWB, the parameter we are 
interested in for the purpose of ranging is 1τ , which is the 
smallest element in the Time of Arrival (TOA) vector 

estimate, τ̂r , that is, the path that arrives first among all the 
detected paths.  
 

VI. SIMULATIONS 

We only simulate ultra-wideband channel estimation and 
ranging with PQML algorithm in this section. We consider a 
received UWB signal composed of Impulse Radio (IR) pulses. 
Each pulse has duration 1ns in a total burst length of 100ns, 
which means 1 percent duty cycle. On the IR UWB pulse, we 
apply an FFT of length N=128. The sampling frequency is 
2GHz. The used channel is a five-ray propagation channel 
with path amplitudes equal to 

[ ]5.07.06.08.06.0=ar  and delays 

[ ]nsnsnsnsns 505.43315.2010=τr . All the 
presented results are average over 100 Monte-Carlo trials and 
for a given trial the Normalized Minimum Square Error 

(NMSE) for a vector of parameters ur  is defined by 
22ˆ uuu rrr

− , and ûr  refers to the vector of parameters 

estimate. The initialization of the PQML algorithm is done by 
putting the matrix equal R to identity.  

We consider now a Gaussian pulse generated with a centre 
frequency GHzfc 12.5= , according to the following 

shape: ( ) ( )227.24 tf
c

cefts ππ −= (the duration and duty 
cycles are as previously described. 

Figure 1 illustrates the obtained NMSE of delay 
estimation versus the number of iterations at different values 
of SNR. NMSE of Channel Amplitude Estimation versus the 
number of iterations at different values of SNR is showed in 
Figure 2. From Figure 1 and Figure 2, we can note that there 
is a significant performance improvement when using the 
PQML estimation algorithm. Figure 3 illustrates the obtained 
performance in terms of standard deviation of the ranging 
error and compares it to its Cramer-Rao Lower Bound 
(CRLB).  We can conclude that using the PQML algorithm 
for the estimation of the UWB TOA and then translating this 
to a ranging estimation leads to good results for the UWB 
ranging. From the above simulation results, the PQML 
algorithm is better than Subspace algorithm. The reason is the 
PQML algorithm is based on Maximum Likelihood 
Estimation estimator which is optimal estimator under 
Gaussian noise environment. 
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Figure 2: NMSE of Channel Amplitude Estimation 
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Figure 3: Standard Deviation of Ranging Error 

VII. CONCLUSIONS 

A high resolution iterative algorithm, PQML, has been 
proposed for the solution of the constrained optimization 
problem associated with the MLE requiring only the solution 
of linear equations. The algorithm can be used in Ultra-
wideband channel estimation and ranging. We will also 
consider the cases of non Gaussian, impulsive interference 
noise in the future work. 
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